1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA controller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/slab.h> 31 #include <linux/interrupt.h> 32 #include <linux/dmaengine.h> 33 #include <linux/delay.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/dmapool.h> 36 #include <linux/of_address.h> 37 #include <linux/of_irq.h> 38 #include <linux/of_platform.h> 39 #include <linux/fsldma.h> 40 #include "dmaengine.h" 41 #include "fsldma.h" 42 43 #define chan_dbg(chan, fmt, arg...) \ 44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) 45 #define chan_err(chan, fmt, arg...) \ 46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) 47 48 static const char msg_ld_oom[] = "No free memory for link descriptor"; 49 50 /* 51 * Register Helpers 52 */ 53 54 static void set_sr(struct fsldma_chan *chan, u32 val) 55 { 56 DMA_OUT(chan, &chan->regs->sr, val, 32); 57 } 58 59 static u32 get_sr(struct fsldma_chan *chan) 60 { 61 return DMA_IN(chan, &chan->regs->sr, 32); 62 } 63 64 static void set_mr(struct fsldma_chan *chan, u32 val) 65 { 66 DMA_OUT(chan, &chan->regs->mr, val, 32); 67 } 68 69 static u32 get_mr(struct fsldma_chan *chan) 70 { 71 return DMA_IN(chan, &chan->regs->mr, 32); 72 } 73 74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) 75 { 76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); 77 } 78 79 static dma_addr_t get_cdar(struct fsldma_chan *chan) 80 { 81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; 82 } 83 84 static void set_bcr(struct fsldma_chan *chan, u32 val) 85 { 86 DMA_OUT(chan, &chan->regs->bcr, val, 32); 87 } 88 89 static u32 get_bcr(struct fsldma_chan *chan) 90 { 91 return DMA_IN(chan, &chan->regs->bcr, 32); 92 } 93 94 /* 95 * Descriptor Helpers 96 */ 97 98 static void set_desc_cnt(struct fsldma_chan *chan, 99 struct fsl_dma_ld_hw *hw, u32 count) 100 { 101 hw->count = CPU_TO_DMA(chan, count, 32); 102 } 103 104 static void set_desc_src(struct fsldma_chan *chan, 105 struct fsl_dma_ld_hw *hw, dma_addr_t src) 106 { 107 u64 snoop_bits; 108 109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64); 112 } 113 114 static void set_desc_dst(struct fsldma_chan *chan, 115 struct fsl_dma_ld_hw *hw, dma_addr_t dst) 116 { 117 u64 snoop_bits; 118 119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64); 122 } 123 124 static void set_desc_next(struct fsldma_chan *chan, 125 struct fsl_dma_ld_hw *hw, dma_addr_t next) 126 { 127 u64 snoop_bits; 128 129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 130 ? FSL_DMA_SNEN : 0; 131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64); 132 } 133 134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 135 { 136 u64 snoop_bits; 137 138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 139 ? FSL_DMA_SNEN : 0; 140 141 desc->hw.next_ln_addr = CPU_TO_DMA(chan, 142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 143 | snoop_bits, 64); 144 } 145 146 /* 147 * DMA Engine Hardware Control Helpers 148 */ 149 150 static void dma_init(struct fsldma_chan *chan) 151 { 152 /* Reset the channel */ 153 set_mr(chan, 0); 154 155 switch (chan->feature & FSL_DMA_IP_MASK) { 156 case FSL_DMA_IP_85XX: 157 /* Set the channel to below modes: 158 * EIE - Error interrupt enable 159 * EOLNIE - End of links interrupt enable 160 * BWC - Bandwidth sharing among channels 161 */ 162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE 163 | FSL_DMA_MR_EOLNIE); 164 break; 165 case FSL_DMA_IP_83XX: 166 /* Set the channel to below modes: 167 * EOTIE - End-of-transfer interrupt enable 168 * PRC_RM - PCI read multiple 169 */ 170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM); 171 break; 172 } 173 } 174 175 static int dma_is_idle(struct fsldma_chan *chan) 176 { 177 u32 sr = get_sr(chan); 178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 179 } 180 181 /* 182 * Start the DMA controller 183 * 184 * Preconditions: 185 * - the CDAR register must point to the start descriptor 186 * - the MRn[CS] bit must be cleared 187 */ 188 static void dma_start(struct fsldma_chan *chan) 189 { 190 u32 mode; 191 192 mode = get_mr(chan); 193 194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 195 set_bcr(chan, 0); 196 mode |= FSL_DMA_MR_EMP_EN; 197 } else { 198 mode &= ~FSL_DMA_MR_EMP_EN; 199 } 200 201 if (chan->feature & FSL_DMA_CHAN_START_EXT) { 202 mode |= FSL_DMA_MR_EMS_EN; 203 } else { 204 mode &= ~FSL_DMA_MR_EMS_EN; 205 mode |= FSL_DMA_MR_CS; 206 } 207 208 set_mr(chan, mode); 209 } 210 211 static void dma_halt(struct fsldma_chan *chan) 212 { 213 u32 mode; 214 int i; 215 216 /* read the mode register */ 217 mode = get_mr(chan); 218 219 /* 220 * The 85xx controller supports channel abort, which will stop 221 * the current transfer. On 83xx, this bit is the transfer error 222 * mask bit, which should not be changed. 223 */ 224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 225 mode |= FSL_DMA_MR_CA; 226 set_mr(chan, mode); 227 228 mode &= ~FSL_DMA_MR_CA; 229 } 230 231 /* stop the DMA controller */ 232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN); 233 set_mr(chan, mode); 234 235 /* wait for the DMA controller to become idle */ 236 for (i = 0; i < 100; i++) { 237 if (dma_is_idle(chan)) 238 return; 239 240 udelay(10); 241 } 242 243 if (!dma_is_idle(chan)) 244 chan_err(chan, "DMA halt timeout!\n"); 245 } 246 247 /** 248 * fsl_chan_set_src_loop_size - Set source address hold transfer size 249 * @chan : Freescale DMA channel 250 * @size : Address loop size, 0 for disable loop 251 * 252 * The set source address hold transfer size. The source 253 * address hold or loop transfer size is when the DMA transfer 254 * data from source address (SA), if the loop size is 4, the DMA will 255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 256 * SA + 1 ... and so on. 257 */ 258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size) 259 { 260 u32 mode; 261 262 mode = get_mr(chan); 263 264 switch (size) { 265 case 0: 266 mode &= ~FSL_DMA_MR_SAHE; 267 break; 268 case 1: 269 case 2: 270 case 4: 271 case 8: 272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14); 273 break; 274 } 275 276 set_mr(chan, mode); 277 } 278 279 /** 280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size 281 * @chan : Freescale DMA channel 282 * @size : Address loop size, 0 for disable loop 283 * 284 * The set destination address hold transfer size. The destination 285 * address hold or loop transfer size is when the DMA transfer 286 * data to destination address (TA), if the loop size is 4, the DMA will 287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 288 * TA + 1 ... and so on. 289 */ 290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size) 291 { 292 u32 mode; 293 294 mode = get_mr(chan); 295 296 switch (size) { 297 case 0: 298 mode &= ~FSL_DMA_MR_DAHE; 299 break; 300 case 1: 301 case 2: 302 case 4: 303 case 8: 304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16); 305 break; 306 } 307 308 set_mr(chan, mode); 309 } 310 311 /** 312 * fsl_chan_set_request_count - Set DMA Request Count for external control 313 * @chan : Freescale DMA channel 314 * @size : Number of bytes to transfer in a single request 315 * 316 * The Freescale DMA channel can be controlled by the external signal DREQ#. 317 * The DMA request count is how many bytes are allowed to transfer before 318 * pausing the channel, after which a new assertion of DREQ# resumes channel 319 * operation. 320 * 321 * A size of 0 disables external pause control. The maximum size is 1024. 322 */ 323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size) 324 { 325 u32 mode; 326 327 BUG_ON(size > 1024); 328 329 mode = get_mr(chan); 330 mode |= (__ilog2(size) << 24) & 0x0f000000; 331 332 set_mr(chan, mode); 333 } 334 335 /** 336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 337 * @chan : Freescale DMA channel 338 * @enable : 0 is disabled, 1 is enabled. 339 * 340 * The Freescale DMA channel can be controlled by the external signal DREQ#. 341 * The DMA Request Count feature should be used in addition to this feature 342 * to set the number of bytes to transfer before pausing the channel. 343 */ 344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable) 345 { 346 if (enable) 347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 348 else 349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 350 } 351 352 /** 353 * fsl_chan_toggle_ext_start - Toggle channel external start status 354 * @chan : Freescale DMA channel 355 * @enable : 0 is disabled, 1 is enabled. 356 * 357 * If enable the external start, the channel can be started by an 358 * external DMA start pin. So the dma_start() does not start the 359 * transfer immediately. The DMA channel will wait for the 360 * control pin asserted. 361 */ 362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable) 363 { 364 if (enable) 365 chan->feature |= FSL_DMA_CHAN_START_EXT; 366 else 367 chan->feature &= ~FSL_DMA_CHAN_START_EXT; 368 } 369 370 int fsl_dma_external_start(struct dma_chan *dchan, int enable) 371 { 372 struct fsldma_chan *chan; 373 374 if (!dchan) 375 return -EINVAL; 376 377 chan = to_fsl_chan(dchan); 378 379 fsl_chan_toggle_ext_start(chan, enable); 380 return 0; 381 } 382 EXPORT_SYMBOL_GPL(fsl_dma_external_start); 383 384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 385 { 386 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); 387 388 if (list_empty(&chan->ld_pending)) 389 goto out_splice; 390 391 /* 392 * Add the hardware descriptor to the chain of hardware descriptors 393 * that already exists in memory. 394 * 395 * This will un-set the EOL bit of the existing transaction, and the 396 * last link in this transaction will become the EOL descriptor. 397 */ 398 set_desc_next(chan, &tail->hw, desc->async_tx.phys); 399 400 /* 401 * Add the software descriptor and all children to the list 402 * of pending transactions 403 */ 404 out_splice: 405 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 406 } 407 408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 409 { 410 struct fsldma_chan *chan = to_fsl_chan(tx->chan); 411 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); 412 struct fsl_desc_sw *child; 413 dma_cookie_t cookie = -EINVAL; 414 415 spin_lock_bh(&chan->desc_lock); 416 417 #ifdef CONFIG_PM 418 if (unlikely(chan->pm_state != RUNNING)) { 419 chan_dbg(chan, "cannot submit due to suspend\n"); 420 spin_unlock_bh(&chan->desc_lock); 421 return -1; 422 } 423 #endif 424 425 /* 426 * assign cookies to all of the software descriptors 427 * that make up this transaction 428 */ 429 list_for_each_entry(child, &desc->tx_list, node) { 430 cookie = dma_cookie_assign(&child->async_tx); 431 } 432 433 /* put this transaction onto the tail of the pending queue */ 434 append_ld_queue(chan, desc); 435 436 spin_unlock_bh(&chan->desc_lock); 437 438 return cookie; 439 } 440 441 /** 442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool. 443 * @chan : Freescale DMA channel 444 * @desc: descriptor to be freed 445 */ 446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan, 447 struct fsl_desc_sw *desc) 448 { 449 list_del(&desc->node); 450 chan_dbg(chan, "LD %p free\n", desc); 451 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 452 } 453 454 /** 455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 456 * @chan : Freescale DMA channel 457 * 458 * Return - The descriptor allocated. NULL for failed. 459 */ 460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan) 461 { 462 struct fsl_desc_sw *desc; 463 dma_addr_t pdesc; 464 465 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 466 if (!desc) { 467 chan_dbg(chan, "out of memory for link descriptor\n"); 468 return NULL; 469 } 470 471 INIT_LIST_HEAD(&desc->tx_list); 472 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 473 desc->async_tx.tx_submit = fsl_dma_tx_submit; 474 desc->async_tx.phys = pdesc; 475 476 chan_dbg(chan, "LD %p allocated\n", desc); 477 478 return desc; 479 } 480 481 /** 482 * fsldma_clean_completed_descriptor - free all descriptors which 483 * has been completed and acked 484 * @chan: Freescale DMA channel 485 * 486 * This function is used on all completed and acked descriptors. 487 * All descriptors should only be freed in this function. 488 */ 489 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan) 490 { 491 struct fsl_desc_sw *desc, *_desc; 492 493 /* Run the callback for each descriptor, in order */ 494 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) 495 if (async_tx_test_ack(&desc->async_tx)) 496 fsl_dma_free_descriptor(chan, desc); 497 } 498 499 /** 500 * fsldma_run_tx_complete_actions - cleanup a single link descriptor 501 * @chan: Freescale DMA channel 502 * @desc: descriptor to cleanup and free 503 * @cookie: Freescale DMA transaction identifier 504 * 505 * This function is used on a descriptor which has been executed by the DMA 506 * controller. It will run any callbacks, submit any dependencies. 507 */ 508 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan, 509 struct fsl_desc_sw *desc, dma_cookie_t cookie) 510 { 511 struct dma_async_tx_descriptor *txd = &desc->async_tx; 512 dma_cookie_t ret = cookie; 513 514 BUG_ON(txd->cookie < 0); 515 516 if (txd->cookie > 0) { 517 ret = txd->cookie; 518 519 /* Run the link descriptor callback function */ 520 if (txd->callback) { 521 chan_dbg(chan, "LD %p callback\n", desc); 522 txd->callback(txd->callback_param); 523 } 524 525 dma_descriptor_unmap(txd); 526 } 527 528 /* Run any dependencies */ 529 dma_run_dependencies(txd); 530 531 return ret; 532 } 533 534 /** 535 * fsldma_clean_running_descriptor - move the completed descriptor from 536 * ld_running to ld_completed 537 * @chan: Freescale DMA channel 538 * @desc: the descriptor which is completed 539 * 540 * Free the descriptor directly if acked by async_tx api, or move it to 541 * queue ld_completed. 542 */ 543 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan, 544 struct fsl_desc_sw *desc) 545 { 546 /* Remove from the list of transactions */ 547 list_del(&desc->node); 548 549 /* 550 * the client is allowed to attach dependent operations 551 * until 'ack' is set 552 */ 553 if (!async_tx_test_ack(&desc->async_tx)) { 554 /* 555 * Move this descriptor to the list of descriptors which is 556 * completed, but still awaiting the 'ack' bit to be set. 557 */ 558 list_add_tail(&desc->node, &chan->ld_completed); 559 return; 560 } 561 562 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 563 } 564 565 /** 566 * fsl_chan_xfer_ld_queue - transfer any pending transactions 567 * @chan : Freescale DMA channel 568 * 569 * HARDWARE STATE: idle 570 * LOCKING: must hold chan->desc_lock 571 */ 572 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) 573 { 574 struct fsl_desc_sw *desc; 575 576 /* 577 * If the list of pending descriptors is empty, then we 578 * don't need to do any work at all 579 */ 580 if (list_empty(&chan->ld_pending)) { 581 chan_dbg(chan, "no pending LDs\n"); 582 return; 583 } 584 585 /* 586 * The DMA controller is not idle, which means that the interrupt 587 * handler will start any queued transactions when it runs after 588 * this transaction finishes 589 */ 590 if (!chan->idle) { 591 chan_dbg(chan, "DMA controller still busy\n"); 592 return; 593 } 594 595 /* 596 * If there are some link descriptors which have not been 597 * transferred, we need to start the controller 598 */ 599 600 /* 601 * Move all elements from the queue of pending transactions 602 * onto the list of running transactions 603 */ 604 chan_dbg(chan, "idle, starting controller\n"); 605 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); 606 list_splice_tail_init(&chan->ld_pending, &chan->ld_running); 607 608 /* 609 * The 85xx DMA controller doesn't clear the channel start bit 610 * automatically at the end of a transfer. Therefore we must clear 611 * it in software before starting the transfer. 612 */ 613 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 614 u32 mode; 615 616 mode = get_mr(chan); 617 mode &= ~FSL_DMA_MR_CS; 618 set_mr(chan, mode); 619 } 620 621 /* 622 * Program the descriptor's address into the DMA controller, 623 * then start the DMA transaction 624 */ 625 set_cdar(chan, desc->async_tx.phys); 626 get_cdar(chan); 627 628 dma_start(chan); 629 chan->idle = false; 630 } 631 632 /** 633 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed 634 * and move them to ld_completed to free until flag 'ack' is set 635 * @chan: Freescale DMA channel 636 * 637 * This function is used on descriptors which have been executed by the DMA 638 * controller. It will run any callbacks, submit any dependencies, then 639 * free these descriptors if flag 'ack' is set. 640 */ 641 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan) 642 { 643 struct fsl_desc_sw *desc, *_desc; 644 dma_cookie_t cookie = 0; 645 dma_addr_t curr_phys = get_cdar(chan); 646 int seen_current = 0; 647 648 fsldma_clean_completed_descriptor(chan); 649 650 /* Run the callback for each descriptor, in order */ 651 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) { 652 /* 653 * do not advance past the current descriptor loaded into the 654 * hardware channel, subsequent descriptors are either in 655 * process or have not been submitted 656 */ 657 if (seen_current) 658 break; 659 660 /* 661 * stop the search if we reach the current descriptor and the 662 * channel is busy 663 */ 664 if (desc->async_tx.phys == curr_phys) { 665 seen_current = 1; 666 if (!dma_is_idle(chan)) 667 break; 668 } 669 670 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie); 671 672 fsldma_clean_running_descriptor(chan, desc); 673 } 674 675 /* 676 * Start any pending transactions automatically 677 * 678 * In the ideal case, we keep the DMA controller busy while we go 679 * ahead and free the descriptors below. 680 */ 681 fsl_chan_xfer_ld_queue(chan); 682 683 if (cookie > 0) 684 chan->common.completed_cookie = cookie; 685 } 686 687 /** 688 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 689 * @chan : Freescale DMA channel 690 * 691 * This function will create a dma pool for descriptor allocation. 692 * 693 * Return - The number of descriptors allocated. 694 */ 695 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan) 696 { 697 struct fsldma_chan *chan = to_fsl_chan(dchan); 698 699 /* Has this channel already been allocated? */ 700 if (chan->desc_pool) 701 return 1; 702 703 /* 704 * We need the descriptor to be aligned to 32bytes 705 * for meeting FSL DMA specification requirement. 706 */ 707 chan->desc_pool = dma_pool_create(chan->name, chan->dev, 708 sizeof(struct fsl_desc_sw), 709 __alignof__(struct fsl_desc_sw), 0); 710 if (!chan->desc_pool) { 711 chan_err(chan, "unable to allocate descriptor pool\n"); 712 return -ENOMEM; 713 } 714 715 /* there is at least one descriptor free to be allocated */ 716 return 1; 717 } 718 719 /** 720 * fsldma_free_desc_list - Free all descriptors in a queue 721 * @chan: Freescae DMA channel 722 * @list: the list to free 723 * 724 * LOCKING: must hold chan->desc_lock 725 */ 726 static void fsldma_free_desc_list(struct fsldma_chan *chan, 727 struct list_head *list) 728 { 729 struct fsl_desc_sw *desc, *_desc; 730 731 list_for_each_entry_safe(desc, _desc, list, node) 732 fsl_dma_free_descriptor(chan, desc); 733 } 734 735 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan, 736 struct list_head *list) 737 { 738 struct fsl_desc_sw *desc, *_desc; 739 740 list_for_each_entry_safe_reverse(desc, _desc, list, node) 741 fsl_dma_free_descriptor(chan, desc); 742 } 743 744 /** 745 * fsl_dma_free_chan_resources - Free all resources of the channel. 746 * @chan : Freescale DMA channel 747 */ 748 static void fsl_dma_free_chan_resources(struct dma_chan *dchan) 749 { 750 struct fsldma_chan *chan = to_fsl_chan(dchan); 751 752 chan_dbg(chan, "free all channel resources\n"); 753 spin_lock_bh(&chan->desc_lock); 754 fsldma_cleanup_descriptors(chan); 755 fsldma_free_desc_list(chan, &chan->ld_pending); 756 fsldma_free_desc_list(chan, &chan->ld_running); 757 fsldma_free_desc_list(chan, &chan->ld_completed); 758 spin_unlock_bh(&chan->desc_lock); 759 760 dma_pool_destroy(chan->desc_pool); 761 chan->desc_pool = NULL; 762 } 763 764 static struct dma_async_tx_descriptor * 765 fsl_dma_prep_memcpy(struct dma_chan *dchan, 766 dma_addr_t dma_dst, dma_addr_t dma_src, 767 size_t len, unsigned long flags) 768 { 769 struct fsldma_chan *chan; 770 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 771 size_t copy; 772 773 if (!dchan) 774 return NULL; 775 776 if (!len) 777 return NULL; 778 779 chan = to_fsl_chan(dchan); 780 781 do { 782 783 /* Allocate the link descriptor from DMA pool */ 784 new = fsl_dma_alloc_descriptor(chan); 785 if (!new) { 786 chan_err(chan, "%s\n", msg_ld_oom); 787 goto fail; 788 } 789 790 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 791 792 set_desc_cnt(chan, &new->hw, copy); 793 set_desc_src(chan, &new->hw, dma_src); 794 set_desc_dst(chan, &new->hw, dma_dst); 795 796 if (!first) 797 first = new; 798 else 799 set_desc_next(chan, &prev->hw, new->async_tx.phys); 800 801 new->async_tx.cookie = 0; 802 async_tx_ack(&new->async_tx); 803 804 prev = new; 805 len -= copy; 806 dma_src += copy; 807 dma_dst += copy; 808 809 /* Insert the link descriptor to the LD ring */ 810 list_add_tail(&new->node, &first->tx_list); 811 } while (len); 812 813 new->async_tx.flags = flags; /* client is in control of this ack */ 814 new->async_tx.cookie = -EBUSY; 815 816 /* Set End-of-link to the last link descriptor of new list */ 817 set_ld_eol(chan, new); 818 819 return &first->async_tx; 820 821 fail: 822 if (!first) 823 return NULL; 824 825 fsldma_free_desc_list_reverse(chan, &first->tx_list); 826 return NULL; 827 } 828 829 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan, 830 struct scatterlist *dst_sg, unsigned int dst_nents, 831 struct scatterlist *src_sg, unsigned int src_nents, 832 unsigned long flags) 833 { 834 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; 835 struct fsldma_chan *chan = to_fsl_chan(dchan); 836 size_t dst_avail, src_avail; 837 dma_addr_t dst, src; 838 size_t len; 839 840 /* basic sanity checks */ 841 if (dst_nents == 0 || src_nents == 0) 842 return NULL; 843 844 if (dst_sg == NULL || src_sg == NULL) 845 return NULL; 846 847 /* 848 * TODO: should we check that both scatterlists have the same 849 * TODO: number of bytes in total? Is that really an error? 850 */ 851 852 /* get prepared for the loop */ 853 dst_avail = sg_dma_len(dst_sg); 854 src_avail = sg_dma_len(src_sg); 855 856 /* run until we are out of scatterlist entries */ 857 while (true) { 858 859 /* create the largest transaction possible */ 860 len = min_t(size_t, src_avail, dst_avail); 861 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT); 862 if (len == 0) 863 goto fetch; 864 865 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; 866 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; 867 868 /* allocate and populate the descriptor */ 869 new = fsl_dma_alloc_descriptor(chan); 870 if (!new) { 871 chan_err(chan, "%s\n", msg_ld_oom); 872 goto fail; 873 } 874 875 set_desc_cnt(chan, &new->hw, len); 876 set_desc_src(chan, &new->hw, src); 877 set_desc_dst(chan, &new->hw, dst); 878 879 if (!first) 880 first = new; 881 else 882 set_desc_next(chan, &prev->hw, new->async_tx.phys); 883 884 new->async_tx.cookie = 0; 885 async_tx_ack(&new->async_tx); 886 prev = new; 887 888 /* Insert the link descriptor to the LD ring */ 889 list_add_tail(&new->node, &first->tx_list); 890 891 /* update metadata */ 892 dst_avail -= len; 893 src_avail -= len; 894 895 fetch: 896 /* fetch the next dst scatterlist entry */ 897 if (dst_avail == 0) { 898 899 /* no more entries: we're done */ 900 if (dst_nents == 0) 901 break; 902 903 /* fetch the next entry: if there are no more: done */ 904 dst_sg = sg_next(dst_sg); 905 if (dst_sg == NULL) 906 break; 907 908 dst_nents--; 909 dst_avail = sg_dma_len(dst_sg); 910 } 911 912 /* fetch the next src scatterlist entry */ 913 if (src_avail == 0) { 914 915 /* no more entries: we're done */ 916 if (src_nents == 0) 917 break; 918 919 /* fetch the next entry: if there are no more: done */ 920 src_sg = sg_next(src_sg); 921 if (src_sg == NULL) 922 break; 923 924 src_nents--; 925 src_avail = sg_dma_len(src_sg); 926 } 927 } 928 929 new->async_tx.flags = flags; /* client is in control of this ack */ 930 new->async_tx.cookie = -EBUSY; 931 932 /* Set End-of-link to the last link descriptor of new list */ 933 set_ld_eol(chan, new); 934 935 return &first->async_tx; 936 937 fail: 938 if (!first) 939 return NULL; 940 941 fsldma_free_desc_list_reverse(chan, &first->tx_list); 942 return NULL; 943 } 944 945 static int fsl_dma_device_terminate_all(struct dma_chan *dchan) 946 { 947 struct fsldma_chan *chan; 948 949 if (!dchan) 950 return -EINVAL; 951 952 chan = to_fsl_chan(dchan); 953 954 spin_lock_bh(&chan->desc_lock); 955 956 /* Halt the DMA engine */ 957 dma_halt(chan); 958 959 /* Remove and free all of the descriptors in the LD queue */ 960 fsldma_free_desc_list(chan, &chan->ld_pending); 961 fsldma_free_desc_list(chan, &chan->ld_running); 962 fsldma_free_desc_list(chan, &chan->ld_completed); 963 chan->idle = true; 964 965 spin_unlock_bh(&chan->desc_lock); 966 return 0; 967 } 968 969 static int fsl_dma_device_config(struct dma_chan *dchan, 970 struct dma_slave_config *config) 971 { 972 struct fsldma_chan *chan; 973 int size; 974 975 if (!dchan) 976 return -EINVAL; 977 978 chan = to_fsl_chan(dchan); 979 980 /* make sure the channel supports setting burst size */ 981 if (!chan->set_request_count) 982 return -ENXIO; 983 984 /* we set the controller burst size depending on direction */ 985 if (config->direction == DMA_MEM_TO_DEV) 986 size = config->dst_addr_width * config->dst_maxburst; 987 else 988 size = config->src_addr_width * config->src_maxburst; 989 990 chan->set_request_count(chan, size); 991 return 0; 992 } 993 994 995 /** 996 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 997 * @chan : Freescale DMA channel 998 */ 999 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) 1000 { 1001 struct fsldma_chan *chan = to_fsl_chan(dchan); 1002 1003 spin_lock_bh(&chan->desc_lock); 1004 fsl_chan_xfer_ld_queue(chan); 1005 spin_unlock_bh(&chan->desc_lock); 1006 } 1007 1008 /** 1009 * fsl_tx_status - Determine the DMA status 1010 * @chan : Freescale DMA channel 1011 */ 1012 static enum dma_status fsl_tx_status(struct dma_chan *dchan, 1013 dma_cookie_t cookie, 1014 struct dma_tx_state *txstate) 1015 { 1016 struct fsldma_chan *chan = to_fsl_chan(dchan); 1017 enum dma_status ret; 1018 1019 ret = dma_cookie_status(dchan, cookie, txstate); 1020 if (ret == DMA_COMPLETE) 1021 return ret; 1022 1023 spin_lock_bh(&chan->desc_lock); 1024 fsldma_cleanup_descriptors(chan); 1025 spin_unlock_bh(&chan->desc_lock); 1026 1027 return dma_cookie_status(dchan, cookie, txstate); 1028 } 1029 1030 /*----------------------------------------------------------------------------*/ 1031 /* Interrupt Handling */ 1032 /*----------------------------------------------------------------------------*/ 1033 1034 static irqreturn_t fsldma_chan_irq(int irq, void *data) 1035 { 1036 struct fsldma_chan *chan = data; 1037 u32 stat; 1038 1039 /* save and clear the status register */ 1040 stat = get_sr(chan); 1041 set_sr(chan, stat); 1042 chan_dbg(chan, "irq: stat = 0x%x\n", stat); 1043 1044 /* check that this was really our device */ 1045 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 1046 if (!stat) 1047 return IRQ_NONE; 1048 1049 if (stat & FSL_DMA_SR_TE) 1050 chan_err(chan, "Transfer Error!\n"); 1051 1052 /* 1053 * Programming Error 1054 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 1055 * trigger a PE interrupt. 1056 */ 1057 if (stat & FSL_DMA_SR_PE) { 1058 chan_dbg(chan, "irq: Programming Error INT\n"); 1059 stat &= ~FSL_DMA_SR_PE; 1060 if (get_bcr(chan) != 0) 1061 chan_err(chan, "Programming Error!\n"); 1062 } 1063 1064 /* 1065 * For MPC8349, EOCDI event need to update cookie 1066 * and start the next transfer if it exist. 1067 */ 1068 if (stat & FSL_DMA_SR_EOCDI) { 1069 chan_dbg(chan, "irq: End-of-Chain link INT\n"); 1070 stat &= ~FSL_DMA_SR_EOCDI; 1071 } 1072 1073 /* 1074 * If it current transfer is the end-of-transfer, 1075 * we should clear the Channel Start bit for 1076 * prepare next transfer. 1077 */ 1078 if (stat & FSL_DMA_SR_EOLNI) { 1079 chan_dbg(chan, "irq: End-of-link INT\n"); 1080 stat &= ~FSL_DMA_SR_EOLNI; 1081 } 1082 1083 /* check that the DMA controller is really idle */ 1084 if (!dma_is_idle(chan)) 1085 chan_err(chan, "irq: controller not idle!\n"); 1086 1087 /* check that we handled all of the bits */ 1088 if (stat) 1089 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat); 1090 1091 /* 1092 * Schedule the tasklet to handle all cleanup of the current 1093 * transaction. It will start a new transaction if there is 1094 * one pending. 1095 */ 1096 tasklet_schedule(&chan->tasklet); 1097 chan_dbg(chan, "irq: Exit\n"); 1098 return IRQ_HANDLED; 1099 } 1100 1101 static void dma_do_tasklet(unsigned long data) 1102 { 1103 struct fsldma_chan *chan = (struct fsldma_chan *)data; 1104 1105 chan_dbg(chan, "tasklet entry\n"); 1106 1107 spin_lock_bh(&chan->desc_lock); 1108 1109 /* the hardware is now idle and ready for more */ 1110 chan->idle = true; 1111 1112 /* Run all cleanup for descriptors which have been completed */ 1113 fsldma_cleanup_descriptors(chan); 1114 1115 spin_unlock_bh(&chan->desc_lock); 1116 1117 chan_dbg(chan, "tasklet exit\n"); 1118 } 1119 1120 static irqreturn_t fsldma_ctrl_irq(int irq, void *data) 1121 { 1122 struct fsldma_device *fdev = data; 1123 struct fsldma_chan *chan; 1124 unsigned int handled = 0; 1125 u32 gsr, mask; 1126 int i; 1127 1128 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs) 1129 : in_le32(fdev->regs); 1130 mask = 0xff000000; 1131 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr); 1132 1133 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1134 chan = fdev->chan[i]; 1135 if (!chan) 1136 continue; 1137 1138 if (gsr & mask) { 1139 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id); 1140 fsldma_chan_irq(irq, chan); 1141 handled++; 1142 } 1143 1144 gsr &= ~mask; 1145 mask >>= 8; 1146 } 1147 1148 return IRQ_RETVAL(handled); 1149 } 1150 1151 static void fsldma_free_irqs(struct fsldma_device *fdev) 1152 { 1153 struct fsldma_chan *chan; 1154 int i; 1155 1156 if (fdev->irq != NO_IRQ) { 1157 dev_dbg(fdev->dev, "free per-controller IRQ\n"); 1158 free_irq(fdev->irq, fdev); 1159 return; 1160 } 1161 1162 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1163 chan = fdev->chan[i]; 1164 if (chan && chan->irq != NO_IRQ) { 1165 chan_dbg(chan, "free per-channel IRQ\n"); 1166 free_irq(chan->irq, chan); 1167 } 1168 } 1169 } 1170 1171 static int fsldma_request_irqs(struct fsldma_device *fdev) 1172 { 1173 struct fsldma_chan *chan; 1174 int ret; 1175 int i; 1176 1177 /* if we have a per-controller IRQ, use that */ 1178 if (fdev->irq != NO_IRQ) { 1179 dev_dbg(fdev->dev, "request per-controller IRQ\n"); 1180 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED, 1181 "fsldma-controller", fdev); 1182 return ret; 1183 } 1184 1185 /* no per-controller IRQ, use the per-channel IRQs */ 1186 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1187 chan = fdev->chan[i]; 1188 if (!chan) 1189 continue; 1190 1191 if (chan->irq == NO_IRQ) { 1192 chan_err(chan, "interrupts property missing in device tree\n"); 1193 ret = -ENODEV; 1194 goto out_unwind; 1195 } 1196 1197 chan_dbg(chan, "request per-channel IRQ\n"); 1198 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, 1199 "fsldma-chan", chan); 1200 if (ret) { 1201 chan_err(chan, "unable to request per-channel IRQ\n"); 1202 goto out_unwind; 1203 } 1204 } 1205 1206 return 0; 1207 1208 out_unwind: 1209 for (/* none */; i >= 0; i--) { 1210 chan = fdev->chan[i]; 1211 if (!chan) 1212 continue; 1213 1214 if (chan->irq == NO_IRQ) 1215 continue; 1216 1217 free_irq(chan->irq, chan); 1218 } 1219 1220 return ret; 1221 } 1222 1223 /*----------------------------------------------------------------------------*/ 1224 /* OpenFirmware Subsystem */ 1225 /*----------------------------------------------------------------------------*/ 1226 1227 static int fsl_dma_chan_probe(struct fsldma_device *fdev, 1228 struct device_node *node, u32 feature, const char *compatible) 1229 { 1230 struct fsldma_chan *chan; 1231 struct resource res; 1232 int err; 1233 1234 /* alloc channel */ 1235 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1236 if (!chan) { 1237 dev_err(fdev->dev, "no free memory for DMA channels!\n"); 1238 err = -ENOMEM; 1239 goto out_return; 1240 } 1241 1242 /* ioremap registers for use */ 1243 chan->regs = of_iomap(node, 0); 1244 if (!chan->regs) { 1245 dev_err(fdev->dev, "unable to ioremap registers\n"); 1246 err = -ENOMEM; 1247 goto out_free_chan; 1248 } 1249 1250 err = of_address_to_resource(node, 0, &res); 1251 if (err) { 1252 dev_err(fdev->dev, "unable to find 'reg' property\n"); 1253 goto out_iounmap_regs; 1254 } 1255 1256 chan->feature = feature; 1257 if (!fdev->feature) 1258 fdev->feature = chan->feature; 1259 1260 /* 1261 * If the DMA device's feature is different than the feature 1262 * of its channels, report the bug 1263 */ 1264 WARN_ON(fdev->feature != chan->feature); 1265 1266 chan->dev = fdev->dev; 1267 chan->id = (res.start & 0xfff) < 0x300 ? 1268 ((res.start - 0x100) & 0xfff) >> 7 : 1269 ((res.start - 0x200) & 0xfff) >> 7; 1270 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 1271 dev_err(fdev->dev, "too many channels for device\n"); 1272 err = -EINVAL; 1273 goto out_iounmap_regs; 1274 } 1275 1276 fdev->chan[chan->id] = chan; 1277 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 1278 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id); 1279 1280 /* Initialize the channel */ 1281 dma_init(chan); 1282 1283 /* Clear cdar registers */ 1284 set_cdar(chan, 0); 1285 1286 switch (chan->feature & FSL_DMA_IP_MASK) { 1287 case FSL_DMA_IP_85XX: 1288 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 1289 case FSL_DMA_IP_83XX: 1290 chan->toggle_ext_start = fsl_chan_toggle_ext_start; 1291 chan->set_src_loop_size = fsl_chan_set_src_loop_size; 1292 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size; 1293 chan->set_request_count = fsl_chan_set_request_count; 1294 } 1295 1296 spin_lock_init(&chan->desc_lock); 1297 INIT_LIST_HEAD(&chan->ld_pending); 1298 INIT_LIST_HEAD(&chan->ld_running); 1299 INIT_LIST_HEAD(&chan->ld_completed); 1300 chan->idle = true; 1301 #ifdef CONFIG_PM 1302 chan->pm_state = RUNNING; 1303 #endif 1304 1305 chan->common.device = &fdev->common; 1306 dma_cookie_init(&chan->common); 1307 1308 /* find the IRQ line, if it exists in the device tree */ 1309 chan->irq = irq_of_parse_and_map(node, 0); 1310 1311 /* Add the channel to DMA device channel list */ 1312 list_add_tail(&chan->common.device_node, &fdev->common.channels); 1313 1314 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible, 1315 chan->irq != NO_IRQ ? chan->irq : fdev->irq); 1316 1317 return 0; 1318 1319 out_iounmap_regs: 1320 iounmap(chan->regs); 1321 out_free_chan: 1322 kfree(chan); 1323 out_return: 1324 return err; 1325 } 1326 1327 static void fsl_dma_chan_remove(struct fsldma_chan *chan) 1328 { 1329 irq_dispose_mapping(chan->irq); 1330 list_del(&chan->common.device_node); 1331 iounmap(chan->regs); 1332 kfree(chan); 1333 } 1334 1335 static int fsldma_of_probe(struct platform_device *op) 1336 { 1337 struct fsldma_device *fdev; 1338 struct device_node *child; 1339 int err; 1340 1341 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL); 1342 if (!fdev) { 1343 dev_err(&op->dev, "No enough memory for 'priv'\n"); 1344 err = -ENOMEM; 1345 goto out_return; 1346 } 1347 1348 fdev->dev = &op->dev; 1349 INIT_LIST_HEAD(&fdev->common.channels); 1350 1351 /* ioremap the registers for use */ 1352 fdev->regs = of_iomap(op->dev.of_node, 0); 1353 if (!fdev->regs) { 1354 dev_err(&op->dev, "unable to ioremap registers\n"); 1355 err = -ENOMEM; 1356 goto out_free_fdev; 1357 } 1358 1359 /* map the channel IRQ if it exists, but don't hookup the handler yet */ 1360 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0); 1361 1362 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1363 dma_cap_set(DMA_SG, fdev->common.cap_mask); 1364 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); 1365 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1366 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1367 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1368 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg; 1369 fdev->common.device_tx_status = fsl_tx_status; 1370 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1371 fdev->common.device_config = fsl_dma_device_config; 1372 fdev->common.device_terminate_all = fsl_dma_device_terminate_all; 1373 fdev->common.dev = &op->dev; 1374 1375 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS; 1376 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS; 1377 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1378 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 1379 1380 dma_set_mask(&(op->dev), DMA_BIT_MASK(36)); 1381 1382 platform_set_drvdata(op, fdev); 1383 1384 /* 1385 * We cannot use of_platform_bus_probe() because there is no 1386 * of_platform_bus_remove(). Instead, we manually instantiate every DMA 1387 * channel object. 1388 */ 1389 for_each_child_of_node(op->dev.of_node, child) { 1390 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) { 1391 fsl_dma_chan_probe(fdev, child, 1392 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 1393 "fsl,eloplus-dma-channel"); 1394 } 1395 1396 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) { 1397 fsl_dma_chan_probe(fdev, child, 1398 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 1399 "fsl,elo-dma-channel"); 1400 } 1401 } 1402 1403 /* 1404 * Hookup the IRQ handler(s) 1405 * 1406 * If we have a per-controller interrupt, we prefer that to the 1407 * per-channel interrupts to reduce the number of shared interrupt 1408 * handlers on the same IRQ line 1409 */ 1410 err = fsldma_request_irqs(fdev); 1411 if (err) { 1412 dev_err(fdev->dev, "unable to request IRQs\n"); 1413 goto out_free_fdev; 1414 } 1415 1416 dma_async_device_register(&fdev->common); 1417 return 0; 1418 1419 out_free_fdev: 1420 irq_dispose_mapping(fdev->irq); 1421 kfree(fdev); 1422 out_return: 1423 return err; 1424 } 1425 1426 static int fsldma_of_remove(struct platform_device *op) 1427 { 1428 struct fsldma_device *fdev; 1429 unsigned int i; 1430 1431 fdev = platform_get_drvdata(op); 1432 dma_async_device_unregister(&fdev->common); 1433 1434 fsldma_free_irqs(fdev); 1435 1436 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1437 if (fdev->chan[i]) 1438 fsl_dma_chan_remove(fdev->chan[i]); 1439 } 1440 1441 iounmap(fdev->regs); 1442 kfree(fdev); 1443 1444 return 0; 1445 } 1446 1447 #ifdef CONFIG_PM 1448 static int fsldma_suspend_late(struct device *dev) 1449 { 1450 struct platform_device *pdev = to_platform_device(dev); 1451 struct fsldma_device *fdev = platform_get_drvdata(pdev); 1452 struct fsldma_chan *chan; 1453 int i; 1454 1455 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1456 chan = fdev->chan[i]; 1457 if (!chan) 1458 continue; 1459 1460 spin_lock_bh(&chan->desc_lock); 1461 if (unlikely(!chan->idle)) 1462 goto out; 1463 chan->regs_save.mr = get_mr(chan); 1464 chan->pm_state = SUSPENDED; 1465 spin_unlock_bh(&chan->desc_lock); 1466 } 1467 return 0; 1468 1469 out: 1470 for (; i >= 0; i--) { 1471 chan = fdev->chan[i]; 1472 if (!chan) 1473 continue; 1474 chan->pm_state = RUNNING; 1475 spin_unlock_bh(&chan->desc_lock); 1476 } 1477 return -EBUSY; 1478 } 1479 1480 static int fsldma_resume_early(struct device *dev) 1481 { 1482 struct platform_device *pdev = to_platform_device(dev); 1483 struct fsldma_device *fdev = platform_get_drvdata(pdev); 1484 struct fsldma_chan *chan; 1485 u32 mode; 1486 int i; 1487 1488 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1489 chan = fdev->chan[i]; 1490 if (!chan) 1491 continue; 1492 1493 spin_lock_bh(&chan->desc_lock); 1494 mode = chan->regs_save.mr 1495 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA; 1496 set_mr(chan, mode); 1497 chan->pm_state = RUNNING; 1498 spin_unlock_bh(&chan->desc_lock); 1499 } 1500 1501 return 0; 1502 } 1503 1504 static const struct dev_pm_ops fsldma_pm_ops = { 1505 .suspend_late = fsldma_suspend_late, 1506 .resume_early = fsldma_resume_early, 1507 }; 1508 #endif 1509 1510 static const struct of_device_id fsldma_of_ids[] = { 1511 { .compatible = "fsl,elo3-dma", }, 1512 { .compatible = "fsl,eloplus-dma", }, 1513 { .compatible = "fsl,elo-dma", }, 1514 {} 1515 }; 1516 MODULE_DEVICE_TABLE(of, fsldma_of_ids); 1517 1518 static struct platform_driver fsldma_of_driver = { 1519 .driver = { 1520 .name = "fsl-elo-dma", 1521 .of_match_table = fsldma_of_ids, 1522 #ifdef CONFIG_PM 1523 .pm = &fsldma_pm_ops, 1524 #endif 1525 }, 1526 .probe = fsldma_of_probe, 1527 .remove = fsldma_of_remove, 1528 }; 1529 1530 /*----------------------------------------------------------------------------*/ 1531 /* Module Init / Exit */ 1532 /*----------------------------------------------------------------------------*/ 1533 1534 static __init int fsldma_init(void) 1535 { 1536 pr_info("Freescale Elo series DMA driver\n"); 1537 return platform_driver_register(&fsldma_of_driver); 1538 } 1539 1540 static void __exit fsldma_exit(void) 1541 { 1542 platform_driver_unregister(&fsldma_of_driver); 1543 } 1544 1545 subsys_initcall(fsldma_init); 1546 module_exit(fsldma_exit); 1547 1548 MODULE_DESCRIPTION("Freescale Elo series DMA driver"); 1549 MODULE_LICENSE("GPL"); 1550