xref: /linux/drivers/dma/fsldma.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 	DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68 
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73 
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78 
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83 
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 	DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88 
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 	return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93 
94 /*
95  * Descriptor Helpers
96  */
97 
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 				struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 	hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103 
104 static void set_desc_src(struct fsldma_chan *chan,
105 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static void set_desc_next(struct fsldma_chan *chan,
125 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 		? FSL_DMA_SNEN : 0;
131 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133 
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 	u64 snoop_bits;
137 
138 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 		? FSL_DMA_SNEN : 0;
140 
141 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 			| snoop_bits, 64);
144 }
145 
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149 
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 	/* Reset the channel */
153 	set_mr(chan, 0);
154 
155 	switch (chan->feature & FSL_DMA_IP_MASK) {
156 	case FSL_DMA_IP_85XX:
157 		/* Set the channel to below modes:
158 		 * EIE - Error interrupt enable
159 		 * EOLNIE - End of links interrupt enable
160 		 * BWC - Bandwidth sharing among channels
161 		 */
162 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 			| FSL_DMA_MR_EOLNIE);
164 		break;
165 	case FSL_DMA_IP_83XX:
166 		/* Set the channel to below modes:
167 		 * EOTIE - End-of-transfer interrupt enable
168 		 * PRC_RM - PCI read multiple
169 		 */
170 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 		break;
172 	}
173 }
174 
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 	u32 sr = get_sr(chan);
178 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180 
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 	u32 mode;
191 
192 	mode = get_mr(chan);
193 
194 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 		set_bcr(chan, 0);
196 		mode |= FSL_DMA_MR_EMP_EN;
197 	} else {
198 		mode &= ~FSL_DMA_MR_EMP_EN;
199 	}
200 
201 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 		mode |= FSL_DMA_MR_EMS_EN;
203 	} else {
204 		mode &= ~FSL_DMA_MR_EMS_EN;
205 		mode |= FSL_DMA_MR_CS;
206 	}
207 
208 	set_mr(chan, mode);
209 }
210 
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 	u32 mode;
214 	int i;
215 
216 	/* read the mode register */
217 	mode = get_mr(chan);
218 
219 	/*
220 	 * The 85xx controller supports channel abort, which will stop
221 	 * the current transfer. On 83xx, this bit is the transfer error
222 	 * mask bit, which should not be changed.
223 	 */
224 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 		mode |= FSL_DMA_MR_CA;
226 		set_mr(chan, mode);
227 
228 		mode &= ~FSL_DMA_MR_CA;
229 	}
230 
231 	/* stop the DMA controller */
232 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 	set_mr(chan, mode);
234 
235 	/* wait for the DMA controller to become idle */
236 	for (i = 0; i < 100; i++) {
237 		if (dma_is_idle(chan))
238 			return;
239 
240 		udelay(10);
241 	}
242 
243 	if (!dma_is_idle(chan))
244 		chan_err(chan, "DMA halt timeout!\n");
245 }
246 
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 	u32 mode;
261 
262 	mode = get_mr(chan);
263 
264 	switch (size) {
265 	case 0:
266 		mode &= ~FSL_DMA_MR_SAHE;
267 		break;
268 	case 1:
269 	case 2:
270 	case 4:
271 	case 8:
272 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 		break;
274 	}
275 
276 	set_mr(chan, mode);
277 }
278 
279 /**
280  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281  * @chan : Freescale DMA channel
282  * @size     : Address loop size, 0 for disable loop
283  *
284  * The set destination address hold transfer size. The destination
285  * address hold or loop transfer size is when the DMA transfer
286  * data to destination address (TA), if the loop size is 4, the DMA will
287  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288  * TA + 1 ... and so on.
289  */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 	u32 mode;
293 
294 	mode = get_mr(chan);
295 
296 	switch (size) {
297 	case 0:
298 		mode &= ~FSL_DMA_MR_DAHE;
299 		break;
300 	case 1:
301 	case 2:
302 	case 4:
303 	case 8:
304 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 		break;
306 	}
307 
308 	set_mr(chan, mode);
309 }
310 
311 /**
312  * fsl_chan_set_request_count - Set DMA Request Count for external control
313  * @chan : Freescale DMA channel
314  * @size     : Number of bytes to transfer in a single request
315  *
316  * The Freescale DMA channel can be controlled by the external signal DREQ#.
317  * The DMA request count is how many bytes are allowed to transfer before
318  * pausing the channel, after which a new assertion of DREQ# resumes channel
319  * operation.
320  *
321  * A size of 0 disables external pause control. The maximum size is 1024.
322  */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 	u32 mode;
326 
327 	BUG_ON(size > 1024);
328 
329 	mode = get_mr(chan);
330 	mode |= (__ilog2(size) << 24) & 0x0f000000;
331 
332 	set_mr(chan, mode);
333 }
334 
335 /**
336  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337  * @chan : Freescale DMA channel
338  * @enable   : 0 is disabled, 1 is enabled.
339  *
340  * The Freescale DMA channel can be controlled by the external signal DREQ#.
341  * The DMA Request Count feature should be used in addition to this feature
342  * to set the number of bytes to transfer before pausing the channel.
343  */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 	if (enable)
347 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 	else
349 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351 
352 /**
353  * fsl_chan_toggle_ext_start - Toggle channel external start status
354  * @chan : Freescale DMA channel
355  * @enable   : 0 is disabled, 1 is enabled.
356  *
357  * If enable the external start, the channel can be started by an
358  * external DMA start pin. So the dma_start() does not start the
359  * transfer immediately. The DMA channel will wait for the
360  * control pin asserted.
361  */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 	if (enable)
365 		chan->feature |= FSL_DMA_CHAN_START_EXT;
366 	else
367 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369 
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
371 {
372 	struct fsldma_chan *chan;
373 
374 	if (!dchan)
375 		return -EINVAL;
376 
377 	chan = to_fsl_chan(dchan);
378 
379 	fsl_chan_toggle_ext_start(chan, enable);
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
383 
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
385 {
386 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
387 
388 	if (list_empty(&chan->ld_pending))
389 		goto out_splice;
390 
391 	/*
392 	 * Add the hardware descriptor to the chain of hardware descriptors
393 	 * that already exists in memory.
394 	 *
395 	 * This will un-set the EOL bit of the existing transaction, and the
396 	 * last link in this transaction will become the EOL descriptor.
397 	 */
398 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
399 
400 	/*
401 	 * Add the software descriptor and all children to the list
402 	 * of pending transactions
403 	 */
404 out_splice:
405 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
406 }
407 
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
409 {
410 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 	struct fsl_desc_sw *child;
413 	dma_cookie_t cookie = -EINVAL;
414 
415 	spin_lock_bh(&chan->desc_lock);
416 
417 #ifdef CONFIG_PM
418 	if (unlikely(chan->pm_state != RUNNING)) {
419 		chan_dbg(chan, "cannot submit due to suspend\n");
420 		spin_unlock_bh(&chan->desc_lock);
421 		return -1;
422 	}
423 #endif
424 
425 	/*
426 	 * assign cookies to all of the software descriptors
427 	 * that make up this transaction
428 	 */
429 	list_for_each_entry(child, &desc->tx_list, node) {
430 		cookie = dma_cookie_assign(&child->async_tx);
431 	}
432 
433 	/* put this transaction onto the tail of the pending queue */
434 	append_ld_queue(chan, desc);
435 
436 	spin_unlock_bh(&chan->desc_lock);
437 
438 	return cookie;
439 }
440 
441 /**
442  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443  * @chan : Freescale DMA channel
444  * @desc: descriptor to be freed
445  */
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 		struct fsl_desc_sw *desc)
448 {
449 	list_del(&desc->node);
450 	chan_dbg(chan, "LD %p free\n", desc);
451 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
452 }
453 
454 /**
455  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456  * @chan : Freescale DMA channel
457  *
458  * Return - The descriptor allocated. NULL for failed.
459  */
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
461 {
462 	struct fsl_desc_sw *desc;
463 	dma_addr_t pdesc;
464 
465 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 	if (!desc) {
467 		chan_dbg(chan, "out of memory for link descriptor\n");
468 		return NULL;
469 	}
470 
471 	memset(desc, 0, sizeof(*desc));
472 	INIT_LIST_HEAD(&desc->tx_list);
473 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
474 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
475 	desc->async_tx.phys = pdesc;
476 
477 	chan_dbg(chan, "LD %p allocated\n", desc);
478 
479 	return desc;
480 }
481 
482 /**
483  * fsldma_clean_completed_descriptor - free all descriptors which
484  * has been completed and acked
485  * @chan: Freescale DMA channel
486  *
487  * This function is used on all completed and acked descriptors.
488  * All descriptors should only be freed in this function.
489  */
490 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
491 {
492 	struct fsl_desc_sw *desc, *_desc;
493 
494 	/* Run the callback for each descriptor, in order */
495 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
496 		if (async_tx_test_ack(&desc->async_tx))
497 			fsl_dma_free_descriptor(chan, desc);
498 }
499 
500 /**
501  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
502  * @chan: Freescale DMA channel
503  * @desc: descriptor to cleanup and free
504  * @cookie: Freescale DMA transaction identifier
505  *
506  * This function is used on a descriptor which has been executed by the DMA
507  * controller. It will run any callbacks, submit any dependencies.
508  */
509 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
510 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
511 {
512 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
513 	dma_cookie_t ret = cookie;
514 
515 	BUG_ON(txd->cookie < 0);
516 
517 	if (txd->cookie > 0) {
518 		ret = txd->cookie;
519 
520 		/* Run the link descriptor callback function */
521 		if (txd->callback) {
522 			chan_dbg(chan, "LD %p callback\n", desc);
523 			txd->callback(txd->callback_param);
524 		}
525 	}
526 
527 	/* Run any dependencies */
528 	dma_run_dependencies(txd);
529 
530 	return ret;
531 }
532 
533 /**
534  * fsldma_clean_running_descriptor - move the completed descriptor from
535  * ld_running to ld_completed
536  * @chan: Freescale DMA channel
537  * @desc: the descriptor which is completed
538  *
539  * Free the descriptor directly if acked by async_tx api, or move it to
540  * queue ld_completed.
541  */
542 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
543 		struct fsl_desc_sw *desc)
544 {
545 	/* Remove from the list of transactions */
546 	list_del(&desc->node);
547 
548 	/*
549 	 * the client is allowed to attach dependent operations
550 	 * until 'ack' is set
551 	 */
552 	if (!async_tx_test_ack(&desc->async_tx)) {
553 		/*
554 		 * Move this descriptor to the list of descriptors which is
555 		 * completed, but still awaiting the 'ack' bit to be set.
556 		 */
557 		list_add_tail(&desc->node, &chan->ld_completed);
558 		return;
559 	}
560 
561 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
562 }
563 
564 /**
565  * fsl_chan_xfer_ld_queue - transfer any pending transactions
566  * @chan : Freescale DMA channel
567  *
568  * HARDWARE STATE: idle
569  * LOCKING: must hold chan->desc_lock
570  */
571 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
572 {
573 	struct fsl_desc_sw *desc;
574 
575 	/*
576 	 * If the list of pending descriptors is empty, then we
577 	 * don't need to do any work at all
578 	 */
579 	if (list_empty(&chan->ld_pending)) {
580 		chan_dbg(chan, "no pending LDs\n");
581 		return;
582 	}
583 
584 	/*
585 	 * The DMA controller is not idle, which means that the interrupt
586 	 * handler will start any queued transactions when it runs after
587 	 * this transaction finishes
588 	 */
589 	if (!chan->idle) {
590 		chan_dbg(chan, "DMA controller still busy\n");
591 		return;
592 	}
593 
594 	/*
595 	 * If there are some link descriptors which have not been
596 	 * transferred, we need to start the controller
597 	 */
598 
599 	/*
600 	 * Move all elements from the queue of pending transactions
601 	 * onto the list of running transactions
602 	 */
603 	chan_dbg(chan, "idle, starting controller\n");
604 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
605 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
606 
607 	/*
608 	 * The 85xx DMA controller doesn't clear the channel start bit
609 	 * automatically at the end of a transfer. Therefore we must clear
610 	 * it in software before starting the transfer.
611 	 */
612 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
613 		u32 mode;
614 
615 		mode = get_mr(chan);
616 		mode &= ~FSL_DMA_MR_CS;
617 		set_mr(chan, mode);
618 	}
619 
620 	/*
621 	 * Program the descriptor's address into the DMA controller,
622 	 * then start the DMA transaction
623 	 */
624 	set_cdar(chan, desc->async_tx.phys);
625 	get_cdar(chan);
626 
627 	dma_start(chan);
628 	chan->idle = false;
629 }
630 
631 /**
632  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
633  * and move them to ld_completed to free until flag 'ack' is set
634  * @chan: Freescale DMA channel
635  *
636  * This function is used on descriptors which have been executed by the DMA
637  * controller. It will run any callbacks, submit any dependencies, then
638  * free these descriptors if flag 'ack' is set.
639  */
640 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
641 {
642 	struct fsl_desc_sw *desc, *_desc;
643 	dma_cookie_t cookie = 0;
644 	dma_addr_t curr_phys = get_cdar(chan);
645 	int seen_current = 0;
646 
647 	fsldma_clean_completed_descriptor(chan);
648 
649 	/* Run the callback for each descriptor, in order */
650 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
651 		/*
652 		 * do not advance past the current descriptor loaded into the
653 		 * hardware channel, subsequent descriptors are either in
654 		 * process or have not been submitted
655 		 */
656 		if (seen_current)
657 			break;
658 
659 		/*
660 		 * stop the search if we reach the current descriptor and the
661 		 * channel is busy
662 		 */
663 		if (desc->async_tx.phys == curr_phys) {
664 			seen_current = 1;
665 			if (!dma_is_idle(chan))
666 				break;
667 		}
668 
669 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
670 
671 		fsldma_clean_running_descriptor(chan, desc);
672 	}
673 
674 	/*
675 	 * Start any pending transactions automatically
676 	 *
677 	 * In the ideal case, we keep the DMA controller busy while we go
678 	 * ahead and free the descriptors below.
679 	 */
680 	fsl_chan_xfer_ld_queue(chan);
681 
682 	if (cookie > 0)
683 		chan->common.completed_cookie = cookie;
684 }
685 
686 /**
687  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
688  * @chan : Freescale DMA channel
689  *
690  * This function will create a dma pool for descriptor allocation.
691  *
692  * Return - The number of descriptors allocated.
693  */
694 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
695 {
696 	struct fsldma_chan *chan = to_fsl_chan(dchan);
697 
698 	/* Has this channel already been allocated? */
699 	if (chan->desc_pool)
700 		return 1;
701 
702 	/*
703 	 * We need the descriptor to be aligned to 32bytes
704 	 * for meeting FSL DMA specification requirement.
705 	 */
706 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
707 					  sizeof(struct fsl_desc_sw),
708 					  __alignof__(struct fsl_desc_sw), 0);
709 	if (!chan->desc_pool) {
710 		chan_err(chan, "unable to allocate descriptor pool\n");
711 		return -ENOMEM;
712 	}
713 
714 	/* there is at least one descriptor free to be allocated */
715 	return 1;
716 }
717 
718 /**
719  * fsldma_free_desc_list - Free all descriptors in a queue
720  * @chan: Freescae DMA channel
721  * @list: the list to free
722  *
723  * LOCKING: must hold chan->desc_lock
724  */
725 static void fsldma_free_desc_list(struct fsldma_chan *chan,
726 				  struct list_head *list)
727 {
728 	struct fsl_desc_sw *desc, *_desc;
729 
730 	list_for_each_entry_safe(desc, _desc, list, node)
731 		fsl_dma_free_descriptor(chan, desc);
732 }
733 
734 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
735 					  struct list_head *list)
736 {
737 	struct fsl_desc_sw *desc, *_desc;
738 
739 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
740 		fsl_dma_free_descriptor(chan, desc);
741 }
742 
743 /**
744  * fsl_dma_free_chan_resources - Free all resources of the channel.
745  * @chan : Freescale DMA channel
746  */
747 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
748 {
749 	struct fsldma_chan *chan = to_fsl_chan(dchan);
750 
751 	chan_dbg(chan, "free all channel resources\n");
752 	spin_lock_bh(&chan->desc_lock);
753 	fsldma_cleanup_descriptors(chan);
754 	fsldma_free_desc_list(chan, &chan->ld_pending);
755 	fsldma_free_desc_list(chan, &chan->ld_running);
756 	fsldma_free_desc_list(chan, &chan->ld_completed);
757 	spin_unlock_bh(&chan->desc_lock);
758 
759 	dma_pool_destroy(chan->desc_pool);
760 	chan->desc_pool = NULL;
761 }
762 
763 static struct dma_async_tx_descriptor *
764 fsl_dma_prep_memcpy(struct dma_chan *dchan,
765 	dma_addr_t dma_dst, dma_addr_t dma_src,
766 	size_t len, unsigned long flags)
767 {
768 	struct fsldma_chan *chan;
769 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
770 	size_t copy;
771 
772 	if (!dchan)
773 		return NULL;
774 
775 	if (!len)
776 		return NULL;
777 
778 	chan = to_fsl_chan(dchan);
779 
780 	do {
781 
782 		/* Allocate the link descriptor from DMA pool */
783 		new = fsl_dma_alloc_descriptor(chan);
784 		if (!new) {
785 			chan_err(chan, "%s\n", msg_ld_oom);
786 			goto fail;
787 		}
788 
789 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
790 
791 		set_desc_cnt(chan, &new->hw, copy);
792 		set_desc_src(chan, &new->hw, dma_src);
793 		set_desc_dst(chan, &new->hw, dma_dst);
794 
795 		if (!first)
796 			first = new;
797 		else
798 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
799 
800 		new->async_tx.cookie = 0;
801 		async_tx_ack(&new->async_tx);
802 
803 		prev = new;
804 		len -= copy;
805 		dma_src += copy;
806 		dma_dst += copy;
807 
808 		/* Insert the link descriptor to the LD ring */
809 		list_add_tail(&new->node, &first->tx_list);
810 	} while (len);
811 
812 	new->async_tx.flags = flags; /* client is in control of this ack */
813 	new->async_tx.cookie = -EBUSY;
814 
815 	/* Set End-of-link to the last link descriptor of new list */
816 	set_ld_eol(chan, new);
817 
818 	return &first->async_tx;
819 
820 fail:
821 	if (!first)
822 		return NULL;
823 
824 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
825 	return NULL;
826 }
827 
828 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
829 	struct scatterlist *dst_sg, unsigned int dst_nents,
830 	struct scatterlist *src_sg, unsigned int src_nents,
831 	unsigned long flags)
832 {
833 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
834 	struct fsldma_chan *chan = to_fsl_chan(dchan);
835 	size_t dst_avail, src_avail;
836 	dma_addr_t dst, src;
837 	size_t len;
838 
839 	/* basic sanity checks */
840 	if (dst_nents == 0 || src_nents == 0)
841 		return NULL;
842 
843 	if (dst_sg == NULL || src_sg == NULL)
844 		return NULL;
845 
846 	/*
847 	 * TODO: should we check that both scatterlists have the same
848 	 * TODO: number of bytes in total? Is that really an error?
849 	 */
850 
851 	/* get prepared for the loop */
852 	dst_avail = sg_dma_len(dst_sg);
853 	src_avail = sg_dma_len(src_sg);
854 
855 	/* run until we are out of scatterlist entries */
856 	while (true) {
857 
858 		/* create the largest transaction possible */
859 		len = min_t(size_t, src_avail, dst_avail);
860 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
861 		if (len == 0)
862 			goto fetch;
863 
864 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
865 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
866 
867 		/* allocate and populate the descriptor */
868 		new = fsl_dma_alloc_descriptor(chan);
869 		if (!new) {
870 			chan_err(chan, "%s\n", msg_ld_oom);
871 			goto fail;
872 		}
873 
874 		set_desc_cnt(chan, &new->hw, len);
875 		set_desc_src(chan, &new->hw, src);
876 		set_desc_dst(chan, &new->hw, dst);
877 
878 		if (!first)
879 			first = new;
880 		else
881 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
882 
883 		new->async_tx.cookie = 0;
884 		async_tx_ack(&new->async_tx);
885 		prev = new;
886 
887 		/* Insert the link descriptor to the LD ring */
888 		list_add_tail(&new->node, &first->tx_list);
889 
890 		/* update metadata */
891 		dst_avail -= len;
892 		src_avail -= len;
893 
894 fetch:
895 		/* fetch the next dst scatterlist entry */
896 		if (dst_avail == 0) {
897 
898 			/* no more entries: we're done */
899 			if (dst_nents == 0)
900 				break;
901 
902 			/* fetch the next entry: if there are no more: done */
903 			dst_sg = sg_next(dst_sg);
904 			if (dst_sg == NULL)
905 				break;
906 
907 			dst_nents--;
908 			dst_avail = sg_dma_len(dst_sg);
909 		}
910 
911 		/* fetch the next src scatterlist entry */
912 		if (src_avail == 0) {
913 
914 			/* no more entries: we're done */
915 			if (src_nents == 0)
916 				break;
917 
918 			/* fetch the next entry: if there are no more: done */
919 			src_sg = sg_next(src_sg);
920 			if (src_sg == NULL)
921 				break;
922 
923 			src_nents--;
924 			src_avail = sg_dma_len(src_sg);
925 		}
926 	}
927 
928 	new->async_tx.flags = flags; /* client is in control of this ack */
929 	new->async_tx.cookie = -EBUSY;
930 
931 	/* Set End-of-link to the last link descriptor of new list */
932 	set_ld_eol(chan, new);
933 
934 	return &first->async_tx;
935 
936 fail:
937 	if (!first)
938 		return NULL;
939 
940 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
941 	return NULL;
942 }
943 
944 /**
945  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
946  * @chan: DMA channel
947  * @sgl: scatterlist to transfer to/from
948  * @sg_len: number of entries in @scatterlist
949  * @direction: DMA direction
950  * @flags: DMAEngine flags
951  * @context: transaction context (ignored)
952  *
953  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
954  * DMA_SLAVE API, this gets the device-specific information from the
955  * chan->private variable.
956  */
957 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
958 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
959 	enum dma_transfer_direction direction, unsigned long flags,
960 	void *context)
961 {
962 	/*
963 	 * This operation is not supported on the Freescale DMA controller
964 	 *
965 	 * However, we need to provide the function pointer to allow the
966 	 * device_control() method to work.
967 	 */
968 	return NULL;
969 }
970 
971 static int fsl_dma_device_control(struct dma_chan *dchan,
972 				  enum dma_ctrl_cmd cmd, unsigned long arg)
973 {
974 	struct dma_slave_config *config;
975 	struct fsldma_chan *chan;
976 	int size;
977 
978 	if (!dchan)
979 		return -EINVAL;
980 
981 	chan = to_fsl_chan(dchan);
982 
983 	switch (cmd) {
984 	case DMA_TERMINATE_ALL:
985 		spin_lock_bh(&chan->desc_lock);
986 
987 		/* Halt the DMA engine */
988 		dma_halt(chan);
989 
990 		/* Remove and free all of the descriptors in the LD queue */
991 		fsldma_free_desc_list(chan, &chan->ld_pending);
992 		fsldma_free_desc_list(chan, &chan->ld_running);
993 		fsldma_free_desc_list(chan, &chan->ld_completed);
994 		chan->idle = true;
995 
996 		spin_unlock_bh(&chan->desc_lock);
997 		return 0;
998 
999 	case DMA_SLAVE_CONFIG:
1000 		config = (struct dma_slave_config *)arg;
1001 
1002 		/* make sure the channel supports setting burst size */
1003 		if (!chan->set_request_count)
1004 			return -ENXIO;
1005 
1006 		/* we set the controller burst size depending on direction */
1007 		if (config->direction == DMA_MEM_TO_DEV)
1008 			size = config->dst_addr_width * config->dst_maxburst;
1009 		else
1010 			size = config->src_addr_width * config->src_maxburst;
1011 
1012 		chan->set_request_count(chan, size);
1013 		return 0;
1014 
1015 	default:
1016 		return -ENXIO;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
1024  * @chan : Freescale DMA channel
1025  */
1026 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1027 {
1028 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1029 
1030 	spin_lock_bh(&chan->desc_lock);
1031 	fsl_chan_xfer_ld_queue(chan);
1032 	spin_unlock_bh(&chan->desc_lock);
1033 }
1034 
1035 /**
1036  * fsl_tx_status - Determine the DMA status
1037  * @chan : Freescale DMA channel
1038  */
1039 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1040 					dma_cookie_t cookie,
1041 					struct dma_tx_state *txstate)
1042 {
1043 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1044 	enum dma_status ret;
1045 
1046 	ret = dma_cookie_status(dchan, cookie, txstate);
1047 	if (ret == DMA_COMPLETE)
1048 		return ret;
1049 
1050 	spin_lock_bh(&chan->desc_lock);
1051 	fsldma_cleanup_descriptors(chan);
1052 	spin_unlock_bh(&chan->desc_lock);
1053 
1054 	return dma_cookie_status(dchan, cookie, txstate);
1055 }
1056 
1057 /*----------------------------------------------------------------------------*/
1058 /* Interrupt Handling                                                         */
1059 /*----------------------------------------------------------------------------*/
1060 
1061 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1062 {
1063 	struct fsldma_chan *chan = data;
1064 	u32 stat;
1065 
1066 	/* save and clear the status register */
1067 	stat = get_sr(chan);
1068 	set_sr(chan, stat);
1069 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1070 
1071 	/* check that this was really our device */
1072 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1073 	if (!stat)
1074 		return IRQ_NONE;
1075 
1076 	if (stat & FSL_DMA_SR_TE)
1077 		chan_err(chan, "Transfer Error!\n");
1078 
1079 	/*
1080 	 * Programming Error
1081 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1082 	 * trigger a PE interrupt.
1083 	 */
1084 	if (stat & FSL_DMA_SR_PE) {
1085 		chan_dbg(chan, "irq: Programming Error INT\n");
1086 		stat &= ~FSL_DMA_SR_PE;
1087 		if (get_bcr(chan) != 0)
1088 			chan_err(chan, "Programming Error!\n");
1089 	}
1090 
1091 	/*
1092 	 * For MPC8349, EOCDI event need to update cookie
1093 	 * and start the next transfer if it exist.
1094 	 */
1095 	if (stat & FSL_DMA_SR_EOCDI) {
1096 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1097 		stat &= ~FSL_DMA_SR_EOCDI;
1098 	}
1099 
1100 	/*
1101 	 * If it current transfer is the end-of-transfer,
1102 	 * we should clear the Channel Start bit for
1103 	 * prepare next transfer.
1104 	 */
1105 	if (stat & FSL_DMA_SR_EOLNI) {
1106 		chan_dbg(chan, "irq: End-of-link INT\n");
1107 		stat &= ~FSL_DMA_SR_EOLNI;
1108 	}
1109 
1110 	/* check that the DMA controller is really idle */
1111 	if (!dma_is_idle(chan))
1112 		chan_err(chan, "irq: controller not idle!\n");
1113 
1114 	/* check that we handled all of the bits */
1115 	if (stat)
1116 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1117 
1118 	/*
1119 	 * Schedule the tasklet to handle all cleanup of the current
1120 	 * transaction. It will start a new transaction if there is
1121 	 * one pending.
1122 	 */
1123 	tasklet_schedule(&chan->tasklet);
1124 	chan_dbg(chan, "irq: Exit\n");
1125 	return IRQ_HANDLED;
1126 }
1127 
1128 static void dma_do_tasklet(unsigned long data)
1129 {
1130 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1131 
1132 	chan_dbg(chan, "tasklet entry\n");
1133 
1134 	spin_lock_bh(&chan->desc_lock);
1135 
1136 	/* the hardware is now idle and ready for more */
1137 	chan->idle = true;
1138 
1139 	/* Run all cleanup for descriptors which have been completed */
1140 	fsldma_cleanup_descriptors(chan);
1141 
1142 	spin_unlock_bh(&chan->desc_lock);
1143 
1144 	chan_dbg(chan, "tasklet exit\n");
1145 }
1146 
1147 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1148 {
1149 	struct fsldma_device *fdev = data;
1150 	struct fsldma_chan *chan;
1151 	unsigned int handled = 0;
1152 	u32 gsr, mask;
1153 	int i;
1154 
1155 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1156 						   : in_le32(fdev->regs);
1157 	mask = 0xff000000;
1158 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1159 
1160 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1161 		chan = fdev->chan[i];
1162 		if (!chan)
1163 			continue;
1164 
1165 		if (gsr & mask) {
1166 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1167 			fsldma_chan_irq(irq, chan);
1168 			handled++;
1169 		}
1170 
1171 		gsr &= ~mask;
1172 		mask >>= 8;
1173 	}
1174 
1175 	return IRQ_RETVAL(handled);
1176 }
1177 
1178 static void fsldma_free_irqs(struct fsldma_device *fdev)
1179 {
1180 	struct fsldma_chan *chan;
1181 	int i;
1182 
1183 	if (fdev->irq != NO_IRQ) {
1184 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1185 		free_irq(fdev->irq, fdev);
1186 		return;
1187 	}
1188 
1189 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1190 		chan = fdev->chan[i];
1191 		if (chan && chan->irq != NO_IRQ) {
1192 			chan_dbg(chan, "free per-channel IRQ\n");
1193 			free_irq(chan->irq, chan);
1194 		}
1195 	}
1196 }
1197 
1198 static int fsldma_request_irqs(struct fsldma_device *fdev)
1199 {
1200 	struct fsldma_chan *chan;
1201 	int ret;
1202 	int i;
1203 
1204 	/* if we have a per-controller IRQ, use that */
1205 	if (fdev->irq != NO_IRQ) {
1206 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1207 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1208 				  "fsldma-controller", fdev);
1209 		return ret;
1210 	}
1211 
1212 	/* no per-controller IRQ, use the per-channel IRQs */
1213 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1214 		chan = fdev->chan[i];
1215 		if (!chan)
1216 			continue;
1217 
1218 		if (chan->irq == NO_IRQ) {
1219 			chan_err(chan, "interrupts property missing in device tree\n");
1220 			ret = -ENODEV;
1221 			goto out_unwind;
1222 		}
1223 
1224 		chan_dbg(chan, "request per-channel IRQ\n");
1225 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1226 				  "fsldma-chan", chan);
1227 		if (ret) {
1228 			chan_err(chan, "unable to request per-channel IRQ\n");
1229 			goto out_unwind;
1230 		}
1231 	}
1232 
1233 	return 0;
1234 
1235 out_unwind:
1236 	for (/* none */; i >= 0; i--) {
1237 		chan = fdev->chan[i];
1238 		if (!chan)
1239 			continue;
1240 
1241 		if (chan->irq == NO_IRQ)
1242 			continue;
1243 
1244 		free_irq(chan->irq, chan);
1245 	}
1246 
1247 	return ret;
1248 }
1249 
1250 /*----------------------------------------------------------------------------*/
1251 /* OpenFirmware Subsystem                                                     */
1252 /*----------------------------------------------------------------------------*/
1253 
1254 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1255 	struct device_node *node, u32 feature, const char *compatible)
1256 {
1257 	struct fsldma_chan *chan;
1258 	struct resource res;
1259 	int err;
1260 
1261 	/* alloc channel */
1262 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1263 	if (!chan) {
1264 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1265 		err = -ENOMEM;
1266 		goto out_return;
1267 	}
1268 
1269 	/* ioremap registers for use */
1270 	chan->regs = of_iomap(node, 0);
1271 	if (!chan->regs) {
1272 		dev_err(fdev->dev, "unable to ioremap registers\n");
1273 		err = -ENOMEM;
1274 		goto out_free_chan;
1275 	}
1276 
1277 	err = of_address_to_resource(node, 0, &res);
1278 	if (err) {
1279 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1280 		goto out_iounmap_regs;
1281 	}
1282 
1283 	chan->feature = feature;
1284 	if (!fdev->feature)
1285 		fdev->feature = chan->feature;
1286 
1287 	/*
1288 	 * If the DMA device's feature is different than the feature
1289 	 * of its channels, report the bug
1290 	 */
1291 	WARN_ON(fdev->feature != chan->feature);
1292 
1293 	chan->dev = fdev->dev;
1294 	chan->id = (res.start & 0xfff) < 0x300 ?
1295 		   ((res.start - 0x100) & 0xfff) >> 7 :
1296 		   ((res.start - 0x200) & 0xfff) >> 7;
1297 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1298 		dev_err(fdev->dev, "too many channels for device\n");
1299 		err = -EINVAL;
1300 		goto out_iounmap_regs;
1301 	}
1302 
1303 	fdev->chan[chan->id] = chan;
1304 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1305 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1306 
1307 	/* Initialize the channel */
1308 	dma_init(chan);
1309 
1310 	/* Clear cdar registers */
1311 	set_cdar(chan, 0);
1312 
1313 	switch (chan->feature & FSL_DMA_IP_MASK) {
1314 	case FSL_DMA_IP_85XX:
1315 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1316 	case FSL_DMA_IP_83XX:
1317 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1318 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1319 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1320 		chan->set_request_count = fsl_chan_set_request_count;
1321 	}
1322 
1323 	spin_lock_init(&chan->desc_lock);
1324 	INIT_LIST_HEAD(&chan->ld_pending);
1325 	INIT_LIST_HEAD(&chan->ld_running);
1326 	INIT_LIST_HEAD(&chan->ld_completed);
1327 	chan->idle = true;
1328 #ifdef CONFIG_PM
1329 	chan->pm_state = RUNNING;
1330 #endif
1331 
1332 	chan->common.device = &fdev->common;
1333 	dma_cookie_init(&chan->common);
1334 
1335 	/* find the IRQ line, if it exists in the device tree */
1336 	chan->irq = irq_of_parse_and_map(node, 0);
1337 
1338 	/* Add the channel to DMA device channel list */
1339 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1340 
1341 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1342 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1343 
1344 	return 0;
1345 
1346 out_iounmap_regs:
1347 	iounmap(chan->regs);
1348 out_free_chan:
1349 	kfree(chan);
1350 out_return:
1351 	return err;
1352 }
1353 
1354 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1355 {
1356 	irq_dispose_mapping(chan->irq);
1357 	list_del(&chan->common.device_node);
1358 	iounmap(chan->regs);
1359 	kfree(chan);
1360 }
1361 
1362 static int fsldma_of_probe(struct platform_device *op)
1363 {
1364 	struct fsldma_device *fdev;
1365 	struct device_node *child;
1366 	int err;
1367 
1368 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1369 	if (!fdev) {
1370 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1371 		err = -ENOMEM;
1372 		goto out_return;
1373 	}
1374 
1375 	fdev->dev = &op->dev;
1376 	INIT_LIST_HEAD(&fdev->common.channels);
1377 
1378 	/* ioremap the registers for use */
1379 	fdev->regs = of_iomap(op->dev.of_node, 0);
1380 	if (!fdev->regs) {
1381 		dev_err(&op->dev, "unable to ioremap registers\n");
1382 		err = -ENOMEM;
1383 		goto out_free_fdev;
1384 	}
1385 
1386 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1387 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1388 
1389 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1390 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1391 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1392 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1393 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1394 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1395 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1396 	fdev->common.device_tx_status = fsl_tx_status;
1397 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1398 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1399 	fdev->common.device_control = fsl_dma_device_control;
1400 	fdev->common.dev = &op->dev;
1401 
1402 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1403 
1404 	platform_set_drvdata(op, fdev);
1405 
1406 	/*
1407 	 * We cannot use of_platform_bus_probe() because there is no
1408 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1409 	 * channel object.
1410 	 */
1411 	for_each_child_of_node(op->dev.of_node, child) {
1412 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1413 			fsl_dma_chan_probe(fdev, child,
1414 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1415 				"fsl,eloplus-dma-channel");
1416 		}
1417 
1418 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1419 			fsl_dma_chan_probe(fdev, child,
1420 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1421 				"fsl,elo-dma-channel");
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * Hookup the IRQ handler(s)
1427 	 *
1428 	 * If we have a per-controller interrupt, we prefer that to the
1429 	 * per-channel interrupts to reduce the number of shared interrupt
1430 	 * handlers on the same IRQ line
1431 	 */
1432 	err = fsldma_request_irqs(fdev);
1433 	if (err) {
1434 		dev_err(fdev->dev, "unable to request IRQs\n");
1435 		goto out_free_fdev;
1436 	}
1437 
1438 	dma_async_device_register(&fdev->common);
1439 	return 0;
1440 
1441 out_free_fdev:
1442 	irq_dispose_mapping(fdev->irq);
1443 	kfree(fdev);
1444 out_return:
1445 	return err;
1446 }
1447 
1448 static int fsldma_of_remove(struct platform_device *op)
1449 {
1450 	struct fsldma_device *fdev;
1451 	unsigned int i;
1452 
1453 	fdev = platform_get_drvdata(op);
1454 	dma_async_device_unregister(&fdev->common);
1455 
1456 	fsldma_free_irqs(fdev);
1457 
1458 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1459 		if (fdev->chan[i])
1460 			fsl_dma_chan_remove(fdev->chan[i]);
1461 	}
1462 
1463 	iounmap(fdev->regs);
1464 	kfree(fdev);
1465 
1466 	return 0;
1467 }
1468 
1469 #ifdef CONFIG_PM
1470 static int fsldma_suspend_late(struct device *dev)
1471 {
1472 	struct platform_device *pdev = to_platform_device(dev);
1473 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1474 	struct fsldma_chan *chan;
1475 	int i;
1476 
1477 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1478 		chan = fdev->chan[i];
1479 		if (!chan)
1480 			continue;
1481 
1482 		spin_lock_bh(&chan->desc_lock);
1483 		if (unlikely(!chan->idle))
1484 			goto out;
1485 		chan->regs_save.mr = get_mr(chan);
1486 		chan->pm_state = SUSPENDED;
1487 		spin_unlock_bh(&chan->desc_lock);
1488 	}
1489 	return 0;
1490 
1491 out:
1492 	for (; i >= 0; i--) {
1493 		chan = fdev->chan[i];
1494 		if (!chan)
1495 			continue;
1496 		chan->pm_state = RUNNING;
1497 		spin_unlock_bh(&chan->desc_lock);
1498 	}
1499 	return -EBUSY;
1500 }
1501 
1502 static int fsldma_resume_early(struct device *dev)
1503 {
1504 	struct platform_device *pdev = to_platform_device(dev);
1505 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1506 	struct fsldma_chan *chan;
1507 	u32 mode;
1508 	int i;
1509 
1510 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1511 		chan = fdev->chan[i];
1512 		if (!chan)
1513 			continue;
1514 
1515 		spin_lock_bh(&chan->desc_lock);
1516 		mode = chan->regs_save.mr
1517 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1518 		set_mr(chan, mode);
1519 		chan->pm_state = RUNNING;
1520 		spin_unlock_bh(&chan->desc_lock);
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 static const struct dev_pm_ops fsldma_pm_ops = {
1527 	.suspend_late	= fsldma_suspend_late,
1528 	.resume_early	= fsldma_resume_early,
1529 };
1530 #endif
1531 
1532 static const struct of_device_id fsldma_of_ids[] = {
1533 	{ .compatible = "fsl,elo3-dma", },
1534 	{ .compatible = "fsl,eloplus-dma", },
1535 	{ .compatible = "fsl,elo-dma", },
1536 	{}
1537 };
1538 
1539 static struct platform_driver fsldma_of_driver = {
1540 	.driver = {
1541 		.name = "fsl-elo-dma",
1542 		.of_match_table = fsldma_of_ids,
1543 #ifdef CONFIG_PM
1544 		.pm = &fsldma_pm_ops,
1545 #endif
1546 	},
1547 	.probe = fsldma_of_probe,
1548 	.remove = fsldma_of_remove,
1549 };
1550 
1551 /*----------------------------------------------------------------------------*/
1552 /* Module Init / Exit                                                         */
1553 /*----------------------------------------------------------------------------*/
1554 
1555 static __init int fsldma_init(void)
1556 {
1557 	pr_info("Freescale Elo series DMA driver\n");
1558 	return platform_driver_register(&fsldma_of_driver);
1559 }
1560 
1561 static void __exit fsldma_exit(void)
1562 {
1563 	platform_driver_unregister(&fsldma_of_driver);
1564 }
1565 
1566 subsys_initcall(fsldma_init);
1567 module_exit(fsldma_exit);
1568 
1569 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1570 MODULE_LICENSE("GPL");
1571