1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2020 Intel Corporation. All rights rsvd. */ 3 4 #include <linux/sched/task.h> 5 #include <linux/io-64-nonatomic-lo-hi.h> 6 #include "idxd.h" 7 #include "perfmon.h" 8 9 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 10 char *buf); 11 12 static cpumask_t perfmon_dsa_cpu_mask; 13 static bool cpuhp_set_up; 14 static enum cpuhp_state cpuhp_slot; 15 16 /* 17 * perf userspace reads this attribute to determine which cpus to open 18 * counters on. It's connected to perfmon_dsa_cpu_mask, which is 19 * maintained by the cpu hotplug handlers. 20 */ 21 static DEVICE_ATTR_RO(cpumask); 22 23 static struct attribute *perfmon_cpumask_attrs[] = { 24 &dev_attr_cpumask.attr, 25 NULL, 26 }; 27 28 static struct attribute_group cpumask_attr_group = { 29 .attrs = perfmon_cpumask_attrs, 30 }; 31 32 /* 33 * These attributes specify the bits in the config word that the perf 34 * syscall uses to pass the event ids and categories to perfmon. 35 */ 36 DEFINE_PERFMON_FORMAT_ATTR(event_category, "config:0-3"); 37 DEFINE_PERFMON_FORMAT_ATTR(event, "config:4-31"); 38 39 /* 40 * These attributes specify the bits in the config1 word that the perf 41 * syscall uses to pass filter data to perfmon. 42 */ 43 DEFINE_PERFMON_FORMAT_ATTR(filter_wq, "config1:0-31"); 44 DEFINE_PERFMON_FORMAT_ATTR(filter_tc, "config1:32-39"); 45 DEFINE_PERFMON_FORMAT_ATTR(filter_pgsz, "config1:40-43"); 46 DEFINE_PERFMON_FORMAT_ATTR(filter_sz, "config1:44-51"); 47 DEFINE_PERFMON_FORMAT_ATTR(filter_eng, "config1:52-59"); 48 49 #define PERFMON_FILTERS_START 2 50 #define PERFMON_FILTERS_MAX 5 51 52 static struct attribute *perfmon_format_attrs[] = { 53 &format_attr_idxd_event_category.attr, 54 &format_attr_idxd_event.attr, 55 &format_attr_idxd_filter_wq.attr, 56 &format_attr_idxd_filter_tc.attr, 57 &format_attr_idxd_filter_pgsz.attr, 58 &format_attr_idxd_filter_sz.attr, 59 &format_attr_idxd_filter_eng.attr, 60 NULL, 61 }; 62 63 static struct attribute_group perfmon_format_attr_group = { 64 .name = "format", 65 .attrs = perfmon_format_attrs, 66 }; 67 68 static const struct attribute_group *perfmon_attr_groups[] = { 69 &perfmon_format_attr_group, 70 &cpumask_attr_group, 71 NULL, 72 }; 73 74 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 75 char *buf) 76 { 77 return cpumap_print_to_pagebuf(true, buf, &perfmon_dsa_cpu_mask); 78 } 79 80 static bool is_idxd_event(struct idxd_pmu *idxd_pmu, struct perf_event *event) 81 { 82 return &idxd_pmu->pmu == event->pmu; 83 } 84 85 static int perfmon_collect_events(struct idxd_pmu *idxd_pmu, 86 struct perf_event *leader, 87 bool do_grp) 88 { 89 struct perf_event *event; 90 int n, max_count; 91 92 max_count = idxd_pmu->n_counters; 93 n = idxd_pmu->n_events; 94 95 if (n >= max_count) 96 return -EINVAL; 97 98 if (is_idxd_event(idxd_pmu, leader)) { 99 idxd_pmu->event_list[n] = leader; 100 idxd_pmu->event_list[n]->hw.idx = n; 101 n++; 102 } 103 104 if (!do_grp) 105 return n; 106 107 for_each_sibling_event(event, leader) { 108 if (!is_idxd_event(idxd_pmu, event) || 109 event->state <= PERF_EVENT_STATE_OFF) 110 continue; 111 112 if (n >= max_count) 113 return -EINVAL; 114 115 idxd_pmu->event_list[n] = event; 116 idxd_pmu->event_list[n]->hw.idx = n; 117 n++; 118 } 119 120 return n; 121 } 122 123 static void perfmon_assign_hw_event(struct idxd_pmu *idxd_pmu, 124 struct perf_event *event, int idx) 125 { 126 struct idxd_device *idxd = idxd_pmu->idxd; 127 struct hw_perf_event *hwc = &event->hw; 128 129 hwc->idx = idx; 130 hwc->config_base = ioread64(CNTRCFG_REG(idxd, idx)); 131 hwc->event_base = ioread64(CNTRCFG_REG(idxd, idx)); 132 } 133 134 static int perfmon_assign_event(struct idxd_pmu *idxd_pmu, 135 struct perf_event *event) 136 { 137 int i; 138 139 for (i = 0; i < IDXD_PMU_EVENT_MAX; i++) 140 if (!test_and_set_bit(i, idxd_pmu->used_mask)) 141 return i; 142 143 return -EINVAL; 144 } 145 146 /* 147 * Check whether there are enough counters to satisfy that all the 148 * events in the group can actually be scheduled at the same time. 149 * 150 * To do this, create a fake idxd_pmu object so the event collection 151 * and assignment functions can be used without affecting the internal 152 * state of the real idxd_pmu object. 153 */ 154 static int perfmon_validate_group(struct idxd_pmu *pmu, 155 struct perf_event *event) 156 { 157 struct perf_event *leader = event->group_leader; 158 struct idxd_pmu *fake_pmu; 159 int i, ret = 0, n, idx; 160 161 fake_pmu = kzalloc(sizeof(*fake_pmu), GFP_KERNEL); 162 if (!fake_pmu) 163 return -ENOMEM; 164 165 fake_pmu->pmu.name = pmu->pmu.name; 166 fake_pmu->n_counters = pmu->n_counters; 167 168 n = perfmon_collect_events(fake_pmu, leader, true); 169 if (n < 0) { 170 ret = n; 171 goto out; 172 } 173 174 fake_pmu->n_events = n; 175 n = perfmon_collect_events(fake_pmu, event, false); 176 if (n < 0) { 177 ret = n; 178 goto out; 179 } 180 181 fake_pmu->n_events = n; 182 183 for (i = 0; i < n; i++) { 184 event = fake_pmu->event_list[i]; 185 186 idx = perfmon_assign_event(fake_pmu, event); 187 if (idx < 0) { 188 ret = idx; 189 goto out; 190 } 191 } 192 out: 193 kfree(fake_pmu); 194 195 return ret; 196 } 197 198 static int perfmon_pmu_event_init(struct perf_event *event) 199 { 200 struct idxd_device *idxd; 201 int ret = 0; 202 203 idxd = event_to_idxd(event); 204 event->hw.idx = -1; 205 206 if (event->attr.type != event->pmu->type) 207 return -ENOENT; 208 209 /* sampling not supported */ 210 if (event->attr.sample_period) 211 return -EINVAL; 212 213 if (event->cpu < 0) 214 return -EINVAL; 215 216 if (event->pmu != &idxd->idxd_pmu->pmu) 217 return -EINVAL; 218 219 event->hw.event_base = ioread64(PERFMON_TABLE_OFFSET(idxd)); 220 event->cpu = idxd->idxd_pmu->cpu; 221 event->hw.config = event->attr.config; 222 223 if (event->group_leader != event) 224 /* non-group events have themselves as leader */ 225 ret = perfmon_validate_group(idxd->idxd_pmu, event); 226 227 return ret; 228 } 229 230 static inline u64 perfmon_pmu_read_counter(struct perf_event *event) 231 { 232 struct hw_perf_event *hwc = &event->hw; 233 struct idxd_device *idxd; 234 int cntr = hwc->idx; 235 236 idxd = event_to_idxd(event); 237 238 return ioread64(CNTRDATA_REG(idxd, cntr)); 239 } 240 241 static void perfmon_pmu_event_update(struct perf_event *event) 242 { 243 struct idxd_device *idxd = event_to_idxd(event); 244 u64 prev_raw_count, new_raw_count, delta, p, n; 245 int shift = 64 - idxd->idxd_pmu->counter_width; 246 struct hw_perf_event *hwc = &event->hw; 247 248 prev_raw_count = local64_read(&hwc->prev_count); 249 do { 250 new_raw_count = perfmon_pmu_read_counter(event); 251 } while (!local64_try_cmpxchg(&hwc->prev_count, 252 &prev_raw_count, new_raw_count)); 253 n = (new_raw_count << shift); 254 p = (prev_raw_count << shift); 255 256 delta = ((n - p) >> shift); 257 258 local64_add(delta, &event->count); 259 } 260 261 void perfmon_counter_overflow(struct idxd_device *idxd) 262 { 263 int i, n_counters, max_loop = OVERFLOW_SIZE; 264 struct perf_event *event; 265 unsigned long ovfstatus; 266 267 n_counters = min(idxd->idxd_pmu->n_counters, OVERFLOW_SIZE); 268 269 ovfstatus = ioread32(OVFSTATUS_REG(idxd)); 270 271 /* 272 * While updating overflowed counters, other counters behind 273 * them could overflow and be missed in a given pass. 274 * Normally this could happen at most n_counters times, but in 275 * theory a tiny counter width could result in continual 276 * overflows and endless looping. max_loop provides a 277 * failsafe in that highly unlikely case. 278 */ 279 while (ovfstatus && max_loop--) { 280 /* Figure out which counter(s) overflowed */ 281 for_each_set_bit(i, &ovfstatus, n_counters) { 282 unsigned long ovfstatus_clear = 0; 283 284 /* Update event->count for overflowed counter */ 285 event = idxd->idxd_pmu->event_list[i]; 286 perfmon_pmu_event_update(event); 287 /* Writing 1 to OVFSTATUS bit clears it */ 288 set_bit(i, &ovfstatus_clear); 289 iowrite32(ovfstatus_clear, OVFSTATUS_REG(idxd)); 290 } 291 292 ovfstatus = ioread32(OVFSTATUS_REG(idxd)); 293 } 294 295 /* 296 * Should never happen. If so, it means a counter(s) looped 297 * around twice while this handler was running. 298 */ 299 WARN_ON_ONCE(ovfstatus); 300 } 301 302 static inline void perfmon_reset_config(struct idxd_device *idxd) 303 { 304 iowrite32(CONFIG_RESET, PERFRST_REG(idxd)); 305 iowrite32(0, OVFSTATUS_REG(idxd)); 306 iowrite32(0, PERFFRZ_REG(idxd)); 307 } 308 309 static inline void perfmon_reset_counters(struct idxd_device *idxd) 310 { 311 iowrite32(CNTR_RESET, PERFRST_REG(idxd)); 312 } 313 314 static inline void perfmon_reset(struct idxd_device *idxd) 315 { 316 perfmon_reset_config(idxd); 317 perfmon_reset_counters(idxd); 318 } 319 320 static void perfmon_pmu_event_start(struct perf_event *event, int mode) 321 { 322 u32 flt_wq, flt_tc, flt_pg_sz, flt_xfer_sz, flt_eng = 0; 323 u64 cntr_cfg, cntrdata, event_enc, event_cat = 0; 324 struct hw_perf_event *hwc = &event->hw; 325 union filter_cfg flt_cfg; 326 union event_cfg event_cfg; 327 struct idxd_device *idxd; 328 int cntr; 329 330 idxd = event_to_idxd(event); 331 332 event->hw.idx = hwc->idx; 333 cntr = hwc->idx; 334 335 /* Obtain event category and event value from user space */ 336 event_cfg.val = event->attr.config; 337 flt_cfg.val = event->attr.config1; 338 event_cat = event_cfg.event_cat; 339 event_enc = event_cfg.event_enc; 340 341 /* Obtain filter configuration from user space */ 342 flt_wq = flt_cfg.wq; 343 flt_tc = flt_cfg.tc; 344 flt_pg_sz = flt_cfg.pg_sz; 345 flt_xfer_sz = flt_cfg.xfer_sz; 346 flt_eng = flt_cfg.eng; 347 348 if (flt_wq && test_bit(FLT_WQ, &idxd->idxd_pmu->supported_filters)) 349 iowrite32(flt_wq, FLTCFG_REG(idxd, cntr, FLT_WQ)); 350 if (flt_tc && test_bit(FLT_TC, &idxd->idxd_pmu->supported_filters)) 351 iowrite32(flt_tc, FLTCFG_REG(idxd, cntr, FLT_TC)); 352 if (flt_pg_sz && test_bit(FLT_PG_SZ, &idxd->idxd_pmu->supported_filters)) 353 iowrite32(flt_pg_sz, FLTCFG_REG(idxd, cntr, FLT_PG_SZ)); 354 if (flt_xfer_sz && test_bit(FLT_XFER_SZ, &idxd->idxd_pmu->supported_filters)) 355 iowrite32(flt_xfer_sz, FLTCFG_REG(idxd, cntr, FLT_XFER_SZ)); 356 if (flt_eng && test_bit(FLT_ENG, &idxd->idxd_pmu->supported_filters)) 357 iowrite32(flt_eng, FLTCFG_REG(idxd, cntr, FLT_ENG)); 358 359 /* Read the start value */ 360 cntrdata = ioread64(CNTRDATA_REG(idxd, cntr)); 361 local64_set(&event->hw.prev_count, cntrdata); 362 363 /* Set counter to event/category */ 364 cntr_cfg = event_cat << CNTRCFG_CATEGORY_SHIFT; 365 cntr_cfg |= event_enc << CNTRCFG_EVENT_SHIFT; 366 /* Set interrupt on overflow and counter enable bits */ 367 cntr_cfg |= (CNTRCFG_IRQ_OVERFLOW | CNTRCFG_ENABLE); 368 369 iowrite64(cntr_cfg, CNTRCFG_REG(idxd, cntr)); 370 } 371 372 static void perfmon_pmu_event_stop(struct perf_event *event, int mode) 373 { 374 struct hw_perf_event *hwc = &event->hw; 375 struct idxd_device *idxd; 376 int i, cntr = hwc->idx; 377 u64 cntr_cfg; 378 379 idxd = event_to_idxd(event); 380 381 /* remove this event from event list */ 382 for (i = 0; i < idxd->idxd_pmu->n_events; i++) { 383 if (event != idxd->idxd_pmu->event_list[i]) 384 continue; 385 386 for (++i; i < idxd->idxd_pmu->n_events; i++) 387 idxd->idxd_pmu->event_list[i - 1] = idxd->idxd_pmu->event_list[i]; 388 --idxd->idxd_pmu->n_events; 389 break; 390 } 391 392 cntr_cfg = ioread64(CNTRCFG_REG(idxd, cntr)); 393 cntr_cfg &= ~CNTRCFG_ENABLE; 394 iowrite64(cntr_cfg, CNTRCFG_REG(idxd, cntr)); 395 396 if (mode == PERF_EF_UPDATE) 397 perfmon_pmu_event_update(event); 398 399 event->hw.idx = -1; 400 clear_bit(cntr, idxd->idxd_pmu->used_mask); 401 } 402 403 static void perfmon_pmu_event_del(struct perf_event *event, int mode) 404 { 405 perfmon_pmu_event_stop(event, PERF_EF_UPDATE); 406 } 407 408 static int perfmon_pmu_event_add(struct perf_event *event, int flags) 409 { 410 struct idxd_device *idxd = event_to_idxd(event); 411 struct idxd_pmu *idxd_pmu = idxd->idxd_pmu; 412 struct hw_perf_event *hwc = &event->hw; 413 int idx, n; 414 415 n = perfmon_collect_events(idxd_pmu, event, false); 416 if (n < 0) 417 return n; 418 419 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 420 if (!(flags & PERF_EF_START)) 421 hwc->state |= PERF_HES_ARCH; 422 423 idx = perfmon_assign_event(idxd_pmu, event); 424 if (idx < 0) 425 return idx; 426 427 perfmon_assign_hw_event(idxd_pmu, event, idx); 428 429 if (flags & PERF_EF_START) 430 perfmon_pmu_event_start(event, 0); 431 432 idxd_pmu->n_events = n; 433 434 return 0; 435 } 436 437 static void enable_perfmon_pmu(struct idxd_device *idxd) 438 { 439 iowrite32(COUNTER_UNFREEZE, PERFFRZ_REG(idxd)); 440 } 441 442 static void disable_perfmon_pmu(struct idxd_device *idxd) 443 { 444 iowrite32(COUNTER_FREEZE, PERFFRZ_REG(idxd)); 445 } 446 447 static void perfmon_pmu_enable(struct pmu *pmu) 448 { 449 struct idxd_device *idxd = pmu_to_idxd(pmu); 450 451 enable_perfmon_pmu(idxd); 452 } 453 454 static void perfmon_pmu_disable(struct pmu *pmu) 455 { 456 struct idxd_device *idxd = pmu_to_idxd(pmu); 457 458 disable_perfmon_pmu(idxd); 459 } 460 461 static void skip_filter(int i) 462 { 463 int j; 464 465 for (j = i; j < PERFMON_FILTERS_MAX; j++) 466 perfmon_format_attrs[PERFMON_FILTERS_START + j] = 467 perfmon_format_attrs[PERFMON_FILTERS_START + j + 1]; 468 } 469 470 static void idxd_pmu_init(struct idxd_pmu *idxd_pmu) 471 { 472 int i; 473 474 for (i = 0 ; i < PERFMON_FILTERS_MAX; i++) { 475 if (!test_bit(i, &idxd_pmu->supported_filters)) 476 skip_filter(i); 477 } 478 479 idxd_pmu->pmu.name = idxd_pmu->name; 480 idxd_pmu->pmu.attr_groups = perfmon_attr_groups; 481 idxd_pmu->pmu.task_ctx_nr = perf_invalid_context; 482 idxd_pmu->pmu.event_init = perfmon_pmu_event_init; 483 idxd_pmu->pmu.pmu_enable = perfmon_pmu_enable, 484 idxd_pmu->pmu.pmu_disable = perfmon_pmu_disable, 485 idxd_pmu->pmu.add = perfmon_pmu_event_add; 486 idxd_pmu->pmu.del = perfmon_pmu_event_del; 487 idxd_pmu->pmu.start = perfmon_pmu_event_start; 488 idxd_pmu->pmu.stop = perfmon_pmu_event_stop; 489 idxd_pmu->pmu.read = perfmon_pmu_event_update; 490 idxd_pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; 491 idxd_pmu->pmu.module = THIS_MODULE; 492 } 493 494 void perfmon_pmu_remove(struct idxd_device *idxd) 495 { 496 if (!idxd->idxd_pmu) 497 return; 498 499 cpuhp_state_remove_instance(cpuhp_slot, &idxd->idxd_pmu->cpuhp_node); 500 perf_pmu_unregister(&idxd->idxd_pmu->pmu); 501 kfree(idxd->idxd_pmu); 502 idxd->idxd_pmu = NULL; 503 } 504 505 static int perf_event_cpu_online(unsigned int cpu, struct hlist_node *node) 506 { 507 struct idxd_pmu *idxd_pmu; 508 509 idxd_pmu = hlist_entry_safe(node, typeof(*idxd_pmu), cpuhp_node); 510 511 /* select the first online CPU as the designated reader */ 512 if (cpumask_empty(&perfmon_dsa_cpu_mask)) { 513 cpumask_set_cpu(cpu, &perfmon_dsa_cpu_mask); 514 idxd_pmu->cpu = cpu; 515 } 516 517 return 0; 518 } 519 520 static int perf_event_cpu_offline(unsigned int cpu, struct hlist_node *node) 521 { 522 struct idxd_pmu *idxd_pmu; 523 unsigned int target; 524 525 idxd_pmu = hlist_entry_safe(node, typeof(*idxd_pmu), cpuhp_node); 526 527 if (!cpumask_test_and_clear_cpu(cpu, &perfmon_dsa_cpu_mask)) 528 return 0; 529 530 target = cpumask_any_but(cpu_online_mask, cpu); 531 /* migrate events if there is a valid target */ 532 if (target < nr_cpu_ids) { 533 cpumask_set_cpu(target, &perfmon_dsa_cpu_mask); 534 perf_pmu_migrate_context(&idxd_pmu->pmu, cpu, target); 535 } 536 537 return 0; 538 } 539 540 int perfmon_pmu_init(struct idxd_device *idxd) 541 { 542 union idxd_perfcap perfcap; 543 struct idxd_pmu *idxd_pmu; 544 int rc = -ENODEV; 545 546 /* 547 * perfmon module initialization failed, nothing to do 548 */ 549 if (!cpuhp_set_up) 550 return -ENODEV; 551 552 /* 553 * If perfmon_offset or num_counters is 0, it means perfmon is 554 * not supported on this hardware. 555 */ 556 if (idxd->perfmon_offset == 0) 557 return -ENODEV; 558 559 idxd_pmu = kzalloc(sizeof(*idxd_pmu), GFP_KERNEL); 560 if (!idxd_pmu) 561 return -ENOMEM; 562 563 idxd_pmu->idxd = idxd; 564 idxd->idxd_pmu = idxd_pmu; 565 566 if (idxd->data->type == IDXD_TYPE_DSA) { 567 rc = sprintf(idxd_pmu->name, "dsa%d", idxd->id); 568 if (rc < 0) 569 goto free; 570 } else if (idxd->data->type == IDXD_TYPE_IAX) { 571 rc = sprintf(idxd_pmu->name, "iax%d", idxd->id); 572 if (rc < 0) 573 goto free; 574 } else { 575 goto free; 576 } 577 578 perfmon_reset(idxd); 579 580 perfcap.bits = ioread64(PERFCAP_REG(idxd)); 581 582 /* 583 * If total perf counter is 0, stop further registration. 584 * This is necessary in order to support driver running on 585 * guest which does not have pmon support. 586 */ 587 if (perfcap.num_perf_counter == 0) 588 goto free; 589 590 /* A counter width of 0 means it can't count */ 591 if (perfcap.counter_width == 0) 592 goto free; 593 594 /* Overflow interrupt and counter freeze support must be available */ 595 if (!perfcap.overflow_interrupt || !perfcap.counter_freeze) 596 goto free; 597 598 /* Number of event categories cannot be 0 */ 599 if (perfcap.num_event_category == 0) 600 goto free; 601 602 /* 603 * We don't support per-counter capabilities for now. 604 */ 605 if (perfcap.cap_per_counter) 606 goto free; 607 608 idxd_pmu->n_event_categories = perfcap.num_event_category; 609 idxd_pmu->supported_event_categories = perfcap.global_event_category; 610 idxd_pmu->per_counter_caps_supported = perfcap.cap_per_counter; 611 612 /* check filter capability. If 0, then filters are not supported */ 613 idxd_pmu->supported_filters = perfcap.filter; 614 if (perfcap.filter) 615 idxd_pmu->n_filters = hweight8(perfcap.filter); 616 617 /* Store the total number of counters categories, and counter width */ 618 idxd_pmu->n_counters = perfcap.num_perf_counter; 619 idxd_pmu->counter_width = perfcap.counter_width; 620 621 idxd_pmu_init(idxd_pmu); 622 623 rc = perf_pmu_register(&idxd_pmu->pmu, idxd_pmu->name, -1); 624 if (rc) 625 goto free; 626 627 rc = cpuhp_state_add_instance(cpuhp_slot, &idxd_pmu->cpuhp_node); 628 if (rc) { 629 perf_pmu_unregister(&idxd->idxd_pmu->pmu); 630 goto free; 631 } 632 out: 633 return rc; 634 free: 635 kfree(idxd_pmu); 636 idxd->idxd_pmu = NULL; 637 638 goto out; 639 } 640 641 void __init perfmon_init(void) 642 { 643 int rc = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 644 "driver/dma/idxd/perf:online", 645 perf_event_cpu_online, 646 perf_event_cpu_offline); 647 if (WARN_ON(rc < 0)) 648 return; 649 650 cpuhp_slot = rc; 651 cpuhp_set_up = true; 652 } 653 654 void __exit perfmon_exit(void) 655 { 656 if (cpuhp_set_up) 657 cpuhp_remove_multi_state(cpuhp_slot); 658 } 659