xref: /linux/drivers/dma/idma64.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Core driver for the Intel integrated DMA 64-bit
3  *
4  * Copyright (C) 2015 Intel Corporation
5  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 
22 #include "idma64.h"
23 
24 /* Platform driver name */
25 #define DRV_NAME		"idma64"
26 
27 /* For now we support only two channels */
28 #define IDMA64_NR_CHAN		2
29 
30 /* ---------------------------------------------------------------------- */
31 
32 static struct device *chan2dev(struct dma_chan *chan)
33 {
34 	return &chan->dev->device;
35 }
36 
37 /* ---------------------------------------------------------------------- */
38 
39 static void idma64_off(struct idma64 *idma64)
40 {
41 	unsigned short count = 100;
42 
43 	dma_writel(idma64, CFG, 0);
44 
45 	channel_clear_bit(idma64, MASK(XFER), idma64->all_chan_mask);
46 	channel_clear_bit(idma64, MASK(BLOCK), idma64->all_chan_mask);
47 	channel_clear_bit(idma64, MASK(SRC_TRAN), idma64->all_chan_mask);
48 	channel_clear_bit(idma64, MASK(DST_TRAN), idma64->all_chan_mask);
49 	channel_clear_bit(idma64, MASK(ERROR), idma64->all_chan_mask);
50 
51 	do {
52 		cpu_relax();
53 	} while (dma_readl(idma64, CFG) & IDMA64_CFG_DMA_EN && --count);
54 }
55 
56 static void idma64_on(struct idma64 *idma64)
57 {
58 	dma_writel(idma64, CFG, IDMA64_CFG_DMA_EN);
59 }
60 
61 /* ---------------------------------------------------------------------- */
62 
63 static void idma64_chan_init(struct idma64 *idma64, struct idma64_chan *idma64c)
64 {
65 	u32 cfghi = IDMA64C_CFGH_SRC_PER(1) | IDMA64C_CFGH_DST_PER(0);
66 	u32 cfglo = 0;
67 
68 	/* Set default burst alignment */
69 	cfglo |= IDMA64C_CFGL_DST_BURST_ALIGN | IDMA64C_CFGL_SRC_BURST_ALIGN;
70 
71 	channel_writel(idma64c, CFG_LO, cfglo);
72 	channel_writel(idma64c, CFG_HI, cfghi);
73 
74 	/* Enable interrupts */
75 	channel_set_bit(idma64, MASK(XFER), idma64c->mask);
76 	channel_set_bit(idma64, MASK(ERROR), idma64c->mask);
77 
78 	/*
79 	 * Enforce the controller to be turned on.
80 	 *
81 	 * The iDMA is turned off in ->probe() and looses context during system
82 	 * suspend / resume cycle. That's why we have to enable it each time we
83 	 * use it.
84 	 */
85 	idma64_on(idma64);
86 }
87 
88 static void idma64_chan_stop(struct idma64 *idma64, struct idma64_chan *idma64c)
89 {
90 	channel_clear_bit(idma64, CH_EN, idma64c->mask);
91 }
92 
93 static void idma64_chan_start(struct idma64 *idma64, struct idma64_chan *idma64c)
94 {
95 	struct idma64_desc *desc = idma64c->desc;
96 	struct idma64_hw_desc *hw = &desc->hw[0];
97 
98 	channel_writeq(idma64c, SAR, 0);
99 	channel_writeq(idma64c, DAR, 0);
100 
101 	channel_writel(idma64c, CTL_HI, IDMA64C_CTLH_BLOCK_TS(~0UL));
102 	channel_writel(idma64c, CTL_LO, IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN);
103 
104 	channel_writeq(idma64c, LLP, hw->llp);
105 
106 	channel_set_bit(idma64, CH_EN, idma64c->mask);
107 }
108 
109 static void idma64_stop_transfer(struct idma64_chan *idma64c)
110 {
111 	struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device);
112 
113 	idma64_chan_stop(idma64, idma64c);
114 }
115 
116 static void idma64_start_transfer(struct idma64_chan *idma64c)
117 {
118 	struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device);
119 	struct virt_dma_desc *vdesc;
120 
121 	/* Get the next descriptor */
122 	vdesc = vchan_next_desc(&idma64c->vchan);
123 	if (!vdesc) {
124 		idma64c->desc = NULL;
125 		return;
126 	}
127 
128 	list_del(&vdesc->node);
129 	idma64c->desc = to_idma64_desc(vdesc);
130 
131 	/* Configure the channel */
132 	idma64_chan_init(idma64, idma64c);
133 
134 	/* Start the channel with a new descriptor */
135 	idma64_chan_start(idma64, idma64c);
136 }
137 
138 /* ---------------------------------------------------------------------- */
139 
140 static void idma64_chan_irq(struct idma64 *idma64, unsigned short c,
141 		u32 status_err, u32 status_xfer)
142 {
143 	struct idma64_chan *idma64c = &idma64->chan[c];
144 	struct idma64_desc *desc;
145 	unsigned long flags;
146 
147 	spin_lock_irqsave(&idma64c->vchan.lock, flags);
148 	desc = idma64c->desc;
149 	if (desc) {
150 		if (status_err & (1 << c)) {
151 			dma_writel(idma64, CLEAR(ERROR), idma64c->mask);
152 			desc->status = DMA_ERROR;
153 		} else if (status_xfer & (1 << c)) {
154 			dma_writel(idma64, CLEAR(XFER), idma64c->mask);
155 			desc->status = DMA_COMPLETE;
156 			vchan_cookie_complete(&desc->vdesc);
157 			idma64_start_transfer(idma64c);
158 		}
159 
160 		/* idma64_start_transfer() updates idma64c->desc */
161 		if (idma64c->desc == NULL || desc->status == DMA_ERROR)
162 			idma64_stop_transfer(idma64c);
163 	}
164 	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);
165 }
166 
167 static irqreturn_t idma64_irq(int irq, void *dev)
168 {
169 	struct idma64 *idma64 = dev;
170 	u32 status = dma_readl(idma64, STATUS_INT);
171 	u32 status_xfer;
172 	u32 status_err;
173 	unsigned short i;
174 
175 	dev_vdbg(idma64->dma.dev, "%s: status=%#x\n", __func__, status);
176 
177 	/* Check if we have any interrupt from the DMA controller */
178 	if (!status)
179 		return IRQ_NONE;
180 
181 	/* Disable interrupts */
182 	channel_clear_bit(idma64, MASK(XFER), idma64->all_chan_mask);
183 	channel_clear_bit(idma64, MASK(ERROR), idma64->all_chan_mask);
184 
185 	status_xfer = dma_readl(idma64, RAW(XFER));
186 	status_err = dma_readl(idma64, RAW(ERROR));
187 
188 	for (i = 0; i < idma64->dma.chancnt; i++)
189 		idma64_chan_irq(idma64, i, status_err, status_xfer);
190 
191 	/* Re-enable interrupts */
192 	channel_set_bit(idma64, MASK(XFER), idma64->all_chan_mask);
193 	channel_set_bit(idma64, MASK(ERROR), idma64->all_chan_mask);
194 
195 	return IRQ_HANDLED;
196 }
197 
198 /* ---------------------------------------------------------------------- */
199 
200 static struct idma64_desc *idma64_alloc_desc(unsigned int ndesc)
201 {
202 	struct idma64_desc *desc;
203 
204 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
205 	if (!desc)
206 		return NULL;
207 
208 	desc->hw = kcalloc(ndesc, sizeof(*desc->hw), GFP_NOWAIT);
209 	if (!desc->hw) {
210 		kfree(desc);
211 		return NULL;
212 	}
213 
214 	return desc;
215 }
216 
217 static void idma64_desc_free(struct idma64_chan *idma64c,
218 		struct idma64_desc *desc)
219 {
220 	struct idma64_hw_desc *hw;
221 
222 	if (desc->ndesc) {
223 		unsigned int i = desc->ndesc;
224 
225 		do {
226 			hw = &desc->hw[--i];
227 			dma_pool_free(idma64c->pool, hw->lli, hw->llp);
228 		} while (i);
229 	}
230 
231 	kfree(desc->hw);
232 	kfree(desc);
233 }
234 
235 static void idma64_vdesc_free(struct virt_dma_desc *vdesc)
236 {
237 	struct idma64_chan *idma64c = to_idma64_chan(vdesc->tx.chan);
238 
239 	idma64_desc_free(idma64c, to_idma64_desc(vdesc));
240 }
241 
242 static u64 idma64_hw_desc_fill(struct idma64_hw_desc *hw,
243 		struct dma_slave_config *config,
244 		enum dma_transfer_direction direction, u64 llp)
245 {
246 	struct idma64_lli *lli = hw->lli;
247 	u64 sar, dar;
248 	u32 ctlhi = IDMA64C_CTLH_BLOCK_TS(hw->len);
249 	u32 ctllo = IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN;
250 	u32 src_width, dst_width;
251 
252 	if (direction == DMA_MEM_TO_DEV) {
253 		sar = hw->phys;
254 		dar = config->dst_addr;
255 		ctllo |= IDMA64C_CTLL_DST_FIX | IDMA64C_CTLL_SRC_INC |
256 			 IDMA64C_CTLL_FC_M2P;
257 		src_width = __ffs(sar | hw->len | 4);
258 		dst_width = __ffs(config->dst_addr_width);
259 	} else {	/* DMA_DEV_TO_MEM */
260 		sar = config->src_addr;
261 		dar = hw->phys;
262 		ctllo |= IDMA64C_CTLL_DST_INC | IDMA64C_CTLL_SRC_FIX |
263 			 IDMA64C_CTLL_FC_P2M;
264 		src_width = __ffs(config->src_addr_width);
265 		dst_width = __ffs(dar | hw->len | 4);
266 	}
267 
268 	lli->sar = sar;
269 	lli->dar = dar;
270 
271 	lli->ctlhi = ctlhi;
272 	lli->ctllo = ctllo |
273 		     IDMA64C_CTLL_SRC_MSIZE(config->src_maxburst) |
274 		     IDMA64C_CTLL_DST_MSIZE(config->dst_maxburst) |
275 		     IDMA64C_CTLL_DST_WIDTH(dst_width) |
276 		     IDMA64C_CTLL_SRC_WIDTH(src_width);
277 
278 	lli->llp = llp;
279 	return hw->llp;
280 }
281 
282 static void idma64_desc_fill(struct idma64_chan *idma64c,
283 		struct idma64_desc *desc)
284 {
285 	struct dma_slave_config *config = &idma64c->config;
286 	struct idma64_hw_desc *hw = &desc->hw[desc->ndesc - 1];
287 	struct idma64_lli *lli = hw->lli;
288 	u64 llp = 0;
289 	unsigned int i = desc->ndesc;
290 
291 	/* Fill the hardware descriptors and link them to a list */
292 	do {
293 		hw = &desc->hw[--i];
294 		llp = idma64_hw_desc_fill(hw, config, desc->direction, llp);
295 		desc->length += hw->len;
296 	} while (i);
297 
298 	/* Trigger interrupt after last block */
299 	lli->ctllo |= IDMA64C_CTLL_INT_EN;
300 }
301 
302 static struct dma_async_tx_descriptor *idma64_prep_slave_sg(
303 		struct dma_chan *chan, struct scatterlist *sgl,
304 		unsigned int sg_len, enum dma_transfer_direction direction,
305 		unsigned long flags, void *context)
306 {
307 	struct idma64_chan *idma64c = to_idma64_chan(chan);
308 	struct idma64_desc *desc;
309 	struct scatterlist *sg;
310 	unsigned int i;
311 
312 	desc = idma64_alloc_desc(sg_len);
313 	if (!desc)
314 		return NULL;
315 
316 	for_each_sg(sgl, sg, sg_len, i) {
317 		struct idma64_hw_desc *hw = &desc->hw[i];
318 
319 		/* Allocate DMA capable memory for hardware descriptor */
320 		hw->lli = dma_pool_alloc(idma64c->pool, GFP_NOWAIT, &hw->llp);
321 		if (!hw->lli) {
322 			desc->ndesc = i;
323 			idma64_desc_free(idma64c, desc);
324 			return NULL;
325 		}
326 
327 		hw->phys = sg_dma_address(sg);
328 		hw->len = sg_dma_len(sg);
329 	}
330 
331 	desc->ndesc = sg_len;
332 	desc->direction = direction;
333 	desc->status = DMA_IN_PROGRESS;
334 
335 	idma64_desc_fill(idma64c, desc);
336 	return vchan_tx_prep(&idma64c->vchan, &desc->vdesc, flags);
337 }
338 
339 static void idma64_issue_pending(struct dma_chan *chan)
340 {
341 	struct idma64_chan *idma64c = to_idma64_chan(chan);
342 	unsigned long flags;
343 
344 	spin_lock_irqsave(&idma64c->vchan.lock, flags);
345 	if (vchan_issue_pending(&idma64c->vchan) && !idma64c->desc)
346 		idma64_start_transfer(idma64c);
347 	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);
348 }
349 
350 static size_t idma64_active_desc_size(struct idma64_chan *idma64c)
351 {
352 	struct idma64_desc *desc = idma64c->desc;
353 	struct idma64_hw_desc *hw;
354 	size_t bytes = desc->length;
355 	u64 llp = channel_readq(idma64c, LLP);
356 	u32 ctlhi = channel_readl(idma64c, CTL_HI);
357 	unsigned int i = 0;
358 
359 	do {
360 		hw = &desc->hw[i];
361 		if (hw->llp == llp)
362 			break;
363 		bytes -= hw->len;
364 	} while (++i < desc->ndesc);
365 
366 	if (!i)
367 		return bytes;
368 
369 	/* The current chunk is not fully transfered yet */
370 	bytes += desc->hw[--i].len;
371 
372 	return bytes - IDMA64C_CTLH_BLOCK_TS(ctlhi);
373 }
374 
375 static enum dma_status idma64_tx_status(struct dma_chan *chan,
376 		dma_cookie_t cookie, struct dma_tx_state *state)
377 {
378 	struct idma64_chan *idma64c = to_idma64_chan(chan);
379 	struct virt_dma_desc *vdesc;
380 	enum dma_status status;
381 	size_t bytes;
382 	unsigned long flags;
383 
384 	status = dma_cookie_status(chan, cookie, state);
385 	if (status == DMA_COMPLETE)
386 		return status;
387 
388 	spin_lock_irqsave(&idma64c->vchan.lock, flags);
389 	vdesc = vchan_find_desc(&idma64c->vchan, cookie);
390 	if (idma64c->desc && cookie == idma64c->desc->vdesc.tx.cookie) {
391 		bytes = idma64_active_desc_size(idma64c);
392 		dma_set_residue(state, bytes);
393 		status = idma64c->desc->status;
394 	} else if (vdesc) {
395 		bytes = to_idma64_desc(vdesc)->length;
396 		dma_set_residue(state, bytes);
397 	}
398 	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);
399 
400 	return status;
401 }
402 
403 static void convert_burst(u32 *maxburst)
404 {
405 	if (*maxburst)
406 		*maxburst = __fls(*maxburst);
407 	else
408 		*maxburst = 0;
409 }
410 
411 static int idma64_slave_config(struct dma_chan *chan,
412 		struct dma_slave_config *config)
413 {
414 	struct idma64_chan *idma64c = to_idma64_chan(chan);
415 
416 	/* Check if chan will be configured for slave transfers */
417 	if (!is_slave_direction(config->direction))
418 		return -EINVAL;
419 
420 	memcpy(&idma64c->config, config, sizeof(idma64c->config));
421 
422 	convert_burst(&idma64c->config.src_maxburst);
423 	convert_burst(&idma64c->config.dst_maxburst);
424 
425 	return 0;
426 }
427 
428 static void idma64_chan_deactivate(struct idma64_chan *idma64c, bool drain)
429 {
430 	unsigned short count = 100;
431 	u32 cfglo;
432 
433 	cfglo = channel_readl(idma64c, CFG_LO);
434 	if (drain)
435 		cfglo |= IDMA64C_CFGL_CH_DRAIN;
436 	else
437 		cfglo &= ~IDMA64C_CFGL_CH_DRAIN;
438 
439 	channel_writel(idma64c, CFG_LO, cfglo | IDMA64C_CFGL_CH_SUSP);
440 	do {
441 		udelay(1);
442 		cfglo = channel_readl(idma64c, CFG_LO);
443 	} while (!(cfglo & IDMA64C_CFGL_FIFO_EMPTY) && --count);
444 }
445 
446 static void idma64_chan_activate(struct idma64_chan *idma64c)
447 {
448 	u32 cfglo;
449 
450 	cfglo = channel_readl(idma64c, CFG_LO);
451 	channel_writel(idma64c, CFG_LO, cfglo & ~IDMA64C_CFGL_CH_SUSP);
452 }
453 
454 static int idma64_pause(struct dma_chan *chan)
455 {
456 	struct idma64_chan *idma64c = to_idma64_chan(chan);
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&idma64c->vchan.lock, flags);
460 	if (idma64c->desc && idma64c->desc->status == DMA_IN_PROGRESS) {
461 		idma64_chan_deactivate(idma64c, false);
462 		idma64c->desc->status = DMA_PAUSED;
463 	}
464 	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);
465 
466 	return 0;
467 }
468 
469 static int idma64_resume(struct dma_chan *chan)
470 {
471 	struct idma64_chan *idma64c = to_idma64_chan(chan);
472 	unsigned long flags;
473 
474 	spin_lock_irqsave(&idma64c->vchan.lock, flags);
475 	if (idma64c->desc && idma64c->desc->status == DMA_PAUSED) {
476 		idma64c->desc->status = DMA_IN_PROGRESS;
477 		idma64_chan_activate(idma64c);
478 	}
479 	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);
480 
481 	return 0;
482 }
483 
484 static int idma64_terminate_all(struct dma_chan *chan)
485 {
486 	struct idma64_chan *idma64c = to_idma64_chan(chan);
487 	unsigned long flags;
488 	LIST_HEAD(head);
489 
490 	spin_lock_irqsave(&idma64c->vchan.lock, flags);
491 	idma64_chan_deactivate(idma64c, true);
492 	idma64_stop_transfer(idma64c);
493 	if (idma64c->desc) {
494 		idma64_vdesc_free(&idma64c->desc->vdesc);
495 		idma64c->desc = NULL;
496 	}
497 	vchan_get_all_descriptors(&idma64c->vchan, &head);
498 	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);
499 
500 	vchan_dma_desc_free_list(&idma64c->vchan, &head);
501 	return 0;
502 }
503 
504 static int idma64_alloc_chan_resources(struct dma_chan *chan)
505 {
506 	struct idma64_chan *idma64c = to_idma64_chan(chan);
507 
508 	/* Create a pool of consistent memory blocks for hardware descriptors */
509 	idma64c->pool = dma_pool_create(dev_name(chan2dev(chan)),
510 					chan->device->dev,
511 					sizeof(struct idma64_lli), 8, 0);
512 	if (!idma64c->pool) {
513 		dev_err(chan2dev(chan), "No memory for descriptors\n");
514 		return -ENOMEM;
515 	}
516 
517 	return 0;
518 }
519 
520 static void idma64_free_chan_resources(struct dma_chan *chan)
521 {
522 	struct idma64_chan *idma64c = to_idma64_chan(chan);
523 
524 	vchan_free_chan_resources(to_virt_chan(chan));
525 	dma_pool_destroy(idma64c->pool);
526 	idma64c->pool = NULL;
527 }
528 
529 /* ---------------------------------------------------------------------- */
530 
531 #define IDMA64_BUSWIDTHS				\
532 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)		|	\
533 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)		|	\
534 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
535 
536 static int idma64_probe(struct idma64_chip *chip)
537 {
538 	struct idma64 *idma64;
539 	unsigned short nr_chan = IDMA64_NR_CHAN;
540 	unsigned short i;
541 	int ret;
542 
543 	idma64 = devm_kzalloc(chip->dev, sizeof(*idma64), GFP_KERNEL);
544 	if (!idma64)
545 		return -ENOMEM;
546 
547 	idma64->regs = chip->regs;
548 	chip->idma64 = idma64;
549 
550 	idma64->chan = devm_kcalloc(chip->dev, nr_chan, sizeof(*idma64->chan),
551 				    GFP_KERNEL);
552 	if (!idma64->chan)
553 		return -ENOMEM;
554 
555 	idma64->all_chan_mask = (1 << nr_chan) - 1;
556 
557 	/* Turn off iDMA controller */
558 	idma64_off(idma64);
559 
560 	ret = devm_request_irq(chip->dev, chip->irq, idma64_irq, IRQF_SHARED,
561 			       dev_name(chip->dev), idma64);
562 	if (ret)
563 		return ret;
564 
565 	INIT_LIST_HEAD(&idma64->dma.channels);
566 	for (i = 0; i < nr_chan; i++) {
567 		struct idma64_chan *idma64c = &idma64->chan[i];
568 
569 		idma64c->vchan.desc_free = idma64_vdesc_free;
570 		vchan_init(&idma64c->vchan, &idma64->dma);
571 
572 		idma64c->regs = idma64->regs + i * IDMA64_CH_LENGTH;
573 		idma64c->mask = BIT(i);
574 	}
575 
576 	dma_cap_set(DMA_SLAVE, idma64->dma.cap_mask);
577 	dma_cap_set(DMA_PRIVATE, idma64->dma.cap_mask);
578 
579 	idma64->dma.device_alloc_chan_resources = idma64_alloc_chan_resources;
580 	idma64->dma.device_free_chan_resources = idma64_free_chan_resources;
581 
582 	idma64->dma.device_prep_slave_sg = idma64_prep_slave_sg;
583 
584 	idma64->dma.device_issue_pending = idma64_issue_pending;
585 	idma64->dma.device_tx_status = idma64_tx_status;
586 
587 	idma64->dma.device_config = idma64_slave_config;
588 	idma64->dma.device_pause = idma64_pause;
589 	idma64->dma.device_resume = idma64_resume;
590 	idma64->dma.device_terminate_all = idma64_terminate_all;
591 
592 	idma64->dma.src_addr_widths = IDMA64_BUSWIDTHS;
593 	idma64->dma.dst_addr_widths = IDMA64_BUSWIDTHS;
594 	idma64->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
595 	idma64->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
596 
597 	idma64->dma.dev = chip->dev;
598 
599 	ret = dma_async_device_register(&idma64->dma);
600 	if (ret)
601 		return ret;
602 
603 	dev_info(chip->dev, "Found Intel integrated DMA 64-bit\n");
604 	return 0;
605 }
606 
607 static int idma64_remove(struct idma64_chip *chip)
608 {
609 	struct idma64 *idma64 = chip->idma64;
610 	unsigned short i;
611 
612 	dma_async_device_unregister(&idma64->dma);
613 
614 	/*
615 	 * Explicitly call devm_request_irq() to avoid the side effects with
616 	 * the scheduled tasklets.
617 	 */
618 	devm_free_irq(chip->dev, chip->irq, idma64);
619 
620 	for (i = 0; i < idma64->dma.chancnt; i++) {
621 		struct idma64_chan *idma64c = &idma64->chan[i];
622 
623 		tasklet_kill(&idma64c->vchan.task);
624 	}
625 
626 	return 0;
627 }
628 
629 /* ---------------------------------------------------------------------- */
630 
631 static int idma64_platform_probe(struct platform_device *pdev)
632 {
633 	struct idma64_chip *chip;
634 	struct device *dev = &pdev->dev;
635 	struct resource *mem;
636 	int ret;
637 
638 	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
639 	if (!chip)
640 		return -ENOMEM;
641 
642 	chip->irq = platform_get_irq(pdev, 0);
643 	if (chip->irq < 0)
644 		return chip->irq;
645 
646 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
647 	chip->regs = devm_ioremap_resource(dev, mem);
648 	if (IS_ERR(chip->regs))
649 		return PTR_ERR(chip->regs);
650 
651 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
652 	if (ret)
653 		return ret;
654 
655 	chip->dev = dev;
656 
657 	ret = idma64_probe(chip);
658 	if (ret)
659 		return ret;
660 
661 	platform_set_drvdata(pdev, chip);
662 	return 0;
663 }
664 
665 static int idma64_platform_remove(struct platform_device *pdev)
666 {
667 	struct idma64_chip *chip = platform_get_drvdata(pdev);
668 
669 	return idma64_remove(chip);
670 }
671 
672 #ifdef CONFIG_PM_SLEEP
673 
674 static int idma64_pm_suspend(struct device *dev)
675 {
676 	struct platform_device *pdev = to_platform_device(dev);
677 	struct idma64_chip *chip = platform_get_drvdata(pdev);
678 
679 	idma64_off(chip->idma64);
680 	return 0;
681 }
682 
683 static int idma64_pm_resume(struct device *dev)
684 {
685 	struct platform_device *pdev = to_platform_device(dev);
686 	struct idma64_chip *chip = platform_get_drvdata(pdev);
687 
688 	idma64_on(chip->idma64);
689 	return 0;
690 }
691 
692 #endif /* CONFIG_PM_SLEEP */
693 
694 static const struct dev_pm_ops idma64_dev_pm_ops = {
695 	SET_SYSTEM_SLEEP_PM_OPS(idma64_pm_suspend, idma64_pm_resume)
696 };
697 
698 static struct platform_driver idma64_platform_driver = {
699 	.probe		= idma64_platform_probe,
700 	.remove		= idma64_platform_remove,
701 	.driver = {
702 		.name	= DRV_NAME,
703 		.pm	= &idma64_dev_pm_ops,
704 	},
705 };
706 
707 module_platform_driver(idma64_platform_driver);
708 
709 MODULE_LICENSE("GPL v2");
710 MODULE_DESCRIPTION("iDMA64 core driver");
711 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");
712 MODULE_ALIAS("platform:" DRV_NAME);
713