xref: /linux/drivers/dma/hsu/hsu.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the High Speed UART DMA
4  *
5  * Copyright (C) 2015 Intel Corporation
6  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
7  *
8  * Partially based on the bits found in drivers/tty/serial/mfd.c.
9  */
10 
11 /*
12  * DMA channel allocation:
13  * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
14  *    Write (UART RX).
15  * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
16  *    port 3, and so on.
17  */
18 
19 #include <linux/bits.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/percpu-defs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/spinlock.h>
33 
34 #include "hsu.h"
35 
36 #define HSU_DMA_BUSWIDTHS				\
37 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED)	|	\
38 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)		|	\
39 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)		|	\
40 	BIT(DMA_SLAVE_BUSWIDTH_3_BYTES)		|	\
41 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)		|	\
42 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)		|	\
43 	BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
44 
45 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
46 {
47 	hsu_chan_writel(hsuc, HSU_CH_CR, 0);
48 }
49 
50 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
51 {
52 	u32 cr = HSU_CH_CR_CHA;
53 
54 	if (hsuc->direction == DMA_MEM_TO_DEV)
55 		cr &= ~HSU_CH_CR_CHD;
56 	else if (hsuc->direction == DMA_DEV_TO_MEM)
57 		cr |= HSU_CH_CR_CHD;
58 
59 	hsu_chan_writel(hsuc, HSU_CH_CR, cr);
60 }
61 
62 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
63 {
64 	struct dma_slave_config *config = &hsuc->config;
65 	struct hsu_dma_desc *desc = hsuc->desc;
66 	u32 bsr = 0, mtsr = 0;	/* to shut the compiler up */
67 	u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
68 	unsigned int i, count;
69 
70 	if (hsuc->direction == DMA_MEM_TO_DEV) {
71 		bsr = config->dst_maxburst;
72 		mtsr = config->dst_addr_width;
73 	} else if (hsuc->direction == DMA_DEV_TO_MEM) {
74 		bsr = config->src_maxburst;
75 		mtsr = config->src_addr_width;
76 	}
77 
78 	hsu_chan_disable(hsuc);
79 
80 	hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
81 	hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
82 	hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
83 
84 	/* Set descriptors */
85 	count = desc->nents - desc->active;
86 	for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
87 		hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
88 		hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
89 
90 		/* Prepare value for DCR */
91 		dcr |= HSU_CH_DCR_DESCA(i);
92 		dcr |= HSU_CH_DCR_CHTOI(i);	/* timeout bit, see HSU Errata 1 */
93 
94 		desc->active++;
95 	}
96 	/* Only for the last descriptor in the chain */
97 	dcr |= HSU_CH_DCR_CHSOD(count - 1);
98 	dcr |= HSU_CH_DCR_CHDI(count - 1);
99 
100 	hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
101 
102 	hsu_chan_enable(hsuc);
103 }
104 
105 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
106 {
107 	hsu_chan_disable(hsuc);
108 	hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
109 }
110 
111 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
112 {
113 	hsu_dma_chan_start(hsuc);
114 }
115 
116 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
117 {
118 	struct virt_dma_desc *vdesc;
119 
120 	/* Get the next descriptor */
121 	vdesc = vchan_next_desc(&hsuc->vchan);
122 	if (!vdesc) {
123 		hsuc->desc = NULL;
124 		return;
125 	}
126 
127 	list_del(&vdesc->node);
128 	hsuc->desc = to_hsu_dma_desc(vdesc);
129 
130 	/* Start the channel with a new descriptor */
131 	hsu_dma_start_channel(hsuc);
132 }
133 
134 /*
135  *      hsu_dma_get_status() - get DMA channel status
136  *      @chip: HSUART DMA chip
137  *      @nr: DMA channel number
138  *      @status: pointer for DMA Channel Status Register value
139  *
140  *      Description:
141  *      The function reads and clears the DMA Channel Status Register, checks
142  *      if it was a timeout interrupt and returns a corresponding value.
143  *
144  *      Caller should provide a valid pointer for the DMA Channel Status
145  *      Register value that will be returned in @status.
146  *
147  *      Return:
148  *      1 for DMA timeout status, 0 for other DMA status, or error code for
149  *      invalid parameters or no interrupt pending.
150  */
151 int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
152 		       u32 *status)
153 {
154 	struct hsu_dma_chan *hsuc;
155 	unsigned long flags;
156 	u32 sr;
157 
158 	/* Sanity check */
159 	if (nr >= chip->hsu->nr_channels)
160 		return -EINVAL;
161 
162 	hsuc = &chip->hsu->chan[nr];
163 
164 	/*
165 	 * No matter what situation, need read clear the IRQ status
166 	 * There is a bug, see Errata 5, HSD 2900918
167 	 */
168 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
169 	sr = hsu_chan_readl(hsuc, HSU_CH_SR);
170 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
171 
172 	/* Check if any interrupt is pending */
173 	sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
174 	if (!sr)
175 		return -EIO;
176 
177 	/* Timeout IRQ, need wait some time, see Errata 2 */
178 	if (sr & HSU_CH_SR_DESCTO_ANY)
179 		udelay(2);
180 
181 	/*
182 	 * At this point, at least one of Descriptor Time Out, Channel Error
183 	 * or Descriptor Done bits must be set. Clear the Descriptor Time Out
184 	 * bits and if sr is still non-zero, it must be channel error or
185 	 * descriptor done which are higher priority than timeout and handled
186 	 * in hsu_dma_do_irq(). Else, it must be a timeout.
187 	 */
188 	sr &= ~HSU_CH_SR_DESCTO_ANY;
189 
190 	*status = sr;
191 
192 	return sr ? 0 : 1;
193 }
194 EXPORT_SYMBOL_GPL(hsu_dma_get_status);
195 
196 /*
197  *      hsu_dma_do_irq() - DMA interrupt handler
198  *      @chip: HSUART DMA chip
199  *      @nr: DMA channel number
200  *      @status: Channel Status Register value
201  *
202  *      Description:
203  *      This function handles Channel Error and Descriptor Done interrupts.
204  *      This function should be called after determining that the DMA interrupt
205  *      is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
206  *
207  *      Return:
208  *      0 for invalid channel number, 1 otherwise.
209  */
210 int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
211 {
212 	struct dma_chan_percpu *stat;
213 	struct hsu_dma_chan *hsuc;
214 	struct hsu_dma_desc *desc;
215 	unsigned long flags;
216 
217 	/* Sanity check */
218 	if (nr >= chip->hsu->nr_channels)
219 		return 0;
220 
221 	hsuc = &chip->hsu->chan[nr];
222 	stat = this_cpu_ptr(hsuc->vchan.chan.local);
223 
224 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
225 	desc = hsuc->desc;
226 	if (desc) {
227 		if (status & HSU_CH_SR_CHE) {
228 			desc->status = DMA_ERROR;
229 		} else if (desc->active < desc->nents) {
230 			hsu_dma_start_channel(hsuc);
231 		} else {
232 			vchan_cookie_complete(&desc->vdesc);
233 			desc->status = DMA_COMPLETE;
234 			stat->bytes_transferred += desc->length;
235 			hsu_dma_start_transfer(hsuc);
236 		}
237 	}
238 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
239 
240 	return 1;
241 }
242 EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
243 
244 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
245 {
246 	struct hsu_dma_desc *desc;
247 
248 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
249 	if (!desc)
250 		return NULL;
251 
252 	desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
253 	if (!desc->sg) {
254 		kfree(desc);
255 		return NULL;
256 	}
257 
258 	return desc;
259 }
260 
261 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
262 {
263 	struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
264 
265 	kfree(desc->sg);
266 	kfree(desc);
267 }
268 
269 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
270 		struct dma_chan *chan, struct scatterlist *sgl,
271 		unsigned int sg_len, enum dma_transfer_direction direction,
272 		unsigned long flags, void *context)
273 {
274 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
275 	struct hsu_dma_desc *desc;
276 	struct scatterlist *sg;
277 	unsigned int i;
278 
279 	desc = hsu_dma_alloc_desc(sg_len);
280 	if (!desc)
281 		return NULL;
282 
283 	for_each_sg(sgl, sg, sg_len, i) {
284 		desc->sg[i].addr = sg_dma_address(sg);
285 		desc->sg[i].len = sg_dma_len(sg);
286 
287 		desc->length += sg_dma_len(sg);
288 	}
289 
290 	desc->nents = sg_len;
291 	desc->direction = direction;
292 	/* desc->active = 0 by kzalloc */
293 	desc->status = DMA_IN_PROGRESS;
294 
295 	return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
296 }
297 
298 static void hsu_dma_issue_pending(struct dma_chan *chan)
299 {
300 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
301 	unsigned long flags;
302 
303 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
304 	if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
305 		hsu_dma_start_transfer(hsuc);
306 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
307 }
308 
309 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
310 {
311 	struct hsu_dma_desc *desc = hsuc->desc;
312 	size_t bytes = 0;
313 	int i;
314 
315 	for (i = desc->active; i < desc->nents; i++)
316 		bytes += desc->sg[i].len;
317 
318 	i = HSU_DMA_CHAN_NR_DESC - 1;
319 	do {
320 		bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
321 	} while (--i >= 0);
322 
323 	return bytes;
324 }
325 
326 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
327 	dma_cookie_t cookie, struct dma_tx_state *state)
328 {
329 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
330 	struct virt_dma_desc *vdesc;
331 	enum dma_status status;
332 	size_t bytes;
333 	unsigned long flags;
334 
335 	status = dma_cookie_status(chan, cookie, state);
336 	if (status == DMA_COMPLETE)
337 		return status;
338 
339 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
340 	vdesc = vchan_find_desc(&hsuc->vchan, cookie);
341 	if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
342 		bytes = hsu_dma_active_desc_size(hsuc);
343 		dma_set_residue(state, bytes);
344 		status = hsuc->desc->status;
345 	} else if (vdesc) {
346 		bytes = to_hsu_dma_desc(vdesc)->length;
347 		dma_set_residue(state, bytes);
348 	}
349 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
350 
351 	return status;
352 }
353 
354 static int hsu_dma_slave_config(struct dma_chan *chan,
355 				struct dma_slave_config *config)
356 {
357 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
358 
359 	memcpy(&hsuc->config, config, sizeof(hsuc->config));
360 
361 	return 0;
362 }
363 
364 static int hsu_dma_pause(struct dma_chan *chan)
365 {
366 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
367 	unsigned long flags;
368 
369 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
370 	if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
371 		hsu_chan_disable(hsuc);
372 		hsuc->desc->status = DMA_PAUSED;
373 	}
374 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
375 
376 	return 0;
377 }
378 
379 static int hsu_dma_resume(struct dma_chan *chan)
380 {
381 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
382 	unsigned long flags;
383 
384 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
385 	if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
386 		hsuc->desc->status = DMA_IN_PROGRESS;
387 		hsu_chan_enable(hsuc);
388 	}
389 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
390 
391 	return 0;
392 }
393 
394 static int hsu_dma_terminate_all(struct dma_chan *chan)
395 {
396 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
397 	unsigned long flags;
398 	LIST_HEAD(head);
399 
400 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
401 
402 	hsu_dma_stop_channel(hsuc);
403 	if (hsuc->desc) {
404 		hsu_dma_desc_free(&hsuc->desc->vdesc);
405 		hsuc->desc = NULL;
406 	}
407 
408 	vchan_get_all_descriptors(&hsuc->vchan, &head);
409 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
410 	vchan_dma_desc_free_list(&hsuc->vchan, &head);
411 
412 	return 0;
413 }
414 
415 static void hsu_dma_free_chan_resources(struct dma_chan *chan)
416 {
417 	vchan_free_chan_resources(to_virt_chan(chan));
418 }
419 
420 static void hsu_dma_synchronize(struct dma_chan *chan)
421 {
422 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
423 
424 	vchan_synchronize(&hsuc->vchan);
425 }
426 
427 int hsu_dma_probe(struct hsu_dma_chip *chip)
428 {
429 	struct hsu_dma *hsu;
430 	void __iomem *addr = chip->regs + chip->offset;
431 	unsigned short i;
432 	int ret;
433 
434 	hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
435 	if (!hsu)
436 		return -ENOMEM;
437 
438 	chip->hsu = hsu;
439 
440 	/* Calculate nr_channels from the IO space length */
441 	hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
442 
443 	hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
444 				 sizeof(*hsu->chan), GFP_KERNEL);
445 	if (!hsu->chan)
446 		return -ENOMEM;
447 
448 	INIT_LIST_HEAD(&hsu->dma.channels);
449 	for (i = 0; i < hsu->nr_channels; i++) {
450 		struct hsu_dma_chan *hsuc = &hsu->chan[i];
451 
452 		hsuc->vchan.desc_free = hsu_dma_desc_free;
453 		vchan_init(&hsuc->vchan, &hsu->dma);
454 
455 		hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
456 		hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
457 	}
458 
459 	dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
460 	dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
461 
462 	hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
463 
464 	hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
465 
466 	hsu->dma.device_issue_pending = hsu_dma_issue_pending;
467 	hsu->dma.device_tx_status = hsu_dma_tx_status;
468 
469 	hsu->dma.device_config = hsu_dma_slave_config;
470 	hsu->dma.device_pause = hsu_dma_pause;
471 	hsu->dma.device_resume = hsu_dma_resume;
472 	hsu->dma.device_terminate_all = hsu_dma_terminate_all;
473 	hsu->dma.device_synchronize = hsu_dma_synchronize;
474 
475 	hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
476 	hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
477 	hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
478 	hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
479 
480 	hsu->dma.dev = chip->dev;
481 
482 	dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
483 
484 	ret = dma_async_device_register(&hsu->dma);
485 	if (ret)
486 		return ret;
487 
488 	dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(hsu_dma_probe);
492 
493 int hsu_dma_remove(struct hsu_dma_chip *chip)
494 {
495 	struct hsu_dma *hsu = chip->hsu;
496 	unsigned short i;
497 
498 	dma_async_device_unregister(&hsu->dma);
499 
500 	for (i = 0; i < hsu->nr_channels; i++) {
501 		struct hsu_dma_chan *hsuc = &hsu->chan[i];
502 
503 		tasklet_kill(&hsuc->vchan.task);
504 	}
505 
506 	return 0;
507 }
508 EXPORT_SYMBOL_GPL(hsu_dma_remove);
509 
510 MODULE_LICENSE("GPL v2");
511 MODULE_DESCRIPTION("High Speed UART DMA core driver");
512 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");
513