xref: /linux/drivers/dma/imx-sdma.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42 
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49 
50 #include "dmaengine.h"
51 
52 /* SDMA registers */
53 #define SDMA_H_C0PTR		0x000
54 #define SDMA_H_INTR		0x004
55 #define SDMA_H_STATSTOP		0x008
56 #define SDMA_H_START		0x00c
57 #define SDMA_H_EVTOVR		0x010
58 #define SDMA_H_DSPOVR		0x014
59 #define SDMA_H_HOSTOVR		0x018
60 #define SDMA_H_EVTPEND		0x01c
61 #define SDMA_H_DSPENBL		0x020
62 #define SDMA_H_RESET		0x024
63 #define SDMA_H_EVTERR		0x028
64 #define SDMA_H_INTRMSK		0x02c
65 #define SDMA_H_PSW		0x030
66 #define SDMA_H_EVTERRDBG	0x034
67 #define SDMA_H_CONFIG		0x038
68 #define SDMA_ONCE_ENB		0x040
69 #define SDMA_ONCE_DATA		0x044
70 #define SDMA_ONCE_INSTR		0x048
71 #define SDMA_ONCE_STAT		0x04c
72 #define SDMA_ONCE_CMD		0x050
73 #define SDMA_EVT_MIRROR		0x054
74 #define SDMA_ILLINSTADDR	0x058
75 #define SDMA_CHN0ADDR		0x05c
76 #define SDMA_ONCE_RTB		0x060
77 #define SDMA_XTRIG_CONF1	0x070
78 #define SDMA_XTRIG_CONF2	0x074
79 #define SDMA_CHNENBL0_IMX35	0x200
80 #define SDMA_CHNENBL0_IMX31	0x080
81 #define SDMA_CHNPRI_0		0x100
82 
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93 
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101 
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106 
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113 
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130 
131 /*
132  *  p_2_p watermark_level description
133  *	Bits		Name			Description
134  *	0-7		Lower WML		Lower watermark level
135  *	8		PS			1: Pad Swallowing
136  *						0: No Pad Swallowing
137  *	9		PA			1: Pad Adding
138  *						0: No Pad Adding
139  *	10		SPDIF			If this bit is set both source
140  *						and destination are on SPBA
141  *	11		Source Bit(SP)		1: Source on SPBA
142  *						0: Source on AIPS
143  *	12		Destination Bit(DP)	1: Destination on SPBA
144  *						0: Destination on AIPS
145  *	13-15		---------		MUST BE 0
146  *	16-23		Higher WML		HWML
147  *	24-27		N			Total number of samples after
148  *						which Pad adding/Swallowing
149  *						must be done. It must be odd.
150  *	28		Lower WML Event(LWE)	SDMA events reg to check for
151  *						LWML event mask
152  *						0: LWE in EVENTS register
153  *						1: LWE in EVENTS2 register
154  *	29		Higher WML Event(HWE)	SDMA events reg to check for
155  *						HWML event mask
156  *						0: HWE in EVENTS register
157  *						1: HWE in EVENTS2 register
158  *	30		---------		MUST BE 0
159  *	31		CONT			1: Amount of samples to be
160  *						transferred is unknown and
161  *						script will keep on
162  *						transferring samples as long as
163  *						both events are detected and
164  *						script must be manually stopped
165  *						by the application
166  *						0: The amount of samples to be
167  *						transferred is equal to the
168  *						count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
171 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
180 
181 /*
182  * Mode/Count of data node descriptors - IPCv2
183  */
184 struct sdma_mode_count {
185 	u32 count   : 16; /* size of the buffer pointed by this BD */
186 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
187 	u32 command :  8; /* command mostlky used for channel 0 */
188 };
189 
190 /*
191  * Buffer descriptor
192  */
193 struct sdma_buffer_descriptor {
194 	struct sdma_mode_count  mode;
195 	u32 buffer_addr;	/* address of the buffer described */
196 	u32 ext_buffer_addr;	/* extended buffer address */
197 } __attribute__ ((packed));
198 
199 /**
200  * struct sdma_channel_control - Channel control Block
201  *
202  * @current_bd_ptr	current buffer descriptor processed
203  * @base_bd_ptr		first element of buffer descriptor array
204  * @unused		padding. The SDMA engine expects an array of 128 byte
205  *			control blocks
206  */
207 struct sdma_channel_control {
208 	u32 current_bd_ptr;
209 	u32 base_bd_ptr;
210 	u32 unused[2];
211 } __attribute__ ((packed));
212 
213 /**
214  * struct sdma_state_registers - SDMA context for a channel
215  *
216  * @pc:		program counter
217  * @t:		test bit: status of arithmetic & test instruction
218  * @rpc:	return program counter
219  * @sf:		source fault while loading data
220  * @spc:	loop start program counter
221  * @df:		destination fault while storing data
222  * @epc:	loop end program counter
223  * @lm:		loop mode
224  */
225 struct sdma_state_registers {
226 	u32 pc     :14;
227 	u32 unused1: 1;
228 	u32 t      : 1;
229 	u32 rpc    :14;
230 	u32 unused0: 1;
231 	u32 sf     : 1;
232 	u32 spc    :14;
233 	u32 unused2: 1;
234 	u32 df     : 1;
235 	u32 epc    :14;
236 	u32 lm     : 2;
237 } __attribute__ ((packed));
238 
239 /**
240  * struct sdma_context_data - sdma context specific to a channel
241  *
242  * @channel_state:	channel state bits
243  * @gReg:		general registers
244  * @mda:		burst dma destination address register
245  * @msa:		burst dma source address register
246  * @ms:			burst dma status register
247  * @md:			burst dma data register
248  * @pda:		peripheral dma destination address register
249  * @psa:		peripheral dma source address register
250  * @ps:			peripheral dma status register
251  * @pd:			peripheral dma data register
252  * @ca:			CRC polynomial register
253  * @cs:			CRC accumulator register
254  * @dda:		dedicated core destination address register
255  * @dsa:		dedicated core source address register
256  * @ds:			dedicated core status register
257  * @dd:			dedicated core data register
258  */
259 struct sdma_context_data {
260 	struct sdma_state_registers  channel_state;
261 	u32  gReg[8];
262 	u32  mda;
263 	u32  msa;
264 	u32  ms;
265 	u32  md;
266 	u32  pda;
267 	u32  psa;
268 	u32  ps;
269 	u32  pd;
270 	u32  ca;
271 	u32  cs;
272 	u32  dda;
273 	u32  dsa;
274 	u32  ds;
275 	u32  dd;
276 	u32  scratch0;
277 	u32  scratch1;
278 	u32  scratch2;
279 	u32  scratch3;
280 	u32  scratch4;
281 	u32  scratch5;
282 	u32  scratch6;
283 	u32  scratch7;
284 } __attribute__ ((packed));
285 
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287 
288 struct sdma_engine;
289 
290 /**
291  * struct sdma_channel - housekeeping for a SDMA channel
292  *
293  * @sdma		pointer to the SDMA engine for this channel
294  * @channel		the channel number, matches dmaengine chan_id + 1
295  * @direction		transfer type. Needed for setting SDMA script
296  * @peripheral_type	Peripheral type. Needed for setting SDMA script
297  * @event_id0		aka dma request line
298  * @event_id1		for channels that use 2 events
299  * @word_size		peripheral access size
300  * @buf_tail		ID of the buffer that was processed
301  * @num_bd		max NUM_BD. number of descriptors currently handling
302  */
303 struct sdma_channel {
304 	struct sdma_engine		*sdma;
305 	unsigned int			channel;
306 	enum dma_transfer_direction		direction;
307 	enum sdma_peripheral_type	peripheral_type;
308 	unsigned int			event_id0;
309 	unsigned int			event_id1;
310 	enum dma_slave_buswidth		word_size;
311 	unsigned int			buf_tail;
312 	unsigned int			num_bd;
313 	unsigned int			period_len;
314 	struct sdma_buffer_descriptor	*bd;
315 	dma_addr_t			bd_phys;
316 	unsigned int			pc_from_device, pc_to_device;
317 	unsigned int			device_to_device;
318 	unsigned long			flags;
319 	dma_addr_t			per_address, per_address2;
320 	unsigned long			event_mask[2];
321 	unsigned long			watermark_level;
322 	u32				shp_addr, per_addr;
323 	struct dma_chan			chan;
324 	spinlock_t			lock;
325 	struct dma_async_tx_descriptor	desc;
326 	enum dma_status			status;
327 	unsigned int			chn_count;
328 	unsigned int			chn_real_count;
329 	struct tasklet_struct		tasklet;
330 	struct imx_dma_data		data;
331 };
332 
333 #define IMX_DMA_SG_LOOP		BIT(0)
334 
335 #define MAX_DMA_CHANNELS 32
336 #define MXC_SDMA_DEFAULT_PRIORITY 1
337 #define MXC_SDMA_MIN_PRIORITY 1
338 #define MXC_SDMA_MAX_PRIORITY 7
339 
340 #define SDMA_FIRMWARE_MAGIC 0x414d4453
341 
342 /**
343  * struct sdma_firmware_header - Layout of the firmware image
344  *
345  * @magic		"SDMA"
346  * @version_major	increased whenever layout of struct sdma_script_start_addrs
347  *			changes.
348  * @version_minor	firmware minor version (for binary compatible changes)
349  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
350  * @num_script_addrs	Number of script addresses in this image
351  * @ram_code_start	offset of SDMA ram image in this firmware image
352  * @ram_code_size	size of SDMA ram image
353  * @script_addrs	Stores the start address of the SDMA scripts
354  *			(in SDMA memory space)
355  */
356 struct sdma_firmware_header {
357 	u32	magic;
358 	u32	version_major;
359 	u32	version_minor;
360 	u32	script_addrs_start;
361 	u32	num_script_addrs;
362 	u32	ram_code_start;
363 	u32	ram_code_size;
364 };
365 
366 struct sdma_driver_data {
367 	int chnenbl0;
368 	int num_events;
369 	struct sdma_script_start_addrs	*script_addrs;
370 };
371 
372 struct sdma_engine {
373 	struct device			*dev;
374 	struct device_dma_parameters	dma_parms;
375 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
376 	struct sdma_channel_control	*channel_control;
377 	void __iomem			*regs;
378 	struct sdma_context_data	*context;
379 	dma_addr_t			context_phys;
380 	struct dma_device		dma_device;
381 	struct clk			*clk_ipg;
382 	struct clk			*clk_ahb;
383 	spinlock_t			channel_0_lock;
384 	u32				script_number;
385 	struct sdma_script_start_addrs	*script_addrs;
386 	const struct sdma_driver_data	*drvdata;
387 	u32				spba_start_addr;
388 	u32				spba_end_addr;
389 	unsigned int			irq;
390 };
391 
392 static struct sdma_driver_data sdma_imx31 = {
393 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
394 	.num_events = 32,
395 };
396 
397 static struct sdma_script_start_addrs sdma_script_imx25 = {
398 	.ap_2_ap_addr = 729,
399 	.uart_2_mcu_addr = 904,
400 	.per_2_app_addr = 1255,
401 	.mcu_2_app_addr = 834,
402 	.uartsh_2_mcu_addr = 1120,
403 	.per_2_shp_addr = 1329,
404 	.mcu_2_shp_addr = 1048,
405 	.ata_2_mcu_addr = 1560,
406 	.mcu_2_ata_addr = 1479,
407 	.app_2_per_addr = 1189,
408 	.app_2_mcu_addr = 770,
409 	.shp_2_per_addr = 1407,
410 	.shp_2_mcu_addr = 979,
411 };
412 
413 static struct sdma_driver_data sdma_imx25 = {
414 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
415 	.num_events = 48,
416 	.script_addrs = &sdma_script_imx25,
417 };
418 
419 static struct sdma_driver_data sdma_imx35 = {
420 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
421 	.num_events = 48,
422 };
423 
424 static struct sdma_script_start_addrs sdma_script_imx51 = {
425 	.ap_2_ap_addr = 642,
426 	.uart_2_mcu_addr = 817,
427 	.mcu_2_app_addr = 747,
428 	.mcu_2_shp_addr = 961,
429 	.ata_2_mcu_addr = 1473,
430 	.mcu_2_ata_addr = 1392,
431 	.app_2_per_addr = 1033,
432 	.app_2_mcu_addr = 683,
433 	.shp_2_per_addr = 1251,
434 	.shp_2_mcu_addr = 892,
435 };
436 
437 static struct sdma_driver_data sdma_imx51 = {
438 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
439 	.num_events = 48,
440 	.script_addrs = &sdma_script_imx51,
441 };
442 
443 static struct sdma_script_start_addrs sdma_script_imx53 = {
444 	.ap_2_ap_addr = 642,
445 	.app_2_mcu_addr = 683,
446 	.mcu_2_app_addr = 747,
447 	.uart_2_mcu_addr = 817,
448 	.shp_2_mcu_addr = 891,
449 	.mcu_2_shp_addr = 960,
450 	.uartsh_2_mcu_addr = 1032,
451 	.spdif_2_mcu_addr = 1100,
452 	.mcu_2_spdif_addr = 1134,
453 	.firi_2_mcu_addr = 1193,
454 	.mcu_2_firi_addr = 1290,
455 };
456 
457 static struct sdma_driver_data sdma_imx53 = {
458 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
459 	.num_events = 48,
460 	.script_addrs = &sdma_script_imx53,
461 };
462 
463 static struct sdma_script_start_addrs sdma_script_imx6q = {
464 	.ap_2_ap_addr = 642,
465 	.uart_2_mcu_addr = 817,
466 	.mcu_2_app_addr = 747,
467 	.per_2_per_addr = 6331,
468 	.uartsh_2_mcu_addr = 1032,
469 	.mcu_2_shp_addr = 960,
470 	.app_2_mcu_addr = 683,
471 	.shp_2_mcu_addr = 891,
472 	.spdif_2_mcu_addr = 1100,
473 	.mcu_2_spdif_addr = 1134,
474 };
475 
476 static struct sdma_driver_data sdma_imx6q = {
477 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
478 	.num_events = 48,
479 	.script_addrs = &sdma_script_imx6q,
480 };
481 
482 static const struct platform_device_id sdma_devtypes[] = {
483 	{
484 		.name = "imx25-sdma",
485 		.driver_data = (unsigned long)&sdma_imx25,
486 	}, {
487 		.name = "imx31-sdma",
488 		.driver_data = (unsigned long)&sdma_imx31,
489 	}, {
490 		.name = "imx35-sdma",
491 		.driver_data = (unsigned long)&sdma_imx35,
492 	}, {
493 		.name = "imx51-sdma",
494 		.driver_data = (unsigned long)&sdma_imx51,
495 	}, {
496 		.name = "imx53-sdma",
497 		.driver_data = (unsigned long)&sdma_imx53,
498 	}, {
499 		.name = "imx6q-sdma",
500 		.driver_data = (unsigned long)&sdma_imx6q,
501 	}, {
502 		/* sentinel */
503 	}
504 };
505 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
506 
507 static const struct of_device_id sdma_dt_ids[] = {
508 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
509 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
510 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
511 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
512 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
513 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
514 	{ /* sentinel */ }
515 };
516 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
517 
518 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
519 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
520 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
521 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
522 
523 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
524 {
525 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
526 	return chnenbl0 + event * 4;
527 }
528 
529 static int sdma_config_ownership(struct sdma_channel *sdmac,
530 		bool event_override, bool mcu_override, bool dsp_override)
531 {
532 	struct sdma_engine *sdma = sdmac->sdma;
533 	int channel = sdmac->channel;
534 	unsigned long evt, mcu, dsp;
535 
536 	if (event_override && mcu_override && dsp_override)
537 		return -EINVAL;
538 
539 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
540 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
541 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
542 
543 	if (dsp_override)
544 		__clear_bit(channel, &dsp);
545 	else
546 		__set_bit(channel, &dsp);
547 
548 	if (event_override)
549 		__clear_bit(channel, &evt);
550 	else
551 		__set_bit(channel, &evt);
552 
553 	if (mcu_override)
554 		__clear_bit(channel, &mcu);
555 	else
556 		__set_bit(channel, &mcu);
557 
558 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
559 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
560 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
561 
562 	return 0;
563 }
564 
565 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
566 {
567 	writel(BIT(channel), sdma->regs + SDMA_H_START);
568 }
569 
570 /*
571  * sdma_run_channel0 - run a channel and wait till it's done
572  */
573 static int sdma_run_channel0(struct sdma_engine *sdma)
574 {
575 	int ret;
576 	u32 reg;
577 
578 	sdma_enable_channel(sdma, 0);
579 
580 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
581 						reg, !(reg & 1), 1, 500);
582 	if (ret)
583 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
584 
585 	/* Set bits of CONFIG register with dynamic context switching */
586 	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
587 		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
588 
589 	return ret;
590 }
591 
592 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
593 		u32 address)
594 {
595 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
596 	void *buf_virt;
597 	dma_addr_t buf_phys;
598 	int ret;
599 	unsigned long flags;
600 
601 	buf_virt = dma_alloc_coherent(NULL,
602 			size,
603 			&buf_phys, GFP_KERNEL);
604 	if (!buf_virt) {
605 		return -ENOMEM;
606 	}
607 
608 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
609 
610 	bd0->mode.command = C0_SETPM;
611 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
612 	bd0->mode.count = size / 2;
613 	bd0->buffer_addr = buf_phys;
614 	bd0->ext_buffer_addr = address;
615 
616 	memcpy(buf_virt, buf, size);
617 
618 	ret = sdma_run_channel0(sdma);
619 
620 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
621 
622 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
623 
624 	return ret;
625 }
626 
627 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
628 {
629 	struct sdma_engine *sdma = sdmac->sdma;
630 	int channel = sdmac->channel;
631 	unsigned long val;
632 	u32 chnenbl = chnenbl_ofs(sdma, event);
633 
634 	val = readl_relaxed(sdma->regs + chnenbl);
635 	__set_bit(channel, &val);
636 	writel_relaxed(val, sdma->regs + chnenbl);
637 }
638 
639 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
640 {
641 	struct sdma_engine *sdma = sdmac->sdma;
642 	int channel = sdmac->channel;
643 	u32 chnenbl = chnenbl_ofs(sdma, event);
644 	unsigned long val;
645 
646 	val = readl_relaxed(sdma->regs + chnenbl);
647 	__clear_bit(channel, &val);
648 	writel_relaxed(val, sdma->regs + chnenbl);
649 }
650 
651 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
652 {
653 	if (sdmac->desc.callback)
654 		sdmac->desc.callback(sdmac->desc.callback_param);
655 }
656 
657 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
658 {
659 	struct sdma_buffer_descriptor *bd;
660 
661 	/*
662 	 * loop mode. Iterate over descriptors, re-setup them and
663 	 * call callback function.
664 	 */
665 	while (1) {
666 		bd = &sdmac->bd[sdmac->buf_tail];
667 
668 		if (bd->mode.status & BD_DONE)
669 			break;
670 
671 		if (bd->mode.status & BD_RROR)
672 			sdmac->status = DMA_ERROR;
673 
674 		bd->mode.status |= BD_DONE;
675 		sdmac->buf_tail++;
676 		sdmac->buf_tail %= sdmac->num_bd;
677 	}
678 }
679 
680 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
681 {
682 	struct sdma_buffer_descriptor *bd;
683 	int i, error = 0;
684 
685 	sdmac->chn_real_count = 0;
686 	/*
687 	 * non loop mode. Iterate over all descriptors, collect
688 	 * errors and call callback function
689 	 */
690 	for (i = 0; i < sdmac->num_bd; i++) {
691 		bd = &sdmac->bd[i];
692 
693 		 if (bd->mode.status & (BD_DONE | BD_RROR))
694 			error = -EIO;
695 		 sdmac->chn_real_count += bd->mode.count;
696 	}
697 
698 	if (error)
699 		sdmac->status = DMA_ERROR;
700 	else
701 		sdmac->status = DMA_COMPLETE;
702 
703 	dma_cookie_complete(&sdmac->desc);
704 	if (sdmac->desc.callback)
705 		sdmac->desc.callback(sdmac->desc.callback_param);
706 }
707 
708 static void sdma_tasklet(unsigned long data)
709 {
710 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
711 
712 	if (sdmac->flags & IMX_DMA_SG_LOOP)
713 		sdma_handle_channel_loop(sdmac);
714 	else
715 		mxc_sdma_handle_channel_normal(sdmac);
716 }
717 
718 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
719 {
720 	struct sdma_engine *sdma = dev_id;
721 	unsigned long stat;
722 
723 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
724 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
725 	/* channel 0 is special and not handled here, see run_channel0() */
726 	stat &= ~1;
727 
728 	while (stat) {
729 		int channel = fls(stat) - 1;
730 		struct sdma_channel *sdmac = &sdma->channel[channel];
731 
732 		if (sdmac->flags & IMX_DMA_SG_LOOP)
733 			sdma_update_channel_loop(sdmac);
734 
735 		tasklet_schedule(&sdmac->tasklet);
736 
737 		__clear_bit(channel, &stat);
738 	}
739 
740 	return IRQ_HANDLED;
741 }
742 
743 /*
744  * sets the pc of SDMA script according to the peripheral type
745  */
746 static void sdma_get_pc(struct sdma_channel *sdmac,
747 		enum sdma_peripheral_type peripheral_type)
748 {
749 	struct sdma_engine *sdma = sdmac->sdma;
750 	int per_2_emi = 0, emi_2_per = 0;
751 	/*
752 	 * These are needed once we start to support transfers between
753 	 * two peripherals or memory-to-memory transfers
754 	 */
755 	int per_2_per = 0;
756 
757 	sdmac->pc_from_device = 0;
758 	sdmac->pc_to_device = 0;
759 	sdmac->device_to_device = 0;
760 
761 	switch (peripheral_type) {
762 	case IMX_DMATYPE_MEMORY:
763 		break;
764 	case IMX_DMATYPE_DSP:
765 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
766 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
767 		break;
768 	case IMX_DMATYPE_FIRI:
769 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
770 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
771 		break;
772 	case IMX_DMATYPE_UART:
773 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
774 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
775 		break;
776 	case IMX_DMATYPE_UART_SP:
777 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
778 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
779 		break;
780 	case IMX_DMATYPE_ATA:
781 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
782 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
783 		break;
784 	case IMX_DMATYPE_CSPI:
785 	case IMX_DMATYPE_EXT:
786 	case IMX_DMATYPE_SSI:
787 	case IMX_DMATYPE_SAI:
788 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
789 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
790 		break;
791 	case IMX_DMATYPE_SSI_DUAL:
792 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
793 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
794 		break;
795 	case IMX_DMATYPE_SSI_SP:
796 	case IMX_DMATYPE_MMC:
797 	case IMX_DMATYPE_SDHC:
798 	case IMX_DMATYPE_CSPI_SP:
799 	case IMX_DMATYPE_ESAI:
800 	case IMX_DMATYPE_MSHC_SP:
801 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
802 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
803 		break;
804 	case IMX_DMATYPE_ASRC:
805 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
806 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
807 		per_2_per = sdma->script_addrs->per_2_per_addr;
808 		break;
809 	case IMX_DMATYPE_ASRC_SP:
810 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
811 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
812 		per_2_per = sdma->script_addrs->per_2_per_addr;
813 		break;
814 	case IMX_DMATYPE_MSHC:
815 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
816 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
817 		break;
818 	case IMX_DMATYPE_CCM:
819 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
820 		break;
821 	case IMX_DMATYPE_SPDIF:
822 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
823 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
824 		break;
825 	case IMX_DMATYPE_IPU_MEMORY:
826 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
827 		break;
828 	default:
829 		break;
830 	}
831 
832 	sdmac->pc_from_device = per_2_emi;
833 	sdmac->pc_to_device = emi_2_per;
834 	sdmac->device_to_device = per_2_per;
835 }
836 
837 static int sdma_load_context(struct sdma_channel *sdmac)
838 {
839 	struct sdma_engine *sdma = sdmac->sdma;
840 	int channel = sdmac->channel;
841 	int load_address;
842 	struct sdma_context_data *context = sdma->context;
843 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
844 	int ret;
845 	unsigned long flags;
846 
847 	if (sdmac->direction == DMA_DEV_TO_MEM)
848 		load_address = sdmac->pc_from_device;
849 	else if (sdmac->direction == DMA_DEV_TO_DEV)
850 		load_address = sdmac->device_to_device;
851 	else
852 		load_address = sdmac->pc_to_device;
853 
854 	if (load_address < 0)
855 		return load_address;
856 
857 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
858 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
859 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
860 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
861 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
862 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
863 
864 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
865 
866 	memset(context, 0, sizeof(*context));
867 	context->channel_state.pc = load_address;
868 
869 	/* Send by context the event mask,base address for peripheral
870 	 * and watermark level
871 	 */
872 	context->gReg[0] = sdmac->event_mask[1];
873 	context->gReg[1] = sdmac->event_mask[0];
874 	context->gReg[2] = sdmac->per_addr;
875 	context->gReg[6] = sdmac->shp_addr;
876 	context->gReg[7] = sdmac->watermark_level;
877 
878 	bd0->mode.command = C0_SETDM;
879 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
880 	bd0->mode.count = sizeof(*context) / 4;
881 	bd0->buffer_addr = sdma->context_phys;
882 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
883 	ret = sdma_run_channel0(sdma);
884 
885 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
886 
887 	return ret;
888 }
889 
890 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
891 {
892 	return container_of(chan, struct sdma_channel, chan);
893 }
894 
895 static int sdma_disable_channel(struct dma_chan *chan)
896 {
897 	struct sdma_channel *sdmac = to_sdma_chan(chan);
898 	struct sdma_engine *sdma = sdmac->sdma;
899 	int channel = sdmac->channel;
900 
901 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
902 	sdmac->status = DMA_ERROR;
903 
904 	return 0;
905 }
906 
907 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
908 {
909 	struct sdma_engine *sdma = sdmac->sdma;
910 
911 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
912 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
913 
914 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
915 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
916 
917 	if (sdmac->event_id0 > 31)
918 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
919 
920 	if (sdmac->event_id1 > 31)
921 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
922 
923 	/*
924 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
925 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
926 	 * r0(event_mask[1]) and r1(event_mask[0]).
927 	 */
928 	if (lwml > hwml) {
929 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
930 						SDMA_WATERMARK_LEVEL_HWML);
931 		sdmac->watermark_level |= hwml;
932 		sdmac->watermark_level |= lwml << 16;
933 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
934 	}
935 
936 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
937 			sdmac->per_address2 <= sdma->spba_end_addr)
938 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
939 
940 	if (sdmac->per_address >= sdma->spba_start_addr &&
941 			sdmac->per_address <= sdma->spba_end_addr)
942 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
943 
944 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
945 }
946 
947 static int sdma_config_channel(struct dma_chan *chan)
948 {
949 	struct sdma_channel *sdmac = to_sdma_chan(chan);
950 	int ret;
951 
952 	sdma_disable_channel(chan);
953 
954 	sdmac->event_mask[0] = 0;
955 	sdmac->event_mask[1] = 0;
956 	sdmac->shp_addr = 0;
957 	sdmac->per_addr = 0;
958 
959 	if (sdmac->event_id0) {
960 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
961 			return -EINVAL;
962 		sdma_event_enable(sdmac, sdmac->event_id0);
963 	}
964 
965 	if (sdmac->event_id1) {
966 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
967 			return -EINVAL;
968 		sdma_event_enable(sdmac, sdmac->event_id1);
969 	}
970 
971 	switch (sdmac->peripheral_type) {
972 	case IMX_DMATYPE_DSP:
973 		sdma_config_ownership(sdmac, false, true, true);
974 		break;
975 	case IMX_DMATYPE_MEMORY:
976 		sdma_config_ownership(sdmac, false, true, false);
977 		break;
978 	default:
979 		sdma_config_ownership(sdmac, true, true, false);
980 		break;
981 	}
982 
983 	sdma_get_pc(sdmac, sdmac->peripheral_type);
984 
985 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
986 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
987 		/* Handle multiple event channels differently */
988 		if (sdmac->event_id1) {
989 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
990 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
991 				sdma_set_watermarklevel_for_p2p(sdmac);
992 		} else
993 			__set_bit(sdmac->event_id0, sdmac->event_mask);
994 
995 		/* Address */
996 		sdmac->shp_addr = sdmac->per_address;
997 		sdmac->per_addr = sdmac->per_address2;
998 	} else {
999 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1000 	}
1001 
1002 	ret = sdma_load_context(sdmac);
1003 
1004 	return ret;
1005 }
1006 
1007 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1008 		unsigned int priority)
1009 {
1010 	struct sdma_engine *sdma = sdmac->sdma;
1011 	int channel = sdmac->channel;
1012 
1013 	if (priority < MXC_SDMA_MIN_PRIORITY
1014 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1015 		return -EINVAL;
1016 	}
1017 
1018 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1019 
1020 	return 0;
1021 }
1022 
1023 static int sdma_request_channel(struct sdma_channel *sdmac)
1024 {
1025 	struct sdma_engine *sdma = sdmac->sdma;
1026 	int channel = sdmac->channel;
1027 	int ret = -EBUSY;
1028 
1029 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1030 					GFP_KERNEL);
1031 	if (!sdmac->bd) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 
1036 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1037 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1038 
1039 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1040 	return 0;
1041 out:
1042 
1043 	return ret;
1044 }
1045 
1046 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1047 {
1048 	unsigned long flags;
1049 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1050 	dma_cookie_t cookie;
1051 
1052 	spin_lock_irqsave(&sdmac->lock, flags);
1053 
1054 	cookie = dma_cookie_assign(tx);
1055 
1056 	spin_unlock_irqrestore(&sdmac->lock, flags);
1057 
1058 	return cookie;
1059 }
1060 
1061 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1062 {
1063 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1064 	struct imx_dma_data *data = chan->private;
1065 	int prio, ret;
1066 
1067 	if (!data)
1068 		return -EINVAL;
1069 
1070 	switch (data->priority) {
1071 	case DMA_PRIO_HIGH:
1072 		prio = 3;
1073 		break;
1074 	case DMA_PRIO_MEDIUM:
1075 		prio = 2;
1076 		break;
1077 	case DMA_PRIO_LOW:
1078 	default:
1079 		prio = 1;
1080 		break;
1081 	}
1082 
1083 	sdmac->peripheral_type = data->peripheral_type;
1084 	sdmac->event_id0 = data->dma_request;
1085 	sdmac->event_id1 = data->dma_request2;
1086 
1087 	ret = clk_enable(sdmac->sdma->clk_ipg);
1088 	if (ret)
1089 		return ret;
1090 	ret = clk_enable(sdmac->sdma->clk_ahb);
1091 	if (ret)
1092 		goto disable_clk_ipg;
1093 
1094 	ret = sdma_request_channel(sdmac);
1095 	if (ret)
1096 		goto disable_clk_ahb;
1097 
1098 	ret = sdma_set_channel_priority(sdmac, prio);
1099 	if (ret)
1100 		goto disable_clk_ahb;
1101 
1102 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
1103 	sdmac->desc.tx_submit = sdma_tx_submit;
1104 	/* txd.flags will be overwritten in prep funcs */
1105 	sdmac->desc.flags = DMA_CTRL_ACK;
1106 
1107 	return 0;
1108 
1109 disable_clk_ahb:
1110 	clk_disable(sdmac->sdma->clk_ahb);
1111 disable_clk_ipg:
1112 	clk_disable(sdmac->sdma->clk_ipg);
1113 	return ret;
1114 }
1115 
1116 static void sdma_free_chan_resources(struct dma_chan *chan)
1117 {
1118 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1119 	struct sdma_engine *sdma = sdmac->sdma;
1120 
1121 	sdma_disable_channel(chan);
1122 
1123 	if (sdmac->event_id0)
1124 		sdma_event_disable(sdmac, sdmac->event_id0);
1125 	if (sdmac->event_id1)
1126 		sdma_event_disable(sdmac, sdmac->event_id1);
1127 
1128 	sdmac->event_id0 = 0;
1129 	sdmac->event_id1 = 0;
1130 
1131 	sdma_set_channel_priority(sdmac, 0);
1132 
1133 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1134 
1135 	clk_disable(sdma->clk_ipg);
1136 	clk_disable(sdma->clk_ahb);
1137 }
1138 
1139 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1140 		struct dma_chan *chan, struct scatterlist *sgl,
1141 		unsigned int sg_len, enum dma_transfer_direction direction,
1142 		unsigned long flags, void *context)
1143 {
1144 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1145 	struct sdma_engine *sdma = sdmac->sdma;
1146 	int ret, i, count;
1147 	int channel = sdmac->channel;
1148 	struct scatterlist *sg;
1149 
1150 	if (sdmac->status == DMA_IN_PROGRESS)
1151 		return NULL;
1152 	sdmac->status = DMA_IN_PROGRESS;
1153 
1154 	sdmac->flags = 0;
1155 
1156 	sdmac->buf_tail = 0;
1157 
1158 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1159 			sg_len, channel);
1160 
1161 	sdmac->direction = direction;
1162 	ret = sdma_load_context(sdmac);
1163 	if (ret)
1164 		goto err_out;
1165 
1166 	if (sg_len > NUM_BD) {
1167 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1168 				channel, sg_len, NUM_BD);
1169 		ret = -EINVAL;
1170 		goto err_out;
1171 	}
1172 
1173 	sdmac->chn_count = 0;
1174 	for_each_sg(sgl, sg, sg_len, i) {
1175 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1176 		int param;
1177 
1178 		bd->buffer_addr = sg->dma_address;
1179 
1180 		count = sg_dma_len(sg);
1181 
1182 		if (count > 0xffff) {
1183 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1184 					channel, count, 0xffff);
1185 			ret = -EINVAL;
1186 			goto err_out;
1187 		}
1188 
1189 		bd->mode.count = count;
1190 		sdmac->chn_count += count;
1191 
1192 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1193 			ret =  -EINVAL;
1194 			goto err_out;
1195 		}
1196 
1197 		switch (sdmac->word_size) {
1198 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1199 			bd->mode.command = 0;
1200 			if (count & 3 || sg->dma_address & 3)
1201 				return NULL;
1202 			break;
1203 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1204 			bd->mode.command = 2;
1205 			if (count & 1 || sg->dma_address & 1)
1206 				return NULL;
1207 			break;
1208 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1209 			bd->mode.command = 1;
1210 			break;
1211 		default:
1212 			return NULL;
1213 		}
1214 
1215 		param = BD_DONE | BD_EXTD | BD_CONT;
1216 
1217 		if (i + 1 == sg_len) {
1218 			param |= BD_INTR;
1219 			param |= BD_LAST;
1220 			param &= ~BD_CONT;
1221 		}
1222 
1223 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1224 				i, count, (u64)sg->dma_address,
1225 				param & BD_WRAP ? "wrap" : "",
1226 				param & BD_INTR ? " intr" : "");
1227 
1228 		bd->mode.status = param;
1229 	}
1230 
1231 	sdmac->num_bd = sg_len;
1232 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1233 
1234 	return &sdmac->desc;
1235 err_out:
1236 	sdmac->status = DMA_ERROR;
1237 	return NULL;
1238 }
1239 
1240 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1241 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1242 		size_t period_len, enum dma_transfer_direction direction,
1243 		unsigned long flags)
1244 {
1245 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1246 	struct sdma_engine *sdma = sdmac->sdma;
1247 	int num_periods = buf_len / period_len;
1248 	int channel = sdmac->channel;
1249 	int ret, i = 0, buf = 0;
1250 
1251 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1252 
1253 	if (sdmac->status == DMA_IN_PROGRESS)
1254 		return NULL;
1255 
1256 	sdmac->status = DMA_IN_PROGRESS;
1257 
1258 	sdmac->buf_tail = 0;
1259 	sdmac->period_len = period_len;
1260 
1261 	sdmac->flags |= IMX_DMA_SG_LOOP;
1262 	sdmac->direction = direction;
1263 	ret = sdma_load_context(sdmac);
1264 	if (ret)
1265 		goto err_out;
1266 
1267 	if (num_periods > NUM_BD) {
1268 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1269 				channel, num_periods, NUM_BD);
1270 		goto err_out;
1271 	}
1272 
1273 	if (period_len > 0xffff) {
1274 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1275 				channel, period_len, 0xffff);
1276 		goto err_out;
1277 	}
1278 
1279 	while (buf < buf_len) {
1280 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1281 		int param;
1282 
1283 		bd->buffer_addr = dma_addr;
1284 
1285 		bd->mode.count = period_len;
1286 
1287 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1288 			goto err_out;
1289 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1290 			bd->mode.command = 0;
1291 		else
1292 			bd->mode.command = sdmac->word_size;
1293 
1294 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1295 		if (i + 1 == num_periods)
1296 			param |= BD_WRAP;
1297 
1298 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1299 				i, period_len, (u64)dma_addr,
1300 				param & BD_WRAP ? "wrap" : "",
1301 				param & BD_INTR ? " intr" : "");
1302 
1303 		bd->mode.status = param;
1304 
1305 		dma_addr += period_len;
1306 		buf += period_len;
1307 
1308 		i++;
1309 	}
1310 
1311 	sdmac->num_bd = num_periods;
1312 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1313 
1314 	return &sdmac->desc;
1315 err_out:
1316 	sdmac->status = DMA_ERROR;
1317 	return NULL;
1318 }
1319 
1320 static int sdma_config(struct dma_chan *chan,
1321 		       struct dma_slave_config *dmaengine_cfg)
1322 {
1323 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1324 
1325 	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1326 		sdmac->per_address = dmaengine_cfg->src_addr;
1327 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1328 			dmaengine_cfg->src_addr_width;
1329 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1330 	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1331 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1332 		sdmac->per_address = dmaengine_cfg->dst_addr;
1333 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1334 			SDMA_WATERMARK_LEVEL_LWML;
1335 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1336 			SDMA_WATERMARK_LEVEL_HWML;
1337 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1338 	} else {
1339 		sdmac->per_address = dmaengine_cfg->dst_addr;
1340 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1341 			dmaengine_cfg->dst_addr_width;
1342 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1343 	}
1344 	sdmac->direction = dmaengine_cfg->direction;
1345 	return sdma_config_channel(chan);
1346 }
1347 
1348 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1349 				      dma_cookie_t cookie,
1350 				      struct dma_tx_state *txstate)
1351 {
1352 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1353 	u32 residue;
1354 
1355 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1356 		residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1357 	else
1358 		residue = sdmac->chn_count - sdmac->chn_real_count;
1359 
1360 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1361 			 residue);
1362 
1363 	return sdmac->status;
1364 }
1365 
1366 static void sdma_issue_pending(struct dma_chan *chan)
1367 {
1368 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1369 	struct sdma_engine *sdma = sdmac->sdma;
1370 
1371 	if (sdmac->status == DMA_IN_PROGRESS)
1372 		sdma_enable_channel(sdma, sdmac->channel);
1373 }
1374 
1375 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1376 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1377 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1378 
1379 static void sdma_add_scripts(struct sdma_engine *sdma,
1380 		const struct sdma_script_start_addrs *addr)
1381 {
1382 	s32 *addr_arr = (u32 *)addr;
1383 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1384 	int i;
1385 
1386 	/* use the default firmware in ROM if missing external firmware */
1387 	if (!sdma->script_number)
1388 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1389 
1390 	for (i = 0; i < sdma->script_number; i++)
1391 		if (addr_arr[i] > 0)
1392 			saddr_arr[i] = addr_arr[i];
1393 }
1394 
1395 static void sdma_load_firmware(const struct firmware *fw, void *context)
1396 {
1397 	struct sdma_engine *sdma = context;
1398 	const struct sdma_firmware_header *header;
1399 	const struct sdma_script_start_addrs *addr;
1400 	unsigned short *ram_code;
1401 
1402 	if (!fw) {
1403 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1404 		/* In this case we just use the ROM firmware. */
1405 		return;
1406 	}
1407 
1408 	if (fw->size < sizeof(*header))
1409 		goto err_firmware;
1410 
1411 	header = (struct sdma_firmware_header *)fw->data;
1412 
1413 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1414 		goto err_firmware;
1415 	if (header->ram_code_start + header->ram_code_size > fw->size)
1416 		goto err_firmware;
1417 	switch (header->version_major) {
1418 	case 1:
1419 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1420 		break;
1421 	case 2:
1422 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1423 		break;
1424 	case 3:
1425 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1426 		break;
1427 	default:
1428 		dev_err(sdma->dev, "unknown firmware version\n");
1429 		goto err_firmware;
1430 	}
1431 
1432 	addr = (void *)header + header->script_addrs_start;
1433 	ram_code = (void *)header + header->ram_code_start;
1434 
1435 	clk_enable(sdma->clk_ipg);
1436 	clk_enable(sdma->clk_ahb);
1437 	/* download the RAM image for SDMA */
1438 	sdma_load_script(sdma, ram_code,
1439 			header->ram_code_size,
1440 			addr->ram_code_start_addr);
1441 	clk_disable(sdma->clk_ipg);
1442 	clk_disable(sdma->clk_ahb);
1443 
1444 	sdma_add_scripts(sdma, addr);
1445 
1446 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1447 			header->version_major,
1448 			header->version_minor);
1449 
1450 err_firmware:
1451 	release_firmware(fw);
1452 }
1453 
1454 #define EVENT_REMAP_CELLS 3
1455 
1456 static int sdma_event_remap(struct sdma_engine *sdma)
1457 {
1458 	struct device_node *np = sdma->dev->of_node;
1459 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1460 	struct property *event_remap;
1461 	struct regmap *gpr;
1462 	char propname[] = "fsl,sdma-event-remap";
1463 	u32 reg, val, shift, num_map, i;
1464 	int ret = 0;
1465 
1466 	if (IS_ERR(np) || IS_ERR(gpr_np))
1467 		goto out;
1468 
1469 	event_remap = of_find_property(np, propname, NULL);
1470 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1471 	if (!num_map) {
1472 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1473 		goto out;
1474 	} else if (num_map % EVENT_REMAP_CELLS) {
1475 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1476 				propname, EVENT_REMAP_CELLS);
1477 		ret = -EINVAL;
1478 		goto out;
1479 	}
1480 
1481 	gpr = syscon_node_to_regmap(gpr_np);
1482 	if (IS_ERR(gpr)) {
1483 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1484 		ret = PTR_ERR(gpr);
1485 		goto out;
1486 	}
1487 
1488 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1489 		ret = of_property_read_u32_index(np, propname, i, &reg);
1490 		if (ret) {
1491 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1492 					propname, i);
1493 			goto out;
1494 		}
1495 
1496 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1497 		if (ret) {
1498 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1499 					propname, i + 1);
1500 			goto out;
1501 		}
1502 
1503 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1504 		if (ret) {
1505 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1506 					propname, i + 2);
1507 			goto out;
1508 		}
1509 
1510 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1511 	}
1512 
1513 out:
1514 	if (!IS_ERR(gpr_np))
1515 		of_node_put(gpr_np);
1516 
1517 	return ret;
1518 }
1519 
1520 static int sdma_get_firmware(struct sdma_engine *sdma,
1521 		const char *fw_name)
1522 {
1523 	int ret;
1524 
1525 	ret = request_firmware_nowait(THIS_MODULE,
1526 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1527 			GFP_KERNEL, sdma, sdma_load_firmware);
1528 
1529 	return ret;
1530 }
1531 
1532 static int sdma_init(struct sdma_engine *sdma)
1533 {
1534 	int i, ret;
1535 	dma_addr_t ccb_phys;
1536 
1537 	ret = clk_enable(sdma->clk_ipg);
1538 	if (ret)
1539 		return ret;
1540 	ret = clk_enable(sdma->clk_ahb);
1541 	if (ret)
1542 		goto disable_clk_ipg;
1543 
1544 	/* Be sure SDMA has not started yet */
1545 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1546 
1547 	sdma->channel_control = dma_alloc_coherent(NULL,
1548 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1549 			sizeof(struct sdma_context_data),
1550 			&ccb_phys, GFP_KERNEL);
1551 
1552 	if (!sdma->channel_control) {
1553 		ret = -ENOMEM;
1554 		goto err_dma_alloc;
1555 	}
1556 
1557 	sdma->context = (void *)sdma->channel_control +
1558 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1559 	sdma->context_phys = ccb_phys +
1560 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1561 
1562 	/* Zero-out the CCB structures array just allocated */
1563 	memset(sdma->channel_control, 0,
1564 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1565 
1566 	/* disable all channels */
1567 	for (i = 0; i < sdma->drvdata->num_events; i++)
1568 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1569 
1570 	/* All channels have priority 0 */
1571 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1572 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1573 
1574 	ret = sdma_request_channel(&sdma->channel[0]);
1575 	if (ret)
1576 		goto err_dma_alloc;
1577 
1578 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1579 
1580 	/* Set Command Channel (Channel Zero) */
1581 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1582 
1583 	/* Set bits of CONFIG register but with static context switching */
1584 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1585 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1586 
1587 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1588 
1589 	/* Initializes channel's priorities */
1590 	sdma_set_channel_priority(&sdma->channel[0], 7);
1591 
1592 	clk_disable(sdma->clk_ipg);
1593 	clk_disable(sdma->clk_ahb);
1594 
1595 	return 0;
1596 
1597 err_dma_alloc:
1598 	clk_disable(sdma->clk_ahb);
1599 disable_clk_ipg:
1600 	clk_disable(sdma->clk_ipg);
1601 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1602 	return ret;
1603 }
1604 
1605 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1606 {
1607 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1608 	struct imx_dma_data *data = fn_param;
1609 
1610 	if (!imx_dma_is_general_purpose(chan))
1611 		return false;
1612 
1613 	sdmac->data = *data;
1614 	chan->private = &sdmac->data;
1615 
1616 	return true;
1617 }
1618 
1619 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1620 				   struct of_dma *ofdma)
1621 {
1622 	struct sdma_engine *sdma = ofdma->of_dma_data;
1623 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1624 	struct imx_dma_data data;
1625 
1626 	if (dma_spec->args_count != 3)
1627 		return NULL;
1628 
1629 	data.dma_request = dma_spec->args[0];
1630 	data.peripheral_type = dma_spec->args[1];
1631 	data.priority = dma_spec->args[2];
1632 	/*
1633 	 * init dma_request2 to zero, which is not used by the dts.
1634 	 * For P2P, dma_request2 is init from dma_request_channel(),
1635 	 * chan->private will point to the imx_dma_data, and in
1636 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1637 	 * be set to sdmac->event_id1.
1638 	 */
1639 	data.dma_request2 = 0;
1640 
1641 	return dma_request_channel(mask, sdma_filter_fn, &data);
1642 }
1643 
1644 static int sdma_probe(struct platform_device *pdev)
1645 {
1646 	const struct of_device_id *of_id =
1647 			of_match_device(sdma_dt_ids, &pdev->dev);
1648 	struct device_node *np = pdev->dev.of_node;
1649 	struct device_node *spba_bus;
1650 	const char *fw_name;
1651 	int ret;
1652 	int irq;
1653 	struct resource *iores;
1654 	struct resource spba_res;
1655 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1656 	int i;
1657 	struct sdma_engine *sdma;
1658 	s32 *saddr_arr;
1659 	const struct sdma_driver_data *drvdata = NULL;
1660 
1661 	if (of_id)
1662 		drvdata = of_id->data;
1663 	else if (pdev->id_entry)
1664 		drvdata = (void *)pdev->id_entry->driver_data;
1665 
1666 	if (!drvdata) {
1667 		dev_err(&pdev->dev, "unable to find driver data\n");
1668 		return -EINVAL;
1669 	}
1670 
1671 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1672 	if (ret)
1673 		return ret;
1674 
1675 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1676 	if (!sdma)
1677 		return -ENOMEM;
1678 
1679 	spin_lock_init(&sdma->channel_0_lock);
1680 
1681 	sdma->dev = &pdev->dev;
1682 	sdma->drvdata = drvdata;
1683 
1684 	irq = platform_get_irq(pdev, 0);
1685 	if (irq < 0)
1686 		return irq;
1687 
1688 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1689 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1690 	if (IS_ERR(sdma->regs))
1691 		return PTR_ERR(sdma->regs);
1692 
1693 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1694 	if (IS_ERR(sdma->clk_ipg))
1695 		return PTR_ERR(sdma->clk_ipg);
1696 
1697 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1698 	if (IS_ERR(sdma->clk_ahb))
1699 		return PTR_ERR(sdma->clk_ahb);
1700 
1701 	clk_prepare(sdma->clk_ipg);
1702 	clk_prepare(sdma->clk_ahb);
1703 
1704 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1705 			       sdma);
1706 	if (ret)
1707 		return ret;
1708 
1709 	sdma->irq = irq;
1710 
1711 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1712 	if (!sdma->script_addrs)
1713 		return -ENOMEM;
1714 
1715 	/* initially no scripts available */
1716 	saddr_arr = (s32 *)sdma->script_addrs;
1717 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1718 		saddr_arr[i] = -EINVAL;
1719 
1720 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1721 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1722 
1723 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1724 	/* Initialize channel parameters */
1725 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1726 		struct sdma_channel *sdmac = &sdma->channel[i];
1727 
1728 		sdmac->sdma = sdma;
1729 		spin_lock_init(&sdmac->lock);
1730 
1731 		sdmac->chan.device = &sdma->dma_device;
1732 		dma_cookie_init(&sdmac->chan);
1733 		sdmac->channel = i;
1734 
1735 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1736 			     (unsigned long) sdmac);
1737 		/*
1738 		 * Add the channel to the DMAC list. Do not add channel 0 though
1739 		 * because we need it internally in the SDMA driver. This also means
1740 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1741 		 */
1742 		if (i)
1743 			list_add_tail(&sdmac->chan.device_node,
1744 					&sdma->dma_device.channels);
1745 	}
1746 
1747 	ret = sdma_init(sdma);
1748 	if (ret)
1749 		goto err_init;
1750 
1751 	ret = sdma_event_remap(sdma);
1752 	if (ret)
1753 		goto err_init;
1754 
1755 	if (sdma->drvdata->script_addrs)
1756 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1757 	if (pdata && pdata->script_addrs)
1758 		sdma_add_scripts(sdma, pdata->script_addrs);
1759 
1760 	if (pdata) {
1761 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1762 		if (ret)
1763 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1764 	} else {
1765 		/*
1766 		 * Because that device tree does not encode ROM script address,
1767 		 * the RAM script in firmware is mandatory for device tree
1768 		 * probe, otherwise it fails.
1769 		 */
1770 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1771 					      &fw_name);
1772 		if (ret)
1773 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1774 		else {
1775 			ret = sdma_get_firmware(sdma, fw_name);
1776 			if (ret)
1777 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1778 		}
1779 	}
1780 
1781 	sdma->dma_device.dev = &pdev->dev;
1782 
1783 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1784 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1785 	sdma->dma_device.device_tx_status = sdma_tx_status;
1786 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1787 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1788 	sdma->dma_device.device_config = sdma_config;
1789 	sdma->dma_device.device_terminate_all = sdma_disable_channel;
1790 	sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1791 	sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1792 	sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1793 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1794 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1795 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1796 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1797 
1798 	platform_set_drvdata(pdev, sdma);
1799 
1800 	ret = dma_async_device_register(&sdma->dma_device);
1801 	if (ret) {
1802 		dev_err(&pdev->dev, "unable to register\n");
1803 		goto err_init;
1804 	}
1805 
1806 	if (np) {
1807 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1808 		if (ret) {
1809 			dev_err(&pdev->dev, "failed to register controller\n");
1810 			goto err_register;
1811 		}
1812 
1813 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1814 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
1815 		if (!ret) {
1816 			sdma->spba_start_addr = spba_res.start;
1817 			sdma->spba_end_addr = spba_res.end;
1818 		}
1819 		of_node_put(spba_bus);
1820 	}
1821 
1822 	return 0;
1823 
1824 err_register:
1825 	dma_async_device_unregister(&sdma->dma_device);
1826 err_init:
1827 	kfree(sdma->script_addrs);
1828 	return ret;
1829 }
1830 
1831 static int sdma_remove(struct platform_device *pdev)
1832 {
1833 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1834 	int i;
1835 
1836 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1837 	dma_async_device_unregister(&sdma->dma_device);
1838 	kfree(sdma->script_addrs);
1839 	/* Kill the tasklet */
1840 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1841 		struct sdma_channel *sdmac = &sdma->channel[i];
1842 
1843 		tasklet_kill(&sdmac->tasklet);
1844 	}
1845 
1846 	platform_set_drvdata(pdev, NULL);
1847 	return 0;
1848 }
1849 
1850 static struct platform_driver sdma_driver = {
1851 	.driver		= {
1852 		.name	= "imx-sdma",
1853 		.of_match_table = sdma_dt_ids,
1854 	},
1855 	.id_table	= sdma_devtypes,
1856 	.remove		= sdma_remove,
1857 	.probe		= sdma_probe,
1858 };
1859 
1860 module_platform_driver(sdma_driver);
1861 
1862 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1863 MODULE_DESCRIPTION("i.MX SDMA driver");
1864 MODULE_LICENSE("GPL");
1865