xref: /linux/drivers/dma/imx-sdma.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/of_dma.h>
41 
42 #include <asm/irq.h>
43 #include <linux/platform_data/dma-imx-sdma.h>
44 #include <linux/platform_data/dma-imx.h>
45 #include <linux/regmap.h>
46 #include <linux/mfd/syscon.h>
47 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
48 
49 #include "dmaengine.h"
50 
51 /* SDMA registers */
52 #define SDMA_H_C0PTR		0x000
53 #define SDMA_H_INTR		0x004
54 #define SDMA_H_STATSTOP		0x008
55 #define SDMA_H_START		0x00c
56 #define SDMA_H_EVTOVR		0x010
57 #define SDMA_H_DSPOVR		0x014
58 #define SDMA_H_HOSTOVR		0x018
59 #define SDMA_H_EVTPEND		0x01c
60 #define SDMA_H_DSPENBL		0x020
61 #define SDMA_H_RESET		0x024
62 #define SDMA_H_EVTERR		0x028
63 #define SDMA_H_INTRMSK		0x02c
64 #define SDMA_H_PSW		0x030
65 #define SDMA_H_EVTERRDBG	0x034
66 #define SDMA_H_CONFIG		0x038
67 #define SDMA_ONCE_ENB		0x040
68 #define SDMA_ONCE_DATA		0x044
69 #define SDMA_ONCE_INSTR		0x048
70 #define SDMA_ONCE_STAT		0x04c
71 #define SDMA_ONCE_CMD		0x050
72 #define SDMA_EVT_MIRROR		0x054
73 #define SDMA_ILLINSTADDR	0x058
74 #define SDMA_CHN0ADDR		0x05c
75 #define SDMA_ONCE_RTB		0x060
76 #define SDMA_XTRIG_CONF1	0x070
77 #define SDMA_XTRIG_CONF2	0x074
78 #define SDMA_CHNENBL0_IMX35	0x200
79 #define SDMA_CHNENBL0_IMX31	0x080
80 #define SDMA_CHNPRI_0		0x100
81 
82 /*
83  * Buffer descriptor status values.
84  */
85 #define BD_DONE  0x01
86 #define BD_WRAP  0x02
87 #define BD_CONT  0x04
88 #define BD_INTR  0x08
89 #define BD_RROR  0x10
90 #define BD_LAST  0x20
91 #define BD_EXTD  0x80
92 
93 /*
94  * Data Node descriptor status values.
95  */
96 #define DND_END_OF_FRAME  0x80
97 #define DND_END_OF_XFER   0x40
98 #define DND_DONE          0x20
99 #define DND_UNUSED        0x01
100 
101 /*
102  * IPCV2 descriptor status values.
103  */
104 #define BD_IPCV2_END_OF_FRAME  0x40
105 
106 #define IPCV2_MAX_NODES        50
107 /*
108  * Error bit set in the CCB status field by the SDMA,
109  * in setbd routine, in case of a transfer error
110  */
111 #define DATA_ERROR  0x10000000
112 
113 /*
114  * Buffer descriptor commands.
115  */
116 #define C0_ADDR             0x01
117 #define C0_LOAD             0x02
118 #define C0_DUMP             0x03
119 #define C0_SETCTX           0x07
120 #define C0_GETCTX           0x03
121 #define C0_SETDM            0x01
122 #define C0_SETPM            0x04
123 #define C0_GETDM            0x02
124 #define C0_GETPM            0x08
125 /*
126  * Change endianness indicator in the BD command field
127  */
128 #define CHANGE_ENDIANNESS   0x80
129 
130 /*
131  *  p_2_p watermark_level description
132  *	Bits		Name			Description
133  *	0-7		Lower WML		Lower watermark level
134  *	8		PS			1: Pad Swallowing
135  *						0: No Pad Swallowing
136  *	9		PA			1: Pad Adding
137  *						0: No Pad Adding
138  *	10		SPDIF			If this bit is set both source
139  *						and destination are on SPBA
140  *	11		Source Bit(SP)		1: Source on SPBA
141  *						0: Source on AIPS
142  *	12		Destination Bit(DP)	1: Destination on SPBA
143  *						0: Destination on AIPS
144  *	13-15		---------		MUST BE 0
145  *	16-23		Higher WML		HWML
146  *	24-27		N			Total number of samples after
147  *						which Pad adding/Swallowing
148  *						must be done. It must be odd.
149  *	28		Lower WML Event(LWE)	SDMA events reg to check for
150  *						LWML event mask
151  *						0: LWE in EVENTS register
152  *						1: LWE in EVENTS2 register
153  *	29		Higher WML Event(HWE)	SDMA events reg to check for
154  *						HWML event mask
155  *						0: HWE in EVENTS register
156  *						1: HWE in EVENTS2 register
157  *	30		---------		MUST BE 0
158  *	31		CONT			1: Amount of samples to be
159  *						transferred is unknown and
160  *						script will keep on
161  *						transferring samples as long as
162  *						both events are detected and
163  *						script must be manually stopped
164  *						by the application
165  *						0: The amount of samples to be
166  *						transferred is equal to the
167  *						count field of mode word
168  */
169 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
170 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
171 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
172 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
173 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
174 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
175 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
176 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
177 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
178 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
179 
180 /*
181  * Mode/Count of data node descriptors - IPCv2
182  */
183 struct sdma_mode_count {
184 	u32 count   : 16; /* size of the buffer pointed by this BD */
185 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
186 	u32 command :  8; /* command mostlky used for channel 0 */
187 };
188 
189 /*
190  * Buffer descriptor
191  */
192 struct sdma_buffer_descriptor {
193 	struct sdma_mode_count  mode;
194 	u32 buffer_addr;	/* address of the buffer described */
195 	u32 ext_buffer_addr;	/* extended buffer address */
196 } __attribute__ ((packed));
197 
198 /**
199  * struct sdma_channel_control - Channel control Block
200  *
201  * @current_bd_ptr	current buffer descriptor processed
202  * @base_bd_ptr		first element of buffer descriptor array
203  * @unused		padding. The SDMA engine expects an array of 128 byte
204  *			control blocks
205  */
206 struct sdma_channel_control {
207 	u32 current_bd_ptr;
208 	u32 base_bd_ptr;
209 	u32 unused[2];
210 } __attribute__ ((packed));
211 
212 /**
213  * struct sdma_state_registers - SDMA context for a channel
214  *
215  * @pc:		program counter
216  * @t:		test bit: status of arithmetic & test instruction
217  * @rpc:	return program counter
218  * @sf:		source fault while loading data
219  * @spc:	loop start program counter
220  * @df:		destination fault while storing data
221  * @epc:	loop end program counter
222  * @lm:		loop mode
223  */
224 struct sdma_state_registers {
225 	u32 pc     :14;
226 	u32 unused1: 1;
227 	u32 t      : 1;
228 	u32 rpc    :14;
229 	u32 unused0: 1;
230 	u32 sf     : 1;
231 	u32 spc    :14;
232 	u32 unused2: 1;
233 	u32 df     : 1;
234 	u32 epc    :14;
235 	u32 lm     : 2;
236 } __attribute__ ((packed));
237 
238 /**
239  * struct sdma_context_data - sdma context specific to a channel
240  *
241  * @channel_state:	channel state bits
242  * @gReg:		general registers
243  * @mda:		burst dma destination address register
244  * @msa:		burst dma source address register
245  * @ms:			burst dma status register
246  * @md:			burst dma data register
247  * @pda:		peripheral dma destination address register
248  * @psa:		peripheral dma source address register
249  * @ps:			peripheral dma status register
250  * @pd:			peripheral dma data register
251  * @ca:			CRC polynomial register
252  * @cs:			CRC accumulator register
253  * @dda:		dedicated core destination address register
254  * @dsa:		dedicated core source address register
255  * @ds:			dedicated core status register
256  * @dd:			dedicated core data register
257  */
258 struct sdma_context_data {
259 	struct sdma_state_registers  channel_state;
260 	u32  gReg[8];
261 	u32  mda;
262 	u32  msa;
263 	u32  ms;
264 	u32  md;
265 	u32  pda;
266 	u32  psa;
267 	u32  ps;
268 	u32  pd;
269 	u32  ca;
270 	u32  cs;
271 	u32  dda;
272 	u32  dsa;
273 	u32  ds;
274 	u32  dd;
275 	u32  scratch0;
276 	u32  scratch1;
277 	u32  scratch2;
278 	u32  scratch3;
279 	u32  scratch4;
280 	u32  scratch5;
281 	u32  scratch6;
282 	u32  scratch7;
283 } __attribute__ ((packed));
284 
285 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
286 
287 struct sdma_engine;
288 
289 /**
290  * struct sdma_channel - housekeeping for a SDMA channel
291  *
292  * @sdma		pointer to the SDMA engine for this channel
293  * @channel		the channel number, matches dmaengine chan_id + 1
294  * @direction		transfer type. Needed for setting SDMA script
295  * @peripheral_type	Peripheral type. Needed for setting SDMA script
296  * @event_id0		aka dma request line
297  * @event_id1		for channels that use 2 events
298  * @word_size		peripheral access size
299  * @buf_tail		ID of the buffer that was processed
300  * @num_bd		max NUM_BD. number of descriptors currently handling
301  */
302 struct sdma_channel {
303 	struct sdma_engine		*sdma;
304 	unsigned int			channel;
305 	enum dma_transfer_direction		direction;
306 	enum sdma_peripheral_type	peripheral_type;
307 	unsigned int			event_id0;
308 	unsigned int			event_id1;
309 	enum dma_slave_buswidth		word_size;
310 	unsigned int			buf_tail;
311 	unsigned int			num_bd;
312 	unsigned int			period_len;
313 	struct sdma_buffer_descriptor	*bd;
314 	dma_addr_t			bd_phys;
315 	unsigned int			pc_from_device, pc_to_device;
316 	unsigned int			device_to_device;
317 	unsigned long			flags;
318 	dma_addr_t			per_address, per_address2;
319 	unsigned long			event_mask[2];
320 	unsigned long			watermark_level;
321 	u32				shp_addr, per_addr;
322 	struct dma_chan			chan;
323 	spinlock_t			lock;
324 	struct dma_async_tx_descriptor	desc;
325 	enum dma_status			status;
326 	unsigned int			chn_count;
327 	unsigned int			chn_real_count;
328 	struct tasklet_struct		tasklet;
329 	struct imx_dma_data		data;
330 };
331 
332 #define IMX_DMA_SG_LOOP		BIT(0)
333 
334 #define MAX_DMA_CHANNELS 32
335 #define MXC_SDMA_DEFAULT_PRIORITY 1
336 #define MXC_SDMA_MIN_PRIORITY 1
337 #define MXC_SDMA_MAX_PRIORITY 7
338 
339 #define SDMA_FIRMWARE_MAGIC 0x414d4453
340 
341 /**
342  * struct sdma_firmware_header - Layout of the firmware image
343  *
344  * @magic		"SDMA"
345  * @version_major	increased whenever layout of struct sdma_script_start_addrs
346  *			changes.
347  * @version_minor	firmware minor version (for binary compatible changes)
348  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
349  * @num_script_addrs	Number of script addresses in this image
350  * @ram_code_start	offset of SDMA ram image in this firmware image
351  * @ram_code_size	size of SDMA ram image
352  * @script_addrs	Stores the start address of the SDMA scripts
353  *			(in SDMA memory space)
354  */
355 struct sdma_firmware_header {
356 	u32	magic;
357 	u32	version_major;
358 	u32	version_minor;
359 	u32	script_addrs_start;
360 	u32	num_script_addrs;
361 	u32	ram_code_start;
362 	u32	ram_code_size;
363 };
364 
365 struct sdma_driver_data {
366 	int chnenbl0;
367 	int num_events;
368 	struct sdma_script_start_addrs	*script_addrs;
369 };
370 
371 struct sdma_engine {
372 	struct device			*dev;
373 	struct device_dma_parameters	dma_parms;
374 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
375 	struct sdma_channel_control	*channel_control;
376 	void __iomem			*regs;
377 	struct sdma_context_data	*context;
378 	dma_addr_t			context_phys;
379 	struct dma_device		dma_device;
380 	struct clk			*clk_ipg;
381 	struct clk			*clk_ahb;
382 	spinlock_t			channel_0_lock;
383 	u32				script_number;
384 	struct sdma_script_start_addrs	*script_addrs;
385 	const struct sdma_driver_data	*drvdata;
386 	u32				spba_start_addr;
387 	u32				spba_end_addr;
388 };
389 
390 static struct sdma_driver_data sdma_imx31 = {
391 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
392 	.num_events = 32,
393 };
394 
395 static struct sdma_script_start_addrs sdma_script_imx25 = {
396 	.ap_2_ap_addr = 729,
397 	.uart_2_mcu_addr = 904,
398 	.per_2_app_addr = 1255,
399 	.mcu_2_app_addr = 834,
400 	.uartsh_2_mcu_addr = 1120,
401 	.per_2_shp_addr = 1329,
402 	.mcu_2_shp_addr = 1048,
403 	.ata_2_mcu_addr = 1560,
404 	.mcu_2_ata_addr = 1479,
405 	.app_2_per_addr = 1189,
406 	.app_2_mcu_addr = 770,
407 	.shp_2_per_addr = 1407,
408 	.shp_2_mcu_addr = 979,
409 };
410 
411 static struct sdma_driver_data sdma_imx25 = {
412 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
413 	.num_events = 48,
414 	.script_addrs = &sdma_script_imx25,
415 };
416 
417 static struct sdma_driver_data sdma_imx35 = {
418 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
419 	.num_events = 48,
420 };
421 
422 static struct sdma_script_start_addrs sdma_script_imx51 = {
423 	.ap_2_ap_addr = 642,
424 	.uart_2_mcu_addr = 817,
425 	.mcu_2_app_addr = 747,
426 	.mcu_2_shp_addr = 961,
427 	.ata_2_mcu_addr = 1473,
428 	.mcu_2_ata_addr = 1392,
429 	.app_2_per_addr = 1033,
430 	.app_2_mcu_addr = 683,
431 	.shp_2_per_addr = 1251,
432 	.shp_2_mcu_addr = 892,
433 };
434 
435 static struct sdma_driver_data sdma_imx51 = {
436 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
437 	.num_events = 48,
438 	.script_addrs = &sdma_script_imx51,
439 };
440 
441 static struct sdma_script_start_addrs sdma_script_imx53 = {
442 	.ap_2_ap_addr = 642,
443 	.app_2_mcu_addr = 683,
444 	.mcu_2_app_addr = 747,
445 	.uart_2_mcu_addr = 817,
446 	.shp_2_mcu_addr = 891,
447 	.mcu_2_shp_addr = 960,
448 	.uartsh_2_mcu_addr = 1032,
449 	.spdif_2_mcu_addr = 1100,
450 	.mcu_2_spdif_addr = 1134,
451 	.firi_2_mcu_addr = 1193,
452 	.mcu_2_firi_addr = 1290,
453 };
454 
455 static struct sdma_driver_data sdma_imx53 = {
456 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
457 	.num_events = 48,
458 	.script_addrs = &sdma_script_imx53,
459 };
460 
461 static struct sdma_script_start_addrs sdma_script_imx6q = {
462 	.ap_2_ap_addr = 642,
463 	.uart_2_mcu_addr = 817,
464 	.mcu_2_app_addr = 747,
465 	.per_2_per_addr = 6331,
466 	.uartsh_2_mcu_addr = 1032,
467 	.mcu_2_shp_addr = 960,
468 	.app_2_mcu_addr = 683,
469 	.shp_2_mcu_addr = 891,
470 	.spdif_2_mcu_addr = 1100,
471 	.mcu_2_spdif_addr = 1134,
472 };
473 
474 static struct sdma_driver_data sdma_imx6q = {
475 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
476 	.num_events = 48,
477 	.script_addrs = &sdma_script_imx6q,
478 };
479 
480 static const struct platform_device_id sdma_devtypes[] = {
481 	{
482 		.name = "imx25-sdma",
483 		.driver_data = (unsigned long)&sdma_imx25,
484 	}, {
485 		.name = "imx31-sdma",
486 		.driver_data = (unsigned long)&sdma_imx31,
487 	}, {
488 		.name = "imx35-sdma",
489 		.driver_data = (unsigned long)&sdma_imx35,
490 	}, {
491 		.name = "imx51-sdma",
492 		.driver_data = (unsigned long)&sdma_imx51,
493 	}, {
494 		.name = "imx53-sdma",
495 		.driver_data = (unsigned long)&sdma_imx53,
496 	}, {
497 		.name = "imx6q-sdma",
498 		.driver_data = (unsigned long)&sdma_imx6q,
499 	}, {
500 		/* sentinel */
501 	}
502 };
503 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
504 
505 static const struct of_device_id sdma_dt_ids[] = {
506 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
507 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
508 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
509 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
510 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
511 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
512 	{ /* sentinel */ }
513 };
514 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
515 
516 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
517 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
518 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
519 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
520 
521 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
522 {
523 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
524 	return chnenbl0 + event * 4;
525 }
526 
527 static int sdma_config_ownership(struct sdma_channel *sdmac,
528 		bool event_override, bool mcu_override, bool dsp_override)
529 {
530 	struct sdma_engine *sdma = sdmac->sdma;
531 	int channel = sdmac->channel;
532 	unsigned long evt, mcu, dsp;
533 
534 	if (event_override && mcu_override && dsp_override)
535 		return -EINVAL;
536 
537 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
538 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
539 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
540 
541 	if (dsp_override)
542 		__clear_bit(channel, &dsp);
543 	else
544 		__set_bit(channel, &dsp);
545 
546 	if (event_override)
547 		__clear_bit(channel, &evt);
548 	else
549 		__set_bit(channel, &evt);
550 
551 	if (mcu_override)
552 		__clear_bit(channel, &mcu);
553 	else
554 		__set_bit(channel, &mcu);
555 
556 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
557 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
558 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
559 
560 	return 0;
561 }
562 
563 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
564 {
565 	writel(BIT(channel), sdma->regs + SDMA_H_START);
566 }
567 
568 /*
569  * sdma_run_channel0 - run a channel and wait till it's done
570  */
571 static int sdma_run_channel0(struct sdma_engine *sdma)
572 {
573 	int ret;
574 	unsigned long timeout = 500;
575 
576 	sdma_enable_channel(sdma, 0);
577 
578 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
579 		if (timeout-- <= 0)
580 			break;
581 		udelay(1);
582 	}
583 
584 	if (ret) {
585 		/* Clear the interrupt status */
586 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
587 	} else {
588 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
589 	}
590 
591 	/* Set bits of CONFIG register with dynamic context switching */
592 	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
593 		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
594 
595 	return ret ? 0 : -ETIMEDOUT;
596 }
597 
598 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
599 		u32 address)
600 {
601 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
602 	void *buf_virt;
603 	dma_addr_t buf_phys;
604 	int ret;
605 	unsigned long flags;
606 
607 	buf_virt = dma_alloc_coherent(NULL,
608 			size,
609 			&buf_phys, GFP_KERNEL);
610 	if (!buf_virt) {
611 		return -ENOMEM;
612 	}
613 
614 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
615 
616 	bd0->mode.command = C0_SETPM;
617 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
618 	bd0->mode.count = size / 2;
619 	bd0->buffer_addr = buf_phys;
620 	bd0->ext_buffer_addr = address;
621 
622 	memcpy(buf_virt, buf, size);
623 
624 	ret = sdma_run_channel0(sdma);
625 
626 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
627 
628 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
629 
630 	return ret;
631 }
632 
633 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
634 {
635 	struct sdma_engine *sdma = sdmac->sdma;
636 	int channel = sdmac->channel;
637 	unsigned long val;
638 	u32 chnenbl = chnenbl_ofs(sdma, event);
639 
640 	val = readl_relaxed(sdma->regs + chnenbl);
641 	__set_bit(channel, &val);
642 	writel_relaxed(val, sdma->regs + chnenbl);
643 }
644 
645 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
646 {
647 	struct sdma_engine *sdma = sdmac->sdma;
648 	int channel = sdmac->channel;
649 	u32 chnenbl = chnenbl_ofs(sdma, event);
650 	unsigned long val;
651 
652 	val = readl_relaxed(sdma->regs + chnenbl);
653 	__clear_bit(channel, &val);
654 	writel_relaxed(val, sdma->regs + chnenbl);
655 }
656 
657 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
658 {
659 	if (sdmac->desc.callback)
660 		sdmac->desc.callback(sdmac->desc.callback_param);
661 }
662 
663 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
664 {
665 	struct sdma_buffer_descriptor *bd;
666 
667 	/*
668 	 * loop mode. Iterate over descriptors, re-setup them and
669 	 * call callback function.
670 	 */
671 	while (1) {
672 		bd = &sdmac->bd[sdmac->buf_tail];
673 
674 		if (bd->mode.status & BD_DONE)
675 			break;
676 
677 		if (bd->mode.status & BD_RROR)
678 			sdmac->status = DMA_ERROR;
679 
680 		bd->mode.status |= BD_DONE;
681 		sdmac->buf_tail++;
682 		sdmac->buf_tail %= sdmac->num_bd;
683 	}
684 }
685 
686 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
687 {
688 	struct sdma_buffer_descriptor *bd;
689 	int i, error = 0;
690 
691 	sdmac->chn_real_count = 0;
692 	/*
693 	 * non loop mode. Iterate over all descriptors, collect
694 	 * errors and call callback function
695 	 */
696 	for (i = 0; i < sdmac->num_bd; i++) {
697 		bd = &sdmac->bd[i];
698 
699 		 if (bd->mode.status & (BD_DONE | BD_RROR))
700 			error = -EIO;
701 		 sdmac->chn_real_count += bd->mode.count;
702 	}
703 
704 	if (error)
705 		sdmac->status = DMA_ERROR;
706 	else
707 		sdmac->status = DMA_COMPLETE;
708 
709 	dma_cookie_complete(&sdmac->desc);
710 	if (sdmac->desc.callback)
711 		sdmac->desc.callback(sdmac->desc.callback_param);
712 }
713 
714 static void sdma_tasklet(unsigned long data)
715 {
716 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
717 
718 	if (sdmac->flags & IMX_DMA_SG_LOOP)
719 		sdma_handle_channel_loop(sdmac);
720 	else
721 		mxc_sdma_handle_channel_normal(sdmac);
722 }
723 
724 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
725 {
726 	struct sdma_engine *sdma = dev_id;
727 	unsigned long stat;
728 
729 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
730 	/* not interested in channel 0 interrupts */
731 	stat &= ~1;
732 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
733 
734 	while (stat) {
735 		int channel = fls(stat) - 1;
736 		struct sdma_channel *sdmac = &sdma->channel[channel];
737 
738 		if (sdmac->flags & IMX_DMA_SG_LOOP)
739 			sdma_update_channel_loop(sdmac);
740 
741 		tasklet_schedule(&sdmac->tasklet);
742 
743 		__clear_bit(channel, &stat);
744 	}
745 
746 	return IRQ_HANDLED;
747 }
748 
749 /*
750  * sets the pc of SDMA script according to the peripheral type
751  */
752 static void sdma_get_pc(struct sdma_channel *sdmac,
753 		enum sdma_peripheral_type peripheral_type)
754 {
755 	struct sdma_engine *sdma = sdmac->sdma;
756 	int per_2_emi = 0, emi_2_per = 0;
757 	/*
758 	 * These are needed once we start to support transfers between
759 	 * two peripherals or memory-to-memory transfers
760 	 */
761 	int per_2_per = 0, emi_2_emi = 0;
762 
763 	sdmac->pc_from_device = 0;
764 	sdmac->pc_to_device = 0;
765 	sdmac->device_to_device = 0;
766 
767 	switch (peripheral_type) {
768 	case IMX_DMATYPE_MEMORY:
769 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
770 		break;
771 	case IMX_DMATYPE_DSP:
772 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
773 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
774 		break;
775 	case IMX_DMATYPE_FIRI:
776 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
777 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
778 		break;
779 	case IMX_DMATYPE_UART:
780 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
781 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
782 		break;
783 	case IMX_DMATYPE_UART_SP:
784 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
785 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
786 		break;
787 	case IMX_DMATYPE_ATA:
788 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
789 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
790 		break;
791 	case IMX_DMATYPE_CSPI:
792 	case IMX_DMATYPE_EXT:
793 	case IMX_DMATYPE_SSI:
794 	case IMX_DMATYPE_SAI:
795 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
796 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
797 		break;
798 	case IMX_DMATYPE_SSI_DUAL:
799 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
800 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
801 		break;
802 	case IMX_DMATYPE_SSI_SP:
803 	case IMX_DMATYPE_MMC:
804 	case IMX_DMATYPE_SDHC:
805 	case IMX_DMATYPE_CSPI_SP:
806 	case IMX_DMATYPE_ESAI:
807 	case IMX_DMATYPE_MSHC_SP:
808 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
809 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
810 		break;
811 	case IMX_DMATYPE_ASRC:
812 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
813 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
814 		per_2_per = sdma->script_addrs->per_2_per_addr;
815 		break;
816 	case IMX_DMATYPE_ASRC_SP:
817 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
818 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
819 		per_2_per = sdma->script_addrs->per_2_per_addr;
820 		break;
821 	case IMX_DMATYPE_MSHC:
822 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
823 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
824 		break;
825 	case IMX_DMATYPE_CCM:
826 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
827 		break;
828 	case IMX_DMATYPE_SPDIF:
829 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
830 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
831 		break;
832 	case IMX_DMATYPE_IPU_MEMORY:
833 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
834 		break;
835 	default:
836 		break;
837 	}
838 
839 	sdmac->pc_from_device = per_2_emi;
840 	sdmac->pc_to_device = emi_2_per;
841 	sdmac->device_to_device = per_2_per;
842 }
843 
844 static int sdma_load_context(struct sdma_channel *sdmac)
845 {
846 	struct sdma_engine *sdma = sdmac->sdma;
847 	int channel = sdmac->channel;
848 	int load_address;
849 	struct sdma_context_data *context = sdma->context;
850 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
851 	int ret;
852 	unsigned long flags;
853 
854 	if (sdmac->direction == DMA_DEV_TO_MEM)
855 		load_address = sdmac->pc_from_device;
856 	else if (sdmac->direction == DMA_DEV_TO_DEV)
857 		load_address = sdmac->device_to_device;
858 	else
859 		load_address = sdmac->pc_to_device;
860 
861 	if (load_address < 0)
862 		return load_address;
863 
864 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
865 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
866 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
867 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
868 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
869 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
870 
871 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
872 
873 	memset(context, 0, sizeof(*context));
874 	context->channel_state.pc = load_address;
875 
876 	/* Send by context the event mask,base address for peripheral
877 	 * and watermark level
878 	 */
879 	context->gReg[0] = sdmac->event_mask[1];
880 	context->gReg[1] = sdmac->event_mask[0];
881 	context->gReg[2] = sdmac->per_addr;
882 	context->gReg[6] = sdmac->shp_addr;
883 	context->gReg[7] = sdmac->watermark_level;
884 
885 	bd0->mode.command = C0_SETDM;
886 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
887 	bd0->mode.count = sizeof(*context) / 4;
888 	bd0->buffer_addr = sdma->context_phys;
889 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
890 	ret = sdma_run_channel0(sdma);
891 
892 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
893 
894 	return ret;
895 }
896 
897 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
898 {
899 	return container_of(chan, struct sdma_channel, chan);
900 }
901 
902 static int sdma_disable_channel(struct dma_chan *chan)
903 {
904 	struct sdma_channel *sdmac = to_sdma_chan(chan);
905 	struct sdma_engine *sdma = sdmac->sdma;
906 	int channel = sdmac->channel;
907 
908 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
909 	sdmac->status = DMA_ERROR;
910 
911 	return 0;
912 }
913 
914 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
915 {
916 	struct sdma_engine *sdma = sdmac->sdma;
917 
918 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
919 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
920 
921 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
922 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
923 
924 	if (sdmac->event_id0 > 31)
925 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
926 
927 	if (sdmac->event_id1 > 31)
928 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
929 
930 	/*
931 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
932 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
933 	 * r0(event_mask[1]) and r1(event_mask[0]).
934 	 */
935 	if (lwml > hwml) {
936 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
937 						SDMA_WATERMARK_LEVEL_HWML);
938 		sdmac->watermark_level |= hwml;
939 		sdmac->watermark_level |= lwml << 16;
940 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
941 	}
942 
943 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
944 			sdmac->per_address2 <= sdma->spba_end_addr)
945 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
946 
947 	if (sdmac->per_address >= sdma->spba_start_addr &&
948 			sdmac->per_address <= sdma->spba_end_addr)
949 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
950 
951 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
952 }
953 
954 static int sdma_config_channel(struct dma_chan *chan)
955 {
956 	struct sdma_channel *sdmac = to_sdma_chan(chan);
957 	int ret;
958 
959 	sdma_disable_channel(chan);
960 
961 	sdmac->event_mask[0] = 0;
962 	sdmac->event_mask[1] = 0;
963 	sdmac->shp_addr = 0;
964 	sdmac->per_addr = 0;
965 
966 	if (sdmac->event_id0) {
967 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
968 			return -EINVAL;
969 		sdma_event_enable(sdmac, sdmac->event_id0);
970 	}
971 
972 	if (sdmac->event_id1) {
973 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
974 			return -EINVAL;
975 		sdma_event_enable(sdmac, sdmac->event_id1);
976 	}
977 
978 	switch (sdmac->peripheral_type) {
979 	case IMX_DMATYPE_DSP:
980 		sdma_config_ownership(sdmac, false, true, true);
981 		break;
982 	case IMX_DMATYPE_MEMORY:
983 		sdma_config_ownership(sdmac, false, true, false);
984 		break;
985 	default:
986 		sdma_config_ownership(sdmac, true, true, false);
987 		break;
988 	}
989 
990 	sdma_get_pc(sdmac, sdmac->peripheral_type);
991 
992 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
993 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
994 		/* Handle multiple event channels differently */
995 		if (sdmac->event_id1) {
996 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
997 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
998 				sdma_set_watermarklevel_for_p2p(sdmac);
999 		} else
1000 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1001 
1002 		/* Watermark Level */
1003 		sdmac->watermark_level |= sdmac->watermark_level;
1004 		/* Address */
1005 		sdmac->shp_addr = sdmac->per_address;
1006 		sdmac->per_addr = sdmac->per_address2;
1007 	} else {
1008 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1009 	}
1010 
1011 	ret = sdma_load_context(sdmac);
1012 
1013 	return ret;
1014 }
1015 
1016 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1017 		unsigned int priority)
1018 {
1019 	struct sdma_engine *sdma = sdmac->sdma;
1020 	int channel = sdmac->channel;
1021 
1022 	if (priority < MXC_SDMA_MIN_PRIORITY
1023 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1024 		return -EINVAL;
1025 	}
1026 
1027 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1028 
1029 	return 0;
1030 }
1031 
1032 static int sdma_request_channel(struct sdma_channel *sdmac)
1033 {
1034 	struct sdma_engine *sdma = sdmac->sdma;
1035 	int channel = sdmac->channel;
1036 	int ret = -EBUSY;
1037 
1038 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1039 					GFP_KERNEL);
1040 	if (!sdmac->bd) {
1041 		ret = -ENOMEM;
1042 		goto out;
1043 	}
1044 
1045 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1046 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1047 
1048 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1049 	return 0;
1050 out:
1051 
1052 	return ret;
1053 }
1054 
1055 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1056 {
1057 	unsigned long flags;
1058 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1059 	dma_cookie_t cookie;
1060 
1061 	spin_lock_irqsave(&sdmac->lock, flags);
1062 
1063 	cookie = dma_cookie_assign(tx);
1064 
1065 	spin_unlock_irqrestore(&sdmac->lock, flags);
1066 
1067 	return cookie;
1068 }
1069 
1070 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1071 {
1072 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1073 	struct imx_dma_data *data = chan->private;
1074 	int prio, ret;
1075 
1076 	if (!data)
1077 		return -EINVAL;
1078 
1079 	switch (data->priority) {
1080 	case DMA_PRIO_HIGH:
1081 		prio = 3;
1082 		break;
1083 	case DMA_PRIO_MEDIUM:
1084 		prio = 2;
1085 		break;
1086 	case DMA_PRIO_LOW:
1087 	default:
1088 		prio = 1;
1089 		break;
1090 	}
1091 
1092 	sdmac->peripheral_type = data->peripheral_type;
1093 	sdmac->event_id0 = data->dma_request;
1094 	sdmac->event_id1 = data->dma_request2;
1095 
1096 	ret = clk_enable(sdmac->sdma->clk_ipg);
1097 	if (ret)
1098 		return ret;
1099 	ret = clk_enable(sdmac->sdma->clk_ahb);
1100 	if (ret)
1101 		goto disable_clk_ipg;
1102 
1103 	ret = sdma_request_channel(sdmac);
1104 	if (ret)
1105 		goto disable_clk_ahb;
1106 
1107 	ret = sdma_set_channel_priority(sdmac, prio);
1108 	if (ret)
1109 		goto disable_clk_ahb;
1110 
1111 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
1112 	sdmac->desc.tx_submit = sdma_tx_submit;
1113 	/* txd.flags will be overwritten in prep funcs */
1114 	sdmac->desc.flags = DMA_CTRL_ACK;
1115 
1116 	return 0;
1117 
1118 disable_clk_ahb:
1119 	clk_disable(sdmac->sdma->clk_ahb);
1120 disable_clk_ipg:
1121 	clk_disable(sdmac->sdma->clk_ipg);
1122 	return ret;
1123 }
1124 
1125 static void sdma_free_chan_resources(struct dma_chan *chan)
1126 {
1127 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1128 	struct sdma_engine *sdma = sdmac->sdma;
1129 
1130 	sdma_disable_channel(chan);
1131 
1132 	if (sdmac->event_id0)
1133 		sdma_event_disable(sdmac, sdmac->event_id0);
1134 	if (sdmac->event_id1)
1135 		sdma_event_disable(sdmac, sdmac->event_id1);
1136 
1137 	sdmac->event_id0 = 0;
1138 	sdmac->event_id1 = 0;
1139 
1140 	sdma_set_channel_priority(sdmac, 0);
1141 
1142 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1143 
1144 	clk_disable(sdma->clk_ipg);
1145 	clk_disable(sdma->clk_ahb);
1146 }
1147 
1148 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1149 		struct dma_chan *chan, struct scatterlist *sgl,
1150 		unsigned int sg_len, enum dma_transfer_direction direction,
1151 		unsigned long flags, void *context)
1152 {
1153 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1154 	struct sdma_engine *sdma = sdmac->sdma;
1155 	int ret, i, count;
1156 	int channel = sdmac->channel;
1157 	struct scatterlist *sg;
1158 
1159 	if (sdmac->status == DMA_IN_PROGRESS)
1160 		return NULL;
1161 	sdmac->status = DMA_IN_PROGRESS;
1162 
1163 	sdmac->flags = 0;
1164 
1165 	sdmac->buf_tail = 0;
1166 
1167 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1168 			sg_len, channel);
1169 
1170 	sdmac->direction = direction;
1171 	ret = sdma_load_context(sdmac);
1172 	if (ret)
1173 		goto err_out;
1174 
1175 	if (sg_len > NUM_BD) {
1176 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1177 				channel, sg_len, NUM_BD);
1178 		ret = -EINVAL;
1179 		goto err_out;
1180 	}
1181 
1182 	sdmac->chn_count = 0;
1183 	for_each_sg(sgl, sg, sg_len, i) {
1184 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1185 		int param;
1186 
1187 		bd->buffer_addr = sg->dma_address;
1188 
1189 		count = sg_dma_len(sg);
1190 
1191 		if (count > 0xffff) {
1192 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1193 					channel, count, 0xffff);
1194 			ret = -EINVAL;
1195 			goto err_out;
1196 		}
1197 
1198 		bd->mode.count = count;
1199 		sdmac->chn_count += count;
1200 
1201 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1202 			ret =  -EINVAL;
1203 			goto err_out;
1204 		}
1205 
1206 		switch (sdmac->word_size) {
1207 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1208 			bd->mode.command = 0;
1209 			if (count & 3 || sg->dma_address & 3)
1210 				return NULL;
1211 			break;
1212 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1213 			bd->mode.command = 2;
1214 			if (count & 1 || sg->dma_address & 1)
1215 				return NULL;
1216 			break;
1217 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1218 			bd->mode.command = 1;
1219 			break;
1220 		default:
1221 			return NULL;
1222 		}
1223 
1224 		param = BD_DONE | BD_EXTD | BD_CONT;
1225 
1226 		if (i + 1 == sg_len) {
1227 			param |= BD_INTR;
1228 			param |= BD_LAST;
1229 			param &= ~BD_CONT;
1230 		}
1231 
1232 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1233 				i, count, (u64)sg->dma_address,
1234 				param & BD_WRAP ? "wrap" : "",
1235 				param & BD_INTR ? " intr" : "");
1236 
1237 		bd->mode.status = param;
1238 	}
1239 
1240 	sdmac->num_bd = sg_len;
1241 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1242 
1243 	return &sdmac->desc;
1244 err_out:
1245 	sdmac->status = DMA_ERROR;
1246 	return NULL;
1247 }
1248 
1249 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1250 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1251 		size_t period_len, enum dma_transfer_direction direction,
1252 		unsigned long flags)
1253 {
1254 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1255 	struct sdma_engine *sdma = sdmac->sdma;
1256 	int num_periods = buf_len / period_len;
1257 	int channel = sdmac->channel;
1258 	int ret, i = 0, buf = 0;
1259 
1260 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1261 
1262 	if (sdmac->status == DMA_IN_PROGRESS)
1263 		return NULL;
1264 
1265 	sdmac->status = DMA_IN_PROGRESS;
1266 
1267 	sdmac->buf_tail = 0;
1268 	sdmac->period_len = period_len;
1269 
1270 	sdmac->flags |= IMX_DMA_SG_LOOP;
1271 	sdmac->direction = direction;
1272 	ret = sdma_load_context(sdmac);
1273 	if (ret)
1274 		goto err_out;
1275 
1276 	if (num_periods > NUM_BD) {
1277 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1278 				channel, num_periods, NUM_BD);
1279 		goto err_out;
1280 	}
1281 
1282 	if (period_len > 0xffff) {
1283 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1284 				channel, period_len, 0xffff);
1285 		goto err_out;
1286 	}
1287 
1288 	while (buf < buf_len) {
1289 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1290 		int param;
1291 
1292 		bd->buffer_addr = dma_addr;
1293 
1294 		bd->mode.count = period_len;
1295 
1296 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1297 			goto err_out;
1298 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1299 			bd->mode.command = 0;
1300 		else
1301 			bd->mode.command = sdmac->word_size;
1302 
1303 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1304 		if (i + 1 == num_periods)
1305 			param |= BD_WRAP;
1306 
1307 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1308 				i, period_len, (u64)dma_addr,
1309 				param & BD_WRAP ? "wrap" : "",
1310 				param & BD_INTR ? " intr" : "");
1311 
1312 		bd->mode.status = param;
1313 
1314 		dma_addr += period_len;
1315 		buf += period_len;
1316 
1317 		i++;
1318 	}
1319 
1320 	sdmac->num_bd = num_periods;
1321 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1322 
1323 	return &sdmac->desc;
1324 err_out:
1325 	sdmac->status = DMA_ERROR;
1326 	return NULL;
1327 }
1328 
1329 static int sdma_config(struct dma_chan *chan,
1330 		       struct dma_slave_config *dmaengine_cfg)
1331 {
1332 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1333 
1334 	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1335 		sdmac->per_address = dmaengine_cfg->src_addr;
1336 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1337 			dmaengine_cfg->src_addr_width;
1338 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1339 	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1340 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1341 		sdmac->per_address = dmaengine_cfg->dst_addr;
1342 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1343 			SDMA_WATERMARK_LEVEL_LWML;
1344 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1345 			SDMA_WATERMARK_LEVEL_HWML;
1346 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1347 	} else {
1348 		sdmac->per_address = dmaengine_cfg->dst_addr;
1349 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1350 			dmaengine_cfg->dst_addr_width;
1351 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1352 	}
1353 	sdmac->direction = dmaengine_cfg->direction;
1354 	return sdma_config_channel(chan);
1355 }
1356 
1357 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1358 				      dma_cookie_t cookie,
1359 				      struct dma_tx_state *txstate)
1360 {
1361 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1362 	u32 residue;
1363 
1364 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1365 		residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1366 	else
1367 		residue = sdmac->chn_count - sdmac->chn_real_count;
1368 
1369 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1370 			 residue);
1371 
1372 	return sdmac->status;
1373 }
1374 
1375 static void sdma_issue_pending(struct dma_chan *chan)
1376 {
1377 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1378 	struct sdma_engine *sdma = sdmac->sdma;
1379 
1380 	if (sdmac->status == DMA_IN_PROGRESS)
1381 		sdma_enable_channel(sdma, sdmac->channel);
1382 }
1383 
1384 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1385 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1386 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1387 
1388 static void sdma_add_scripts(struct sdma_engine *sdma,
1389 		const struct sdma_script_start_addrs *addr)
1390 {
1391 	s32 *addr_arr = (u32 *)addr;
1392 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1393 	int i;
1394 
1395 	/* use the default firmware in ROM if missing external firmware */
1396 	if (!sdma->script_number)
1397 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1398 
1399 	for (i = 0; i < sdma->script_number; i++)
1400 		if (addr_arr[i] > 0)
1401 			saddr_arr[i] = addr_arr[i];
1402 }
1403 
1404 static void sdma_load_firmware(const struct firmware *fw, void *context)
1405 {
1406 	struct sdma_engine *sdma = context;
1407 	const struct sdma_firmware_header *header;
1408 	const struct sdma_script_start_addrs *addr;
1409 	unsigned short *ram_code;
1410 
1411 	if (!fw) {
1412 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1413 		/* In this case we just use the ROM firmware. */
1414 		return;
1415 	}
1416 
1417 	if (fw->size < sizeof(*header))
1418 		goto err_firmware;
1419 
1420 	header = (struct sdma_firmware_header *)fw->data;
1421 
1422 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1423 		goto err_firmware;
1424 	if (header->ram_code_start + header->ram_code_size > fw->size)
1425 		goto err_firmware;
1426 	switch (header->version_major) {
1427 	case 1:
1428 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1429 		break;
1430 	case 2:
1431 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1432 		break;
1433 	case 3:
1434 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1435 		break;
1436 	default:
1437 		dev_err(sdma->dev, "unknown firmware version\n");
1438 		goto err_firmware;
1439 	}
1440 
1441 	addr = (void *)header + header->script_addrs_start;
1442 	ram_code = (void *)header + header->ram_code_start;
1443 
1444 	clk_enable(sdma->clk_ipg);
1445 	clk_enable(sdma->clk_ahb);
1446 	/* download the RAM image for SDMA */
1447 	sdma_load_script(sdma, ram_code,
1448 			header->ram_code_size,
1449 			addr->ram_code_start_addr);
1450 	clk_disable(sdma->clk_ipg);
1451 	clk_disable(sdma->clk_ahb);
1452 
1453 	sdma_add_scripts(sdma, addr);
1454 
1455 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1456 			header->version_major,
1457 			header->version_minor);
1458 
1459 err_firmware:
1460 	release_firmware(fw);
1461 }
1462 
1463 #define EVENT_REMAP_CELLS 3
1464 
1465 static int sdma_event_remap(struct sdma_engine *sdma)
1466 {
1467 	struct device_node *np = sdma->dev->of_node;
1468 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1469 	struct property *event_remap;
1470 	struct regmap *gpr;
1471 	char propname[] = "fsl,sdma-event-remap";
1472 	u32 reg, val, shift, num_map, i;
1473 	int ret = 0;
1474 
1475 	if (IS_ERR(np) || IS_ERR(gpr_np))
1476 		goto out;
1477 
1478 	event_remap = of_find_property(np, propname, NULL);
1479 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1480 	if (!num_map) {
1481 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1482 		goto out;
1483 	} else if (num_map % EVENT_REMAP_CELLS) {
1484 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1485 				propname, EVENT_REMAP_CELLS);
1486 		ret = -EINVAL;
1487 		goto out;
1488 	}
1489 
1490 	gpr = syscon_node_to_regmap(gpr_np);
1491 	if (IS_ERR(gpr)) {
1492 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1493 		ret = PTR_ERR(gpr);
1494 		goto out;
1495 	}
1496 
1497 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1498 		ret = of_property_read_u32_index(np, propname, i, &reg);
1499 		if (ret) {
1500 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1501 					propname, i);
1502 			goto out;
1503 		}
1504 
1505 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1506 		if (ret) {
1507 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1508 					propname, i + 1);
1509 			goto out;
1510 		}
1511 
1512 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1513 		if (ret) {
1514 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1515 					propname, i + 2);
1516 			goto out;
1517 		}
1518 
1519 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1520 	}
1521 
1522 out:
1523 	if (!IS_ERR(gpr_np))
1524 		of_node_put(gpr_np);
1525 
1526 	return ret;
1527 }
1528 
1529 static int sdma_get_firmware(struct sdma_engine *sdma,
1530 		const char *fw_name)
1531 {
1532 	int ret;
1533 
1534 	ret = request_firmware_nowait(THIS_MODULE,
1535 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1536 			GFP_KERNEL, sdma, sdma_load_firmware);
1537 
1538 	return ret;
1539 }
1540 
1541 static int sdma_init(struct sdma_engine *sdma)
1542 {
1543 	int i, ret;
1544 	dma_addr_t ccb_phys;
1545 
1546 	ret = clk_enable(sdma->clk_ipg);
1547 	if (ret)
1548 		return ret;
1549 	ret = clk_enable(sdma->clk_ahb);
1550 	if (ret)
1551 		goto disable_clk_ipg;
1552 
1553 	/* Be sure SDMA has not started yet */
1554 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1555 
1556 	sdma->channel_control = dma_alloc_coherent(NULL,
1557 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1558 			sizeof(struct sdma_context_data),
1559 			&ccb_phys, GFP_KERNEL);
1560 
1561 	if (!sdma->channel_control) {
1562 		ret = -ENOMEM;
1563 		goto err_dma_alloc;
1564 	}
1565 
1566 	sdma->context = (void *)sdma->channel_control +
1567 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1568 	sdma->context_phys = ccb_phys +
1569 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1570 
1571 	/* Zero-out the CCB structures array just allocated */
1572 	memset(sdma->channel_control, 0,
1573 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1574 
1575 	/* disable all channels */
1576 	for (i = 0; i < sdma->drvdata->num_events; i++)
1577 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1578 
1579 	/* All channels have priority 0 */
1580 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1581 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1582 
1583 	ret = sdma_request_channel(&sdma->channel[0]);
1584 	if (ret)
1585 		goto err_dma_alloc;
1586 
1587 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1588 
1589 	/* Set Command Channel (Channel Zero) */
1590 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1591 
1592 	/* Set bits of CONFIG register but with static context switching */
1593 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1594 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1595 
1596 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1597 
1598 	/* Initializes channel's priorities */
1599 	sdma_set_channel_priority(&sdma->channel[0], 7);
1600 
1601 	clk_disable(sdma->clk_ipg);
1602 	clk_disable(sdma->clk_ahb);
1603 
1604 	return 0;
1605 
1606 err_dma_alloc:
1607 	clk_disable(sdma->clk_ahb);
1608 disable_clk_ipg:
1609 	clk_disable(sdma->clk_ipg);
1610 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1611 	return ret;
1612 }
1613 
1614 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1615 {
1616 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1617 	struct imx_dma_data *data = fn_param;
1618 
1619 	if (!imx_dma_is_general_purpose(chan))
1620 		return false;
1621 
1622 	sdmac->data = *data;
1623 	chan->private = &sdmac->data;
1624 
1625 	return true;
1626 }
1627 
1628 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1629 				   struct of_dma *ofdma)
1630 {
1631 	struct sdma_engine *sdma = ofdma->of_dma_data;
1632 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1633 	struct imx_dma_data data;
1634 
1635 	if (dma_spec->args_count != 3)
1636 		return NULL;
1637 
1638 	data.dma_request = dma_spec->args[0];
1639 	data.peripheral_type = dma_spec->args[1];
1640 	data.priority = dma_spec->args[2];
1641 	/*
1642 	 * init dma_request2 to zero, which is not used by the dts.
1643 	 * For P2P, dma_request2 is init from dma_request_channel(),
1644 	 * chan->private will point to the imx_dma_data, and in
1645 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1646 	 * be set to sdmac->event_id1.
1647 	 */
1648 	data.dma_request2 = 0;
1649 
1650 	return dma_request_channel(mask, sdma_filter_fn, &data);
1651 }
1652 
1653 static int sdma_probe(struct platform_device *pdev)
1654 {
1655 	const struct of_device_id *of_id =
1656 			of_match_device(sdma_dt_ids, &pdev->dev);
1657 	struct device_node *np = pdev->dev.of_node;
1658 	struct device_node *spba_bus;
1659 	const char *fw_name;
1660 	int ret;
1661 	int irq;
1662 	struct resource *iores;
1663 	struct resource spba_res;
1664 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1665 	int i;
1666 	struct sdma_engine *sdma;
1667 	s32 *saddr_arr;
1668 	const struct sdma_driver_data *drvdata = NULL;
1669 
1670 	if (of_id)
1671 		drvdata = of_id->data;
1672 	else if (pdev->id_entry)
1673 		drvdata = (void *)pdev->id_entry->driver_data;
1674 
1675 	if (!drvdata) {
1676 		dev_err(&pdev->dev, "unable to find driver data\n");
1677 		return -EINVAL;
1678 	}
1679 
1680 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1681 	if (ret)
1682 		return ret;
1683 
1684 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1685 	if (!sdma)
1686 		return -ENOMEM;
1687 
1688 	spin_lock_init(&sdma->channel_0_lock);
1689 
1690 	sdma->dev = &pdev->dev;
1691 	sdma->drvdata = drvdata;
1692 
1693 	irq = platform_get_irq(pdev, 0);
1694 	if (irq < 0)
1695 		return irq;
1696 
1697 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1698 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1699 	if (IS_ERR(sdma->regs))
1700 		return PTR_ERR(sdma->regs);
1701 
1702 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1703 	if (IS_ERR(sdma->clk_ipg))
1704 		return PTR_ERR(sdma->clk_ipg);
1705 
1706 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1707 	if (IS_ERR(sdma->clk_ahb))
1708 		return PTR_ERR(sdma->clk_ahb);
1709 
1710 	clk_prepare(sdma->clk_ipg);
1711 	clk_prepare(sdma->clk_ahb);
1712 
1713 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1714 			       sdma);
1715 	if (ret)
1716 		return ret;
1717 
1718 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1719 	if (!sdma->script_addrs)
1720 		return -ENOMEM;
1721 
1722 	/* initially no scripts available */
1723 	saddr_arr = (s32 *)sdma->script_addrs;
1724 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1725 		saddr_arr[i] = -EINVAL;
1726 
1727 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1728 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1729 
1730 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1731 	/* Initialize channel parameters */
1732 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1733 		struct sdma_channel *sdmac = &sdma->channel[i];
1734 
1735 		sdmac->sdma = sdma;
1736 		spin_lock_init(&sdmac->lock);
1737 
1738 		sdmac->chan.device = &sdma->dma_device;
1739 		dma_cookie_init(&sdmac->chan);
1740 		sdmac->channel = i;
1741 
1742 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1743 			     (unsigned long) sdmac);
1744 		/*
1745 		 * Add the channel to the DMAC list. Do not add channel 0 though
1746 		 * because we need it internally in the SDMA driver. This also means
1747 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1748 		 */
1749 		if (i)
1750 			list_add_tail(&sdmac->chan.device_node,
1751 					&sdma->dma_device.channels);
1752 	}
1753 
1754 	ret = sdma_init(sdma);
1755 	if (ret)
1756 		goto err_init;
1757 
1758 	ret = sdma_event_remap(sdma);
1759 	if (ret)
1760 		goto err_init;
1761 
1762 	if (sdma->drvdata->script_addrs)
1763 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1764 	if (pdata && pdata->script_addrs)
1765 		sdma_add_scripts(sdma, pdata->script_addrs);
1766 
1767 	if (pdata) {
1768 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1769 		if (ret)
1770 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1771 	} else {
1772 		/*
1773 		 * Because that device tree does not encode ROM script address,
1774 		 * the RAM script in firmware is mandatory for device tree
1775 		 * probe, otherwise it fails.
1776 		 */
1777 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1778 					      &fw_name);
1779 		if (ret)
1780 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1781 		else {
1782 			ret = sdma_get_firmware(sdma, fw_name);
1783 			if (ret)
1784 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1785 		}
1786 	}
1787 
1788 	sdma->dma_device.dev = &pdev->dev;
1789 
1790 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1791 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1792 	sdma->dma_device.device_tx_status = sdma_tx_status;
1793 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1794 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1795 	sdma->dma_device.device_config = sdma_config;
1796 	sdma->dma_device.device_terminate_all = sdma_disable_channel;
1797 	sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1798 	sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1799 	sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1800 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1801 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1802 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1803 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1804 
1805 	platform_set_drvdata(pdev, sdma);
1806 
1807 	ret = dma_async_device_register(&sdma->dma_device);
1808 	if (ret) {
1809 		dev_err(&pdev->dev, "unable to register\n");
1810 		goto err_init;
1811 	}
1812 
1813 	if (np) {
1814 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1815 		if (ret) {
1816 			dev_err(&pdev->dev, "failed to register controller\n");
1817 			goto err_register;
1818 		}
1819 
1820 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1821 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
1822 		if (!ret) {
1823 			sdma->spba_start_addr = spba_res.start;
1824 			sdma->spba_end_addr = spba_res.end;
1825 		}
1826 		of_node_put(spba_bus);
1827 	}
1828 
1829 	return 0;
1830 
1831 err_register:
1832 	dma_async_device_unregister(&sdma->dma_device);
1833 err_init:
1834 	kfree(sdma->script_addrs);
1835 	return ret;
1836 }
1837 
1838 static int sdma_remove(struct platform_device *pdev)
1839 {
1840 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1841 	int i;
1842 
1843 	dma_async_device_unregister(&sdma->dma_device);
1844 	kfree(sdma->script_addrs);
1845 	/* Kill the tasklet */
1846 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1847 		struct sdma_channel *sdmac = &sdma->channel[i];
1848 
1849 		tasklet_kill(&sdmac->tasklet);
1850 	}
1851 
1852 	platform_set_drvdata(pdev, NULL);
1853 	return 0;
1854 }
1855 
1856 static struct platform_driver sdma_driver = {
1857 	.driver		= {
1858 		.name	= "imx-sdma",
1859 		.of_match_table = sdma_dt_ids,
1860 	},
1861 	.id_table	= sdma_devtypes,
1862 	.remove		= sdma_remove,
1863 	.probe		= sdma_probe,
1864 };
1865 
1866 module_platform_driver(sdma_driver);
1867 
1868 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1869 MODULE_DESCRIPTION("i.MX SDMA driver");
1870 MODULE_LICENSE("GPL");
1871