xref: /linux/drivers/dma/idxd/irq.c (revision 76f623d2d4283cc36a9c8a5b585df74638f1efa5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/sched/mm.h>
12 #include <uapi/linux/idxd.h>
13 #include "../dmaengine.h"
14 #include "idxd.h"
15 #include "registers.h"
16 
17 enum irq_work_type {
18 	IRQ_WORK_NORMAL = 0,
19 	IRQ_WORK_PROCESS_FAULT,
20 };
21 
22 struct idxd_resubmit {
23 	struct work_struct work;
24 	struct idxd_desc *desc;
25 };
26 
27 struct idxd_int_handle_revoke {
28 	struct work_struct work;
29 	struct idxd_device *idxd;
30 };
31 
32 static void idxd_device_reinit(struct work_struct *work)
33 {
34 	struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35 	struct device *dev = &idxd->pdev->dev;
36 	int rc, i;
37 
38 	idxd_device_reset(idxd);
39 	rc = idxd_device_config(idxd);
40 	if (rc < 0)
41 		goto out;
42 
43 	rc = idxd_device_enable(idxd);
44 	if (rc < 0)
45 		goto out;
46 
47 	for (i = 0; i < idxd->max_wqs; i++) {
48 		if (test_bit(i, idxd->wq_enable_map)) {
49 			struct idxd_wq *wq = idxd->wqs[i];
50 
51 			rc = idxd_wq_enable(wq);
52 			if (rc < 0) {
53 				clear_bit(i, idxd->wq_enable_map);
54 				dev_warn(dev, "Unable to re-enable wq %s\n",
55 					 dev_name(wq_confdev(wq)));
56 			}
57 		}
58 	}
59 
60 	return;
61 
62  out:
63 	idxd_device_clear_state(idxd);
64 }
65 
66 /*
67  * The function sends a drain descriptor for the interrupt handle. The drain ensures
68  * all descriptors with this interrupt handle is flushed and the interrupt
69  * will allow the cleanup of the outstanding descriptors.
70  */
71 static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
72 {
73 	struct idxd_wq *wq = ie_to_wq(ie);
74 	struct idxd_device *idxd = wq->idxd;
75 	struct device *dev = &idxd->pdev->dev;
76 	struct dsa_hw_desc desc = {};
77 	void __iomem *portal;
78 	int rc;
79 
80 	/* Issue a simple drain operation with interrupt but no completion record */
81 	desc.flags = IDXD_OP_FLAG_RCI;
82 	desc.opcode = DSA_OPCODE_DRAIN;
83 	desc.priv = 1;
84 
85 	if (ie->pasid != IOMMU_PASID_INVALID)
86 		desc.pasid = ie->pasid;
87 	desc.int_handle = ie->int_handle;
88 	portal = idxd_wq_portal_addr(wq);
89 
90 	/*
91 	 * The wmb() makes sure that the descriptor is all there before we
92 	 * issue.
93 	 */
94 	wmb();
95 	if (wq_dedicated(wq)) {
96 		iosubmit_cmds512(portal, &desc, 1);
97 	} else {
98 		rc = idxd_enqcmds(wq, portal, &desc);
99 		/* This should not fail unless hardware failed. */
100 		if (rc < 0)
101 			dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
102 	}
103 }
104 
105 static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
106 {
107 	LIST_HEAD(flist);
108 	struct idxd_desc *d, *t;
109 	struct llist_node *head;
110 
111 	spin_lock(&ie->list_lock);
112 	head = llist_del_all(&ie->pending_llist);
113 	if (head) {
114 		llist_for_each_entry_safe(d, t, head, llnode)
115 			list_add_tail(&d->list, &ie->work_list);
116 	}
117 
118 	list_for_each_entry_safe(d, t, &ie->work_list, list) {
119 		if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
120 			list_move_tail(&d->list, &flist);
121 	}
122 	spin_unlock(&ie->list_lock);
123 
124 	list_for_each_entry_safe(d, t, &flist, list) {
125 		list_del(&d->list);
126 		idxd_desc_complete(d, IDXD_COMPLETE_ABORT, true);
127 	}
128 }
129 
130 static void idxd_int_handle_revoke(struct work_struct *work)
131 {
132 	struct idxd_int_handle_revoke *revoke =
133 		container_of(work, struct idxd_int_handle_revoke, work);
134 	struct idxd_device *idxd = revoke->idxd;
135 	struct pci_dev *pdev = idxd->pdev;
136 	struct device *dev = &pdev->dev;
137 	int i, new_handle, rc;
138 
139 	if (!idxd->request_int_handles) {
140 		kfree(revoke);
141 		dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
142 		return;
143 	}
144 
145 	/*
146 	 * The loop attempts to acquire new interrupt handle for all interrupt
147 	 * vectors that supports a handle. If a new interrupt handle is acquired and the
148 	 * wq is kernel type, the driver will kill the percpu_ref to pause all
149 	 * ongoing descriptor submissions. The interrupt handle is then changed.
150 	 * After change, the percpu_ref is revived and all the pending submissions
151 	 * are woken to try again. A drain is sent to for the interrupt handle
152 	 * at the end to make sure all invalid int handle descriptors are processed.
153 	 */
154 	for (i = 1; i < idxd->irq_cnt; i++) {
155 		struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
156 		struct idxd_wq *wq = ie_to_wq(ie);
157 
158 		if (ie->int_handle == INVALID_INT_HANDLE)
159 			continue;
160 
161 		rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
162 		if (rc < 0) {
163 			dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
164 			/*
165 			 * Failed to acquire new interrupt handle. Kill the WQ
166 			 * and release all the pending submitters. The submitters will
167 			 * get error return code and handle appropriately.
168 			 */
169 			ie->int_handle = INVALID_INT_HANDLE;
170 			idxd_wq_quiesce(wq);
171 			idxd_abort_invalid_int_handle_descs(ie);
172 			continue;
173 		}
174 
175 		/* No change in interrupt handle, nothing needs to be done */
176 		if (ie->int_handle == new_handle)
177 			continue;
178 
179 		if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
180 			/*
181 			 * All the MSIX interrupts are allocated at once during probe.
182 			 * Therefore we need to update all interrupts even if the WQ
183 			 * isn't supporting interrupt operations.
184 			 */
185 			ie->int_handle = new_handle;
186 			continue;
187 		}
188 
189 		mutex_lock(&wq->wq_lock);
190 		reinit_completion(&wq->wq_resurrect);
191 
192 		/* Kill percpu_ref to pause additional descriptor submissions */
193 		percpu_ref_kill(&wq->wq_active);
194 
195 		/* Wait for all submitters quiesce before we change interrupt handle */
196 		wait_for_completion(&wq->wq_dead);
197 
198 		ie->int_handle = new_handle;
199 
200 		/* Revive percpu ref and wake up all the waiting submitters */
201 		percpu_ref_reinit(&wq->wq_active);
202 		complete_all(&wq->wq_resurrect);
203 		mutex_unlock(&wq->wq_lock);
204 
205 		/*
206 		 * The delay here is to wait for all possible MOVDIR64B that
207 		 * are issued before percpu_ref_kill() has happened to have
208 		 * reached the PCIe domain before the drain is issued. The driver
209 		 * needs to ensure that the drain descriptor issued does not pass
210 		 * all the other issued descriptors that contain the invalid
211 		 * interrupt handle in order to ensure that the drain descriptor
212 		 * interrupt will allow the cleanup of all the descriptors with
213 		 * invalid interrupt handle.
214 		 */
215 		if (wq_dedicated(wq))
216 			udelay(100);
217 		idxd_int_handle_revoke_drain(ie);
218 	}
219 	kfree(revoke);
220 }
221 
222 static void idxd_evl_fault_work(struct work_struct *work)
223 {
224 	struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
225 	struct idxd_wq *wq = fault->wq;
226 	struct idxd_device *idxd = wq->idxd;
227 	struct device *dev = &idxd->pdev->dev;
228 	struct idxd_evl *evl = idxd->evl;
229 	struct __evl_entry *entry_head = fault->entry;
230 	void *cr = (void *)entry_head + idxd->data->evl_cr_off;
231 	int cr_size = idxd->data->compl_size;
232 	u8 *status = (u8 *)cr + idxd->data->cr_status_off;
233 	u8 *result = (u8 *)cr + idxd->data->cr_result_off;
234 	int copied, copy_size;
235 	bool *bf;
236 
237 	switch (fault->status) {
238 	case DSA_COMP_CRA_XLAT:
239 		if (entry_head->batch && entry_head->first_err_in_batch)
240 			evl->batch_fail[entry_head->batch_id] = false;
241 
242 		copy_size = cr_size;
243 		idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
244 		break;
245 	case DSA_COMP_BATCH_EVL_ERR:
246 		bf = &evl->batch_fail[entry_head->batch_id];
247 
248 		copy_size = entry_head->rcr || *bf ? cr_size : 0;
249 		if (*bf) {
250 			if (*status == DSA_COMP_SUCCESS)
251 				*status = DSA_COMP_BATCH_FAIL;
252 			*result = 1;
253 			*bf = false;
254 		}
255 		idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
256 		break;
257 	case DSA_COMP_DRAIN_EVL:
258 		copy_size = cr_size;
259 		break;
260 	default:
261 		copy_size = 0;
262 		dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
263 		break;
264 	}
265 
266 	if (copy_size == 0)
267 		return;
268 
269 	/*
270 	 * Copy completion record to fault_addr in user address space
271 	 * that is found by wq and PASID.
272 	 */
273 	copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
274 			      cr, copy_size);
275 	/*
276 	 * The task that triggered the page fault is unknown currently
277 	 * because multiple threads may share the user address
278 	 * space or the task exits already before this fault.
279 	 * So if the copy fails, SIGSEGV can not be sent to the task.
280 	 * Just print an error for the failure. The user application
281 	 * waiting for the completion record will time out on this
282 	 * failure.
283 	 */
284 	switch (fault->status) {
285 	case DSA_COMP_CRA_XLAT:
286 		if (copied != copy_size) {
287 			idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
288 			dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
289 					    copy_size, copied);
290 			if (entry_head->batch)
291 				evl->batch_fail[entry_head->batch_id] = true;
292 		}
293 		break;
294 	case DSA_COMP_BATCH_EVL_ERR:
295 		if (copied != copy_size) {
296 			idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
297 			dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
298 					    copy_size, copied);
299 		}
300 		break;
301 	case DSA_COMP_DRAIN_EVL:
302 		if (copied != copy_size)
303 			dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
304 					    copy_size, copied);
305 		break;
306 	}
307 
308 	kmem_cache_free(idxd->evl_cache, fault);
309 }
310 
311 static void process_evl_entry(struct idxd_device *idxd,
312 			      struct __evl_entry *entry_head, unsigned int index)
313 {
314 	struct device *dev = &idxd->pdev->dev;
315 	struct idxd_evl *evl = idxd->evl;
316 	u8 status;
317 
318 	if (test_bit(index, evl->bmap)) {
319 		clear_bit(index, evl->bmap);
320 	} else {
321 		status = DSA_COMP_STATUS(entry_head->error);
322 
323 		if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
324 		    status == DSA_COMP_BATCH_EVL_ERR) {
325 			struct idxd_evl_fault *fault;
326 			int ent_size = evl_ent_size(idxd);
327 
328 			if (entry_head->rci)
329 				dev_dbg(dev, "Completion Int Req set, ignoring!\n");
330 
331 			if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
332 				return;
333 
334 			fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
335 			if (fault) {
336 				struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
337 
338 				fault->wq = wq;
339 				fault->status = status;
340 				memcpy(&fault->entry, entry_head, ent_size);
341 				INIT_WORK(&fault->work, idxd_evl_fault_work);
342 				queue_work(wq->wq, &fault->work);
343 			} else {
344 				dev_warn(dev, "Failed to service fault work.\n");
345 			}
346 		} else {
347 			dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
348 					     status, entry_head->operation,
349 					     entry_head->fault_addr);
350 		}
351 	}
352 }
353 
354 static void process_evl_entries(struct idxd_device *idxd)
355 {
356 	union evl_status_reg evl_status;
357 	unsigned int h, t;
358 	struct idxd_evl *evl = idxd->evl;
359 	struct __evl_entry *entry_head;
360 	unsigned int ent_size = evl_ent_size(idxd);
361 	u32 size;
362 
363 	evl_status.bits = 0;
364 	evl_status.int_pending = 1;
365 
366 	spin_lock(&evl->lock);
367 	/* Clear interrupt pending bit */
368 	iowrite32(evl_status.bits_upper32,
369 		  idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
370 	h = evl->head;
371 	evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
372 	t = evl_status.tail;
373 	size = idxd->evl->size;
374 
375 	while (h != t) {
376 		entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
377 		process_evl_entry(idxd, entry_head, h);
378 		h = (h + 1) % size;
379 	}
380 
381 	evl->head = h;
382 	evl_status.head = h;
383 	iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
384 	spin_unlock(&evl->lock);
385 }
386 
387 irqreturn_t idxd_misc_thread(int vec, void *data)
388 {
389 	struct idxd_irq_entry *irq_entry = data;
390 	struct idxd_device *idxd = ie_to_idxd(irq_entry);
391 	struct device *dev = &idxd->pdev->dev;
392 	union gensts_reg gensts;
393 	u32 val = 0;
394 	int i;
395 	bool err = false;
396 	u32 cause;
397 
398 	cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
399 	if (!cause)
400 		return IRQ_NONE;
401 
402 	iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
403 
404 	if (cause & IDXD_INTC_HALT_STATE)
405 		goto halt;
406 
407 	if (cause & IDXD_INTC_ERR) {
408 		spin_lock(&idxd->dev_lock);
409 		for (i = 0; i < 4; i++)
410 			idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
411 					IDXD_SWERR_OFFSET + i * sizeof(u64));
412 
413 		iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
414 			  idxd->reg_base + IDXD_SWERR_OFFSET);
415 
416 		if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
417 			int id = idxd->sw_err.wq_idx;
418 			struct idxd_wq *wq = idxd->wqs[id];
419 
420 			if (wq->type == IDXD_WQT_USER)
421 				wake_up_interruptible(&wq->err_queue);
422 		} else {
423 			int i;
424 
425 			for (i = 0; i < idxd->max_wqs; i++) {
426 				struct idxd_wq *wq = idxd->wqs[i];
427 
428 				if (wq->type == IDXD_WQT_USER)
429 					wake_up_interruptible(&wq->err_queue);
430 			}
431 		}
432 
433 		spin_unlock(&idxd->dev_lock);
434 		val |= IDXD_INTC_ERR;
435 
436 		for (i = 0; i < 4; i++)
437 			dev_warn_ratelimited(dev, "err[%d]: %#16.16llx\n",
438 					     i, idxd->sw_err.bits[i]);
439 		err = true;
440 	}
441 
442 	if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
443 		struct idxd_int_handle_revoke *revoke;
444 
445 		val |= IDXD_INTC_INT_HANDLE_REVOKED;
446 
447 		revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
448 		if (revoke) {
449 			revoke->idxd = idxd;
450 			INIT_WORK(&revoke->work, idxd_int_handle_revoke);
451 			queue_work(idxd->wq, &revoke->work);
452 
453 		} else {
454 			dev_err(dev, "Failed to allocate work for int handle revoke\n");
455 			idxd_wqs_quiesce(idxd);
456 		}
457 	}
458 
459 	if (cause & IDXD_INTC_CMD) {
460 		val |= IDXD_INTC_CMD;
461 		complete(idxd->cmd_done);
462 	}
463 
464 	if (cause & IDXD_INTC_OCCUPY) {
465 		/* Driver does not utilize occupancy interrupt */
466 		val |= IDXD_INTC_OCCUPY;
467 	}
468 
469 	if (cause & IDXD_INTC_PERFMON_OVFL) {
470 		val |= IDXD_INTC_PERFMON_OVFL;
471 		perfmon_counter_overflow(idxd);
472 	}
473 
474 	if (cause & IDXD_INTC_EVL) {
475 		val |= IDXD_INTC_EVL;
476 		process_evl_entries(idxd);
477 	}
478 
479 	val ^= cause;
480 	if (val)
481 		dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
482 			      val);
483 
484 	if (!err)
485 		goto out;
486 
487 halt:
488 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
489 	if (gensts.state == IDXD_DEVICE_STATE_HALT) {
490 		idxd->state = IDXD_DEV_HALTED;
491 		if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
492 			/*
493 			 * If we need a software reset, we will throw the work
494 			 * on a system workqueue in order to allow interrupts
495 			 * for the device command completions.
496 			 */
497 			INIT_WORK(&idxd->work, idxd_device_reinit);
498 			queue_work(idxd->wq, &idxd->work);
499 		} else {
500 			idxd->state = IDXD_DEV_HALTED;
501 			idxd_wqs_quiesce(idxd);
502 			idxd_wqs_unmap_portal(idxd);
503 			idxd_device_clear_state(idxd);
504 			dev_err(&idxd->pdev->dev,
505 				"idxd halted, need %s.\n",
506 				gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
507 				"FLR" : "system reset");
508 		}
509 	}
510 
511 out:
512 	return IRQ_HANDLED;
513 }
514 
515 static void idxd_int_handle_resubmit_work(struct work_struct *work)
516 {
517 	struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
518 	struct idxd_desc *desc = irw->desc;
519 	struct idxd_wq *wq = desc->wq;
520 	int rc;
521 
522 	desc->completion->status = 0;
523 	rc = idxd_submit_desc(wq, desc);
524 	if (rc < 0) {
525 		dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
526 			desc->id, wq->id);
527 		/*
528 		 * If the error is not -EAGAIN, it means the submission failed due to wq
529 		 * has been killed instead of ENQCMDS failure. Here the driver needs to
530 		 * notify the submitter of the failure by reporting abort status.
531 		 *
532 		 * -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
533 		 * abort.
534 		 */
535 		if (rc != -EAGAIN) {
536 			desc->completion->status = IDXD_COMP_DESC_ABORT;
537 			idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, false);
538 		}
539 		idxd_free_desc(wq, desc);
540 	}
541 	kfree(irw);
542 }
543 
544 bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
545 {
546 	struct idxd_wq *wq = desc->wq;
547 	struct idxd_device *idxd = wq->idxd;
548 	struct idxd_resubmit *irw;
549 
550 	irw = kzalloc(sizeof(*irw), GFP_KERNEL);
551 	if (!irw)
552 		return false;
553 
554 	irw->desc = desc;
555 	INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
556 	queue_work(idxd->wq, &irw->work);
557 	return true;
558 }
559 
560 static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
561 {
562 	struct idxd_desc *desc, *t;
563 	struct llist_node *head;
564 
565 	head = llist_del_all(&irq_entry->pending_llist);
566 	if (!head)
567 		return;
568 
569 	llist_for_each_entry_safe(desc, t, head, llnode) {
570 		u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
571 
572 		if (status) {
573 			/*
574 			 * Check against the original status as ABORT is software defined
575 			 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
576 			 */
577 			if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
578 				idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
579 				continue;
580 			}
581 
582 			idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
583 		} else {
584 			spin_lock(&irq_entry->list_lock);
585 			list_add_tail(&desc->list,
586 				      &irq_entry->work_list);
587 			spin_unlock(&irq_entry->list_lock);
588 		}
589 	}
590 }
591 
592 static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
593 {
594 	LIST_HEAD(flist);
595 	struct idxd_desc *desc, *n;
596 
597 	/*
598 	 * This lock protects list corruption from access of list outside of the irq handler
599 	 * thread.
600 	 */
601 	spin_lock(&irq_entry->list_lock);
602 	if (list_empty(&irq_entry->work_list)) {
603 		spin_unlock(&irq_entry->list_lock);
604 		return;
605 	}
606 
607 	list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
608 		if (desc->completion->status) {
609 			list_move_tail(&desc->list, &flist);
610 		}
611 	}
612 
613 	spin_unlock(&irq_entry->list_lock);
614 
615 	list_for_each_entry(desc, &flist, list) {
616 		/*
617 		 * Check against the original status as ABORT is software defined
618 		 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
619 		 */
620 		if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
621 			idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
622 			continue;
623 		}
624 
625 		idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
626 	}
627 }
628 
629 irqreturn_t idxd_wq_thread(int irq, void *data)
630 {
631 	struct idxd_irq_entry *irq_entry = data;
632 
633 	/*
634 	 * There are two lists we are processing. The pending_llist is where
635 	 * submmiter adds all the submitted descriptor after sending it to
636 	 * the workqueue. It's a lockless singly linked list. The work_list
637 	 * is the common linux double linked list. We are in a scenario of
638 	 * multiple producers and a single consumer. The producers are all
639 	 * the kernel submitters of descriptors, and the consumer is the
640 	 * kernel irq handler thread for the msix vector when using threaded
641 	 * irq. To work with the restrictions of llist to remain lockless,
642 	 * we are doing the following steps:
643 	 * 1. Iterate through the work_list and process any completed
644 	 *    descriptor. Delete the completed entries during iteration.
645 	 * 2. llist_del_all() from the pending list.
646 	 * 3. Iterate through the llist that was deleted from the pending list
647 	 *    and process the completed entries.
648 	 * 4. If the entry is still waiting on hardware, list_add_tail() to
649 	 *    the work_list.
650 	 */
651 	irq_process_work_list(irq_entry);
652 	irq_process_pending_llist(irq_entry);
653 
654 	return IRQ_HANDLED;
655 }
656