xref: /linux/drivers/dma/fsldma.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 	DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68 
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73 
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78 
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83 
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 	DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88 
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 	return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93 
94 /*
95  * Descriptor Helpers
96  */
97 
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 				struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 	hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103 
104 static void set_desc_src(struct fsldma_chan *chan,
105 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static void set_desc_next(struct fsldma_chan *chan,
125 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 		? FSL_DMA_SNEN : 0;
131 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133 
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 	u64 snoop_bits;
137 
138 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 		? FSL_DMA_SNEN : 0;
140 
141 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 			| snoop_bits, 64);
144 }
145 
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149 
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 	/* Reset the channel */
153 	set_mr(chan, 0);
154 
155 	switch (chan->feature & FSL_DMA_IP_MASK) {
156 	case FSL_DMA_IP_85XX:
157 		/* Set the channel to below modes:
158 		 * EIE - Error interrupt enable
159 		 * EOLNIE - End of links interrupt enable
160 		 * BWC - Bandwidth sharing among channels
161 		 */
162 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 			| FSL_DMA_MR_EOLNIE);
164 		break;
165 	case FSL_DMA_IP_83XX:
166 		/* Set the channel to below modes:
167 		 * EOTIE - End-of-transfer interrupt enable
168 		 * PRC_RM - PCI read multiple
169 		 */
170 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 		break;
172 	}
173 }
174 
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 	u32 sr = get_sr(chan);
178 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180 
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 	u32 mode;
191 
192 	mode = get_mr(chan);
193 
194 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 		set_bcr(chan, 0);
196 		mode |= FSL_DMA_MR_EMP_EN;
197 	} else {
198 		mode &= ~FSL_DMA_MR_EMP_EN;
199 	}
200 
201 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 		mode |= FSL_DMA_MR_EMS_EN;
203 	} else {
204 		mode &= ~FSL_DMA_MR_EMS_EN;
205 		mode |= FSL_DMA_MR_CS;
206 	}
207 
208 	set_mr(chan, mode);
209 }
210 
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 	u32 mode;
214 	int i;
215 
216 	/* read the mode register */
217 	mode = get_mr(chan);
218 
219 	/*
220 	 * The 85xx controller supports channel abort, which will stop
221 	 * the current transfer. On 83xx, this bit is the transfer error
222 	 * mask bit, which should not be changed.
223 	 */
224 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 		mode |= FSL_DMA_MR_CA;
226 		set_mr(chan, mode);
227 
228 		mode &= ~FSL_DMA_MR_CA;
229 	}
230 
231 	/* stop the DMA controller */
232 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 	set_mr(chan, mode);
234 
235 	/* wait for the DMA controller to become idle */
236 	for (i = 0; i < 100; i++) {
237 		if (dma_is_idle(chan))
238 			return;
239 
240 		udelay(10);
241 	}
242 
243 	if (!dma_is_idle(chan))
244 		chan_err(chan, "DMA halt timeout!\n");
245 }
246 
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 	u32 mode;
261 
262 	mode = get_mr(chan);
263 
264 	switch (size) {
265 	case 0:
266 		mode &= ~FSL_DMA_MR_SAHE;
267 		break;
268 	case 1:
269 	case 2:
270 	case 4:
271 	case 8:
272 		mode &= ~FSL_DMA_MR_SAHTS_MASK;
273 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
274 		break;
275 	}
276 
277 	set_mr(chan, mode);
278 }
279 
280 /**
281  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
282  * @chan : Freescale DMA channel
283  * @size     : Address loop size, 0 for disable loop
284  *
285  * The set destination address hold transfer size. The destination
286  * address hold or loop transfer size is when the DMA transfer
287  * data to destination address (TA), if the loop size is 4, the DMA will
288  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
289  * TA + 1 ... and so on.
290  */
291 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
292 {
293 	u32 mode;
294 
295 	mode = get_mr(chan);
296 
297 	switch (size) {
298 	case 0:
299 		mode &= ~FSL_DMA_MR_DAHE;
300 		break;
301 	case 1:
302 	case 2:
303 	case 4:
304 	case 8:
305 		mode &= ~FSL_DMA_MR_DAHTS_MASK;
306 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
307 		break;
308 	}
309 
310 	set_mr(chan, mode);
311 }
312 
313 /**
314  * fsl_chan_set_request_count - Set DMA Request Count for external control
315  * @chan : Freescale DMA channel
316  * @size     : Number of bytes to transfer in a single request
317  *
318  * The Freescale DMA channel can be controlled by the external signal DREQ#.
319  * The DMA request count is how many bytes are allowed to transfer before
320  * pausing the channel, after which a new assertion of DREQ# resumes channel
321  * operation.
322  *
323  * A size of 0 disables external pause control. The maximum size is 1024.
324  */
325 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
326 {
327 	u32 mode;
328 
329 	BUG_ON(size > 1024);
330 
331 	mode = get_mr(chan);
332 	mode &= ~FSL_DMA_MR_BWC_MASK;
333 	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
334 
335 	set_mr(chan, mode);
336 }
337 
338 /**
339  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
340  * @chan : Freescale DMA channel
341  * @enable   : 0 is disabled, 1 is enabled.
342  *
343  * The Freescale DMA channel can be controlled by the external signal DREQ#.
344  * The DMA Request Count feature should be used in addition to this feature
345  * to set the number of bytes to transfer before pausing the channel.
346  */
347 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
348 {
349 	if (enable)
350 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
351 	else
352 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
353 }
354 
355 /**
356  * fsl_chan_toggle_ext_start - Toggle channel external start status
357  * @chan : Freescale DMA channel
358  * @enable   : 0 is disabled, 1 is enabled.
359  *
360  * If enable the external start, the channel can be started by an
361  * external DMA start pin. So the dma_start() does not start the
362  * transfer immediately. The DMA channel will wait for the
363  * control pin asserted.
364  */
365 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
366 {
367 	if (enable)
368 		chan->feature |= FSL_DMA_CHAN_START_EXT;
369 	else
370 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
371 }
372 
373 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
374 {
375 	struct fsldma_chan *chan;
376 
377 	if (!dchan)
378 		return -EINVAL;
379 
380 	chan = to_fsl_chan(dchan);
381 
382 	fsl_chan_toggle_ext_start(chan, enable);
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
386 
387 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
388 {
389 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
390 
391 	if (list_empty(&chan->ld_pending))
392 		goto out_splice;
393 
394 	/*
395 	 * Add the hardware descriptor to the chain of hardware descriptors
396 	 * that already exists in memory.
397 	 *
398 	 * This will un-set the EOL bit of the existing transaction, and the
399 	 * last link in this transaction will become the EOL descriptor.
400 	 */
401 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
402 
403 	/*
404 	 * Add the software descriptor and all children to the list
405 	 * of pending transactions
406 	 */
407 out_splice:
408 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
409 }
410 
411 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
412 {
413 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
414 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
415 	struct fsl_desc_sw *child;
416 	dma_cookie_t cookie = -EINVAL;
417 
418 	spin_lock_bh(&chan->desc_lock);
419 
420 #ifdef CONFIG_PM
421 	if (unlikely(chan->pm_state != RUNNING)) {
422 		chan_dbg(chan, "cannot submit due to suspend\n");
423 		spin_unlock_bh(&chan->desc_lock);
424 		return -1;
425 	}
426 #endif
427 
428 	/*
429 	 * assign cookies to all of the software descriptors
430 	 * that make up this transaction
431 	 */
432 	list_for_each_entry(child, &desc->tx_list, node) {
433 		cookie = dma_cookie_assign(&child->async_tx);
434 	}
435 
436 	/* put this transaction onto the tail of the pending queue */
437 	append_ld_queue(chan, desc);
438 
439 	spin_unlock_bh(&chan->desc_lock);
440 
441 	return cookie;
442 }
443 
444 /**
445  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
446  * @chan : Freescale DMA channel
447  * @desc: descriptor to be freed
448  */
449 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
450 		struct fsl_desc_sw *desc)
451 {
452 	list_del(&desc->node);
453 	chan_dbg(chan, "LD %p free\n", desc);
454 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
455 }
456 
457 /**
458  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
459  * @chan : Freescale DMA channel
460  *
461  * Return - The descriptor allocated. NULL for failed.
462  */
463 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
464 {
465 	struct fsl_desc_sw *desc;
466 	dma_addr_t pdesc;
467 
468 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
469 	if (!desc) {
470 		chan_dbg(chan, "out of memory for link descriptor\n");
471 		return NULL;
472 	}
473 
474 	INIT_LIST_HEAD(&desc->tx_list);
475 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
476 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
477 	desc->async_tx.phys = pdesc;
478 
479 	chan_dbg(chan, "LD %p allocated\n", desc);
480 
481 	return desc;
482 }
483 
484 /**
485  * fsldma_clean_completed_descriptor - free all descriptors which
486  * has been completed and acked
487  * @chan: Freescale DMA channel
488  *
489  * This function is used on all completed and acked descriptors.
490  * All descriptors should only be freed in this function.
491  */
492 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
493 {
494 	struct fsl_desc_sw *desc, *_desc;
495 
496 	/* Run the callback for each descriptor, in order */
497 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
498 		if (async_tx_test_ack(&desc->async_tx))
499 			fsl_dma_free_descriptor(chan, desc);
500 }
501 
502 /**
503  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
504  * @chan: Freescale DMA channel
505  * @desc: descriptor to cleanup and free
506  * @cookie: Freescale DMA transaction identifier
507  *
508  * This function is used on a descriptor which has been executed by the DMA
509  * controller. It will run any callbacks, submit any dependencies.
510  */
511 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
512 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
513 {
514 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
515 	dma_cookie_t ret = cookie;
516 
517 	BUG_ON(txd->cookie < 0);
518 
519 	if (txd->cookie > 0) {
520 		ret = txd->cookie;
521 
522 		dma_descriptor_unmap(txd);
523 		/* Run the link descriptor callback function */
524 		dmaengine_desc_get_callback_invoke(txd, NULL);
525 	}
526 
527 	/* Run any dependencies */
528 	dma_run_dependencies(txd);
529 
530 	return ret;
531 }
532 
533 /**
534  * fsldma_clean_running_descriptor - move the completed descriptor from
535  * ld_running to ld_completed
536  * @chan: Freescale DMA channel
537  * @desc: the descriptor which is completed
538  *
539  * Free the descriptor directly if acked by async_tx api, or move it to
540  * queue ld_completed.
541  */
542 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
543 		struct fsl_desc_sw *desc)
544 {
545 	/* Remove from the list of transactions */
546 	list_del(&desc->node);
547 
548 	/*
549 	 * the client is allowed to attach dependent operations
550 	 * until 'ack' is set
551 	 */
552 	if (!async_tx_test_ack(&desc->async_tx)) {
553 		/*
554 		 * Move this descriptor to the list of descriptors which is
555 		 * completed, but still awaiting the 'ack' bit to be set.
556 		 */
557 		list_add_tail(&desc->node, &chan->ld_completed);
558 		return;
559 	}
560 
561 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
562 }
563 
564 /**
565  * fsl_chan_xfer_ld_queue - transfer any pending transactions
566  * @chan : Freescale DMA channel
567  *
568  * HARDWARE STATE: idle
569  * LOCKING: must hold chan->desc_lock
570  */
571 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
572 {
573 	struct fsl_desc_sw *desc;
574 
575 	/*
576 	 * If the list of pending descriptors is empty, then we
577 	 * don't need to do any work at all
578 	 */
579 	if (list_empty(&chan->ld_pending)) {
580 		chan_dbg(chan, "no pending LDs\n");
581 		return;
582 	}
583 
584 	/*
585 	 * The DMA controller is not idle, which means that the interrupt
586 	 * handler will start any queued transactions when it runs after
587 	 * this transaction finishes
588 	 */
589 	if (!chan->idle) {
590 		chan_dbg(chan, "DMA controller still busy\n");
591 		return;
592 	}
593 
594 	/*
595 	 * If there are some link descriptors which have not been
596 	 * transferred, we need to start the controller
597 	 */
598 
599 	/*
600 	 * Move all elements from the queue of pending transactions
601 	 * onto the list of running transactions
602 	 */
603 	chan_dbg(chan, "idle, starting controller\n");
604 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
605 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
606 
607 	/*
608 	 * The 85xx DMA controller doesn't clear the channel start bit
609 	 * automatically at the end of a transfer. Therefore we must clear
610 	 * it in software before starting the transfer.
611 	 */
612 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
613 		u32 mode;
614 
615 		mode = get_mr(chan);
616 		mode &= ~FSL_DMA_MR_CS;
617 		set_mr(chan, mode);
618 	}
619 
620 	/*
621 	 * Program the descriptor's address into the DMA controller,
622 	 * then start the DMA transaction
623 	 */
624 	set_cdar(chan, desc->async_tx.phys);
625 	get_cdar(chan);
626 
627 	dma_start(chan);
628 	chan->idle = false;
629 }
630 
631 /**
632  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
633  * and move them to ld_completed to free until flag 'ack' is set
634  * @chan: Freescale DMA channel
635  *
636  * This function is used on descriptors which have been executed by the DMA
637  * controller. It will run any callbacks, submit any dependencies, then
638  * free these descriptors if flag 'ack' is set.
639  */
640 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
641 {
642 	struct fsl_desc_sw *desc, *_desc;
643 	dma_cookie_t cookie = 0;
644 	dma_addr_t curr_phys = get_cdar(chan);
645 	int seen_current = 0;
646 
647 	fsldma_clean_completed_descriptor(chan);
648 
649 	/* Run the callback for each descriptor, in order */
650 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
651 		/*
652 		 * do not advance past the current descriptor loaded into the
653 		 * hardware channel, subsequent descriptors are either in
654 		 * process or have not been submitted
655 		 */
656 		if (seen_current)
657 			break;
658 
659 		/*
660 		 * stop the search if we reach the current descriptor and the
661 		 * channel is busy
662 		 */
663 		if (desc->async_tx.phys == curr_phys) {
664 			seen_current = 1;
665 			if (!dma_is_idle(chan))
666 				break;
667 		}
668 
669 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
670 
671 		fsldma_clean_running_descriptor(chan, desc);
672 	}
673 
674 	/*
675 	 * Start any pending transactions automatically
676 	 *
677 	 * In the ideal case, we keep the DMA controller busy while we go
678 	 * ahead and free the descriptors below.
679 	 */
680 	fsl_chan_xfer_ld_queue(chan);
681 
682 	if (cookie > 0)
683 		chan->common.completed_cookie = cookie;
684 }
685 
686 /**
687  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
688  * @chan : Freescale DMA channel
689  *
690  * This function will create a dma pool for descriptor allocation.
691  *
692  * Return - The number of descriptors allocated.
693  */
694 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
695 {
696 	struct fsldma_chan *chan = to_fsl_chan(dchan);
697 
698 	/* Has this channel already been allocated? */
699 	if (chan->desc_pool)
700 		return 1;
701 
702 	/*
703 	 * We need the descriptor to be aligned to 32bytes
704 	 * for meeting FSL DMA specification requirement.
705 	 */
706 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
707 					  sizeof(struct fsl_desc_sw),
708 					  __alignof__(struct fsl_desc_sw), 0);
709 	if (!chan->desc_pool) {
710 		chan_err(chan, "unable to allocate descriptor pool\n");
711 		return -ENOMEM;
712 	}
713 
714 	/* there is at least one descriptor free to be allocated */
715 	return 1;
716 }
717 
718 /**
719  * fsldma_free_desc_list - Free all descriptors in a queue
720  * @chan: Freescae DMA channel
721  * @list: the list to free
722  *
723  * LOCKING: must hold chan->desc_lock
724  */
725 static void fsldma_free_desc_list(struct fsldma_chan *chan,
726 				  struct list_head *list)
727 {
728 	struct fsl_desc_sw *desc, *_desc;
729 
730 	list_for_each_entry_safe(desc, _desc, list, node)
731 		fsl_dma_free_descriptor(chan, desc);
732 }
733 
734 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
735 					  struct list_head *list)
736 {
737 	struct fsl_desc_sw *desc, *_desc;
738 
739 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
740 		fsl_dma_free_descriptor(chan, desc);
741 }
742 
743 /**
744  * fsl_dma_free_chan_resources - Free all resources of the channel.
745  * @chan : Freescale DMA channel
746  */
747 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
748 {
749 	struct fsldma_chan *chan = to_fsl_chan(dchan);
750 
751 	chan_dbg(chan, "free all channel resources\n");
752 	spin_lock_bh(&chan->desc_lock);
753 	fsldma_cleanup_descriptors(chan);
754 	fsldma_free_desc_list(chan, &chan->ld_pending);
755 	fsldma_free_desc_list(chan, &chan->ld_running);
756 	fsldma_free_desc_list(chan, &chan->ld_completed);
757 	spin_unlock_bh(&chan->desc_lock);
758 
759 	dma_pool_destroy(chan->desc_pool);
760 	chan->desc_pool = NULL;
761 }
762 
763 static struct dma_async_tx_descriptor *
764 fsl_dma_prep_memcpy(struct dma_chan *dchan,
765 	dma_addr_t dma_dst, dma_addr_t dma_src,
766 	size_t len, unsigned long flags)
767 {
768 	struct fsldma_chan *chan;
769 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
770 	size_t copy;
771 
772 	if (!dchan)
773 		return NULL;
774 
775 	if (!len)
776 		return NULL;
777 
778 	chan = to_fsl_chan(dchan);
779 
780 	do {
781 
782 		/* Allocate the link descriptor from DMA pool */
783 		new = fsl_dma_alloc_descriptor(chan);
784 		if (!new) {
785 			chan_err(chan, "%s\n", msg_ld_oom);
786 			goto fail;
787 		}
788 
789 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
790 
791 		set_desc_cnt(chan, &new->hw, copy);
792 		set_desc_src(chan, &new->hw, dma_src);
793 		set_desc_dst(chan, &new->hw, dma_dst);
794 
795 		if (!first)
796 			first = new;
797 		else
798 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
799 
800 		new->async_tx.cookie = 0;
801 		async_tx_ack(&new->async_tx);
802 
803 		prev = new;
804 		len -= copy;
805 		dma_src += copy;
806 		dma_dst += copy;
807 
808 		/* Insert the link descriptor to the LD ring */
809 		list_add_tail(&new->node, &first->tx_list);
810 	} while (len);
811 
812 	new->async_tx.flags = flags; /* client is in control of this ack */
813 	new->async_tx.cookie = -EBUSY;
814 
815 	/* Set End-of-link to the last link descriptor of new list */
816 	set_ld_eol(chan, new);
817 
818 	return &first->async_tx;
819 
820 fail:
821 	if (!first)
822 		return NULL;
823 
824 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
825 	return NULL;
826 }
827 
828 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
829 {
830 	struct fsldma_chan *chan;
831 
832 	if (!dchan)
833 		return -EINVAL;
834 
835 	chan = to_fsl_chan(dchan);
836 
837 	spin_lock_bh(&chan->desc_lock);
838 
839 	/* Halt the DMA engine */
840 	dma_halt(chan);
841 
842 	/* Remove and free all of the descriptors in the LD queue */
843 	fsldma_free_desc_list(chan, &chan->ld_pending);
844 	fsldma_free_desc_list(chan, &chan->ld_running);
845 	fsldma_free_desc_list(chan, &chan->ld_completed);
846 	chan->idle = true;
847 
848 	spin_unlock_bh(&chan->desc_lock);
849 	return 0;
850 }
851 
852 static int fsl_dma_device_config(struct dma_chan *dchan,
853 				 struct dma_slave_config *config)
854 {
855 	struct fsldma_chan *chan;
856 	int size;
857 
858 	if (!dchan)
859 		return -EINVAL;
860 
861 	chan = to_fsl_chan(dchan);
862 
863 	/* make sure the channel supports setting burst size */
864 	if (!chan->set_request_count)
865 		return -ENXIO;
866 
867 	/* we set the controller burst size depending on direction */
868 	if (config->direction == DMA_MEM_TO_DEV)
869 		size = config->dst_addr_width * config->dst_maxburst;
870 	else
871 		size = config->src_addr_width * config->src_maxburst;
872 
873 	chan->set_request_count(chan, size);
874 	return 0;
875 }
876 
877 
878 /**
879  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
880  * @chan : Freescale DMA channel
881  */
882 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
883 {
884 	struct fsldma_chan *chan = to_fsl_chan(dchan);
885 
886 	spin_lock_bh(&chan->desc_lock);
887 	fsl_chan_xfer_ld_queue(chan);
888 	spin_unlock_bh(&chan->desc_lock);
889 }
890 
891 /**
892  * fsl_tx_status - Determine the DMA status
893  * @chan : Freescale DMA channel
894  */
895 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
896 					dma_cookie_t cookie,
897 					struct dma_tx_state *txstate)
898 {
899 	struct fsldma_chan *chan = to_fsl_chan(dchan);
900 	enum dma_status ret;
901 
902 	ret = dma_cookie_status(dchan, cookie, txstate);
903 	if (ret == DMA_COMPLETE)
904 		return ret;
905 
906 	spin_lock_bh(&chan->desc_lock);
907 	fsldma_cleanup_descriptors(chan);
908 	spin_unlock_bh(&chan->desc_lock);
909 
910 	return dma_cookie_status(dchan, cookie, txstate);
911 }
912 
913 /*----------------------------------------------------------------------------*/
914 /* Interrupt Handling                                                         */
915 /*----------------------------------------------------------------------------*/
916 
917 static irqreturn_t fsldma_chan_irq(int irq, void *data)
918 {
919 	struct fsldma_chan *chan = data;
920 	u32 stat;
921 
922 	/* save and clear the status register */
923 	stat = get_sr(chan);
924 	set_sr(chan, stat);
925 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
926 
927 	/* check that this was really our device */
928 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
929 	if (!stat)
930 		return IRQ_NONE;
931 
932 	if (stat & FSL_DMA_SR_TE)
933 		chan_err(chan, "Transfer Error!\n");
934 
935 	/*
936 	 * Programming Error
937 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
938 	 * trigger a PE interrupt.
939 	 */
940 	if (stat & FSL_DMA_SR_PE) {
941 		chan_dbg(chan, "irq: Programming Error INT\n");
942 		stat &= ~FSL_DMA_SR_PE;
943 		if (get_bcr(chan) != 0)
944 			chan_err(chan, "Programming Error!\n");
945 	}
946 
947 	/*
948 	 * For MPC8349, EOCDI event need to update cookie
949 	 * and start the next transfer if it exist.
950 	 */
951 	if (stat & FSL_DMA_SR_EOCDI) {
952 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
953 		stat &= ~FSL_DMA_SR_EOCDI;
954 	}
955 
956 	/*
957 	 * If it current transfer is the end-of-transfer,
958 	 * we should clear the Channel Start bit for
959 	 * prepare next transfer.
960 	 */
961 	if (stat & FSL_DMA_SR_EOLNI) {
962 		chan_dbg(chan, "irq: End-of-link INT\n");
963 		stat &= ~FSL_DMA_SR_EOLNI;
964 	}
965 
966 	/* check that the DMA controller is really idle */
967 	if (!dma_is_idle(chan))
968 		chan_err(chan, "irq: controller not idle!\n");
969 
970 	/* check that we handled all of the bits */
971 	if (stat)
972 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
973 
974 	/*
975 	 * Schedule the tasklet to handle all cleanup of the current
976 	 * transaction. It will start a new transaction if there is
977 	 * one pending.
978 	 */
979 	tasklet_schedule(&chan->tasklet);
980 	chan_dbg(chan, "irq: Exit\n");
981 	return IRQ_HANDLED;
982 }
983 
984 static void dma_do_tasklet(unsigned long data)
985 {
986 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
987 
988 	chan_dbg(chan, "tasklet entry\n");
989 
990 	spin_lock_bh(&chan->desc_lock);
991 
992 	/* the hardware is now idle and ready for more */
993 	chan->idle = true;
994 
995 	/* Run all cleanup for descriptors which have been completed */
996 	fsldma_cleanup_descriptors(chan);
997 
998 	spin_unlock_bh(&chan->desc_lock);
999 
1000 	chan_dbg(chan, "tasklet exit\n");
1001 }
1002 
1003 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1004 {
1005 	struct fsldma_device *fdev = data;
1006 	struct fsldma_chan *chan;
1007 	unsigned int handled = 0;
1008 	u32 gsr, mask;
1009 	int i;
1010 
1011 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1012 						   : in_le32(fdev->regs);
1013 	mask = 0xff000000;
1014 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1015 
1016 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1017 		chan = fdev->chan[i];
1018 		if (!chan)
1019 			continue;
1020 
1021 		if (gsr & mask) {
1022 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1023 			fsldma_chan_irq(irq, chan);
1024 			handled++;
1025 		}
1026 
1027 		gsr &= ~mask;
1028 		mask >>= 8;
1029 	}
1030 
1031 	return IRQ_RETVAL(handled);
1032 }
1033 
1034 static void fsldma_free_irqs(struct fsldma_device *fdev)
1035 {
1036 	struct fsldma_chan *chan;
1037 	int i;
1038 
1039 	if (fdev->irq) {
1040 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1041 		free_irq(fdev->irq, fdev);
1042 		return;
1043 	}
1044 
1045 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1046 		chan = fdev->chan[i];
1047 		if (chan && chan->irq) {
1048 			chan_dbg(chan, "free per-channel IRQ\n");
1049 			free_irq(chan->irq, chan);
1050 		}
1051 	}
1052 }
1053 
1054 static int fsldma_request_irqs(struct fsldma_device *fdev)
1055 {
1056 	struct fsldma_chan *chan;
1057 	int ret;
1058 	int i;
1059 
1060 	/* if we have a per-controller IRQ, use that */
1061 	if (fdev->irq) {
1062 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1063 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1064 				  "fsldma-controller", fdev);
1065 		return ret;
1066 	}
1067 
1068 	/* no per-controller IRQ, use the per-channel IRQs */
1069 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1070 		chan = fdev->chan[i];
1071 		if (!chan)
1072 			continue;
1073 
1074 		if (!chan->irq) {
1075 			chan_err(chan, "interrupts property missing in device tree\n");
1076 			ret = -ENODEV;
1077 			goto out_unwind;
1078 		}
1079 
1080 		chan_dbg(chan, "request per-channel IRQ\n");
1081 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1082 				  "fsldma-chan", chan);
1083 		if (ret) {
1084 			chan_err(chan, "unable to request per-channel IRQ\n");
1085 			goto out_unwind;
1086 		}
1087 	}
1088 
1089 	return 0;
1090 
1091 out_unwind:
1092 	for (/* none */; i >= 0; i--) {
1093 		chan = fdev->chan[i];
1094 		if (!chan)
1095 			continue;
1096 
1097 		if (!chan->irq)
1098 			continue;
1099 
1100 		free_irq(chan->irq, chan);
1101 	}
1102 
1103 	return ret;
1104 }
1105 
1106 /*----------------------------------------------------------------------------*/
1107 /* OpenFirmware Subsystem                                                     */
1108 /*----------------------------------------------------------------------------*/
1109 
1110 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1111 	struct device_node *node, u32 feature, const char *compatible)
1112 {
1113 	struct fsldma_chan *chan;
1114 	struct resource res;
1115 	int err;
1116 
1117 	/* alloc channel */
1118 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1119 	if (!chan) {
1120 		err = -ENOMEM;
1121 		goto out_return;
1122 	}
1123 
1124 	/* ioremap registers for use */
1125 	chan->regs = of_iomap(node, 0);
1126 	if (!chan->regs) {
1127 		dev_err(fdev->dev, "unable to ioremap registers\n");
1128 		err = -ENOMEM;
1129 		goto out_free_chan;
1130 	}
1131 
1132 	err = of_address_to_resource(node, 0, &res);
1133 	if (err) {
1134 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1135 		goto out_iounmap_regs;
1136 	}
1137 
1138 	chan->feature = feature;
1139 	if (!fdev->feature)
1140 		fdev->feature = chan->feature;
1141 
1142 	/*
1143 	 * If the DMA device's feature is different than the feature
1144 	 * of its channels, report the bug
1145 	 */
1146 	WARN_ON(fdev->feature != chan->feature);
1147 
1148 	chan->dev = fdev->dev;
1149 	chan->id = (res.start & 0xfff) < 0x300 ?
1150 		   ((res.start - 0x100) & 0xfff) >> 7 :
1151 		   ((res.start - 0x200) & 0xfff) >> 7;
1152 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1153 		dev_err(fdev->dev, "too many channels for device\n");
1154 		err = -EINVAL;
1155 		goto out_iounmap_regs;
1156 	}
1157 
1158 	fdev->chan[chan->id] = chan;
1159 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1160 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1161 
1162 	/* Initialize the channel */
1163 	dma_init(chan);
1164 
1165 	/* Clear cdar registers */
1166 	set_cdar(chan, 0);
1167 
1168 	switch (chan->feature & FSL_DMA_IP_MASK) {
1169 	case FSL_DMA_IP_85XX:
1170 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1171 	case FSL_DMA_IP_83XX:
1172 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1173 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1174 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1175 		chan->set_request_count = fsl_chan_set_request_count;
1176 	}
1177 
1178 	spin_lock_init(&chan->desc_lock);
1179 	INIT_LIST_HEAD(&chan->ld_pending);
1180 	INIT_LIST_HEAD(&chan->ld_running);
1181 	INIT_LIST_HEAD(&chan->ld_completed);
1182 	chan->idle = true;
1183 #ifdef CONFIG_PM
1184 	chan->pm_state = RUNNING;
1185 #endif
1186 
1187 	chan->common.device = &fdev->common;
1188 	dma_cookie_init(&chan->common);
1189 
1190 	/* find the IRQ line, if it exists in the device tree */
1191 	chan->irq = irq_of_parse_and_map(node, 0);
1192 
1193 	/* Add the channel to DMA device channel list */
1194 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1195 
1196 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1197 		 chan->irq ? chan->irq : fdev->irq);
1198 
1199 	return 0;
1200 
1201 out_iounmap_regs:
1202 	iounmap(chan->regs);
1203 out_free_chan:
1204 	kfree(chan);
1205 out_return:
1206 	return err;
1207 }
1208 
1209 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1210 {
1211 	irq_dispose_mapping(chan->irq);
1212 	list_del(&chan->common.device_node);
1213 	iounmap(chan->regs);
1214 	kfree(chan);
1215 }
1216 
1217 static int fsldma_of_probe(struct platform_device *op)
1218 {
1219 	struct fsldma_device *fdev;
1220 	struct device_node *child;
1221 	int err;
1222 
1223 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1224 	if (!fdev) {
1225 		err = -ENOMEM;
1226 		goto out_return;
1227 	}
1228 
1229 	fdev->dev = &op->dev;
1230 	INIT_LIST_HEAD(&fdev->common.channels);
1231 
1232 	/* ioremap the registers for use */
1233 	fdev->regs = of_iomap(op->dev.of_node, 0);
1234 	if (!fdev->regs) {
1235 		dev_err(&op->dev, "unable to ioremap registers\n");
1236 		err = -ENOMEM;
1237 		goto out_free;
1238 	}
1239 
1240 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1241 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1242 
1243 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1244 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1245 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1246 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1247 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1248 	fdev->common.device_tx_status = fsl_tx_status;
1249 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1250 	fdev->common.device_config = fsl_dma_device_config;
1251 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1252 	fdev->common.dev = &op->dev;
1253 
1254 	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1255 	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1256 	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1257 	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1258 
1259 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1260 
1261 	platform_set_drvdata(op, fdev);
1262 
1263 	/*
1264 	 * We cannot use of_platform_bus_probe() because there is no
1265 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1266 	 * channel object.
1267 	 */
1268 	for_each_child_of_node(op->dev.of_node, child) {
1269 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1270 			fsl_dma_chan_probe(fdev, child,
1271 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1272 				"fsl,eloplus-dma-channel");
1273 		}
1274 
1275 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1276 			fsl_dma_chan_probe(fdev, child,
1277 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1278 				"fsl,elo-dma-channel");
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * Hookup the IRQ handler(s)
1284 	 *
1285 	 * If we have a per-controller interrupt, we prefer that to the
1286 	 * per-channel interrupts to reduce the number of shared interrupt
1287 	 * handlers on the same IRQ line
1288 	 */
1289 	err = fsldma_request_irqs(fdev);
1290 	if (err) {
1291 		dev_err(fdev->dev, "unable to request IRQs\n");
1292 		goto out_free_fdev;
1293 	}
1294 
1295 	dma_async_device_register(&fdev->common);
1296 	return 0;
1297 
1298 out_free_fdev:
1299 	irq_dispose_mapping(fdev->irq);
1300 	iounmap(fdev->regs);
1301 out_free:
1302 	kfree(fdev);
1303 out_return:
1304 	return err;
1305 }
1306 
1307 static int fsldma_of_remove(struct platform_device *op)
1308 {
1309 	struct fsldma_device *fdev;
1310 	unsigned int i;
1311 
1312 	fdev = platform_get_drvdata(op);
1313 	dma_async_device_unregister(&fdev->common);
1314 
1315 	fsldma_free_irqs(fdev);
1316 
1317 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1318 		if (fdev->chan[i])
1319 			fsl_dma_chan_remove(fdev->chan[i]);
1320 	}
1321 
1322 	iounmap(fdev->regs);
1323 	kfree(fdev);
1324 
1325 	return 0;
1326 }
1327 
1328 #ifdef CONFIG_PM
1329 static int fsldma_suspend_late(struct device *dev)
1330 {
1331 	struct fsldma_device *fdev = dev_get_drvdata(dev);
1332 	struct fsldma_chan *chan;
1333 	int i;
1334 
1335 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1336 		chan = fdev->chan[i];
1337 		if (!chan)
1338 			continue;
1339 
1340 		spin_lock_bh(&chan->desc_lock);
1341 		if (unlikely(!chan->idle))
1342 			goto out;
1343 		chan->regs_save.mr = get_mr(chan);
1344 		chan->pm_state = SUSPENDED;
1345 		spin_unlock_bh(&chan->desc_lock);
1346 	}
1347 	return 0;
1348 
1349 out:
1350 	for (; i >= 0; i--) {
1351 		chan = fdev->chan[i];
1352 		if (!chan)
1353 			continue;
1354 		chan->pm_state = RUNNING;
1355 		spin_unlock_bh(&chan->desc_lock);
1356 	}
1357 	return -EBUSY;
1358 }
1359 
1360 static int fsldma_resume_early(struct device *dev)
1361 {
1362 	struct fsldma_device *fdev = dev_get_drvdata(dev);
1363 	struct fsldma_chan *chan;
1364 	u32 mode;
1365 	int i;
1366 
1367 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1368 		chan = fdev->chan[i];
1369 		if (!chan)
1370 			continue;
1371 
1372 		spin_lock_bh(&chan->desc_lock);
1373 		mode = chan->regs_save.mr
1374 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1375 		set_mr(chan, mode);
1376 		chan->pm_state = RUNNING;
1377 		spin_unlock_bh(&chan->desc_lock);
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 static const struct dev_pm_ops fsldma_pm_ops = {
1384 	.suspend_late	= fsldma_suspend_late,
1385 	.resume_early	= fsldma_resume_early,
1386 };
1387 #endif
1388 
1389 static const struct of_device_id fsldma_of_ids[] = {
1390 	{ .compatible = "fsl,elo3-dma", },
1391 	{ .compatible = "fsl,eloplus-dma", },
1392 	{ .compatible = "fsl,elo-dma", },
1393 	{}
1394 };
1395 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1396 
1397 static struct platform_driver fsldma_of_driver = {
1398 	.driver = {
1399 		.name = "fsl-elo-dma",
1400 		.of_match_table = fsldma_of_ids,
1401 #ifdef CONFIG_PM
1402 		.pm = &fsldma_pm_ops,
1403 #endif
1404 	},
1405 	.probe = fsldma_of_probe,
1406 	.remove = fsldma_of_remove,
1407 };
1408 
1409 /*----------------------------------------------------------------------------*/
1410 /* Module Init / Exit                                                         */
1411 /*----------------------------------------------------------------------------*/
1412 
1413 static __init int fsldma_init(void)
1414 {
1415 	pr_info("Freescale Elo series DMA driver\n");
1416 	return platform_driver_register(&fsldma_of_driver);
1417 }
1418 
1419 static void __exit fsldma_exit(void)
1420 {
1421 	platform_driver_unregister(&fsldma_of_driver);
1422 }
1423 
1424 subsys_initcall(fsldma_init);
1425 module_exit(fsldma_exit);
1426 
1427 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1428 MODULE_LICENSE("GPL");
1429