xref: /linux/drivers/dma/hsu/hsu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Core driver for the High Speed UART DMA
3  *
4  * Copyright (C) 2015 Intel Corporation
5  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
6  *
7  * Partially based on the bits found in drivers/tty/serial/mfd.c.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 /*
15  * DMA channel allocation:
16  * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
17  *    Write (UART RX).
18  * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
19  *    port 3, and so on.
20  */
21 
22 #include <linux/delay.h>
23 #include <linux/dmaengine.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 
29 #include "hsu.h"
30 
31 #define HSU_DMA_BUSWIDTHS				\
32 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED)	|	\
33 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)		|	\
34 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)		|	\
35 	BIT(DMA_SLAVE_BUSWIDTH_3_BYTES)		|	\
36 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)		|	\
37 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)		|	\
38 	BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
39 
40 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
41 {
42 	hsu_chan_writel(hsuc, HSU_CH_CR, 0);
43 }
44 
45 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
46 {
47 	u32 cr = HSU_CH_CR_CHA;
48 
49 	if (hsuc->direction == DMA_MEM_TO_DEV)
50 		cr &= ~HSU_CH_CR_CHD;
51 	else if (hsuc->direction == DMA_DEV_TO_MEM)
52 		cr |= HSU_CH_CR_CHD;
53 
54 	hsu_chan_writel(hsuc, HSU_CH_CR, cr);
55 }
56 
57 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
58 {
59 	struct dma_slave_config *config = &hsuc->config;
60 	struct hsu_dma_desc *desc = hsuc->desc;
61 	u32 bsr = 0, mtsr = 0;	/* to shut the compiler up */
62 	u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
63 	unsigned int i, count;
64 
65 	if (hsuc->direction == DMA_MEM_TO_DEV) {
66 		bsr = config->dst_maxburst;
67 		mtsr = config->src_addr_width;
68 	} else if (hsuc->direction == DMA_DEV_TO_MEM) {
69 		bsr = config->src_maxburst;
70 		mtsr = config->dst_addr_width;
71 	}
72 
73 	hsu_chan_disable(hsuc);
74 
75 	hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
76 	hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
77 	hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
78 
79 	/* Set descriptors */
80 	count = desc->nents - desc->active;
81 	for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
82 		hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
83 		hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
84 
85 		/* Prepare value for DCR */
86 		dcr |= HSU_CH_DCR_DESCA(i);
87 		dcr |= HSU_CH_DCR_CHTOI(i);	/* timeout bit, see HSU Errata 1 */
88 
89 		desc->active++;
90 	}
91 	/* Only for the last descriptor in the chain */
92 	dcr |= HSU_CH_DCR_CHSOD(count - 1);
93 	dcr |= HSU_CH_DCR_CHDI(count - 1);
94 
95 	hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
96 
97 	hsu_chan_enable(hsuc);
98 }
99 
100 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
101 {
102 	hsu_chan_disable(hsuc);
103 	hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
104 }
105 
106 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
107 {
108 	hsu_dma_chan_start(hsuc);
109 }
110 
111 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
112 {
113 	struct virt_dma_desc *vdesc;
114 
115 	/* Get the next descriptor */
116 	vdesc = vchan_next_desc(&hsuc->vchan);
117 	if (!vdesc) {
118 		hsuc->desc = NULL;
119 		return;
120 	}
121 
122 	list_del(&vdesc->node);
123 	hsuc->desc = to_hsu_dma_desc(vdesc);
124 
125 	/* Start the channel with a new descriptor */
126 	hsu_dma_start_channel(hsuc);
127 }
128 
129 static u32 hsu_dma_chan_get_sr(struct hsu_dma_chan *hsuc)
130 {
131 	unsigned long flags;
132 	u32 sr;
133 
134 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
135 	sr = hsu_chan_readl(hsuc, HSU_CH_SR);
136 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
137 
138 	return sr & ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
139 }
140 
141 irqreturn_t hsu_dma_irq(struct hsu_dma_chip *chip, unsigned short nr)
142 {
143 	struct hsu_dma_chan *hsuc;
144 	struct hsu_dma_desc *desc;
145 	unsigned long flags;
146 	u32 sr;
147 
148 	/* Sanity check */
149 	if (nr >= chip->hsu->nr_channels)
150 		return IRQ_NONE;
151 
152 	hsuc = &chip->hsu->chan[nr];
153 
154 	/*
155 	 * No matter what situation, need read clear the IRQ status
156 	 * There is a bug, see Errata 5, HSD 2900918
157 	 */
158 	sr = hsu_dma_chan_get_sr(hsuc);
159 	if (!sr)
160 		return IRQ_NONE;
161 
162 	/* Timeout IRQ, need wait some time, see Errata 2 */
163 	if (sr & HSU_CH_SR_DESCTO_ANY)
164 		udelay(2);
165 
166 	sr &= ~HSU_CH_SR_DESCTO_ANY;
167 	if (!sr)
168 		return IRQ_HANDLED;
169 
170 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
171 	desc = hsuc->desc;
172 	if (desc) {
173 		if (sr & HSU_CH_SR_CHE) {
174 			desc->status = DMA_ERROR;
175 		} else if (desc->active < desc->nents) {
176 			hsu_dma_start_channel(hsuc);
177 		} else {
178 			vchan_cookie_complete(&desc->vdesc);
179 			desc->status = DMA_COMPLETE;
180 			hsu_dma_start_transfer(hsuc);
181 		}
182 	}
183 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
184 
185 	return IRQ_HANDLED;
186 }
187 EXPORT_SYMBOL_GPL(hsu_dma_irq);
188 
189 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
190 {
191 	struct hsu_dma_desc *desc;
192 
193 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
194 	if (!desc)
195 		return NULL;
196 
197 	desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
198 	if (!desc->sg) {
199 		kfree(desc);
200 		return NULL;
201 	}
202 
203 	return desc;
204 }
205 
206 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
207 {
208 	struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
209 
210 	kfree(desc->sg);
211 	kfree(desc);
212 }
213 
214 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
215 		struct dma_chan *chan, struct scatterlist *sgl,
216 		unsigned int sg_len, enum dma_transfer_direction direction,
217 		unsigned long flags, void *context)
218 {
219 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
220 	struct hsu_dma_desc *desc;
221 	struct scatterlist *sg;
222 	unsigned int i;
223 
224 	desc = hsu_dma_alloc_desc(sg_len);
225 	if (!desc)
226 		return NULL;
227 
228 	for_each_sg(sgl, sg, sg_len, i) {
229 		desc->sg[i].addr = sg_dma_address(sg);
230 		desc->sg[i].len = sg_dma_len(sg);
231 
232 		desc->length += sg_dma_len(sg);
233 	}
234 
235 	desc->nents = sg_len;
236 	desc->direction = direction;
237 	/* desc->active = 0 by kzalloc */
238 	desc->status = DMA_IN_PROGRESS;
239 
240 	return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
241 }
242 
243 static void hsu_dma_issue_pending(struct dma_chan *chan)
244 {
245 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
249 	if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
250 		hsu_dma_start_transfer(hsuc);
251 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
252 }
253 
254 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
255 {
256 	struct hsu_dma_desc *desc = hsuc->desc;
257 	size_t bytes = 0;
258 	int i;
259 
260 	for (i = desc->active; i < desc->nents; i++)
261 		bytes += desc->sg[i].len;
262 
263 	i = HSU_DMA_CHAN_NR_DESC - 1;
264 	do {
265 		bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
266 	} while (--i >= 0);
267 
268 	return bytes;
269 }
270 
271 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
272 	dma_cookie_t cookie, struct dma_tx_state *state)
273 {
274 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
275 	struct virt_dma_desc *vdesc;
276 	enum dma_status status;
277 	size_t bytes;
278 	unsigned long flags;
279 
280 	status = dma_cookie_status(chan, cookie, state);
281 	if (status == DMA_COMPLETE)
282 		return status;
283 
284 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
285 	vdesc = vchan_find_desc(&hsuc->vchan, cookie);
286 	if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
287 		bytes = hsu_dma_active_desc_size(hsuc);
288 		dma_set_residue(state, bytes);
289 		status = hsuc->desc->status;
290 	} else if (vdesc) {
291 		bytes = to_hsu_dma_desc(vdesc)->length;
292 		dma_set_residue(state, bytes);
293 	}
294 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
295 
296 	return status;
297 }
298 
299 static int hsu_dma_slave_config(struct dma_chan *chan,
300 				struct dma_slave_config *config)
301 {
302 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
303 
304 	/* Check if chan will be configured for slave transfers */
305 	if (!is_slave_direction(config->direction))
306 		return -EINVAL;
307 
308 	memcpy(&hsuc->config, config, sizeof(hsuc->config));
309 
310 	return 0;
311 }
312 
313 static int hsu_dma_pause(struct dma_chan *chan)
314 {
315 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
316 	unsigned long flags;
317 
318 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
319 	if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
320 		hsu_chan_disable(hsuc);
321 		hsuc->desc->status = DMA_PAUSED;
322 	}
323 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
324 
325 	return 0;
326 }
327 
328 static int hsu_dma_resume(struct dma_chan *chan)
329 {
330 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
334 	if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
335 		hsuc->desc->status = DMA_IN_PROGRESS;
336 		hsu_chan_enable(hsuc);
337 	}
338 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
339 
340 	return 0;
341 }
342 
343 static int hsu_dma_terminate_all(struct dma_chan *chan)
344 {
345 	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
346 	unsigned long flags;
347 	LIST_HEAD(head);
348 
349 	spin_lock_irqsave(&hsuc->vchan.lock, flags);
350 
351 	hsu_dma_stop_channel(hsuc);
352 	if (hsuc->desc) {
353 		hsu_dma_desc_free(&hsuc->desc->vdesc);
354 		hsuc->desc = NULL;
355 	}
356 
357 	vchan_get_all_descriptors(&hsuc->vchan, &head);
358 	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
359 	vchan_dma_desc_free_list(&hsuc->vchan, &head);
360 
361 	return 0;
362 }
363 
364 static void hsu_dma_free_chan_resources(struct dma_chan *chan)
365 {
366 	vchan_free_chan_resources(to_virt_chan(chan));
367 }
368 
369 int hsu_dma_probe(struct hsu_dma_chip *chip)
370 {
371 	struct hsu_dma *hsu;
372 	void __iomem *addr = chip->regs + chip->offset;
373 	unsigned short i;
374 	int ret;
375 
376 	hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
377 	if (!hsu)
378 		return -ENOMEM;
379 
380 	chip->hsu = hsu;
381 
382 	/* Calculate nr_channels from the IO space length */
383 	hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
384 
385 	hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
386 				 sizeof(*hsu->chan), GFP_KERNEL);
387 	if (!hsu->chan)
388 		return -ENOMEM;
389 
390 	INIT_LIST_HEAD(&hsu->dma.channels);
391 	for (i = 0; i < hsu->nr_channels; i++) {
392 		struct hsu_dma_chan *hsuc = &hsu->chan[i];
393 
394 		hsuc->vchan.desc_free = hsu_dma_desc_free;
395 		vchan_init(&hsuc->vchan, &hsu->dma);
396 
397 		hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
398 		hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
399 	}
400 
401 	dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
402 	dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
403 
404 	hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
405 
406 	hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
407 
408 	hsu->dma.device_issue_pending = hsu_dma_issue_pending;
409 	hsu->dma.device_tx_status = hsu_dma_tx_status;
410 
411 	hsu->dma.device_config = hsu_dma_slave_config;
412 	hsu->dma.device_pause = hsu_dma_pause;
413 	hsu->dma.device_resume = hsu_dma_resume;
414 	hsu->dma.device_terminate_all = hsu_dma_terminate_all;
415 
416 	hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
417 	hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
418 	hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
419 	hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
420 
421 	hsu->dma.dev = chip->dev;
422 
423 	dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
424 
425 	ret = dma_async_device_register(&hsu->dma);
426 	if (ret)
427 		return ret;
428 
429 	dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
430 	return 0;
431 }
432 EXPORT_SYMBOL_GPL(hsu_dma_probe);
433 
434 int hsu_dma_remove(struct hsu_dma_chip *chip)
435 {
436 	struct hsu_dma *hsu = chip->hsu;
437 	unsigned short i;
438 
439 	dma_async_device_unregister(&hsu->dma);
440 
441 	for (i = 0; i < hsu->nr_channels; i++) {
442 		struct hsu_dma_chan *hsuc = &hsu->chan[i];
443 
444 		tasklet_kill(&hsuc->vchan.task);
445 	}
446 
447 	return 0;
448 }
449 EXPORT_SYMBOL_GPL(hsu_dma_remove);
450 
451 MODULE_LICENSE("GPL v2");
452 MODULE_DESCRIPTION("High Speed UART DMA core driver");
453 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");
454