xref: /linux/drivers/dma/idxd/perfmon.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2020 Intel Corporation. All rights rsvd. */
3 
4 #include <linux/sched/task.h>
5 #include <linux/io-64-nonatomic-lo-hi.h>
6 #include "idxd.h"
7 #include "perfmon.h"
8 
9 /*
10  * These attributes specify the bits in the config word that the perf
11  * syscall uses to pass the event ids and categories to perfmon.
12  */
13 DEFINE_PERFMON_FORMAT_ATTR(event_category, "config:0-3");
14 DEFINE_PERFMON_FORMAT_ATTR(event, "config:4-31");
15 
16 /*
17  * These attributes specify the bits in the config1 word that the perf
18  * syscall uses to pass filter data to perfmon.
19  */
20 DEFINE_PERFMON_FORMAT_ATTR(filter_wq, "config1:0-31");
21 DEFINE_PERFMON_FORMAT_ATTR(filter_tc, "config1:32-39");
22 DEFINE_PERFMON_FORMAT_ATTR(filter_pgsz, "config1:40-43");
23 DEFINE_PERFMON_FORMAT_ATTR(filter_sz, "config1:44-51");
24 DEFINE_PERFMON_FORMAT_ATTR(filter_eng, "config1:52-59");
25 
26 #define PERFMON_FILTERS_START	2
27 #define PERFMON_FILTERS_MAX	5
28 
29 static struct attribute *perfmon_format_attrs[] = {
30 	&format_attr_idxd_event_category.attr,
31 	&format_attr_idxd_event.attr,
32 	&format_attr_idxd_filter_wq.attr,
33 	&format_attr_idxd_filter_tc.attr,
34 	&format_attr_idxd_filter_pgsz.attr,
35 	&format_attr_idxd_filter_sz.attr,
36 	&format_attr_idxd_filter_eng.attr,
37 	NULL,
38 };
39 
40 static struct attribute_group perfmon_format_attr_group = {
41 	.name = "format",
42 	.attrs = perfmon_format_attrs,
43 };
44 
45 static const struct attribute_group *perfmon_attr_groups[] = {
46 	&perfmon_format_attr_group,
47 	NULL,
48 };
49 
is_idxd_event(struct idxd_pmu * idxd_pmu,struct perf_event * event)50 static bool is_idxd_event(struct idxd_pmu *idxd_pmu, struct perf_event *event)
51 {
52 	return &idxd_pmu->pmu == event->pmu;
53 }
54 
perfmon_collect_events(struct idxd_pmu * idxd_pmu,struct perf_event * leader,bool do_grp)55 static int perfmon_collect_events(struct idxd_pmu *idxd_pmu,
56 				  struct perf_event *leader,
57 				  bool do_grp)
58 {
59 	struct perf_event *event;
60 	int n, max_count;
61 
62 	max_count = idxd_pmu->n_counters;
63 	n = idxd_pmu->n_events;
64 
65 	if (n >= max_count)
66 		return -EINVAL;
67 
68 	if (is_idxd_event(idxd_pmu, leader)) {
69 		idxd_pmu->event_list[n] = leader;
70 		idxd_pmu->event_list[n]->hw.idx = n;
71 		n++;
72 	}
73 
74 	if (!do_grp)
75 		return n;
76 
77 	for_each_sibling_event(event, leader) {
78 		if (!is_idxd_event(idxd_pmu, event) ||
79 		    event->state <= PERF_EVENT_STATE_OFF)
80 			continue;
81 
82 		if (n >= max_count)
83 			return -EINVAL;
84 
85 		idxd_pmu->event_list[n] = event;
86 		idxd_pmu->event_list[n]->hw.idx = n;
87 		n++;
88 	}
89 
90 	return n;
91 }
92 
perfmon_assign_hw_event(struct idxd_pmu * idxd_pmu,struct perf_event * event,int idx)93 static void perfmon_assign_hw_event(struct idxd_pmu *idxd_pmu,
94 				    struct perf_event *event, int idx)
95 {
96 	struct idxd_device *idxd = idxd_pmu->idxd;
97 	struct hw_perf_event *hwc = &event->hw;
98 
99 	hwc->idx = idx;
100 	hwc->config_base = ioread64(CNTRCFG_REG(idxd, idx));
101 	hwc->event_base = ioread64(CNTRCFG_REG(idxd, idx));
102 }
103 
perfmon_assign_event(struct idxd_pmu * idxd_pmu,struct perf_event * event)104 static int perfmon_assign_event(struct idxd_pmu *idxd_pmu,
105 				struct perf_event *event)
106 {
107 	int i;
108 
109 	for (i = 0; i < IDXD_PMU_EVENT_MAX; i++)
110 		if (!test_and_set_bit(i, idxd_pmu->used_mask))
111 			return i;
112 
113 	return -EINVAL;
114 }
115 
116 /*
117  * Check whether there are enough counters to satisfy that all the
118  * events in the group can actually be scheduled at the same time.
119  *
120  * To do this, create a fake idxd_pmu object so the event collection
121  * and assignment functions can be used without affecting the internal
122  * state of the real idxd_pmu object.
123  */
perfmon_validate_group(struct idxd_pmu * pmu,struct perf_event * event)124 static int perfmon_validate_group(struct idxd_pmu *pmu,
125 				  struct perf_event *event)
126 {
127 	struct perf_event *leader = event->group_leader;
128 	struct idxd_pmu *fake_pmu;
129 	int i, ret = 0, n, idx;
130 
131 	fake_pmu = kzalloc(sizeof(*fake_pmu), GFP_KERNEL);
132 	if (!fake_pmu)
133 		return -ENOMEM;
134 
135 	fake_pmu->pmu.name = pmu->pmu.name;
136 	fake_pmu->n_counters = pmu->n_counters;
137 
138 	n = perfmon_collect_events(fake_pmu, leader, true);
139 	if (n < 0) {
140 		ret = n;
141 		goto out;
142 	}
143 
144 	fake_pmu->n_events = n;
145 	n = perfmon_collect_events(fake_pmu, event, false);
146 	if (n < 0) {
147 		ret = n;
148 		goto out;
149 	}
150 
151 	fake_pmu->n_events = n;
152 
153 	for (i = 0; i < n; i++) {
154 		event = fake_pmu->event_list[i];
155 
156 		idx = perfmon_assign_event(fake_pmu, event);
157 		if (idx < 0) {
158 			ret = idx;
159 			goto out;
160 		}
161 	}
162 out:
163 	kfree(fake_pmu);
164 
165 	return ret;
166 }
167 
perfmon_pmu_event_init(struct perf_event * event)168 static int perfmon_pmu_event_init(struct perf_event *event)
169 {
170 	struct idxd_device *idxd;
171 	int ret = 0;
172 
173 	idxd = event_to_idxd(event);
174 	event->hw.idx = -1;
175 
176 	if (event->attr.type != event->pmu->type)
177 		return -ENOENT;
178 
179 	/* sampling not supported */
180 	if (event->attr.sample_period)
181 		return -EINVAL;
182 
183 	if (event->cpu < 0)
184 		return -EINVAL;
185 
186 	if (event->pmu != &idxd->idxd_pmu->pmu)
187 		return -EINVAL;
188 
189 	event->hw.event_base = ioread64(PERFMON_TABLE_OFFSET(idxd));
190 	event->hw.config = event->attr.config;
191 
192 	if (event->group_leader != event)
193 		 /* non-group events have themselves as leader */
194 		ret = perfmon_validate_group(idxd->idxd_pmu, event);
195 
196 	return ret;
197 }
198 
perfmon_pmu_read_counter(struct perf_event * event)199 static inline u64 perfmon_pmu_read_counter(struct perf_event *event)
200 {
201 	struct hw_perf_event *hwc = &event->hw;
202 	struct idxd_device *idxd;
203 	int cntr = hwc->idx;
204 
205 	idxd = event_to_idxd(event);
206 
207 	return ioread64(CNTRDATA_REG(idxd, cntr));
208 }
209 
perfmon_pmu_event_update(struct perf_event * event)210 static void perfmon_pmu_event_update(struct perf_event *event)
211 {
212 	struct idxd_device *idxd = event_to_idxd(event);
213 	u64 prev_raw_count, new_raw_count, delta, p, n;
214 	int shift = 64 - idxd->idxd_pmu->counter_width;
215 	struct hw_perf_event *hwc = &event->hw;
216 
217 	prev_raw_count = local64_read(&hwc->prev_count);
218 	do {
219 		new_raw_count = perfmon_pmu_read_counter(event);
220 	} while (!local64_try_cmpxchg(&hwc->prev_count,
221 				      &prev_raw_count, new_raw_count));
222 	n = (new_raw_count << shift);
223 	p = (prev_raw_count << shift);
224 
225 	delta = ((n - p) >> shift);
226 
227 	local64_add(delta, &event->count);
228 }
229 
perfmon_counter_overflow(struct idxd_device * idxd)230 void perfmon_counter_overflow(struct idxd_device *idxd)
231 {
232 	int i, n_counters, max_loop = OVERFLOW_SIZE;
233 	struct perf_event *event;
234 	unsigned long ovfstatus;
235 
236 	n_counters = min(idxd->idxd_pmu->n_counters, OVERFLOW_SIZE);
237 
238 	ovfstatus = ioread32(OVFSTATUS_REG(idxd));
239 
240 	/*
241 	 * While updating overflowed counters, other counters behind
242 	 * them could overflow and be missed in a given pass.
243 	 * Normally this could happen at most n_counters times, but in
244 	 * theory a tiny counter width could result in continual
245 	 * overflows and endless looping.  max_loop provides a
246 	 * failsafe in that highly unlikely case.
247 	 */
248 	while (ovfstatus && max_loop--) {
249 		/* Figure out which counter(s) overflowed */
250 		for_each_set_bit(i, &ovfstatus, n_counters) {
251 			unsigned long ovfstatus_clear = 0;
252 
253 			/* Update event->count for overflowed counter */
254 			event = idxd->idxd_pmu->event_list[i];
255 			perfmon_pmu_event_update(event);
256 			/* Writing 1 to OVFSTATUS bit clears it */
257 			set_bit(i, &ovfstatus_clear);
258 			iowrite32(ovfstatus_clear, OVFSTATUS_REG(idxd));
259 		}
260 
261 		ovfstatus = ioread32(OVFSTATUS_REG(idxd));
262 	}
263 
264 	/*
265 	 * Should never happen.  If so, it means a counter(s) looped
266 	 * around twice while this handler was running.
267 	 */
268 	WARN_ON_ONCE(ovfstatus);
269 }
270 
perfmon_reset_config(struct idxd_device * idxd)271 static inline void perfmon_reset_config(struct idxd_device *idxd)
272 {
273 	iowrite32(CONFIG_RESET, PERFRST_REG(idxd));
274 	iowrite32(0, OVFSTATUS_REG(idxd));
275 	iowrite32(0, PERFFRZ_REG(idxd));
276 }
277 
perfmon_reset_counters(struct idxd_device * idxd)278 static inline void perfmon_reset_counters(struct idxd_device *idxd)
279 {
280 	iowrite32(CNTR_RESET, PERFRST_REG(idxd));
281 }
282 
perfmon_reset(struct idxd_device * idxd)283 static inline void perfmon_reset(struct idxd_device *idxd)
284 {
285 	perfmon_reset_config(idxd);
286 	perfmon_reset_counters(idxd);
287 }
288 
perfmon_pmu_event_start(struct perf_event * event,int mode)289 static void perfmon_pmu_event_start(struct perf_event *event, int mode)
290 {
291 	u32 flt_wq, flt_tc, flt_pg_sz, flt_xfer_sz, flt_eng = 0;
292 	u64 cntr_cfg, cntrdata, event_enc, event_cat = 0;
293 	struct hw_perf_event *hwc = &event->hw;
294 	union filter_cfg flt_cfg;
295 	union event_cfg event_cfg;
296 	struct idxd_device *idxd;
297 	int cntr;
298 
299 	idxd = event_to_idxd(event);
300 
301 	event->hw.idx = hwc->idx;
302 	cntr = hwc->idx;
303 
304 	/* Obtain event category and event value from user space */
305 	event_cfg.val = event->attr.config;
306 	flt_cfg.val = event->attr.config1;
307 	event_cat = event_cfg.event_cat;
308 	event_enc = event_cfg.event_enc;
309 
310 	/* Obtain filter configuration from user space */
311 	flt_wq = flt_cfg.wq;
312 	flt_tc = flt_cfg.tc;
313 	flt_pg_sz = flt_cfg.pg_sz;
314 	flt_xfer_sz = flt_cfg.xfer_sz;
315 	flt_eng = flt_cfg.eng;
316 
317 	if (flt_wq && test_bit(FLT_WQ, &idxd->idxd_pmu->supported_filters))
318 		iowrite32(flt_wq, FLTCFG_REG(idxd, cntr, FLT_WQ));
319 	if (flt_tc && test_bit(FLT_TC, &idxd->idxd_pmu->supported_filters))
320 		iowrite32(flt_tc, FLTCFG_REG(idxd, cntr, FLT_TC));
321 	if (flt_pg_sz && test_bit(FLT_PG_SZ, &idxd->idxd_pmu->supported_filters))
322 		iowrite32(flt_pg_sz, FLTCFG_REG(idxd, cntr, FLT_PG_SZ));
323 	if (flt_xfer_sz && test_bit(FLT_XFER_SZ, &idxd->idxd_pmu->supported_filters))
324 		iowrite32(flt_xfer_sz, FLTCFG_REG(idxd, cntr, FLT_XFER_SZ));
325 	if (flt_eng && test_bit(FLT_ENG, &idxd->idxd_pmu->supported_filters))
326 		iowrite32(flt_eng, FLTCFG_REG(idxd, cntr, FLT_ENG));
327 
328 	/* Read the start value */
329 	cntrdata = ioread64(CNTRDATA_REG(idxd, cntr));
330 	local64_set(&event->hw.prev_count, cntrdata);
331 
332 	/* Set counter to event/category */
333 	cntr_cfg = event_cat << CNTRCFG_CATEGORY_SHIFT;
334 	cntr_cfg |= event_enc << CNTRCFG_EVENT_SHIFT;
335 	/* Set interrupt on overflow and counter enable bits */
336 	cntr_cfg |= (CNTRCFG_IRQ_OVERFLOW | CNTRCFG_ENABLE);
337 
338 	iowrite64(cntr_cfg, CNTRCFG_REG(idxd, cntr));
339 }
340 
perfmon_pmu_event_stop(struct perf_event * event,int mode)341 static void perfmon_pmu_event_stop(struct perf_event *event, int mode)
342 {
343 	struct hw_perf_event *hwc = &event->hw;
344 	struct idxd_device *idxd;
345 	int i, cntr = hwc->idx;
346 	u64 cntr_cfg;
347 
348 	idxd = event_to_idxd(event);
349 
350 	/* remove this event from event list */
351 	for (i = 0; i < idxd->idxd_pmu->n_events; i++) {
352 		if (event != idxd->idxd_pmu->event_list[i])
353 			continue;
354 
355 		for (++i; i < idxd->idxd_pmu->n_events; i++)
356 			idxd->idxd_pmu->event_list[i - 1] = idxd->idxd_pmu->event_list[i];
357 		--idxd->idxd_pmu->n_events;
358 		break;
359 	}
360 
361 	cntr_cfg = ioread64(CNTRCFG_REG(idxd, cntr));
362 	cntr_cfg &= ~CNTRCFG_ENABLE;
363 	iowrite64(cntr_cfg, CNTRCFG_REG(idxd, cntr));
364 
365 	if (mode == PERF_EF_UPDATE)
366 		perfmon_pmu_event_update(event);
367 
368 	event->hw.idx = -1;
369 	clear_bit(cntr, idxd->idxd_pmu->used_mask);
370 }
371 
perfmon_pmu_event_del(struct perf_event * event,int mode)372 static void perfmon_pmu_event_del(struct perf_event *event, int mode)
373 {
374 	perfmon_pmu_event_stop(event, PERF_EF_UPDATE);
375 }
376 
perfmon_pmu_event_add(struct perf_event * event,int flags)377 static int perfmon_pmu_event_add(struct perf_event *event, int flags)
378 {
379 	struct idxd_device *idxd = event_to_idxd(event);
380 	struct idxd_pmu *idxd_pmu = idxd->idxd_pmu;
381 	struct hw_perf_event *hwc = &event->hw;
382 	int idx, n;
383 
384 	n = perfmon_collect_events(idxd_pmu, event, false);
385 	if (n < 0)
386 		return n;
387 
388 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
389 	if (!(flags & PERF_EF_START))
390 		hwc->state |= PERF_HES_ARCH;
391 
392 	idx = perfmon_assign_event(idxd_pmu, event);
393 	if (idx < 0)
394 		return idx;
395 
396 	perfmon_assign_hw_event(idxd_pmu, event, idx);
397 
398 	if (flags & PERF_EF_START)
399 		perfmon_pmu_event_start(event, 0);
400 
401 	idxd_pmu->n_events = n;
402 
403 	return 0;
404 }
405 
enable_perfmon_pmu(struct idxd_device * idxd)406 static void enable_perfmon_pmu(struct idxd_device *idxd)
407 {
408 	iowrite32(COUNTER_UNFREEZE, PERFFRZ_REG(idxd));
409 }
410 
disable_perfmon_pmu(struct idxd_device * idxd)411 static void disable_perfmon_pmu(struct idxd_device *idxd)
412 {
413 	iowrite32(COUNTER_FREEZE, PERFFRZ_REG(idxd));
414 }
415 
perfmon_pmu_enable(struct pmu * pmu)416 static void perfmon_pmu_enable(struct pmu *pmu)
417 {
418 	struct idxd_device *idxd = pmu_to_idxd(pmu);
419 
420 	enable_perfmon_pmu(idxd);
421 }
422 
perfmon_pmu_disable(struct pmu * pmu)423 static void perfmon_pmu_disable(struct pmu *pmu)
424 {
425 	struct idxd_device *idxd = pmu_to_idxd(pmu);
426 
427 	disable_perfmon_pmu(idxd);
428 }
429 
skip_filter(int i)430 static void skip_filter(int i)
431 {
432 	int j;
433 
434 	for (j = i; j < PERFMON_FILTERS_MAX; j++)
435 		perfmon_format_attrs[PERFMON_FILTERS_START + j] =
436 			perfmon_format_attrs[PERFMON_FILTERS_START + j + 1];
437 }
438 
idxd_pmu_init(struct idxd_pmu * idxd_pmu)439 static void idxd_pmu_init(struct idxd_pmu *idxd_pmu)
440 {
441 	int i;
442 
443 	for (i = 0 ; i < PERFMON_FILTERS_MAX; i++) {
444 		if (!test_bit(i, &idxd_pmu->supported_filters))
445 			skip_filter(i);
446 	}
447 
448 	idxd_pmu->pmu.name		= idxd_pmu->name;
449 	idxd_pmu->pmu.attr_groups	= perfmon_attr_groups;
450 	idxd_pmu->pmu.task_ctx_nr	= perf_invalid_context;
451 	idxd_pmu->pmu.event_init	= perfmon_pmu_event_init;
452 	idxd_pmu->pmu.pmu_enable	= perfmon_pmu_enable;
453 	idxd_pmu->pmu.pmu_disable	= perfmon_pmu_disable;
454 	idxd_pmu->pmu.add		= perfmon_pmu_event_add;
455 	idxd_pmu->pmu.del		= perfmon_pmu_event_del;
456 	idxd_pmu->pmu.start		= perfmon_pmu_event_start;
457 	idxd_pmu->pmu.stop		= perfmon_pmu_event_stop;
458 	idxd_pmu->pmu.read		= perfmon_pmu_event_update;
459 	idxd_pmu->pmu.capabilities	= PERF_PMU_CAP_NO_EXCLUDE;
460 	idxd_pmu->pmu.scope		= PERF_PMU_SCOPE_SYS_WIDE;
461 	idxd_pmu->pmu.module		= THIS_MODULE;
462 }
463 
perfmon_pmu_remove(struct idxd_device * idxd)464 void perfmon_pmu_remove(struct idxd_device *idxd)
465 {
466 	if (!idxd->idxd_pmu)
467 		return;
468 
469 	perf_pmu_unregister(&idxd->idxd_pmu->pmu);
470 	kfree(idxd->idxd_pmu);
471 	idxd->idxd_pmu = NULL;
472 }
473 
perfmon_pmu_init(struct idxd_device * idxd)474 int perfmon_pmu_init(struct idxd_device *idxd)
475 {
476 	union idxd_perfcap perfcap;
477 	struct idxd_pmu *idxd_pmu;
478 	int rc = -ENODEV;
479 
480 	/*
481 	 * If perfmon_offset or num_counters is 0, it means perfmon is
482 	 * not supported on this hardware.
483 	 */
484 	if (idxd->perfmon_offset == 0)
485 		return -ENODEV;
486 
487 	idxd_pmu = kzalloc(sizeof(*idxd_pmu), GFP_KERNEL);
488 	if (!idxd_pmu)
489 		return -ENOMEM;
490 
491 	idxd_pmu->idxd = idxd;
492 	idxd->idxd_pmu = idxd_pmu;
493 
494 	if (idxd->data->type == IDXD_TYPE_DSA) {
495 		rc = sprintf(idxd_pmu->name, "dsa%d", idxd->id);
496 		if (rc < 0)
497 			goto free;
498 	} else if (idxd->data->type == IDXD_TYPE_IAX) {
499 		rc = sprintf(idxd_pmu->name, "iax%d", idxd->id);
500 		if (rc < 0)
501 			goto free;
502 	} else {
503 		goto free;
504 	}
505 
506 	perfmon_reset(idxd);
507 
508 	perfcap.bits = ioread64(PERFCAP_REG(idxd));
509 
510 	/*
511 	 * If total perf counter is 0, stop further registration.
512 	 * This is necessary in order to support driver running on
513 	 * guest which does not have pmon support.
514 	 */
515 	if (perfcap.num_perf_counter == 0)
516 		goto free;
517 
518 	/* A counter width of 0 means it can't count */
519 	if (perfcap.counter_width == 0)
520 		goto free;
521 
522 	/* Overflow interrupt and counter freeze support must be available */
523 	if (!perfcap.overflow_interrupt || !perfcap.counter_freeze)
524 		goto free;
525 
526 	/* Number of event categories cannot be 0 */
527 	if (perfcap.num_event_category == 0)
528 		goto free;
529 
530 	/*
531 	 * We don't support per-counter capabilities for now.
532 	 */
533 	if (perfcap.cap_per_counter)
534 		goto free;
535 
536 	idxd_pmu->n_event_categories = perfcap.num_event_category;
537 	idxd_pmu->supported_event_categories = perfcap.global_event_category;
538 	idxd_pmu->per_counter_caps_supported = perfcap.cap_per_counter;
539 
540 	/* check filter capability.  If 0, then filters are not supported */
541 	idxd_pmu->supported_filters = perfcap.filter;
542 	if (perfcap.filter)
543 		idxd_pmu->n_filters = hweight8(perfcap.filter);
544 
545 	/* Store the total number of counters categories, and counter width */
546 	idxd_pmu->n_counters = perfcap.num_perf_counter;
547 	idxd_pmu->counter_width = perfcap.counter_width;
548 
549 	idxd_pmu_init(idxd_pmu);
550 
551 	rc = perf_pmu_register(&idxd_pmu->pmu, idxd_pmu->name, -1);
552 	if (rc)
553 		goto free;
554 
555 out:
556 	return rc;
557 free:
558 	kfree(idxd_pmu);
559 	idxd->idxd_pmu = NULL;
560 
561 	goto out;
562 }
563