1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA controller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/slab.h> 31 #include <linux/interrupt.h> 32 #include <linux/dmaengine.h> 33 #include <linux/delay.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/dmapool.h> 36 #include <linux/of_platform.h> 37 38 #include <asm/fsldma.h> 39 #include "fsldma.h" 40 41 static void dma_init(struct fsldma_chan *chan) 42 { 43 /* Reset the channel */ 44 DMA_OUT(chan, &chan->regs->mr, 0, 32); 45 46 switch (chan->feature & FSL_DMA_IP_MASK) { 47 case FSL_DMA_IP_85XX: 48 /* Set the channel to below modes: 49 * EIE - Error interrupt enable 50 * EOSIE - End of segments interrupt enable (basic mode) 51 * EOLNIE - End of links interrupt enable 52 */ 53 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EIE 54 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32); 55 break; 56 case FSL_DMA_IP_83XX: 57 /* Set the channel to below modes: 58 * EOTIE - End-of-transfer interrupt enable 59 * PRC_RM - PCI read multiple 60 */ 61 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE 62 | FSL_DMA_MR_PRC_RM, 32); 63 break; 64 } 65 } 66 67 static void set_sr(struct fsldma_chan *chan, u32 val) 68 { 69 DMA_OUT(chan, &chan->regs->sr, val, 32); 70 } 71 72 static u32 get_sr(struct fsldma_chan *chan) 73 { 74 return DMA_IN(chan, &chan->regs->sr, 32); 75 } 76 77 static void set_desc_cnt(struct fsldma_chan *chan, 78 struct fsl_dma_ld_hw *hw, u32 count) 79 { 80 hw->count = CPU_TO_DMA(chan, count, 32); 81 } 82 83 static void set_desc_src(struct fsldma_chan *chan, 84 struct fsl_dma_ld_hw *hw, dma_addr_t src) 85 { 86 u64 snoop_bits; 87 88 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 89 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 90 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64); 91 } 92 93 static void set_desc_dst(struct fsldma_chan *chan, 94 struct fsl_dma_ld_hw *hw, dma_addr_t dst) 95 { 96 u64 snoop_bits; 97 98 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 99 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 100 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64); 101 } 102 103 static void set_desc_next(struct fsldma_chan *chan, 104 struct fsl_dma_ld_hw *hw, dma_addr_t next) 105 { 106 u64 snoop_bits; 107 108 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 109 ? FSL_DMA_SNEN : 0; 110 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64); 111 } 112 113 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) 114 { 115 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); 116 } 117 118 static dma_addr_t get_cdar(struct fsldma_chan *chan) 119 { 120 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; 121 } 122 123 static dma_addr_t get_ndar(struct fsldma_chan *chan) 124 { 125 return DMA_IN(chan, &chan->regs->ndar, 64); 126 } 127 128 static u32 get_bcr(struct fsldma_chan *chan) 129 { 130 return DMA_IN(chan, &chan->regs->bcr, 32); 131 } 132 133 static int dma_is_idle(struct fsldma_chan *chan) 134 { 135 u32 sr = get_sr(chan); 136 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 137 } 138 139 static void dma_start(struct fsldma_chan *chan) 140 { 141 u32 mode; 142 143 mode = DMA_IN(chan, &chan->regs->mr, 32); 144 145 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 146 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 147 DMA_OUT(chan, &chan->regs->bcr, 0, 32); 148 mode |= FSL_DMA_MR_EMP_EN; 149 } else { 150 mode &= ~FSL_DMA_MR_EMP_EN; 151 } 152 } 153 154 if (chan->feature & FSL_DMA_CHAN_START_EXT) 155 mode |= FSL_DMA_MR_EMS_EN; 156 else 157 mode |= FSL_DMA_MR_CS; 158 159 DMA_OUT(chan, &chan->regs->mr, mode, 32); 160 } 161 162 static void dma_halt(struct fsldma_chan *chan) 163 { 164 u32 mode; 165 int i; 166 167 mode = DMA_IN(chan, &chan->regs->mr, 32); 168 mode |= FSL_DMA_MR_CA; 169 DMA_OUT(chan, &chan->regs->mr, mode, 32); 170 171 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA); 172 DMA_OUT(chan, &chan->regs->mr, mode, 32); 173 174 for (i = 0; i < 100; i++) { 175 if (dma_is_idle(chan)) 176 return; 177 178 udelay(10); 179 } 180 181 if (!dma_is_idle(chan)) 182 dev_err(chan->dev, "DMA halt timeout!\n"); 183 } 184 185 static void set_ld_eol(struct fsldma_chan *chan, 186 struct fsl_desc_sw *desc) 187 { 188 u64 snoop_bits; 189 190 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 191 ? FSL_DMA_SNEN : 0; 192 193 desc->hw.next_ln_addr = CPU_TO_DMA(chan, 194 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 195 | snoop_bits, 64); 196 } 197 198 /** 199 * fsl_chan_set_src_loop_size - Set source address hold transfer size 200 * @chan : Freescale DMA channel 201 * @size : Address loop size, 0 for disable loop 202 * 203 * The set source address hold transfer size. The source 204 * address hold or loop transfer size is when the DMA transfer 205 * data from source address (SA), if the loop size is 4, the DMA will 206 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 207 * SA + 1 ... and so on. 208 */ 209 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size) 210 { 211 u32 mode; 212 213 mode = DMA_IN(chan, &chan->regs->mr, 32); 214 215 switch (size) { 216 case 0: 217 mode &= ~FSL_DMA_MR_SAHE; 218 break; 219 case 1: 220 case 2: 221 case 4: 222 case 8: 223 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14); 224 break; 225 } 226 227 DMA_OUT(chan, &chan->regs->mr, mode, 32); 228 } 229 230 /** 231 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size 232 * @chan : Freescale DMA channel 233 * @size : Address loop size, 0 for disable loop 234 * 235 * The set destination address hold transfer size. The destination 236 * address hold or loop transfer size is when the DMA transfer 237 * data to destination address (TA), if the loop size is 4, the DMA will 238 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 239 * TA + 1 ... and so on. 240 */ 241 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size) 242 { 243 u32 mode; 244 245 mode = DMA_IN(chan, &chan->regs->mr, 32); 246 247 switch (size) { 248 case 0: 249 mode &= ~FSL_DMA_MR_DAHE; 250 break; 251 case 1: 252 case 2: 253 case 4: 254 case 8: 255 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16); 256 break; 257 } 258 259 DMA_OUT(chan, &chan->regs->mr, mode, 32); 260 } 261 262 /** 263 * fsl_chan_set_request_count - Set DMA Request Count for external control 264 * @chan : Freescale DMA channel 265 * @size : Number of bytes to transfer in a single request 266 * 267 * The Freescale DMA channel can be controlled by the external signal DREQ#. 268 * The DMA request count is how many bytes are allowed to transfer before 269 * pausing the channel, after which a new assertion of DREQ# resumes channel 270 * operation. 271 * 272 * A size of 0 disables external pause control. The maximum size is 1024. 273 */ 274 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size) 275 { 276 u32 mode; 277 278 BUG_ON(size > 1024); 279 280 mode = DMA_IN(chan, &chan->regs->mr, 32); 281 mode |= (__ilog2(size) << 24) & 0x0f000000; 282 283 DMA_OUT(chan, &chan->regs->mr, mode, 32); 284 } 285 286 /** 287 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 288 * @chan : Freescale DMA channel 289 * @enable : 0 is disabled, 1 is enabled. 290 * 291 * The Freescale DMA channel can be controlled by the external signal DREQ#. 292 * The DMA Request Count feature should be used in addition to this feature 293 * to set the number of bytes to transfer before pausing the channel. 294 */ 295 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable) 296 { 297 if (enable) 298 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 299 else 300 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 301 } 302 303 /** 304 * fsl_chan_toggle_ext_start - Toggle channel external start status 305 * @chan : Freescale DMA channel 306 * @enable : 0 is disabled, 1 is enabled. 307 * 308 * If enable the external start, the channel can be started by an 309 * external DMA start pin. So the dma_start() does not start the 310 * transfer immediately. The DMA channel will wait for the 311 * control pin asserted. 312 */ 313 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable) 314 { 315 if (enable) 316 chan->feature |= FSL_DMA_CHAN_START_EXT; 317 else 318 chan->feature &= ~FSL_DMA_CHAN_START_EXT; 319 } 320 321 static void append_ld_queue(struct fsldma_chan *chan, 322 struct fsl_desc_sw *desc) 323 { 324 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); 325 326 if (list_empty(&chan->ld_pending)) 327 goto out_splice; 328 329 /* 330 * Add the hardware descriptor to the chain of hardware descriptors 331 * that already exists in memory. 332 * 333 * This will un-set the EOL bit of the existing transaction, and the 334 * last link in this transaction will become the EOL descriptor. 335 */ 336 set_desc_next(chan, &tail->hw, desc->async_tx.phys); 337 338 /* 339 * Add the software descriptor and all children to the list 340 * of pending transactions 341 */ 342 out_splice: 343 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 344 } 345 346 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 347 { 348 struct fsldma_chan *chan = to_fsl_chan(tx->chan); 349 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); 350 struct fsl_desc_sw *child; 351 unsigned long flags; 352 dma_cookie_t cookie; 353 354 spin_lock_irqsave(&chan->desc_lock, flags); 355 356 /* 357 * assign cookies to all of the software descriptors 358 * that make up this transaction 359 */ 360 cookie = chan->common.cookie; 361 list_for_each_entry(child, &desc->tx_list, node) { 362 cookie++; 363 if (cookie < 0) 364 cookie = 1; 365 366 child->async_tx.cookie = cookie; 367 } 368 369 chan->common.cookie = cookie; 370 371 /* put this transaction onto the tail of the pending queue */ 372 append_ld_queue(chan, desc); 373 374 spin_unlock_irqrestore(&chan->desc_lock, flags); 375 376 return cookie; 377 } 378 379 /** 380 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 381 * @chan : Freescale DMA channel 382 * 383 * Return - The descriptor allocated. NULL for failed. 384 */ 385 static struct fsl_desc_sw *fsl_dma_alloc_descriptor( 386 struct fsldma_chan *chan) 387 { 388 struct fsl_desc_sw *desc; 389 dma_addr_t pdesc; 390 391 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 392 if (!desc) { 393 dev_dbg(chan->dev, "out of memory for link desc\n"); 394 return NULL; 395 } 396 397 memset(desc, 0, sizeof(*desc)); 398 INIT_LIST_HEAD(&desc->tx_list); 399 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 400 desc->async_tx.tx_submit = fsl_dma_tx_submit; 401 desc->async_tx.phys = pdesc; 402 403 return desc; 404 } 405 406 407 /** 408 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 409 * @chan : Freescale DMA channel 410 * 411 * This function will create a dma pool for descriptor allocation. 412 * 413 * Return - The number of descriptors allocated. 414 */ 415 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan) 416 { 417 struct fsldma_chan *chan = to_fsl_chan(dchan); 418 419 /* Has this channel already been allocated? */ 420 if (chan->desc_pool) 421 return 1; 422 423 /* 424 * We need the descriptor to be aligned to 32bytes 425 * for meeting FSL DMA specification requirement. 426 */ 427 chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool", 428 chan->dev, 429 sizeof(struct fsl_desc_sw), 430 __alignof__(struct fsl_desc_sw), 0); 431 if (!chan->desc_pool) { 432 dev_err(chan->dev, "unable to allocate channel %d " 433 "descriptor pool\n", chan->id); 434 return -ENOMEM; 435 } 436 437 /* there is at least one descriptor free to be allocated */ 438 return 1; 439 } 440 441 /** 442 * fsldma_free_desc_list - Free all descriptors in a queue 443 * @chan: Freescae DMA channel 444 * @list: the list to free 445 * 446 * LOCKING: must hold chan->desc_lock 447 */ 448 static void fsldma_free_desc_list(struct fsldma_chan *chan, 449 struct list_head *list) 450 { 451 struct fsl_desc_sw *desc, *_desc; 452 453 list_for_each_entry_safe(desc, _desc, list, node) { 454 list_del(&desc->node); 455 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 456 } 457 } 458 459 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan, 460 struct list_head *list) 461 { 462 struct fsl_desc_sw *desc, *_desc; 463 464 list_for_each_entry_safe_reverse(desc, _desc, list, node) { 465 list_del(&desc->node); 466 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 467 } 468 } 469 470 /** 471 * fsl_dma_free_chan_resources - Free all resources of the channel. 472 * @chan : Freescale DMA channel 473 */ 474 static void fsl_dma_free_chan_resources(struct dma_chan *dchan) 475 { 476 struct fsldma_chan *chan = to_fsl_chan(dchan); 477 unsigned long flags; 478 479 dev_dbg(chan->dev, "Free all channel resources.\n"); 480 spin_lock_irqsave(&chan->desc_lock, flags); 481 fsldma_free_desc_list(chan, &chan->ld_pending); 482 fsldma_free_desc_list(chan, &chan->ld_running); 483 spin_unlock_irqrestore(&chan->desc_lock, flags); 484 485 dma_pool_destroy(chan->desc_pool); 486 chan->desc_pool = NULL; 487 } 488 489 static struct dma_async_tx_descriptor * 490 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags) 491 { 492 struct fsldma_chan *chan; 493 struct fsl_desc_sw *new; 494 495 if (!dchan) 496 return NULL; 497 498 chan = to_fsl_chan(dchan); 499 500 new = fsl_dma_alloc_descriptor(chan); 501 if (!new) { 502 dev_err(chan->dev, "No free memory for link descriptor\n"); 503 return NULL; 504 } 505 506 new->async_tx.cookie = -EBUSY; 507 new->async_tx.flags = flags; 508 509 /* Insert the link descriptor to the LD ring */ 510 list_add_tail(&new->node, &new->tx_list); 511 512 /* Set End-of-link to the last link descriptor of new list*/ 513 set_ld_eol(chan, new); 514 515 return &new->async_tx; 516 } 517 518 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( 519 struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src, 520 size_t len, unsigned long flags) 521 { 522 struct fsldma_chan *chan; 523 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 524 size_t copy; 525 526 if (!dchan) 527 return NULL; 528 529 if (!len) 530 return NULL; 531 532 chan = to_fsl_chan(dchan); 533 534 do { 535 536 /* Allocate the link descriptor from DMA pool */ 537 new = fsl_dma_alloc_descriptor(chan); 538 if (!new) { 539 dev_err(chan->dev, 540 "No free memory for link descriptor\n"); 541 goto fail; 542 } 543 #ifdef FSL_DMA_LD_DEBUG 544 dev_dbg(chan->dev, "new link desc alloc %p\n", new); 545 #endif 546 547 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 548 549 set_desc_cnt(chan, &new->hw, copy); 550 set_desc_src(chan, &new->hw, dma_src); 551 set_desc_dst(chan, &new->hw, dma_dst); 552 553 if (!first) 554 first = new; 555 else 556 set_desc_next(chan, &prev->hw, new->async_tx.phys); 557 558 new->async_tx.cookie = 0; 559 async_tx_ack(&new->async_tx); 560 561 prev = new; 562 len -= copy; 563 dma_src += copy; 564 dma_dst += copy; 565 566 /* Insert the link descriptor to the LD ring */ 567 list_add_tail(&new->node, &first->tx_list); 568 } while (len); 569 570 new->async_tx.flags = flags; /* client is in control of this ack */ 571 new->async_tx.cookie = -EBUSY; 572 573 /* Set End-of-link to the last link descriptor of new list*/ 574 set_ld_eol(chan, new); 575 576 return &first->async_tx; 577 578 fail: 579 if (!first) 580 return NULL; 581 582 fsldma_free_desc_list_reverse(chan, &first->tx_list); 583 return NULL; 584 } 585 586 /** 587 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 588 * @chan: DMA channel 589 * @sgl: scatterlist to transfer to/from 590 * @sg_len: number of entries in @scatterlist 591 * @direction: DMA direction 592 * @flags: DMAEngine flags 593 * 594 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the 595 * DMA_SLAVE API, this gets the device-specific information from the 596 * chan->private variable. 597 */ 598 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( 599 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, 600 enum dma_data_direction direction, unsigned long flags) 601 { 602 struct fsldma_chan *chan; 603 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; 604 struct fsl_dma_slave *slave; 605 size_t copy; 606 607 int i; 608 struct scatterlist *sg; 609 size_t sg_used; 610 size_t hw_used; 611 struct fsl_dma_hw_addr *hw; 612 dma_addr_t dma_dst, dma_src; 613 614 if (!dchan) 615 return NULL; 616 617 if (!dchan->private) 618 return NULL; 619 620 chan = to_fsl_chan(dchan); 621 slave = dchan->private; 622 623 if (list_empty(&slave->addresses)) 624 return NULL; 625 626 hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry); 627 hw_used = 0; 628 629 /* 630 * Build the hardware transaction to copy from the scatterlist to 631 * the hardware, or from the hardware to the scatterlist 632 * 633 * If you are copying from the hardware to the scatterlist and it 634 * takes two hardware entries to fill an entire page, then both 635 * hardware entries will be coalesced into the same page 636 * 637 * If you are copying from the scatterlist to the hardware and a 638 * single page can fill two hardware entries, then the data will 639 * be read out of the page into the first hardware entry, and so on 640 */ 641 for_each_sg(sgl, sg, sg_len, i) { 642 sg_used = 0; 643 644 /* Loop until the entire scatterlist entry is used */ 645 while (sg_used < sg_dma_len(sg)) { 646 647 /* 648 * If we've used up the current hardware address/length 649 * pair, we need to load a new one 650 * 651 * This is done in a while loop so that descriptors with 652 * length == 0 will be skipped 653 */ 654 while (hw_used >= hw->length) { 655 656 /* 657 * If the current hardware entry is the last 658 * entry in the list, we're finished 659 */ 660 if (list_is_last(&hw->entry, &slave->addresses)) 661 goto finished; 662 663 /* Get the next hardware address/length pair */ 664 hw = list_entry(hw->entry.next, 665 struct fsl_dma_hw_addr, entry); 666 hw_used = 0; 667 } 668 669 /* Allocate the link descriptor from DMA pool */ 670 new = fsl_dma_alloc_descriptor(chan); 671 if (!new) { 672 dev_err(chan->dev, "No free memory for " 673 "link descriptor\n"); 674 goto fail; 675 } 676 #ifdef FSL_DMA_LD_DEBUG 677 dev_dbg(chan->dev, "new link desc alloc %p\n", new); 678 #endif 679 680 /* 681 * Calculate the maximum number of bytes to transfer, 682 * making sure it is less than the DMA controller limit 683 */ 684 copy = min_t(size_t, sg_dma_len(sg) - sg_used, 685 hw->length - hw_used); 686 copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT); 687 688 /* 689 * DMA_FROM_DEVICE 690 * from the hardware to the scatterlist 691 * 692 * DMA_TO_DEVICE 693 * from the scatterlist to the hardware 694 */ 695 if (direction == DMA_FROM_DEVICE) { 696 dma_src = hw->address + hw_used; 697 dma_dst = sg_dma_address(sg) + sg_used; 698 } else { 699 dma_src = sg_dma_address(sg) + sg_used; 700 dma_dst = hw->address + hw_used; 701 } 702 703 /* Fill in the descriptor */ 704 set_desc_cnt(chan, &new->hw, copy); 705 set_desc_src(chan, &new->hw, dma_src); 706 set_desc_dst(chan, &new->hw, dma_dst); 707 708 /* 709 * If this is not the first descriptor, chain the 710 * current descriptor after the previous descriptor 711 */ 712 if (!first) { 713 first = new; 714 } else { 715 set_desc_next(chan, &prev->hw, 716 new->async_tx.phys); 717 } 718 719 new->async_tx.cookie = 0; 720 async_tx_ack(&new->async_tx); 721 722 prev = new; 723 sg_used += copy; 724 hw_used += copy; 725 726 /* Insert the link descriptor into the LD ring */ 727 list_add_tail(&new->node, &first->tx_list); 728 } 729 } 730 731 finished: 732 733 /* All of the hardware address/length pairs had length == 0 */ 734 if (!first || !new) 735 return NULL; 736 737 new->async_tx.flags = flags; 738 new->async_tx.cookie = -EBUSY; 739 740 /* Set End-of-link to the last link descriptor of new list */ 741 set_ld_eol(chan, new); 742 743 /* Enable extra controller features */ 744 if (chan->set_src_loop_size) 745 chan->set_src_loop_size(chan, slave->src_loop_size); 746 747 if (chan->set_dst_loop_size) 748 chan->set_dst_loop_size(chan, slave->dst_loop_size); 749 750 if (chan->toggle_ext_start) 751 chan->toggle_ext_start(chan, slave->external_start); 752 753 if (chan->toggle_ext_pause) 754 chan->toggle_ext_pause(chan, slave->external_pause); 755 756 if (chan->set_request_count) 757 chan->set_request_count(chan, slave->request_count); 758 759 return &first->async_tx; 760 761 fail: 762 /* If first was not set, then we failed to allocate the very first 763 * descriptor, and we're done */ 764 if (!first) 765 return NULL; 766 767 /* 768 * First is set, so all of the descriptors we allocated have been added 769 * to first->tx_list, INCLUDING "first" itself. Therefore we 770 * must traverse the list backwards freeing each descriptor in turn 771 * 772 * We're re-using variables for the loop, oh well 773 */ 774 fsldma_free_desc_list_reverse(chan, &first->tx_list); 775 return NULL; 776 } 777 778 static int fsl_dma_device_control(struct dma_chan *dchan, 779 enum dma_ctrl_cmd cmd, unsigned long arg) 780 { 781 struct fsldma_chan *chan; 782 unsigned long flags; 783 784 /* Only supports DMA_TERMINATE_ALL */ 785 if (cmd != DMA_TERMINATE_ALL) 786 return -ENXIO; 787 788 if (!dchan) 789 return -EINVAL; 790 791 chan = to_fsl_chan(dchan); 792 793 /* Halt the DMA engine */ 794 dma_halt(chan); 795 796 spin_lock_irqsave(&chan->desc_lock, flags); 797 798 /* Remove and free all of the descriptors in the LD queue */ 799 fsldma_free_desc_list(chan, &chan->ld_pending); 800 fsldma_free_desc_list(chan, &chan->ld_running); 801 802 spin_unlock_irqrestore(&chan->desc_lock, flags); 803 804 return 0; 805 } 806 807 /** 808 * fsl_dma_update_completed_cookie - Update the completed cookie. 809 * @chan : Freescale DMA channel 810 * 811 * CONTEXT: hardirq 812 */ 813 static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan) 814 { 815 struct fsl_desc_sw *desc; 816 unsigned long flags; 817 dma_cookie_t cookie; 818 819 spin_lock_irqsave(&chan->desc_lock, flags); 820 821 if (list_empty(&chan->ld_running)) { 822 dev_dbg(chan->dev, "no running descriptors\n"); 823 goto out_unlock; 824 } 825 826 /* Get the last descriptor, update the cookie to that */ 827 desc = to_fsl_desc(chan->ld_running.prev); 828 if (dma_is_idle(chan)) 829 cookie = desc->async_tx.cookie; 830 else { 831 cookie = desc->async_tx.cookie - 1; 832 if (unlikely(cookie < DMA_MIN_COOKIE)) 833 cookie = DMA_MAX_COOKIE; 834 } 835 836 chan->completed_cookie = cookie; 837 838 out_unlock: 839 spin_unlock_irqrestore(&chan->desc_lock, flags); 840 } 841 842 /** 843 * fsldma_desc_status - Check the status of a descriptor 844 * @chan: Freescale DMA channel 845 * @desc: DMA SW descriptor 846 * 847 * This function will return the status of the given descriptor 848 */ 849 static enum dma_status fsldma_desc_status(struct fsldma_chan *chan, 850 struct fsl_desc_sw *desc) 851 { 852 return dma_async_is_complete(desc->async_tx.cookie, 853 chan->completed_cookie, 854 chan->common.cookie); 855 } 856 857 /** 858 * fsl_chan_ld_cleanup - Clean up link descriptors 859 * @chan : Freescale DMA channel 860 * 861 * This function clean up the ld_queue of DMA channel. 862 */ 863 static void fsl_chan_ld_cleanup(struct fsldma_chan *chan) 864 { 865 struct fsl_desc_sw *desc, *_desc; 866 unsigned long flags; 867 868 spin_lock_irqsave(&chan->desc_lock, flags); 869 870 dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie); 871 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) { 872 dma_async_tx_callback callback; 873 void *callback_param; 874 875 if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS) 876 break; 877 878 /* Remove from the list of running transactions */ 879 list_del(&desc->node); 880 881 /* Run the link descriptor callback function */ 882 callback = desc->async_tx.callback; 883 callback_param = desc->async_tx.callback_param; 884 if (callback) { 885 spin_unlock_irqrestore(&chan->desc_lock, flags); 886 dev_dbg(chan->dev, "LD %p callback\n", desc); 887 callback(callback_param); 888 spin_lock_irqsave(&chan->desc_lock, flags); 889 } 890 891 /* Run any dependencies, then free the descriptor */ 892 dma_run_dependencies(&desc->async_tx); 893 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 894 } 895 896 spin_unlock_irqrestore(&chan->desc_lock, flags); 897 } 898 899 /** 900 * fsl_chan_xfer_ld_queue - transfer any pending transactions 901 * @chan : Freescale DMA channel 902 * 903 * This will make sure that any pending transactions will be run. 904 * If the DMA controller is idle, it will be started. Otherwise, 905 * the DMA controller's interrupt handler will start any pending 906 * transactions when it becomes idle. 907 */ 908 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) 909 { 910 struct fsl_desc_sw *desc; 911 unsigned long flags; 912 913 spin_lock_irqsave(&chan->desc_lock, flags); 914 915 /* 916 * If the list of pending descriptors is empty, then we 917 * don't need to do any work at all 918 */ 919 if (list_empty(&chan->ld_pending)) { 920 dev_dbg(chan->dev, "no pending LDs\n"); 921 goto out_unlock; 922 } 923 924 /* 925 * The DMA controller is not idle, which means the interrupt 926 * handler will start any queued transactions when it runs 927 * at the end of the current transaction 928 */ 929 if (!dma_is_idle(chan)) { 930 dev_dbg(chan->dev, "DMA controller still busy\n"); 931 goto out_unlock; 932 } 933 934 /* 935 * TODO: 936 * make sure the dma_halt() function really un-wedges the 937 * controller as much as possible 938 */ 939 dma_halt(chan); 940 941 /* 942 * If there are some link descriptors which have not been 943 * transferred, we need to start the controller 944 */ 945 946 /* 947 * Move all elements from the queue of pending transactions 948 * onto the list of running transactions 949 */ 950 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); 951 list_splice_tail_init(&chan->ld_pending, &chan->ld_running); 952 953 /* 954 * Program the descriptor's address into the DMA controller, 955 * then start the DMA transaction 956 */ 957 set_cdar(chan, desc->async_tx.phys); 958 dma_start(chan); 959 960 out_unlock: 961 spin_unlock_irqrestore(&chan->desc_lock, flags); 962 } 963 964 /** 965 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 966 * @chan : Freescale DMA channel 967 */ 968 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) 969 { 970 struct fsldma_chan *chan = to_fsl_chan(dchan); 971 fsl_chan_xfer_ld_queue(chan); 972 } 973 974 /** 975 * fsl_tx_status - Determine the DMA status 976 * @chan : Freescale DMA channel 977 */ 978 static enum dma_status fsl_tx_status(struct dma_chan *dchan, 979 dma_cookie_t cookie, 980 struct dma_tx_state *txstate) 981 { 982 struct fsldma_chan *chan = to_fsl_chan(dchan); 983 dma_cookie_t last_used; 984 dma_cookie_t last_complete; 985 986 fsl_chan_ld_cleanup(chan); 987 988 last_used = dchan->cookie; 989 last_complete = chan->completed_cookie; 990 991 dma_set_tx_state(txstate, last_complete, last_used, 0); 992 993 return dma_async_is_complete(cookie, last_complete, last_used); 994 } 995 996 /*----------------------------------------------------------------------------*/ 997 /* Interrupt Handling */ 998 /*----------------------------------------------------------------------------*/ 999 1000 static irqreturn_t fsldma_chan_irq(int irq, void *data) 1001 { 1002 struct fsldma_chan *chan = data; 1003 int update_cookie = 0; 1004 int xfer_ld_q = 0; 1005 u32 stat; 1006 1007 /* save and clear the status register */ 1008 stat = get_sr(chan); 1009 set_sr(chan, stat); 1010 dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat); 1011 1012 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 1013 if (!stat) 1014 return IRQ_NONE; 1015 1016 if (stat & FSL_DMA_SR_TE) 1017 dev_err(chan->dev, "Transfer Error!\n"); 1018 1019 /* 1020 * Programming Error 1021 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 1022 * triger a PE interrupt. 1023 */ 1024 if (stat & FSL_DMA_SR_PE) { 1025 dev_dbg(chan->dev, "irq: Programming Error INT\n"); 1026 if (get_bcr(chan) == 0) { 1027 /* BCR register is 0, this is a DMA_INTERRUPT async_tx. 1028 * Now, update the completed cookie, and continue the 1029 * next uncompleted transfer. 1030 */ 1031 update_cookie = 1; 1032 xfer_ld_q = 1; 1033 } 1034 stat &= ~FSL_DMA_SR_PE; 1035 } 1036 1037 /* 1038 * If the link descriptor segment transfer finishes, 1039 * we will recycle the used descriptor. 1040 */ 1041 if (stat & FSL_DMA_SR_EOSI) { 1042 dev_dbg(chan->dev, "irq: End-of-segments INT\n"); 1043 dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n", 1044 (unsigned long long)get_cdar(chan), 1045 (unsigned long long)get_ndar(chan)); 1046 stat &= ~FSL_DMA_SR_EOSI; 1047 update_cookie = 1; 1048 } 1049 1050 /* 1051 * For MPC8349, EOCDI event need to update cookie 1052 * and start the next transfer if it exist. 1053 */ 1054 if (stat & FSL_DMA_SR_EOCDI) { 1055 dev_dbg(chan->dev, "irq: End-of-Chain link INT\n"); 1056 stat &= ~FSL_DMA_SR_EOCDI; 1057 update_cookie = 1; 1058 xfer_ld_q = 1; 1059 } 1060 1061 /* 1062 * If it current transfer is the end-of-transfer, 1063 * we should clear the Channel Start bit for 1064 * prepare next transfer. 1065 */ 1066 if (stat & FSL_DMA_SR_EOLNI) { 1067 dev_dbg(chan->dev, "irq: End-of-link INT\n"); 1068 stat &= ~FSL_DMA_SR_EOLNI; 1069 xfer_ld_q = 1; 1070 } 1071 1072 if (update_cookie) 1073 fsl_dma_update_completed_cookie(chan); 1074 if (xfer_ld_q) 1075 fsl_chan_xfer_ld_queue(chan); 1076 if (stat) 1077 dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat); 1078 1079 dev_dbg(chan->dev, "irq: Exit\n"); 1080 tasklet_schedule(&chan->tasklet); 1081 return IRQ_HANDLED; 1082 } 1083 1084 static void dma_do_tasklet(unsigned long data) 1085 { 1086 struct fsldma_chan *chan = (struct fsldma_chan *)data; 1087 fsl_chan_ld_cleanup(chan); 1088 } 1089 1090 static irqreturn_t fsldma_ctrl_irq(int irq, void *data) 1091 { 1092 struct fsldma_device *fdev = data; 1093 struct fsldma_chan *chan; 1094 unsigned int handled = 0; 1095 u32 gsr, mask; 1096 int i; 1097 1098 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs) 1099 : in_le32(fdev->regs); 1100 mask = 0xff000000; 1101 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr); 1102 1103 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1104 chan = fdev->chan[i]; 1105 if (!chan) 1106 continue; 1107 1108 if (gsr & mask) { 1109 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id); 1110 fsldma_chan_irq(irq, chan); 1111 handled++; 1112 } 1113 1114 gsr &= ~mask; 1115 mask >>= 8; 1116 } 1117 1118 return IRQ_RETVAL(handled); 1119 } 1120 1121 static void fsldma_free_irqs(struct fsldma_device *fdev) 1122 { 1123 struct fsldma_chan *chan; 1124 int i; 1125 1126 if (fdev->irq != NO_IRQ) { 1127 dev_dbg(fdev->dev, "free per-controller IRQ\n"); 1128 free_irq(fdev->irq, fdev); 1129 return; 1130 } 1131 1132 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1133 chan = fdev->chan[i]; 1134 if (chan && chan->irq != NO_IRQ) { 1135 dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id); 1136 free_irq(chan->irq, chan); 1137 } 1138 } 1139 } 1140 1141 static int fsldma_request_irqs(struct fsldma_device *fdev) 1142 { 1143 struct fsldma_chan *chan; 1144 int ret; 1145 int i; 1146 1147 /* if we have a per-controller IRQ, use that */ 1148 if (fdev->irq != NO_IRQ) { 1149 dev_dbg(fdev->dev, "request per-controller IRQ\n"); 1150 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED, 1151 "fsldma-controller", fdev); 1152 return ret; 1153 } 1154 1155 /* no per-controller IRQ, use the per-channel IRQs */ 1156 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1157 chan = fdev->chan[i]; 1158 if (!chan) 1159 continue; 1160 1161 if (chan->irq == NO_IRQ) { 1162 dev_err(fdev->dev, "no interrupts property defined for " 1163 "DMA channel %d. Please fix your " 1164 "device tree\n", chan->id); 1165 ret = -ENODEV; 1166 goto out_unwind; 1167 } 1168 1169 dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id); 1170 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, 1171 "fsldma-chan", chan); 1172 if (ret) { 1173 dev_err(fdev->dev, "unable to request IRQ for DMA " 1174 "channel %d\n", chan->id); 1175 goto out_unwind; 1176 } 1177 } 1178 1179 return 0; 1180 1181 out_unwind: 1182 for (/* none */; i >= 0; i--) { 1183 chan = fdev->chan[i]; 1184 if (!chan) 1185 continue; 1186 1187 if (chan->irq == NO_IRQ) 1188 continue; 1189 1190 free_irq(chan->irq, chan); 1191 } 1192 1193 return ret; 1194 } 1195 1196 /*----------------------------------------------------------------------------*/ 1197 /* OpenFirmware Subsystem */ 1198 /*----------------------------------------------------------------------------*/ 1199 1200 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev, 1201 struct device_node *node, u32 feature, const char *compatible) 1202 { 1203 struct fsldma_chan *chan; 1204 struct resource res; 1205 int err; 1206 1207 /* alloc channel */ 1208 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1209 if (!chan) { 1210 dev_err(fdev->dev, "no free memory for DMA channels!\n"); 1211 err = -ENOMEM; 1212 goto out_return; 1213 } 1214 1215 /* ioremap registers for use */ 1216 chan->regs = of_iomap(node, 0); 1217 if (!chan->regs) { 1218 dev_err(fdev->dev, "unable to ioremap registers\n"); 1219 err = -ENOMEM; 1220 goto out_free_chan; 1221 } 1222 1223 err = of_address_to_resource(node, 0, &res); 1224 if (err) { 1225 dev_err(fdev->dev, "unable to find 'reg' property\n"); 1226 goto out_iounmap_regs; 1227 } 1228 1229 chan->feature = feature; 1230 if (!fdev->feature) 1231 fdev->feature = chan->feature; 1232 1233 /* 1234 * If the DMA device's feature is different than the feature 1235 * of its channels, report the bug 1236 */ 1237 WARN_ON(fdev->feature != chan->feature); 1238 1239 chan->dev = fdev->dev; 1240 chan->id = ((res.start - 0x100) & 0xfff) >> 7; 1241 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 1242 dev_err(fdev->dev, "too many channels for device\n"); 1243 err = -EINVAL; 1244 goto out_iounmap_regs; 1245 } 1246 1247 fdev->chan[chan->id] = chan; 1248 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 1249 1250 /* Initialize the channel */ 1251 dma_init(chan); 1252 1253 /* Clear cdar registers */ 1254 set_cdar(chan, 0); 1255 1256 switch (chan->feature & FSL_DMA_IP_MASK) { 1257 case FSL_DMA_IP_85XX: 1258 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 1259 case FSL_DMA_IP_83XX: 1260 chan->toggle_ext_start = fsl_chan_toggle_ext_start; 1261 chan->set_src_loop_size = fsl_chan_set_src_loop_size; 1262 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size; 1263 chan->set_request_count = fsl_chan_set_request_count; 1264 } 1265 1266 spin_lock_init(&chan->desc_lock); 1267 INIT_LIST_HEAD(&chan->ld_pending); 1268 INIT_LIST_HEAD(&chan->ld_running); 1269 1270 chan->common.device = &fdev->common; 1271 1272 /* find the IRQ line, if it exists in the device tree */ 1273 chan->irq = irq_of_parse_and_map(node, 0); 1274 1275 /* Add the channel to DMA device channel list */ 1276 list_add_tail(&chan->common.device_node, &fdev->common.channels); 1277 fdev->common.chancnt++; 1278 1279 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible, 1280 chan->irq != NO_IRQ ? chan->irq : fdev->irq); 1281 1282 return 0; 1283 1284 out_iounmap_regs: 1285 iounmap(chan->regs); 1286 out_free_chan: 1287 kfree(chan); 1288 out_return: 1289 return err; 1290 } 1291 1292 static void fsl_dma_chan_remove(struct fsldma_chan *chan) 1293 { 1294 irq_dispose_mapping(chan->irq); 1295 list_del(&chan->common.device_node); 1296 iounmap(chan->regs); 1297 kfree(chan); 1298 } 1299 1300 static int __devinit fsldma_of_probe(struct platform_device *op, 1301 const struct of_device_id *match) 1302 { 1303 struct fsldma_device *fdev; 1304 struct device_node *child; 1305 int err; 1306 1307 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL); 1308 if (!fdev) { 1309 dev_err(&op->dev, "No enough memory for 'priv'\n"); 1310 err = -ENOMEM; 1311 goto out_return; 1312 } 1313 1314 fdev->dev = &op->dev; 1315 INIT_LIST_HEAD(&fdev->common.channels); 1316 1317 /* ioremap the registers for use */ 1318 fdev->regs = of_iomap(op->dev.of_node, 0); 1319 if (!fdev->regs) { 1320 dev_err(&op->dev, "unable to ioremap registers\n"); 1321 err = -ENOMEM; 1322 goto out_free_fdev; 1323 } 1324 1325 /* map the channel IRQ if it exists, but don't hookup the handler yet */ 1326 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0); 1327 1328 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1329 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); 1330 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); 1331 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1332 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1333 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; 1334 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1335 fdev->common.device_tx_status = fsl_tx_status; 1336 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1337 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg; 1338 fdev->common.device_control = fsl_dma_device_control; 1339 fdev->common.dev = &op->dev; 1340 1341 dev_set_drvdata(&op->dev, fdev); 1342 1343 /* 1344 * We cannot use of_platform_bus_probe() because there is no 1345 * of_platform_bus_remove(). Instead, we manually instantiate every DMA 1346 * channel object. 1347 */ 1348 for_each_child_of_node(op->dev.of_node, child) { 1349 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) { 1350 fsl_dma_chan_probe(fdev, child, 1351 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 1352 "fsl,eloplus-dma-channel"); 1353 } 1354 1355 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) { 1356 fsl_dma_chan_probe(fdev, child, 1357 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 1358 "fsl,elo-dma-channel"); 1359 } 1360 } 1361 1362 /* 1363 * Hookup the IRQ handler(s) 1364 * 1365 * If we have a per-controller interrupt, we prefer that to the 1366 * per-channel interrupts to reduce the number of shared interrupt 1367 * handlers on the same IRQ line 1368 */ 1369 err = fsldma_request_irqs(fdev); 1370 if (err) { 1371 dev_err(fdev->dev, "unable to request IRQs\n"); 1372 goto out_free_fdev; 1373 } 1374 1375 dma_async_device_register(&fdev->common); 1376 return 0; 1377 1378 out_free_fdev: 1379 irq_dispose_mapping(fdev->irq); 1380 kfree(fdev); 1381 out_return: 1382 return err; 1383 } 1384 1385 static int fsldma_of_remove(struct platform_device *op) 1386 { 1387 struct fsldma_device *fdev; 1388 unsigned int i; 1389 1390 fdev = dev_get_drvdata(&op->dev); 1391 dma_async_device_unregister(&fdev->common); 1392 1393 fsldma_free_irqs(fdev); 1394 1395 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1396 if (fdev->chan[i]) 1397 fsl_dma_chan_remove(fdev->chan[i]); 1398 } 1399 1400 iounmap(fdev->regs); 1401 dev_set_drvdata(&op->dev, NULL); 1402 kfree(fdev); 1403 1404 return 0; 1405 } 1406 1407 static const struct of_device_id fsldma_of_ids[] = { 1408 { .compatible = "fsl,eloplus-dma", }, 1409 { .compatible = "fsl,elo-dma", }, 1410 {} 1411 }; 1412 1413 static struct of_platform_driver fsldma_of_driver = { 1414 .driver = { 1415 .name = "fsl-elo-dma", 1416 .owner = THIS_MODULE, 1417 .of_match_table = fsldma_of_ids, 1418 }, 1419 .probe = fsldma_of_probe, 1420 .remove = fsldma_of_remove, 1421 }; 1422 1423 /*----------------------------------------------------------------------------*/ 1424 /* Module Init / Exit */ 1425 /*----------------------------------------------------------------------------*/ 1426 1427 static __init int fsldma_init(void) 1428 { 1429 int ret; 1430 1431 pr_info("Freescale Elo / Elo Plus DMA driver\n"); 1432 1433 ret = of_register_platform_driver(&fsldma_of_driver); 1434 if (ret) 1435 pr_err("fsldma: failed to register platform driver\n"); 1436 1437 return ret; 1438 } 1439 1440 static void __exit fsldma_exit(void) 1441 { 1442 of_unregister_platform_driver(&fsldma_of_driver); 1443 } 1444 1445 subsys_initcall(fsldma_init); 1446 module_exit(fsldma_exit); 1447 1448 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver"); 1449 MODULE_LICENSE("GPL"); 1450