1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA controller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/slab.h> 31 #include <linux/interrupt.h> 32 #include <linux/dmaengine.h> 33 #include <linux/delay.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/dmapool.h> 36 #include <linux/of_address.h> 37 #include <linux/of_irq.h> 38 #include <linux/of_platform.h> 39 #include <linux/fsldma.h> 40 #include "dmaengine.h" 41 #include "fsldma.h" 42 43 #define chan_dbg(chan, fmt, arg...) \ 44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) 45 #define chan_err(chan, fmt, arg...) \ 46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) 47 48 static const char msg_ld_oom[] = "No free memory for link descriptor"; 49 50 /* 51 * Register Helpers 52 */ 53 54 static void set_sr(struct fsldma_chan *chan, u32 val) 55 { 56 DMA_OUT(chan, &chan->regs->sr, val, 32); 57 } 58 59 static u32 get_sr(struct fsldma_chan *chan) 60 { 61 return DMA_IN(chan, &chan->regs->sr, 32); 62 } 63 64 static void set_mr(struct fsldma_chan *chan, u32 val) 65 { 66 DMA_OUT(chan, &chan->regs->mr, val, 32); 67 } 68 69 static u32 get_mr(struct fsldma_chan *chan) 70 { 71 return DMA_IN(chan, &chan->regs->mr, 32); 72 } 73 74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) 75 { 76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); 77 } 78 79 static dma_addr_t get_cdar(struct fsldma_chan *chan) 80 { 81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; 82 } 83 84 static void set_bcr(struct fsldma_chan *chan, u32 val) 85 { 86 DMA_OUT(chan, &chan->regs->bcr, val, 32); 87 } 88 89 static u32 get_bcr(struct fsldma_chan *chan) 90 { 91 return DMA_IN(chan, &chan->regs->bcr, 32); 92 } 93 94 /* 95 * Descriptor Helpers 96 */ 97 98 static void set_desc_cnt(struct fsldma_chan *chan, 99 struct fsl_dma_ld_hw *hw, u32 count) 100 { 101 hw->count = CPU_TO_DMA(chan, count, 32); 102 } 103 104 static void set_desc_src(struct fsldma_chan *chan, 105 struct fsl_dma_ld_hw *hw, dma_addr_t src) 106 { 107 u64 snoop_bits; 108 109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64); 112 } 113 114 static void set_desc_dst(struct fsldma_chan *chan, 115 struct fsl_dma_ld_hw *hw, dma_addr_t dst) 116 { 117 u64 snoop_bits; 118 119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64); 122 } 123 124 static void set_desc_next(struct fsldma_chan *chan, 125 struct fsl_dma_ld_hw *hw, dma_addr_t next) 126 { 127 u64 snoop_bits; 128 129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 130 ? FSL_DMA_SNEN : 0; 131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64); 132 } 133 134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 135 { 136 u64 snoop_bits; 137 138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 139 ? FSL_DMA_SNEN : 0; 140 141 desc->hw.next_ln_addr = CPU_TO_DMA(chan, 142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 143 | snoop_bits, 64); 144 } 145 146 /* 147 * DMA Engine Hardware Control Helpers 148 */ 149 150 static void dma_init(struct fsldma_chan *chan) 151 { 152 /* Reset the channel */ 153 set_mr(chan, 0); 154 155 switch (chan->feature & FSL_DMA_IP_MASK) { 156 case FSL_DMA_IP_85XX: 157 /* Set the channel to below modes: 158 * EIE - Error interrupt enable 159 * EOLNIE - End of links interrupt enable 160 * BWC - Bandwidth sharing among channels 161 */ 162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE 163 | FSL_DMA_MR_EOLNIE); 164 break; 165 case FSL_DMA_IP_83XX: 166 /* Set the channel to below modes: 167 * EOTIE - End-of-transfer interrupt enable 168 * PRC_RM - PCI read multiple 169 */ 170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM); 171 break; 172 } 173 } 174 175 static int dma_is_idle(struct fsldma_chan *chan) 176 { 177 u32 sr = get_sr(chan); 178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 179 } 180 181 /* 182 * Start the DMA controller 183 * 184 * Preconditions: 185 * - the CDAR register must point to the start descriptor 186 * - the MRn[CS] bit must be cleared 187 */ 188 static void dma_start(struct fsldma_chan *chan) 189 { 190 u32 mode; 191 192 mode = get_mr(chan); 193 194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 195 set_bcr(chan, 0); 196 mode |= FSL_DMA_MR_EMP_EN; 197 } else { 198 mode &= ~FSL_DMA_MR_EMP_EN; 199 } 200 201 if (chan->feature & FSL_DMA_CHAN_START_EXT) { 202 mode |= FSL_DMA_MR_EMS_EN; 203 } else { 204 mode &= ~FSL_DMA_MR_EMS_EN; 205 mode |= FSL_DMA_MR_CS; 206 } 207 208 set_mr(chan, mode); 209 } 210 211 static void dma_halt(struct fsldma_chan *chan) 212 { 213 u32 mode; 214 int i; 215 216 /* read the mode register */ 217 mode = get_mr(chan); 218 219 /* 220 * The 85xx controller supports channel abort, which will stop 221 * the current transfer. On 83xx, this bit is the transfer error 222 * mask bit, which should not be changed. 223 */ 224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 225 mode |= FSL_DMA_MR_CA; 226 set_mr(chan, mode); 227 228 mode &= ~FSL_DMA_MR_CA; 229 } 230 231 /* stop the DMA controller */ 232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN); 233 set_mr(chan, mode); 234 235 /* wait for the DMA controller to become idle */ 236 for (i = 0; i < 100; i++) { 237 if (dma_is_idle(chan)) 238 return; 239 240 udelay(10); 241 } 242 243 if (!dma_is_idle(chan)) 244 chan_err(chan, "DMA halt timeout!\n"); 245 } 246 247 /** 248 * fsl_chan_set_src_loop_size - Set source address hold transfer size 249 * @chan : Freescale DMA channel 250 * @size : Address loop size, 0 for disable loop 251 * 252 * The set source address hold transfer size. The source 253 * address hold or loop transfer size is when the DMA transfer 254 * data from source address (SA), if the loop size is 4, the DMA will 255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 256 * SA + 1 ... and so on. 257 */ 258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size) 259 { 260 u32 mode; 261 262 mode = get_mr(chan); 263 264 switch (size) { 265 case 0: 266 mode &= ~FSL_DMA_MR_SAHE; 267 break; 268 case 1: 269 case 2: 270 case 4: 271 case 8: 272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14); 273 break; 274 } 275 276 set_mr(chan, mode); 277 } 278 279 /** 280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size 281 * @chan : Freescale DMA channel 282 * @size : Address loop size, 0 for disable loop 283 * 284 * The set destination address hold transfer size. The destination 285 * address hold or loop transfer size is when the DMA transfer 286 * data to destination address (TA), if the loop size is 4, the DMA will 287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 288 * TA + 1 ... and so on. 289 */ 290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size) 291 { 292 u32 mode; 293 294 mode = get_mr(chan); 295 296 switch (size) { 297 case 0: 298 mode &= ~FSL_DMA_MR_DAHE; 299 break; 300 case 1: 301 case 2: 302 case 4: 303 case 8: 304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16); 305 break; 306 } 307 308 set_mr(chan, mode); 309 } 310 311 /** 312 * fsl_chan_set_request_count - Set DMA Request Count for external control 313 * @chan : Freescale DMA channel 314 * @size : Number of bytes to transfer in a single request 315 * 316 * The Freescale DMA channel can be controlled by the external signal DREQ#. 317 * The DMA request count is how many bytes are allowed to transfer before 318 * pausing the channel, after which a new assertion of DREQ# resumes channel 319 * operation. 320 * 321 * A size of 0 disables external pause control. The maximum size is 1024. 322 */ 323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size) 324 { 325 u32 mode; 326 327 BUG_ON(size > 1024); 328 329 mode = get_mr(chan); 330 mode |= (__ilog2(size) << 24) & 0x0f000000; 331 332 set_mr(chan, mode); 333 } 334 335 /** 336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 337 * @chan : Freescale DMA channel 338 * @enable : 0 is disabled, 1 is enabled. 339 * 340 * The Freescale DMA channel can be controlled by the external signal DREQ#. 341 * The DMA Request Count feature should be used in addition to this feature 342 * to set the number of bytes to transfer before pausing the channel. 343 */ 344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable) 345 { 346 if (enable) 347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 348 else 349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 350 } 351 352 /** 353 * fsl_chan_toggle_ext_start - Toggle channel external start status 354 * @chan : Freescale DMA channel 355 * @enable : 0 is disabled, 1 is enabled. 356 * 357 * If enable the external start, the channel can be started by an 358 * external DMA start pin. So the dma_start() does not start the 359 * transfer immediately. The DMA channel will wait for the 360 * control pin asserted. 361 */ 362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable) 363 { 364 if (enable) 365 chan->feature |= FSL_DMA_CHAN_START_EXT; 366 else 367 chan->feature &= ~FSL_DMA_CHAN_START_EXT; 368 } 369 370 int fsl_dma_external_start(struct dma_chan *dchan, int enable) 371 { 372 struct fsldma_chan *chan; 373 374 if (!dchan) 375 return -EINVAL; 376 377 chan = to_fsl_chan(dchan); 378 379 fsl_chan_toggle_ext_start(chan, enable); 380 return 0; 381 } 382 EXPORT_SYMBOL_GPL(fsl_dma_external_start); 383 384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 385 { 386 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); 387 388 if (list_empty(&chan->ld_pending)) 389 goto out_splice; 390 391 /* 392 * Add the hardware descriptor to the chain of hardware descriptors 393 * that already exists in memory. 394 * 395 * This will un-set the EOL bit of the existing transaction, and the 396 * last link in this transaction will become the EOL descriptor. 397 */ 398 set_desc_next(chan, &tail->hw, desc->async_tx.phys); 399 400 /* 401 * Add the software descriptor and all children to the list 402 * of pending transactions 403 */ 404 out_splice: 405 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 406 } 407 408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 409 { 410 struct fsldma_chan *chan = to_fsl_chan(tx->chan); 411 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); 412 struct fsl_desc_sw *child; 413 dma_cookie_t cookie = -EINVAL; 414 415 spin_lock_bh(&chan->desc_lock); 416 417 #ifdef CONFIG_PM 418 if (unlikely(chan->pm_state != RUNNING)) { 419 chan_dbg(chan, "cannot submit due to suspend\n"); 420 spin_unlock_bh(&chan->desc_lock); 421 return -1; 422 } 423 #endif 424 425 /* 426 * assign cookies to all of the software descriptors 427 * that make up this transaction 428 */ 429 list_for_each_entry(child, &desc->tx_list, node) { 430 cookie = dma_cookie_assign(&child->async_tx); 431 } 432 433 /* put this transaction onto the tail of the pending queue */ 434 append_ld_queue(chan, desc); 435 436 spin_unlock_bh(&chan->desc_lock); 437 438 return cookie; 439 } 440 441 /** 442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool. 443 * @chan : Freescale DMA channel 444 * @desc: descriptor to be freed 445 */ 446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan, 447 struct fsl_desc_sw *desc) 448 { 449 list_del(&desc->node); 450 chan_dbg(chan, "LD %p free\n", desc); 451 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 452 } 453 454 /** 455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 456 * @chan : Freescale DMA channel 457 * 458 * Return - The descriptor allocated. NULL for failed. 459 */ 460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan) 461 { 462 struct fsl_desc_sw *desc; 463 dma_addr_t pdesc; 464 465 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 466 if (!desc) { 467 chan_dbg(chan, "out of memory for link descriptor\n"); 468 return NULL; 469 } 470 471 INIT_LIST_HEAD(&desc->tx_list); 472 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 473 desc->async_tx.tx_submit = fsl_dma_tx_submit; 474 desc->async_tx.phys = pdesc; 475 476 chan_dbg(chan, "LD %p allocated\n", desc); 477 478 return desc; 479 } 480 481 /** 482 * fsldma_clean_completed_descriptor - free all descriptors which 483 * has been completed and acked 484 * @chan: Freescale DMA channel 485 * 486 * This function is used on all completed and acked descriptors. 487 * All descriptors should only be freed in this function. 488 */ 489 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan) 490 { 491 struct fsl_desc_sw *desc, *_desc; 492 493 /* Run the callback for each descriptor, in order */ 494 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) 495 if (async_tx_test_ack(&desc->async_tx)) 496 fsl_dma_free_descriptor(chan, desc); 497 } 498 499 /** 500 * fsldma_run_tx_complete_actions - cleanup a single link descriptor 501 * @chan: Freescale DMA channel 502 * @desc: descriptor to cleanup and free 503 * @cookie: Freescale DMA transaction identifier 504 * 505 * This function is used on a descriptor which has been executed by the DMA 506 * controller. It will run any callbacks, submit any dependencies. 507 */ 508 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan, 509 struct fsl_desc_sw *desc, dma_cookie_t cookie) 510 { 511 struct dma_async_tx_descriptor *txd = &desc->async_tx; 512 dma_cookie_t ret = cookie; 513 514 BUG_ON(txd->cookie < 0); 515 516 if (txd->cookie > 0) { 517 ret = txd->cookie; 518 519 dma_descriptor_unmap(txd); 520 /* Run the link descriptor callback function */ 521 dmaengine_desc_get_callback_invoke(txd, NULL); 522 } 523 524 /* Run any dependencies */ 525 dma_run_dependencies(txd); 526 527 return ret; 528 } 529 530 /** 531 * fsldma_clean_running_descriptor - move the completed descriptor from 532 * ld_running to ld_completed 533 * @chan: Freescale DMA channel 534 * @desc: the descriptor which is completed 535 * 536 * Free the descriptor directly if acked by async_tx api, or move it to 537 * queue ld_completed. 538 */ 539 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan, 540 struct fsl_desc_sw *desc) 541 { 542 /* Remove from the list of transactions */ 543 list_del(&desc->node); 544 545 /* 546 * the client is allowed to attach dependent operations 547 * until 'ack' is set 548 */ 549 if (!async_tx_test_ack(&desc->async_tx)) { 550 /* 551 * Move this descriptor to the list of descriptors which is 552 * completed, but still awaiting the 'ack' bit to be set. 553 */ 554 list_add_tail(&desc->node, &chan->ld_completed); 555 return; 556 } 557 558 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 559 } 560 561 /** 562 * fsl_chan_xfer_ld_queue - transfer any pending transactions 563 * @chan : Freescale DMA channel 564 * 565 * HARDWARE STATE: idle 566 * LOCKING: must hold chan->desc_lock 567 */ 568 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) 569 { 570 struct fsl_desc_sw *desc; 571 572 /* 573 * If the list of pending descriptors is empty, then we 574 * don't need to do any work at all 575 */ 576 if (list_empty(&chan->ld_pending)) { 577 chan_dbg(chan, "no pending LDs\n"); 578 return; 579 } 580 581 /* 582 * The DMA controller is not idle, which means that the interrupt 583 * handler will start any queued transactions when it runs after 584 * this transaction finishes 585 */ 586 if (!chan->idle) { 587 chan_dbg(chan, "DMA controller still busy\n"); 588 return; 589 } 590 591 /* 592 * If there are some link descriptors which have not been 593 * transferred, we need to start the controller 594 */ 595 596 /* 597 * Move all elements from the queue of pending transactions 598 * onto the list of running transactions 599 */ 600 chan_dbg(chan, "idle, starting controller\n"); 601 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); 602 list_splice_tail_init(&chan->ld_pending, &chan->ld_running); 603 604 /* 605 * The 85xx DMA controller doesn't clear the channel start bit 606 * automatically at the end of a transfer. Therefore we must clear 607 * it in software before starting the transfer. 608 */ 609 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 610 u32 mode; 611 612 mode = get_mr(chan); 613 mode &= ~FSL_DMA_MR_CS; 614 set_mr(chan, mode); 615 } 616 617 /* 618 * Program the descriptor's address into the DMA controller, 619 * then start the DMA transaction 620 */ 621 set_cdar(chan, desc->async_tx.phys); 622 get_cdar(chan); 623 624 dma_start(chan); 625 chan->idle = false; 626 } 627 628 /** 629 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed 630 * and move them to ld_completed to free until flag 'ack' is set 631 * @chan: Freescale DMA channel 632 * 633 * This function is used on descriptors which have been executed by the DMA 634 * controller. It will run any callbacks, submit any dependencies, then 635 * free these descriptors if flag 'ack' is set. 636 */ 637 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan) 638 { 639 struct fsl_desc_sw *desc, *_desc; 640 dma_cookie_t cookie = 0; 641 dma_addr_t curr_phys = get_cdar(chan); 642 int seen_current = 0; 643 644 fsldma_clean_completed_descriptor(chan); 645 646 /* Run the callback for each descriptor, in order */ 647 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) { 648 /* 649 * do not advance past the current descriptor loaded into the 650 * hardware channel, subsequent descriptors are either in 651 * process or have not been submitted 652 */ 653 if (seen_current) 654 break; 655 656 /* 657 * stop the search if we reach the current descriptor and the 658 * channel is busy 659 */ 660 if (desc->async_tx.phys == curr_phys) { 661 seen_current = 1; 662 if (!dma_is_idle(chan)) 663 break; 664 } 665 666 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie); 667 668 fsldma_clean_running_descriptor(chan, desc); 669 } 670 671 /* 672 * Start any pending transactions automatically 673 * 674 * In the ideal case, we keep the DMA controller busy while we go 675 * ahead and free the descriptors below. 676 */ 677 fsl_chan_xfer_ld_queue(chan); 678 679 if (cookie > 0) 680 chan->common.completed_cookie = cookie; 681 } 682 683 /** 684 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 685 * @chan : Freescale DMA channel 686 * 687 * This function will create a dma pool for descriptor allocation. 688 * 689 * Return - The number of descriptors allocated. 690 */ 691 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan) 692 { 693 struct fsldma_chan *chan = to_fsl_chan(dchan); 694 695 /* Has this channel already been allocated? */ 696 if (chan->desc_pool) 697 return 1; 698 699 /* 700 * We need the descriptor to be aligned to 32bytes 701 * for meeting FSL DMA specification requirement. 702 */ 703 chan->desc_pool = dma_pool_create(chan->name, chan->dev, 704 sizeof(struct fsl_desc_sw), 705 __alignof__(struct fsl_desc_sw), 0); 706 if (!chan->desc_pool) { 707 chan_err(chan, "unable to allocate descriptor pool\n"); 708 return -ENOMEM; 709 } 710 711 /* there is at least one descriptor free to be allocated */ 712 return 1; 713 } 714 715 /** 716 * fsldma_free_desc_list - Free all descriptors in a queue 717 * @chan: Freescae DMA channel 718 * @list: the list to free 719 * 720 * LOCKING: must hold chan->desc_lock 721 */ 722 static void fsldma_free_desc_list(struct fsldma_chan *chan, 723 struct list_head *list) 724 { 725 struct fsl_desc_sw *desc, *_desc; 726 727 list_for_each_entry_safe(desc, _desc, list, node) 728 fsl_dma_free_descriptor(chan, desc); 729 } 730 731 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan, 732 struct list_head *list) 733 { 734 struct fsl_desc_sw *desc, *_desc; 735 736 list_for_each_entry_safe_reverse(desc, _desc, list, node) 737 fsl_dma_free_descriptor(chan, desc); 738 } 739 740 /** 741 * fsl_dma_free_chan_resources - Free all resources of the channel. 742 * @chan : Freescale DMA channel 743 */ 744 static void fsl_dma_free_chan_resources(struct dma_chan *dchan) 745 { 746 struct fsldma_chan *chan = to_fsl_chan(dchan); 747 748 chan_dbg(chan, "free all channel resources\n"); 749 spin_lock_bh(&chan->desc_lock); 750 fsldma_cleanup_descriptors(chan); 751 fsldma_free_desc_list(chan, &chan->ld_pending); 752 fsldma_free_desc_list(chan, &chan->ld_running); 753 fsldma_free_desc_list(chan, &chan->ld_completed); 754 spin_unlock_bh(&chan->desc_lock); 755 756 dma_pool_destroy(chan->desc_pool); 757 chan->desc_pool = NULL; 758 } 759 760 static struct dma_async_tx_descriptor * 761 fsl_dma_prep_memcpy(struct dma_chan *dchan, 762 dma_addr_t dma_dst, dma_addr_t dma_src, 763 size_t len, unsigned long flags) 764 { 765 struct fsldma_chan *chan; 766 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 767 size_t copy; 768 769 if (!dchan) 770 return NULL; 771 772 if (!len) 773 return NULL; 774 775 chan = to_fsl_chan(dchan); 776 777 do { 778 779 /* Allocate the link descriptor from DMA pool */ 780 new = fsl_dma_alloc_descriptor(chan); 781 if (!new) { 782 chan_err(chan, "%s\n", msg_ld_oom); 783 goto fail; 784 } 785 786 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 787 788 set_desc_cnt(chan, &new->hw, copy); 789 set_desc_src(chan, &new->hw, dma_src); 790 set_desc_dst(chan, &new->hw, dma_dst); 791 792 if (!first) 793 first = new; 794 else 795 set_desc_next(chan, &prev->hw, new->async_tx.phys); 796 797 new->async_tx.cookie = 0; 798 async_tx_ack(&new->async_tx); 799 800 prev = new; 801 len -= copy; 802 dma_src += copy; 803 dma_dst += copy; 804 805 /* Insert the link descriptor to the LD ring */ 806 list_add_tail(&new->node, &first->tx_list); 807 } while (len); 808 809 new->async_tx.flags = flags; /* client is in control of this ack */ 810 new->async_tx.cookie = -EBUSY; 811 812 /* Set End-of-link to the last link descriptor of new list */ 813 set_ld_eol(chan, new); 814 815 return &first->async_tx; 816 817 fail: 818 if (!first) 819 return NULL; 820 821 fsldma_free_desc_list_reverse(chan, &first->tx_list); 822 return NULL; 823 } 824 825 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan, 826 struct scatterlist *dst_sg, unsigned int dst_nents, 827 struct scatterlist *src_sg, unsigned int src_nents, 828 unsigned long flags) 829 { 830 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; 831 struct fsldma_chan *chan = to_fsl_chan(dchan); 832 size_t dst_avail, src_avail; 833 dma_addr_t dst, src; 834 size_t len; 835 836 /* basic sanity checks */ 837 if (dst_nents == 0 || src_nents == 0) 838 return NULL; 839 840 if (dst_sg == NULL || src_sg == NULL) 841 return NULL; 842 843 /* 844 * TODO: should we check that both scatterlists have the same 845 * TODO: number of bytes in total? Is that really an error? 846 */ 847 848 /* get prepared for the loop */ 849 dst_avail = sg_dma_len(dst_sg); 850 src_avail = sg_dma_len(src_sg); 851 852 /* run until we are out of scatterlist entries */ 853 while (true) { 854 855 /* create the largest transaction possible */ 856 len = min_t(size_t, src_avail, dst_avail); 857 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT); 858 if (len == 0) 859 goto fetch; 860 861 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; 862 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; 863 864 /* allocate and populate the descriptor */ 865 new = fsl_dma_alloc_descriptor(chan); 866 if (!new) { 867 chan_err(chan, "%s\n", msg_ld_oom); 868 goto fail; 869 } 870 871 set_desc_cnt(chan, &new->hw, len); 872 set_desc_src(chan, &new->hw, src); 873 set_desc_dst(chan, &new->hw, dst); 874 875 if (!first) 876 first = new; 877 else 878 set_desc_next(chan, &prev->hw, new->async_tx.phys); 879 880 new->async_tx.cookie = 0; 881 async_tx_ack(&new->async_tx); 882 prev = new; 883 884 /* Insert the link descriptor to the LD ring */ 885 list_add_tail(&new->node, &first->tx_list); 886 887 /* update metadata */ 888 dst_avail -= len; 889 src_avail -= len; 890 891 fetch: 892 /* fetch the next dst scatterlist entry */ 893 if (dst_avail == 0) { 894 895 /* no more entries: we're done */ 896 if (dst_nents == 0) 897 break; 898 899 /* fetch the next entry: if there are no more: done */ 900 dst_sg = sg_next(dst_sg); 901 if (dst_sg == NULL) 902 break; 903 904 dst_nents--; 905 dst_avail = sg_dma_len(dst_sg); 906 } 907 908 /* fetch the next src scatterlist entry */ 909 if (src_avail == 0) { 910 911 /* no more entries: we're done */ 912 if (src_nents == 0) 913 break; 914 915 /* fetch the next entry: if there are no more: done */ 916 src_sg = sg_next(src_sg); 917 if (src_sg == NULL) 918 break; 919 920 src_nents--; 921 src_avail = sg_dma_len(src_sg); 922 } 923 } 924 925 new->async_tx.flags = flags; /* client is in control of this ack */ 926 new->async_tx.cookie = -EBUSY; 927 928 /* Set End-of-link to the last link descriptor of new list */ 929 set_ld_eol(chan, new); 930 931 return &first->async_tx; 932 933 fail: 934 if (!first) 935 return NULL; 936 937 fsldma_free_desc_list_reverse(chan, &first->tx_list); 938 return NULL; 939 } 940 941 static int fsl_dma_device_terminate_all(struct dma_chan *dchan) 942 { 943 struct fsldma_chan *chan; 944 945 if (!dchan) 946 return -EINVAL; 947 948 chan = to_fsl_chan(dchan); 949 950 spin_lock_bh(&chan->desc_lock); 951 952 /* Halt the DMA engine */ 953 dma_halt(chan); 954 955 /* Remove and free all of the descriptors in the LD queue */ 956 fsldma_free_desc_list(chan, &chan->ld_pending); 957 fsldma_free_desc_list(chan, &chan->ld_running); 958 fsldma_free_desc_list(chan, &chan->ld_completed); 959 chan->idle = true; 960 961 spin_unlock_bh(&chan->desc_lock); 962 return 0; 963 } 964 965 static int fsl_dma_device_config(struct dma_chan *dchan, 966 struct dma_slave_config *config) 967 { 968 struct fsldma_chan *chan; 969 int size; 970 971 if (!dchan) 972 return -EINVAL; 973 974 chan = to_fsl_chan(dchan); 975 976 /* make sure the channel supports setting burst size */ 977 if (!chan->set_request_count) 978 return -ENXIO; 979 980 /* we set the controller burst size depending on direction */ 981 if (config->direction == DMA_MEM_TO_DEV) 982 size = config->dst_addr_width * config->dst_maxburst; 983 else 984 size = config->src_addr_width * config->src_maxburst; 985 986 chan->set_request_count(chan, size); 987 return 0; 988 } 989 990 991 /** 992 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 993 * @chan : Freescale DMA channel 994 */ 995 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) 996 { 997 struct fsldma_chan *chan = to_fsl_chan(dchan); 998 999 spin_lock_bh(&chan->desc_lock); 1000 fsl_chan_xfer_ld_queue(chan); 1001 spin_unlock_bh(&chan->desc_lock); 1002 } 1003 1004 /** 1005 * fsl_tx_status - Determine the DMA status 1006 * @chan : Freescale DMA channel 1007 */ 1008 static enum dma_status fsl_tx_status(struct dma_chan *dchan, 1009 dma_cookie_t cookie, 1010 struct dma_tx_state *txstate) 1011 { 1012 struct fsldma_chan *chan = to_fsl_chan(dchan); 1013 enum dma_status ret; 1014 1015 ret = dma_cookie_status(dchan, cookie, txstate); 1016 if (ret == DMA_COMPLETE) 1017 return ret; 1018 1019 spin_lock_bh(&chan->desc_lock); 1020 fsldma_cleanup_descriptors(chan); 1021 spin_unlock_bh(&chan->desc_lock); 1022 1023 return dma_cookie_status(dchan, cookie, txstate); 1024 } 1025 1026 /*----------------------------------------------------------------------------*/ 1027 /* Interrupt Handling */ 1028 /*----------------------------------------------------------------------------*/ 1029 1030 static irqreturn_t fsldma_chan_irq(int irq, void *data) 1031 { 1032 struct fsldma_chan *chan = data; 1033 u32 stat; 1034 1035 /* save and clear the status register */ 1036 stat = get_sr(chan); 1037 set_sr(chan, stat); 1038 chan_dbg(chan, "irq: stat = 0x%x\n", stat); 1039 1040 /* check that this was really our device */ 1041 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 1042 if (!stat) 1043 return IRQ_NONE; 1044 1045 if (stat & FSL_DMA_SR_TE) 1046 chan_err(chan, "Transfer Error!\n"); 1047 1048 /* 1049 * Programming Error 1050 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 1051 * trigger a PE interrupt. 1052 */ 1053 if (stat & FSL_DMA_SR_PE) { 1054 chan_dbg(chan, "irq: Programming Error INT\n"); 1055 stat &= ~FSL_DMA_SR_PE; 1056 if (get_bcr(chan) != 0) 1057 chan_err(chan, "Programming Error!\n"); 1058 } 1059 1060 /* 1061 * For MPC8349, EOCDI event need to update cookie 1062 * and start the next transfer if it exist. 1063 */ 1064 if (stat & FSL_DMA_SR_EOCDI) { 1065 chan_dbg(chan, "irq: End-of-Chain link INT\n"); 1066 stat &= ~FSL_DMA_SR_EOCDI; 1067 } 1068 1069 /* 1070 * If it current transfer is the end-of-transfer, 1071 * we should clear the Channel Start bit for 1072 * prepare next transfer. 1073 */ 1074 if (stat & FSL_DMA_SR_EOLNI) { 1075 chan_dbg(chan, "irq: End-of-link INT\n"); 1076 stat &= ~FSL_DMA_SR_EOLNI; 1077 } 1078 1079 /* check that the DMA controller is really idle */ 1080 if (!dma_is_idle(chan)) 1081 chan_err(chan, "irq: controller not idle!\n"); 1082 1083 /* check that we handled all of the bits */ 1084 if (stat) 1085 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat); 1086 1087 /* 1088 * Schedule the tasklet to handle all cleanup of the current 1089 * transaction. It will start a new transaction if there is 1090 * one pending. 1091 */ 1092 tasklet_schedule(&chan->tasklet); 1093 chan_dbg(chan, "irq: Exit\n"); 1094 return IRQ_HANDLED; 1095 } 1096 1097 static void dma_do_tasklet(unsigned long data) 1098 { 1099 struct fsldma_chan *chan = (struct fsldma_chan *)data; 1100 1101 chan_dbg(chan, "tasklet entry\n"); 1102 1103 spin_lock_bh(&chan->desc_lock); 1104 1105 /* the hardware is now idle and ready for more */ 1106 chan->idle = true; 1107 1108 /* Run all cleanup for descriptors which have been completed */ 1109 fsldma_cleanup_descriptors(chan); 1110 1111 spin_unlock_bh(&chan->desc_lock); 1112 1113 chan_dbg(chan, "tasklet exit\n"); 1114 } 1115 1116 static irqreturn_t fsldma_ctrl_irq(int irq, void *data) 1117 { 1118 struct fsldma_device *fdev = data; 1119 struct fsldma_chan *chan; 1120 unsigned int handled = 0; 1121 u32 gsr, mask; 1122 int i; 1123 1124 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs) 1125 : in_le32(fdev->regs); 1126 mask = 0xff000000; 1127 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr); 1128 1129 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1130 chan = fdev->chan[i]; 1131 if (!chan) 1132 continue; 1133 1134 if (gsr & mask) { 1135 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id); 1136 fsldma_chan_irq(irq, chan); 1137 handled++; 1138 } 1139 1140 gsr &= ~mask; 1141 mask >>= 8; 1142 } 1143 1144 return IRQ_RETVAL(handled); 1145 } 1146 1147 static void fsldma_free_irqs(struct fsldma_device *fdev) 1148 { 1149 struct fsldma_chan *chan; 1150 int i; 1151 1152 if (fdev->irq) { 1153 dev_dbg(fdev->dev, "free per-controller IRQ\n"); 1154 free_irq(fdev->irq, fdev); 1155 return; 1156 } 1157 1158 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1159 chan = fdev->chan[i]; 1160 if (chan && chan->irq) { 1161 chan_dbg(chan, "free per-channel IRQ\n"); 1162 free_irq(chan->irq, chan); 1163 } 1164 } 1165 } 1166 1167 static int fsldma_request_irqs(struct fsldma_device *fdev) 1168 { 1169 struct fsldma_chan *chan; 1170 int ret; 1171 int i; 1172 1173 /* if we have a per-controller IRQ, use that */ 1174 if (fdev->irq) { 1175 dev_dbg(fdev->dev, "request per-controller IRQ\n"); 1176 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED, 1177 "fsldma-controller", fdev); 1178 return ret; 1179 } 1180 1181 /* no per-controller IRQ, use the per-channel IRQs */ 1182 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1183 chan = fdev->chan[i]; 1184 if (!chan) 1185 continue; 1186 1187 if (!chan->irq) { 1188 chan_err(chan, "interrupts property missing in device tree\n"); 1189 ret = -ENODEV; 1190 goto out_unwind; 1191 } 1192 1193 chan_dbg(chan, "request per-channel IRQ\n"); 1194 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, 1195 "fsldma-chan", chan); 1196 if (ret) { 1197 chan_err(chan, "unable to request per-channel IRQ\n"); 1198 goto out_unwind; 1199 } 1200 } 1201 1202 return 0; 1203 1204 out_unwind: 1205 for (/* none */; i >= 0; i--) { 1206 chan = fdev->chan[i]; 1207 if (!chan) 1208 continue; 1209 1210 if (!chan->irq) 1211 continue; 1212 1213 free_irq(chan->irq, chan); 1214 } 1215 1216 return ret; 1217 } 1218 1219 /*----------------------------------------------------------------------------*/ 1220 /* OpenFirmware Subsystem */ 1221 /*----------------------------------------------------------------------------*/ 1222 1223 static int fsl_dma_chan_probe(struct fsldma_device *fdev, 1224 struct device_node *node, u32 feature, const char *compatible) 1225 { 1226 struct fsldma_chan *chan; 1227 struct resource res; 1228 int err; 1229 1230 /* alloc channel */ 1231 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1232 if (!chan) { 1233 err = -ENOMEM; 1234 goto out_return; 1235 } 1236 1237 /* ioremap registers for use */ 1238 chan->regs = of_iomap(node, 0); 1239 if (!chan->regs) { 1240 dev_err(fdev->dev, "unable to ioremap registers\n"); 1241 err = -ENOMEM; 1242 goto out_free_chan; 1243 } 1244 1245 err = of_address_to_resource(node, 0, &res); 1246 if (err) { 1247 dev_err(fdev->dev, "unable to find 'reg' property\n"); 1248 goto out_iounmap_regs; 1249 } 1250 1251 chan->feature = feature; 1252 if (!fdev->feature) 1253 fdev->feature = chan->feature; 1254 1255 /* 1256 * If the DMA device's feature is different than the feature 1257 * of its channels, report the bug 1258 */ 1259 WARN_ON(fdev->feature != chan->feature); 1260 1261 chan->dev = fdev->dev; 1262 chan->id = (res.start & 0xfff) < 0x300 ? 1263 ((res.start - 0x100) & 0xfff) >> 7 : 1264 ((res.start - 0x200) & 0xfff) >> 7; 1265 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 1266 dev_err(fdev->dev, "too many channels for device\n"); 1267 err = -EINVAL; 1268 goto out_iounmap_regs; 1269 } 1270 1271 fdev->chan[chan->id] = chan; 1272 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 1273 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id); 1274 1275 /* Initialize the channel */ 1276 dma_init(chan); 1277 1278 /* Clear cdar registers */ 1279 set_cdar(chan, 0); 1280 1281 switch (chan->feature & FSL_DMA_IP_MASK) { 1282 case FSL_DMA_IP_85XX: 1283 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 1284 case FSL_DMA_IP_83XX: 1285 chan->toggle_ext_start = fsl_chan_toggle_ext_start; 1286 chan->set_src_loop_size = fsl_chan_set_src_loop_size; 1287 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size; 1288 chan->set_request_count = fsl_chan_set_request_count; 1289 } 1290 1291 spin_lock_init(&chan->desc_lock); 1292 INIT_LIST_HEAD(&chan->ld_pending); 1293 INIT_LIST_HEAD(&chan->ld_running); 1294 INIT_LIST_HEAD(&chan->ld_completed); 1295 chan->idle = true; 1296 #ifdef CONFIG_PM 1297 chan->pm_state = RUNNING; 1298 #endif 1299 1300 chan->common.device = &fdev->common; 1301 dma_cookie_init(&chan->common); 1302 1303 /* find the IRQ line, if it exists in the device tree */ 1304 chan->irq = irq_of_parse_and_map(node, 0); 1305 1306 /* Add the channel to DMA device channel list */ 1307 list_add_tail(&chan->common.device_node, &fdev->common.channels); 1308 1309 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible, 1310 chan->irq ? chan->irq : fdev->irq); 1311 1312 return 0; 1313 1314 out_iounmap_regs: 1315 iounmap(chan->regs); 1316 out_free_chan: 1317 kfree(chan); 1318 out_return: 1319 return err; 1320 } 1321 1322 static void fsl_dma_chan_remove(struct fsldma_chan *chan) 1323 { 1324 irq_dispose_mapping(chan->irq); 1325 list_del(&chan->common.device_node); 1326 iounmap(chan->regs); 1327 kfree(chan); 1328 } 1329 1330 static int fsldma_of_probe(struct platform_device *op) 1331 { 1332 struct fsldma_device *fdev; 1333 struct device_node *child; 1334 int err; 1335 1336 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL); 1337 if (!fdev) { 1338 err = -ENOMEM; 1339 goto out_return; 1340 } 1341 1342 fdev->dev = &op->dev; 1343 INIT_LIST_HEAD(&fdev->common.channels); 1344 1345 /* ioremap the registers for use */ 1346 fdev->regs = of_iomap(op->dev.of_node, 0); 1347 if (!fdev->regs) { 1348 dev_err(&op->dev, "unable to ioremap registers\n"); 1349 err = -ENOMEM; 1350 goto out_free; 1351 } 1352 1353 /* map the channel IRQ if it exists, but don't hookup the handler yet */ 1354 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0); 1355 1356 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1357 dma_cap_set(DMA_SG, fdev->common.cap_mask); 1358 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); 1359 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1360 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1361 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1362 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg; 1363 fdev->common.device_tx_status = fsl_tx_status; 1364 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1365 fdev->common.device_config = fsl_dma_device_config; 1366 fdev->common.device_terminate_all = fsl_dma_device_terminate_all; 1367 fdev->common.dev = &op->dev; 1368 1369 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS; 1370 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS; 1371 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1372 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 1373 1374 dma_set_mask(&(op->dev), DMA_BIT_MASK(36)); 1375 1376 platform_set_drvdata(op, fdev); 1377 1378 /* 1379 * We cannot use of_platform_bus_probe() because there is no 1380 * of_platform_bus_remove(). Instead, we manually instantiate every DMA 1381 * channel object. 1382 */ 1383 for_each_child_of_node(op->dev.of_node, child) { 1384 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) { 1385 fsl_dma_chan_probe(fdev, child, 1386 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 1387 "fsl,eloplus-dma-channel"); 1388 } 1389 1390 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) { 1391 fsl_dma_chan_probe(fdev, child, 1392 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 1393 "fsl,elo-dma-channel"); 1394 } 1395 } 1396 1397 /* 1398 * Hookup the IRQ handler(s) 1399 * 1400 * If we have a per-controller interrupt, we prefer that to the 1401 * per-channel interrupts to reduce the number of shared interrupt 1402 * handlers on the same IRQ line 1403 */ 1404 err = fsldma_request_irqs(fdev); 1405 if (err) { 1406 dev_err(fdev->dev, "unable to request IRQs\n"); 1407 goto out_free_fdev; 1408 } 1409 1410 dma_async_device_register(&fdev->common); 1411 return 0; 1412 1413 out_free_fdev: 1414 irq_dispose_mapping(fdev->irq); 1415 iounmap(fdev->regs); 1416 out_free: 1417 kfree(fdev); 1418 out_return: 1419 return err; 1420 } 1421 1422 static int fsldma_of_remove(struct platform_device *op) 1423 { 1424 struct fsldma_device *fdev; 1425 unsigned int i; 1426 1427 fdev = platform_get_drvdata(op); 1428 dma_async_device_unregister(&fdev->common); 1429 1430 fsldma_free_irqs(fdev); 1431 1432 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1433 if (fdev->chan[i]) 1434 fsl_dma_chan_remove(fdev->chan[i]); 1435 } 1436 1437 iounmap(fdev->regs); 1438 kfree(fdev); 1439 1440 return 0; 1441 } 1442 1443 #ifdef CONFIG_PM 1444 static int fsldma_suspend_late(struct device *dev) 1445 { 1446 struct platform_device *pdev = to_platform_device(dev); 1447 struct fsldma_device *fdev = platform_get_drvdata(pdev); 1448 struct fsldma_chan *chan; 1449 int i; 1450 1451 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1452 chan = fdev->chan[i]; 1453 if (!chan) 1454 continue; 1455 1456 spin_lock_bh(&chan->desc_lock); 1457 if (unlikely(!chan->idle)) 1458 goto out; 1459 chan->regs_save.mr = get_mr(chan); 1460 chan->pm_state = SUSPENDED; 1461 spin_unlock_bh(&chan->desc_lock); 1462 } 1463 return 0; 1464 1465 out: 1466 for (; i >= 0; i--) { 1467 chan = fdev->chan[i]; 1468 if (!chan) 1469 continue; 1470 chan->pm_state = RUNNING; 1471 spin_unlock_bh(&chan->desc_lock); 1472 } 1473 return -EBUSY; 1474 } 1475 1476 static int fsldma_resume_early(struct device *dev) 1477 { 1478 struct platform_device *pdev = to_platform_device(dev); 1479 struct fsldma_device *fdev = platform_get_drvdata(pdev); 1480 struct fsldma_chan *chan; 1481 u32 mode; 1482 int i; 1483 1484 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1485 chan = fdev->chan[i]; 1486 if (!chan) 1487 continue; 1488 1489 spin_lock_bh(&chan->desc_lock); 1490 mode = chan->regs_save.mr 1491 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA; 1492 set_mr(chan, mode); 1493 chan->pm_state = RUNNING; 1494 spin_unlock_bh(&chan->desc_lock); 1495 } 1496 1497 return 0; 1498 } 1499 1500 static const struct dev_pm_ops fsldma_pm_ops = { 1501 .suspend_late = fsldma_suspend_late, 1502 .resume_early = fsldma_resume_early, 1503 }; 1504 #endif 1505 1506 static const struct of_device_id fsldma_of_ids[] = { 1507 { .compatible = "fsl,elo3-dma", }, 1508 { .compatible = "fsl,eloplus-dma", }, 1509 { .compatible = "fsl,elo-dma", }, 1510 {} 1511 }; 1512 MODULE_DEVICE_TABLE(of, fsldma_of_ids); 1513 1514 static struct platform_driver fsldma_of_driver = { 1515 .driver = { 1516 .name = "fsl-elo-dma", 1517 .of_match_table = fsldma_of_ids, 1518 #ifdef CONFIG_PM 1519 .pm = &fsldma_pm_ops, 1520 #endif 1521 }, 1522 .probe = fsldma_of_probe, 1523 .remove = fsldma_of_remove, 1524 }; 1525 1526 /*----------------------------------------------------------------------------*/ 1527 /* Module Init / Exit */ 1528 /*----------------------------------------------------------------------------*/ 1529 1530 static __init int fsldma_init(void) 1531 { 1532 pr_info("Freescale Elo series DMA driver\n"); 1533 return platform_driver_register(&fsldma_of_driver); 1534 } 1535 1536 static void __exit fsldma_exit(void) 1537 { 1538 platform_driver_unregister(&fsldma_of_driver); 1539 } 1540 1541 subsys_initcall(fsldma_init); 1542 module_exit(fsldma_exit); 1543 1544 MODULE_DESCRIPTION("Freescale Elo series DMA driver"); 1545 MODULE_LICENSE("GPL"); 1546