1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the Intel integrated DMA 64-bit 4 * 5 * Copyright (C) 2015 Intel Corporation 6 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/delay.h> 11 #include <linux/dmaengine.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 19 #include <linux/dma/idma64.h> 20 21 #include "idma64.h" 22 23 /* For now we support only two channels */ 24 #define IDMA64_NR_CHAN 2 25 26 /* ---------------------------------------------------------------------- */ 27 28 static struct device *chan2dev(struct dma_chan *chan) 29 { 30 return &chan->dev->device; 31 } 32 33 /* ---------------------------------------------------------------------- */ 34 35 static void idma64_off(struct idma64 *idma64) 36 { 37 unsigned short count = 100; 38 39 dma_writel(idma64, CFG, 0); 40 41 channel_clear_bit(idma64, MASK(XFER), idma64->all_chan_mask); 42 channel_clear_bit(idma64, MASK(BLOCK), idma64->all_chan_mask); 43 channel_clear_bit(idma64, MASK(SRC_TRAN), idma64->all_chan_mask); 44 channel_clear_bit(idma64, MASK(DST_TRAN), idma64->all_chan_mask); 45 channel_clear_bit(idma64, MASK(ERROR), idma64->all_chan_mask); 46 47 do { 48 cpu_relax(); 49 } while (dma_readl(idma64, CFG) & IDMA64_CFG_DMA_EN && --count); 50 } 51 52 static void idma64_on(struct idma64 *idma64) 53 { 54 dma_writel(idma64, CFG, IDMA64_CFG_DMA_EN); 55 } 56 57 /* ---------------------------------------------------------------------- */ 58 59 static void idma64_chan_init(struct idma64 *idma64, struct idma64_chan *idma64c) 60 { 61 u32 cfghi = IDMA64C_CFGH_SRC_PER(1) | IDMA64C_CFGH_DST_PER(0); 62 u32 cfglo = 0; 63 64 /* Set default burst alignment */ 65 cfglo |= IDMA64C_CFGL_DST_BURST_ALIGN | IDMA64C_CFGL_SRC_BURST_ALIGN; 66 67 channel_writel(idma64c, CFG_LO, cfglo); 68 channel_writel(idma64c, CFG_HI, cfghi); 69 70 /* Enable interrupts */ 71 channel_set_bit(idma64, MASK(XFER), idma64c->mask); 72 channel_set_bit(idma64, MASK(ERROR), idma64c->mask); 73 74 /* 75 * Enforce the controller to be turned on. 76 * 77 * The iDMA is turned off in ->probe() and looses context during system 78 * suspend / resume cycle. That's why we have to enable it each time we 79 * use it. 80 */ 81 idma64_on(idma64); 82 } 83 84 static void idma64_chan_stop(struct idma64 *idma64, struct idma64_chan *idma64c) 85 { 86 channel_clear_bit(idma64, CH_EN, idma64c->mask); 87 } 88 89 static void idma64_chan_start(struct idma64 *idma64, struct idma64_chan *idma64c) 90 { 91 struct idma64_desc *desc = idma64c->desc; 92 struct idma64_hw_desc *hw = &desc->hw[0]; 93 94 channel_writeq(idma64c, SAR, 0); 95 channel_writeq(idma64c, DAR, 0); 96 97 channel_writel(idma64c, CTL_HI, IDMA64C_CTLH_BLOCK_TS(~0UL)); 98 channel_writel(idma64c, CTL_LO, IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN); 99 100 channel_writeq(idma64c, LLP, hw->llp); 101 102 channel_set_bit(idma64, CH_EN, idma64c->mask); 103 } 104 105 static void idma64_stop_transfer(struct idma64_chan *idma64c) 106 { 107 struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device); 108 109 idma64_chan_stop(idma64, idma64c); 110 } 111 112 static void idma64_start_transfer(struct idma64_chan *idma64c) 113 { 114 struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device); 115 struct virt_dma_desc *vdesc; 116 117 /* Get the next descriptor */ 118 vdesc = vchan_next_desc(&idma64c->vchan); 119 if (!vdesc) { 120 idma64c->desc = NULL; 121 return; 122 } 123 124 list_del(&vdesc->node); 125 idma64c->desc = to_idma64_desc(vdesc); 126 127 /* Configure the channel */ 128 idma64_chan_init(idma64, idma64c); 129 130 /* Start the channel with a new descriptor */ 131 idma64_chan_start(idma64, idma64c); 132 } 133 134 /* ---------------------------------------------------------------------- */ 135 136 static void idma64_chan_irq(struct idma64 *idma64, unsigned short c, 137 u32 status_err, u32 status_xfer) 138 { 139 struct idma64_chan *idma64c = &idma64->chan[c]; 140 struct dma_chan_percpu *stat; 141 struct idma64_desc *desc; 142 143 stat = this_cpu_ptr(idma64c->vchan.chan.local); 144 145 spin_lock(&idma64c->vchan.lock); 146 desc = idma64c->desc; 147 if (desc) { 148 if (status_err & (1 << c)) { 149 dma_writel(idma64, CLEAR(ERROR), idma64c->mask); 150 desc->status = DMA_ERROR; 151 } else if (status_xfer & (1 << c)) { 152 dma_writel(idma64, CLEAR(XFER), idma64c->mask); 153 desc->status = DMA_COMPLETE; 154 vchan_cookie_complete(&desc->vdesc); 155 stat->bytes_transferred += desc->length; 156 idma64_start_transfer(idma64c); 157 } 158 159 /* idma64_start_transfer() updates idma64c->desc */ 160 if (idma64c->desc == NULL || desc->status == DMA_ERROR) 161 idma64_stop_transfer(idma64c); 162 } 163 spin_unlock(&idma64c->vchan.lock); 164 } 165 166 static irqreturn_t idma64_irq(int irq, void *dev) 167 { 168 struct idma64 *idma64 = dev; 169 u32 status = dma_readl(idma64, STATUS_INT); 170 u32 status_xfer; 171 u32 status_err; 172 unsigned short i; 173 174 /* Since IRQ may be shared, check if DMA controller is powered on */ 175 if (status == GENMASK(31, 0)) 176 return IRQ_NONE; 177 178 dev_vdbg(idma64->dma.dev, "%s: status=%#x\n", __func__, status); 179 180 /* Check if we have any interrupt from the DMA controller */ 181 if (!status) 182 return IRQ_NONE; 183 184 status_xfer = dma_readl(idma64, RAW(XFER)); 185 status_err = dma_readl(idma64, RAW(ERROR)); 186 187 for (i = 0; i < idma64->dma.chancnt; i++) 188 idma64_chan_irq(idma64, i, status_err, status_xfer); 189 190 return IRQ_HANDLED; 191 } 192 193 /* ---------------------------------------------------------------------- */ 194 195 static struct idma64_desc *idma64_alloc_desc(unsigned int ndesc) 196 { 197 struct idma64_desc *desc; 198 199 desc = kzalloc(sizeof(*desc), GFP_NOWAIT); 200 if (!desc) 201 return NULL; 202 203 desc->hw = kcalloc(ndesc, sizeof(*desc->hw), GFP_NOWAIT); 204 if (!desc->hw) { 205 kfree(desc); 206 return NULL; 207 } 208 209 return desc; 210 } 211 212 static void idma64_desc_free(struct idma64_chan *idma64c, 213 struct idma64_desc *desc) 214 { 215 struct idma64_hw_desc *hw; 216 217 if (desc->ndesc) { 218 unsigned int i = desc->ndesc; 219 220 do { 221 hw = &desc->hw[--i]; 222 dma_pool_free(idma64c->pool, hw->lli, hw->llp); 223 } while (i); 224 } 225 226 kfree(desc->hw); 227 kfree(desc); 228 } 229 230 static void idma64_vdesc_free(struct virt_dma_desc *vdesc) 231 { 232 struct idma64_chan *idma64c = to_idma64_chan(vdesc->tx.chan); 233 234 idma64_desc_free(idma64c, to_idma64_desc(vdesc)); 235 } 236 237 static void idma64_hw_desc_fill(struct idma64_hw_desc *hw, 238 struct dma_slave_config *config, 239 enum dma_transfer_direction direction, u64 llp) 240 { 241 struct idma64_lli *lli = hw->lli; 242 u64 sar, dar; 243 u32 ctlhi = IDMA64C_CTLH_BLOCK_TS(hw->len); 244 u32 ctllo = IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN; 245 u32 src_width, dst_width; 246 247 if (direction == DMA_MEM_TO_DEV) { 248 sar = hw->phys; 249 dar = config->dst_addr; 250 ctllo |= IDMA64C_CTLL_DST_FIX | IDMA64C_CTLL_SRC_INC | 251 IDMA64C_CTLL_FC_M2P; 252 src_width = __ffs(sar | hw->len | 4); 253 dst_width = __ffs(config->dst_addr_width); 254 } else { /* DMA_DEV_TO_MEM */ 255 sar = config->src_addr; 256 dar = hw->phys; 257 ctllo |= IDMA64C_CTLL_DST_INC | IDMA64C_CTLL_SRC_FIX | 258 IDMA64C_CTLL_FC_P2M; 259 src_width = __ffs(config->src_addr_width); 260 dst_width = __ffs(dar | hw->len | 4); 261 } 262 263 lli->sar = sar; 264 lli->dar = dar; 265 266 lli->ctlhi = ctlhi; 267 lli->ctllo = ctllo | 268 IDMA64C_CTLL_SRC_MSIZE(config->src_maxburst) | 269 IDMA64C_CTLL_DST_MSIZE(config->dst_maxburst) | 270 IDMA64C_CTLL_DST_WIDTH(dst_width) | 271 IDMA64C_CTLL_SRC_WIDTH(src_width); 272 273 lli->llp = llp; 274 } 275 276 static void idma64_desc_fill(struct idma64_chan *idma64c, 277 struct idma64_desc *desc) 278 { 279 struct dma_slave_config *config = &idma64c->config; 280 unsigned int i = desc->ndesc; 281 struct idma64_hw_desc *hw = &desc->hw[i - 1]; 282 struct idma64_lli *lli = hw->lli; 283 u64 llp = 0; 284 285 /* Fill the hardware descriptors and link them to a list */ 286 do { 287 hw = &desc->hw[--i]; 288 idma64_hw_desc_fill(hw, config, desc->direction, llp); 289 llp = hw->llp; 290 desc->length += hw->len; 291 } while (i); 292 293 /* Trigger an interrupt after the last block is transferred */ 294 lli->ctllo |= IDMA64C_CTLL_INT_EN; 295 296 /* Disable LLP transfer in the last block */ 297 lli->ctllo &= ~(IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN); 298 } 299 300 static struct dma_async_tx_descriptor *idma64_prep_slave_sg( 301 struct dma_chan *chan, struct scatterlist *sgl, 302 unsigned int sg_len, enum dma_transfer_direction direction, 303 unsigned long flags, void *context) 304 { 305 struct idma64_chan *idma64c = to_idma64_chan(chan); 306 struct idma64_desc *desc; 307 struct scatterlist *sg; 308 unsigned int i; 309 310 desc = idma64_alloc_desc(sg_len); 311 if (!desc) 312 return NULL; 313 314 for_each_sg(sgl, sg, sg_len, i) { 315 struct idma64_hw_desc *hw = &desc->hw[i]; 316 317 /* Allocate DMA capable memory for hardware descriptor */ 318 hw->lli = dma_pool_alloc(idma64c->pool, GFP_NOWAIT, &hw->llp); 319 if (!hw->lli) { 320 desc->ndesc = i; 321 idma64_desc_free(idma64c, desc); 322 return NULL; 323 } 324 325 hw->phys = sg_dma_address(sg); 326 hw->len = sg_dma_len(sg); 327 } 328 329 desc->ndesc = sg_len; 330 desc->direction = direction; 331 desc->status = DMA_IN_PROGRESS; 332 333 idma64_desc_fill(idma64c, desc); 334 return vchan_tx_prep(&idma64c->vchan, &desc->vdesc, flags); 335 } 336 337 static void idma64_issue_pending(struct dma_chan *chan) 338 { 339 struct idma64_chan *idma64c = to_idma64_chan(chan); 340 unsigned long flags; 341 342 spin_lock_irqsave(&idma64c->vchan.lock, flags); 343 if (vchan_issue_pending(&idma64c->vchan) && !idma64c->desc) 344 idma64_start_transfer(idma64c); 345 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 346 } 347 348 static size_t idma64_active_desc_size(struct idma64_chan *idma64c) 349 { 350 struct idma64_desc *desc = idma64c->desc; 351 struct idma64_hw_desc *hw; 352 size_t bytes = desc->length; 353 u64 llp = channel_readq(idma64c, LLP); 354 u32 ctlhi = channel_readl(idma64c, CTL_HI); 355 unsigned int i = 0; 356 357 do { 358 hw = &desc->hw[i]; 359 if (hw->llp == llp) 360 break; 361 bytes -= hw->len; 362 } while (++i < desc->ndesc); 363 364 if (!i) 365 return bytes; 366 367 /* The current chunk is not fully transferred yet */ 368 bytes += desc->hw[--i].len; 369 370 return bytes - IDMA64C_CTLH_BLOCK_TS(ctlhi); 371 } 372 373 static enum dma_status idma64_tx_status(struct dma_chan *chan, 374 dma_cookie_t cookie, struct dma_tx_state *state) 375 { 376 struct idma64_chan *idma64c = to_idma64_chan(chan); 377 struct virt_dma_desc *vdesc; 378 enum dma_status status; 379 size_t bytes; 380 unsigned long flags; 381 382 status = dma_cookie_status(chan, cookie, state); 383 if (status == DMA_COMPLETE) 384 return status; 385 386 spin_lock_irqsave(&idma64c->vchan.lock, flags); 387 vdesc = vchan_find_desc(&idma64c->vchan, cookie); 388 if (idma64c->desc && cookie == idma64c->desc->vdesc.tx.cookie) { 389 bytes = idma64_active_desc_size(idma64c); 390 dma_set_residue(state, bytes); 391 status = idma64c->desc->status; 392 } else if (vdesc) { 393 bytes = to_idma64_desc(vdesc)->length; 394 dma_set_residue(state, bytes); 395 } 396 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 397 398 return status; 399 } 400 401 static void convert_burst(u32 *maxburst) 402 { 403 if (*maxburst) 404 *maxburst = __fls(*maxburst); 405 else 406 *maxburst = 0; 407 } 408 409 static int idma64_slave_config(struct dma_chan *chan, 410 struct dma_slave_config *config) 411 { 412 struct idma64_chan *idma64c = to_idma64_chan(chan); 413 414 memcpy(&idma64c->config, config, sizeof(idma64c->config)); 415 416 convert_burst(&idma64c->config.src_maxburst); 417 convert_burst(&idma64c->config.dst_maxburst); 418 419 return 0; 420 } 421 422 static void idma64_chan_deactivate(struct idma64_chan *idma64c, bool drain) 423 { 424 unsigned short count = 100; 425 u32 cfglo; 426 427 cfglo = channel_readl(idma64c, CFG_LO); 428 if (drain) 429 cfglo |= IDMA64C_CFGL_CH_DRAIN; 430 else 431 cfglo &= ~IDMA64C_CFGL_CH_DRAIN; 432 433 channel_writel(idma64c, CFG_LO, cfglo | IDMA64C_CFGL_CH_SUSP); 434 do { 435 udelay(1); 436 cfglo = channel_readl(idma64c, CFG_LO); 437 } while (!(cfglo & IDMA64C_CFGL_FIFO_EMPTY) && --count); 438 } 439 440 static void idma64_chan_activate(struct idma64_chan *idma64c) 441 { 442 u32 cfglo; 443 444 cfglo = channel_readl(idma64c, CFG_LO); 445 channel_writel(idma64c, CFG_LO, cfglo & ~IDMA64C_CFGL_CH_SUSP); 446 } 447 448 static int idma64_pause(struct dma_chan *chan) 449 { 450 struct idma64_chan *idma64c = to_idma64_chan(chan); 451 unsigned long flags; 452 453 spin_lock_irqsave(&idma64c->vchan.lock, flags); 454 if (idma64c->desc && idma64c->desc->status == DMA_IN_PROGRESS) { 455 idma64_chan_deactivate(idma64c, false); 456 idma64c->desc->status = DMA_PAUSED; 457 } 458 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 459 460 return 0; 461 } 462 463 static int idma64_resume(struct dma_chan *chan) 464 { 465 struct idma64_chan *idma64c = to_idma64_chan(chan); 466 unsigned long flags; 467 468 spin_lock_irqsave(&idma64c->vchan.lock, flags); 469 if (idma64c->desc && idma64c->desc->status == DMA_PAUSED) { 470 idma64c->desc->status = DMA_IN_PROGRESS; 471 idma64_chan_activate(idma64c); 472 } 473 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 474 475 return 0; 476 } 477 478 static int idma64_terminate_all(struct dma_chan *chan) 479 { 480 struct idma64_chan *idma64c = to_idma64_chan(chan); 481 unsigned long flags; 482 LIST_HEAD(head); 483 484 spin_lock_irqsave(&idma64c->vchan.lock, flags); 485 idma64_chan_deactivate(idma64c, true); 486 idma64_stop_transfer(idma64c); 487 if (idma64c->desc) { 488 idma64_vdesc_free(&idma64c->desc->vdesc); 489 idma64c->desc = NULL; 490 } 491 vchan_get_all_descriptors(&idma64c->vchan, &head); 492 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 493 494 vchan_dma_desc_free_list(&idma64c->vchan, &head); 495 return 0; 496 } 497 498 static void idma64_synchronize(struct dma_chan *chan) 499 { 500 struct idma64_chan *idma64c = to_idma64_chan(chan); 501 502 vchan_synchronize(&idma64c->vchan); 503 } 504 505 static int idma64_alloc_chan_resources(struct dma_chan *chan) 506 { 507 struct idma64_chan *idma64c = to_idma64_chan(chan); 508 509 /* Create a pool of consistent memory blocks for hardware descriptors */ 510 idma64c->pool = dma_pool_create(dev_name(chan2dev(chan)), 511 chan->device->dev, 512 sizeof(struct idma64_lli), 8, 0); 513 if (!idma64c->pool) { 514 dev_err(chan2dev(chan), "No memory for descriptors\n"); 515 return -ENOMEM; 516 } 517 518 return 0; 519 } 520 521 static void idma64_free_chan_resources(struct dma_chan *chan) 522 { 523 struct idma64_chan *idma64c = to_idma64_chan(chan); 524 525 vchan_free_chan_resources(to_virt_chan(chan)); 526 dma_pool_destroy(idma64c->pool); 527 idma64c->pool = NULL; 528 } 529 530 /* ---------------------------------------------------------------------- */ 531 532 #define IDMA64_BUSWIDTHS \ 533 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 534 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 535 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) 536 537 static int idma64_probe(struct idma64_chip *chip) 538 { 539 struct idma64 *idma64; 540 unsigned short nr_chan = IDMA64_NR_CHAN; 541 unsigned short i; 542 int ret; 543 544 idma64 = devm_kzalloc(chip->dev, sizeof(*idma64), GFP_KERNEL); 545 if (!idma64) 546 return -ENOMEM; 547 548 idma64->regs = chip->regs; 549 chip->idma64 = idma64; 550 551 idma64->chan = devm_kcalloc(chip->dev, nr_chan, sizeof(*idma64->chan), 552 GFP_KERNEL); 553 if (!idma64->chan) 554 return -ENOMEM; 555 556 idma64->all_chan_mask = (1 << nr_chan) - 1; 557 558 /* Turn off iDMA controller */ 559 idma64_off(idma64); 560 561 ret = devm_request_irq(chip->dev, chip->irq, idma64_irq, IRQF_SHARED, 562 dev_name(chip->dev), idma64); 563 if (ret) 564 return ret; 565 566 INIT_LIST_HEAD(&idma64->dma.channels); 567 for (i = 0; i < nr_chan; i++) { 568 struct idma64_chan *idma64c = &idma64->chan[i]; 569 570 idma64c->vchan.desc_free = idma64_vdesc_free; 571 vchan_init(&idma64c->vchan, &idma64->dma); 572 573 idma64c->regs = idma64->regs + i * IDMA64_CH_LENGTH; 574 idma64c->mask = BIT(i); 575 } 576 577 dma_cap_set(DMA_SLAVE, idma64->dma.cap_mask); 578 dma_cap_set(DMA_PRIVATE, idma64->dma.cap_mask); 579 580 idma64->dma.device_alloc_chan_resources = idma64_alloc_chan_resources; 581 idma64->dma.device_free_chan_resources = idma64_free_chan_resources; 582 583 idma64->dma.device_prep_slave_sg = idma64_prep_slave_sg; 584 585 idma64->dma.device_issue_pending = idma64_issue_pending; 586 idma64->dma.device_tx_status = idma64_tx_status; 587 588 idma64->dma.device_config = idma64_slave_config; 589 idma64->dma.device_pause = idma64_pause; 590 idma64->dma.device_resume = idma64_resume; 591 idma64->dma.device_terminate_all = idma64_terminate_all; 592 idma64->dma.device_synchronize = idma64_synchronize; 593 594 idma64->dma.src_addr_widths = IDMA64_BUSWIDTHS; 595 idma64->dma.dst_addr_widths = IDMA64_BUSWIDTHS; 596 idma64->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 597 idma64->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 598 599 idma64->dma.dev = chip->sysdev; 600 601 dma_set_max_seg_size(idma64->dma.dev, IDMA64C_CTLH_BLOCK_TS_MASK); 602 603 ret = dma_async_device_register(&idma64->dma); 604 if (ret) 605 return ret; 606 607 dev_info(chip->dev, "Found Intel integrated DMA 64-bit\n"); 608 return 0; 609 } 610 611 static void idma64_remove(struct idma64_chip *chip) 612 { 613 struct idma64 *idma64 = chip->idma64; 614 unsigned short i; 615 616 dma_async_device_unregister(&idma64->dma); 617 618 /* 619 * Explicitly call devm_request_irq() to avoid the side effects with 620 * the scheduled tasklets. 621 */ 622 devm_free_irq(chip->dev, chip->irq, idma64); 623 624 for (i = 0; i < idma64->dma.chancnt; i++) { 625 struct idma64_chan *idma64c = &idma64->chan[i]; 626 627 tasklet_kill(&idma64c->vchan.task); 628 } 629 } 630 631 /* ---------------------------------------------------------------------- */ 632 633 static int idma64_platform_probe(struct platform_device *pdev) 634 { 635 struct idma64_chip *chip; 636 struct device *dev = &pdev->dev; 637 struct device *sysdev = dev->parent; 638 int ret; 639 640 chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); 641 if (!chip) 642 return -ENOMEM; 643 644 chip->irq = platform_get_irq(pdev, 0); 645 if (chip->irq < 0) 646 return chip->irq; 647 648 chip->regs = devm_platform_ioremap_resource(pdev, 0); 649 if (IS_ERR(chip->regs)) 650 return PTR_ERR(chip->regs); 651 652 ret = dma_coerce_mask_and_coherent(sysdev, DMA_BIT_MASK(64)); 653 if (ret) 654 return ret; 655 656 chip->dev = dev; 657 chip->sysdev = sysdev; 658 659 ret = idma64_probe(chip); 660 if (ret) 661 return ret; 662 663 platform_set_drvdata(pdev, chip); 664 return 0; 665 } 666 667 static void idma64_platform_remove(struct platform_device *pdev) 668 { 669 struct idma64_chip *chip = platform_get_drvdata(pdev); 670 671 idma64_remove(chip); 672 } 673 674 static int __maybe_unused idma64_pm_suspend(struct device *dev) 675 { 676 struct idma64_chip *chip = dev_get_drvdata(dev); 677 678 idma64_off(chip->idma64); 679 return 0; 680 } 681 682 static int __maybe_unused idma64_pm_resume(struct device *dev) 683 { 684 struct idma64_chip *chip = dev_get_drvdata(dev); 685 686 idma64_on(chip->idma64); 687 return 0; 688 } 689 690 static const struct dev_pm_ops idma64_dev_pm_ops = { 691 SET_SYSTEM_SLEEP_PM_OPS(idma64_pm_suspend, idma64_pm_resume) 692 }; 693 694 static struct platform_driver idma64_platform_driver = { 695 .probe = idma64_platform_probe, 696 .remove = idma64_platform_remove, 697 .driver = { 698 .name = LPSS_IDMA64_DRIVER_NAME, 699 .pm = &idma64_dev_pm_ops, 700 }, 701 }; 702 703 module_platform_driver(idma64_platform_driver); 704 705 MODULE_LICENSE("GPL v2"); 706 MODULE_DESCRIPTION("iDMA64 core driver"); 707 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>"); 708 MODULE_ALIAS("platform:" LPSS_IDMA64_DRIVER_NAME); 709