1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA controller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/slab.h> 31 #include <linux/interrupt.h> 32 #include <linux/dmaengine.h> 33 #include <linux/delay.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/dmapool.h> 36 #include <linux/of_address.h> 37 #include <linux/of_irq.h> 38 #include <linux/of_platform.h> 39 40 #include "dmaengine.h" 41 #include "fsldma.h" 42 43 #define chan_dbg(chan, fmt, arg...) \ 44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) 45 #define chan_err(chan, fmt, arg...) \ 46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) 47 48 static const char msg_ld_oom[] = "No free memory for link descriptor"; 49 50 /* 51 * Register Helpers 52 */ 53 54 static void set_sr(struct fsldma_chan *chan, u32 val) 55 { 56 DMA_OUT(chan, &chan->regs->sr, val, 32); 57 } 58 59 static u32 get_sr(struct fsldma_chan *chan) 60 { 61 return DMA_IN(chan, &chan->regs->sr, 32); 62 } 63 64 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) 65 { 66 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); 67 } 68 69 static dma_addr_t get_cdar(struct fsldma_chan *chan) 70 { 71 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; 72 } 73 74 static u32 get_bcr(struct fsldma_chan *chan) 75 { 76 return DMA_IN(chan, &chan->regs->bcr, 32); 77 } 78 79 /* 80 * Descriptor Helpers 81 */ 82 83 static void set_desc_cnt(struct fsldma_chan *chan, 84 struct fsl_dma_ld_hw *hw, u32 count) 85 { 86 hw->count = CPU_TO_DMA(chan, count, 32); 87 } 88 89 static void set_desc_src(struct fsldma_chan *chan, 90 struct fsl_dma_ld_hw *hw, dma_addr_t src) 91 { 92 u64 snoop_bits; 93 94 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 95 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 96 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64); 97 } 98 99 static void set_desc_dst(struct fsldma_chan *chan, 100 struct fsl_dma_ld_hw *hw, dma_addr_t dst) 101 { 102 u64 snoop_bits; 103 104 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 105 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 106 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64); 107 } 108 109 static void set_desc_next(struct fsldma_chan *chan, 110 struct fsl_dma_ld_hw *hw, dma_addr_t next) 111 { 112 u64 snoop_bits; 113 114 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 115 ? FSL_DMA_SNEN : 0; 116 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64); 117 } 118 119 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 120 { 121 u64 snoop_bits; 122 123 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 124 ? FSL_DMA_SNEN : 0; 125 126 desc->hw.next_ln_addr = CPU_TO_DMA(chan, 127 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 128 | snoop_bits, 64); 129 } 130 131 /* 132 * DMA Engine Hardware Control Helpers 133 */ 134 135 static void dma_init(struct fsldma_chan *chan) 136 { 137 /* Reset the channel */ 138 DMA_OUT(chan, &chan->regs->mr, 0, 32); 139 140 switch (chan->feature & FSL_DMA_IP_MASK) { 141 case FSL_DMA_IP_85XX: 142 /* Set the channel to below modes: 143 * EIE - Error interrupt enable 144 * EOLNIE - End of links interrupt enable 145 * BWC - Bandwidth sharing among channels 146 */ 147 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC 148 | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32); 149 break; 150 case FSL_DMA_IP_83XX: 151 /* Set the channel to below modes: 152 * EOTIE - End-of-transfer interrupt enable 153 * PRC_RM - PCI read multiple 154 */ 155 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE 156 | FSL_DMA_MR_PRC_RM, 32); 157 break; 158 } 159 } 160 161 static int dma_is_idle(struct fsldma_chan *chan) 162 { 163 u32 sr = get_sr(chan); 164 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 165 } 166 167 /* 168 * Start the DMA controller 169 * 170 * Preconditions: 171 * - the CDAR register must point to the start descriptor 172 * - the MRn[CS] bit must be cleared 173 */ 174 static void dma_start(struct fsldma_chan *chan) 175 { 176 u32 mode; 177 178 mode = DMA_IN(chan, &chan->regs->mr, 32); 179 180 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 181 DMA_OUT(chan, &chan->regs->bcr, 0, 32); 182 mode |= FSL_DMA_MR_EMP_EN; 183 } else { 184 mode &= ~FSL_DMA_MR_EMP_EN; 185 } 186 187 if (chan->feature & FSL_DMA_CHAN_START_EXT) { 188 mode |= FSL_DMA_MR_EMS_EN; 189 } else { 190 mode &= ~FSL_DMA_MR_EMS_EN; 191 mode |= FSL_DMA_MR_CS; 192 } 193 194 DMA_OUT(chan, &chan->regs->mr, mode, 32); 195 } 196 197 static void dma_halt(struct fsldma_chan *chan) 198 { 199 u32 mode; 200 int i; 201 202 /* read the mode register */ 203 mode = DMA_IN(chan, &chan->regs->mr, 32); 204 205 /* 206 * The 85xx controller supports channel abort, which will stop 207 * the current transfer. On 83xx, this bit is the transfer error 208 * mask bit, which should not be changed. 209 */ 210 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 211 mode |= FSL_DMA_MR_CA; 212 DMA_OUT(chan, &chan->regs->mr, mode, 32); 213 214 mode &= ~FSL_DMA_MR_CA; 215 } 216 217 /* stop the DMA controller */ 218 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN); 219 DMA_OUT(chan, &chan->regs->mr, mode, 32); 220 221 /* wait for the DMA controller to become idle */ 222 for (i = 0; i < 100; i++) { 223 if (dma_is_idle(chan)) 224 return; 225 226 udelay(10); 227 } 228 229 if (!dma_is_idle(chan)) 230 chan_err(chan, "DMA halt timeout!\n"); 231 } 232 233 /** 234 * fsl_chan_set_src_loop_size - Set source address hold transfer size 235 * @chan : Freescale DMA channel 236 * @size : Address loop size, 0 for disable loop 237 * 238 * The set source address hold transfer size. The source 239 * address hold or loop transfer size is when the DMA transfer 240 * data from source address (SA), if the loop size is 4, the DMA will 241 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 242 * SA + 1 ... and so on. 243 */ 244 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size) 245 { 246 u32 mode; 247 248 mode = DMA_IN(chan, &chan->regs->mr, 32); 249 250 switch (size) { 251 case 0: 252 mode &= ~FSL_DMA_MR_SAHE; 253 break; 254 case 1: 255 case 2: 256 case 4: 257 case 8: 258 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14); 259 break; 260 } 261 262 DMA_OUT(chan, &chan->regs->mr, mode, 32); 263 } 264 265 /** 266 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size 267 * @chan : Freescale DMA channel 268 * @size : Address loop size, 0 for disable loop 269 * 270 * The set destination address hold transfer size. The destination 271 * address hold or loop transfer size is when the DMA transfer 272 * data to destination address (TA), if the loop size is 4, the DMA will 273 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 274 * TA + 1 ... and so on. 275 */ 276 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size) 277 { 278 u32 mode; 279 280 mode = DMA_IN(chan, &chan->regs->mr, 32); 281 282 switch (size) { 283 case 0: 284 mode &= ~FSL_DMA_MR_DAHE; 285 break; 286 case 1: 287 case 2: 288 case 4: 289 case 8: 290 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16); 291 break; 292 } 293 294 DMA_OUT(chan, &chan->regs->mr, mode, 32); 295 } 296 297 /** 298 * fsl_chan_set_request_count - Set DMA Request Count for external control 299 * @chan : Freescale DMA channel 300 * @size : Number of bytes to transfer in a single request 301 * 302 * The Freescale DMA channel can be controlled by the external signal DREQ#. 303 * The DMA request count is how many bytes are allowed to transfer before 304 * pausing the channel, after which a new assertion of DREQ# resumes channel 305 * operation. 306 * 307 * A size of 0 disables external pause control. The maximum size is 1024. 308 */ 309 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size) 310 { 311 u32 mode; 312 313 BUG_ON(size > 1024); 314 315 mode = DMA_IN(chan, &chan->regs->mr, 32); 316 mode |= (__ilog2(size) << 24) & 0x0f000000; 317 318 DMA_OUT(chan, &chan->regs->mr, mode, 32); 319 } 320 321 /** 322 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 323 * @chan : Freescale DMA channel 324 * @enable : 0 is disabled, 1 is enabled. 325 * 326 * The Freescale DMA channel can be controlled by the external signal DREQ#. 327 * The DMA Request Count feature should be used in addition to this feature 328 * to set the number of bytes to transfer before pausing the channel. 329 */ 330 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable) 331 { 332 if (enable) 333 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 334 else 335 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 336 } 337 338 /** 339 * fsl_chan_toggle_ext_start - Toggle channel external start status 340 * @chan : Freescale DMA channel 341 * @enable : 0 is disabled, 1 is enabled. 342 * 343 * If enable the external start, the channel can be started by an 344 * external DMA start pin. So the dma_start() does not start the 345 * transfer immediately. The DMA channel will wait for the 346 * control pin asserted. 347 */ 348 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable) 349 { 350 if (enable) 351 chan->feature |= FSL_DMA_CHAN_START_EXT; 352 else 353 chan->feature &= ~FSL_DMA_CHAN_START_EXT; 354 } 355 356 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 357 { 358 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); 359 360 if (list_empty(&chan->ld_pending)) 361 goto out_splice; 362 363 /* 364 * Add the hardware descriptor to the chain of hardware descriptors 365 * that already exists in memory. 366 * 367 * This will un-set the EOL bit of the existing transaction, and the 368 * last link in this transaction will become the EOL descriptor. 369 */ 370 set_desc_next(chan, &tail->hw, desc->async_tx.phys); 371 372 /* 373 * Add the software descriptor and all children to the list 374 * of pending transactions 375 */ 376 out_splice: 377 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 378 } 379 380 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 381 { 382 struct fsldma_chan *chan = to_fsl_chan(tx->chan); 383 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); 384 struct fsl_desc_sw *child; 385 unsigned long flags; 386 dma_cookie_t cookie = -EINVAL; 387 388 spin_lock_irqsave(&chan->desc_lock, flags); 389 390 /* 391 * assign cookies to all of the software descriptors 392 * that make up this transaction 393 */ 394 list_for_each_entry(child, &desc->tx_list, node) { 395 cookie = dma_cookie_assign(&child->async_tx); 396 } 397 398 /* put this transaction onto the tail of the pending queue */ 399 append_ld_queue(chan, desc); 400 401 spin_unlock_irqrestore(&chan->desc_lock, flags); 402 403 return cookie; 404 } 405 406 /** 407 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 408 * @chan : Freescale DMA channel 409 * 410 * Return - The descriptor allocated. NULL for failed. 411 */ 412 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan) 413 { 414 struct fsl_desc_sw *desc; 415 dma_addr_t pdesc; 416 417 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 418 if (!desc) { 419 chan_dbg(chan, "out of memory for link descriptor\n"); 420 return NULL; 421 } 422 423 memset(desc, 0, sizeof(*desc)); 424 INIT_LIST_HEAD(&desc->tx_list); 425 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 426 desc->async_tx.tx_submit = fsl_dma_tx_submit; 427 desc->async_tx.phys = pdesc; 428 429 #ifdef FSL_DMA_LD_DEBUG 430 chan_dbg(chan, "LD %p allocated\n", desc); 431 #endif 432 433 return desc; 434 } 435 436 /** 437 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 438 * @chan : Freescale DMA channel 439 * 440 * This function will create a dma pool for descriptor allocation. 441 * 442 * Return - The number of descriptors allocated. 443 */ 444 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan) 445 { 446 struct fsldma_chan *chan = to_fsl_chan(dchan); 447 448 /* Has this channel already been allocated? */ 449 if (chan->desc_pool) 450 return 1; 451 452 /* 453 * We need the descriptor to be aligned to 32bytes 454 * for meeting FSL DMA specification requirement. 455 */ 456 chan->desc_pool = dma_pool_create(chan->name, chan->dev, 457 sizeof(struct fsl_desc_sw), 458 __alignof__(struct fsl_desc_sw), 0); 459 if (!chan->desc_pool) { 460 chan_err(chan, "unable to allocate descriptor pool\n"); 461 return -ENOMEM; 462 } 463 464 /* there is at least one descriptor free to be allocated */ 465 return 1; 466 } 467 468 /** 469 * fsldma_free_desc_list - Free all descriptors in a queue 470 * @chan: Freescae DMA channel 471 * @list: the list to free 472 * 473 * LOCKING: must hold chan->desc_lock 474 */ 475 static void fsldma_free_desc_list(struct fsldma_chan *chan, 476 struct list_head *list) 477 { 478 struct fsl_desc_sw *desc, *_desc; 479 480 list_for_each_entry_safe(desc, _desc, list, node) { 481 list_del(&desc->node); 482 #ifdef FSL_DMA_LD_DEBUG 483 chan_dbg(chan, "LD %p free\n", desc); 484 #endif 485 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 486 } 487 } 488 489 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan, 490 struct list_head *list) 491 { 492 struct fsl_desc_sw *desc, *_desc; 493 494 list_for_each_entry_safe_reverse(desc, _desc, list, node) { 495 list_del(&desc->node); 496 #ifdef FSL_DMA_LD_DEBUG 497 chan_dbg(chan, "LD %p free\n", desc); 498 #endif 499 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 500 } 501 } 502 503 /** 504 * fsl_dma_free_chan_resources - Free all resources of the channel. 505 * @chan : Freescale DMA channel 506 */ 507 static void fsl_dma_free_chan_resources(struct dma_chan *dchan) 508 { 509 struct fsldma_chan *chan = to_fsl_chan(dchan); 510 unsigned long flags; 511 512 chan_dbg(chan, "free all channel resources\n"); 513 spin_lock_irqsave(&chan->desc_lock, flags); 514 fsldma_free_desc_list(chan, &chan->ld_pending); 515 fsldma_free_desc_list(chan, &chan->ld_running); 516 spin_unlock_irqrestore(&chan->desc_lock, flags); 517 518 dma_pool_destroy(chan->desc_pool); 519 chan->desc_pool = NULL; 520 } 521 522 static struct dma_async_tx_descriptor * 523 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags) 524 { 525 struct fsldma_chan *chan; 526 struct fsl_desc_sw *new; 527 528 if (!dchan) 529 return NULL; 530 531 chan = to_fsl_chan(dchan); 532 533 new = fsl_dma_alloc_descriptor(chan); 534 if (!new) { 535 chan_err(chan, "%s\n", msg_ld_oom); 536 return NULL; 537 } 538 539 new->async_tx.cookie = -EBUSY; 540 new->async_tx.flags = flags; 541 542 /* Insert the link descriptor to the LD ring */ 543 list_add_tail(&new->node, &new->tx_list); 544 545 /* Set End-of-link to the last link descriptor of new list */ 546 set_ld_eol(chan, new); 547 548 return &new->async_tx; 549 } 550 551 static struct dma_async_tx_descriptor * 552 fsl_dma_prep_memcpy(struct dma_chan *dchan, 553 dma_addr_t dma_dst, dma_addr_t dma_src, 554 size_t len, unsigned long flags) 555 { 556 struct fsldma_chan *chan; 557 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 558 size_t copy; 559 560 if (!dchan) 561 return NULL; 562 563 if (!len) 564 return NULL; 565 566 chan = to_fsl_chan(dchan); 567 568 do { 569 570 /* Allocate the link descriptor from DMA pool */ 571 new = fsl_dma_alloc_descriptor(chan); 572 if (!new) { 573 chan_err(chan, "%s\n", msg_ld_oom); 574 goto fail; 575 } 576 577 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 578 579 set_desc_cnt(chan, &new->hw, copy); 580 set_desc_src(chan, &new->hw, dma_src); 581 set_desc_dst(chan, &new->hw, dma_dst); 582 583 if (!first) 584 first = new; 585 else 586 set_desc_next(chan, &prev->hw, new->async_tx.phys); 587 588 new->async_tx.cookie = 0; 589 async_tx_ack(&new->async_tx); 590 591 prev = new; 592 len -= copy; 593 dma_src += copy; 594 dma_dst += copy; 595 596 /* Insert the link descriptor to the LD ring */ 597 list_add_tail(&new->node, &first->tx_list); 598 } while (len); 599 600 new->async_tx.flags = flags; /* client is in control of this ack */ 601 new->async_tx.cookie = -EBUSY; 602 603 /* Set End-of-link to the last link descriptor of new list */ 604 set_ld_eol(chan, new); 605 606 return &first->async_tx; 607 608 fail: 609 if (!first) 610 return NULL; 611 612 fsldma_free_desc_list_reverse(chan, &first->tx_list); 613 return NULL; 614 } 615 616 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan, 617 struct scatterlist *dst_sg, unsigned int dst_nents, 618 struct scatterlist *src_sg, unsigned int src_nents, 619 unsigned long flags) 620 { 621 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; 622 struct fsldma_chan *chan = to_fsl_chan(dchan); 623 size_t dst_avail, src_avail; 624 dma_addr_t dst, src; 625 size_t len; 626 627 /* basic sanity checks */ 628 if (dst_nents == 0 || src_nents == 0) 629 return NULL; 630 631 if (dst_sg == NULL || src_sg == NULL) 632 return NULL; 633 634 /* 635 * TODO: should we check that both scatterlists have the same 636 * TODO: number of bytes in total? Is that really an error? 637 */ 638 639 /* get prepared for the loop */ 640 dst_avail = sg_dma_len(dst_sg); 641 src_avail = sg_dma_len(src_sg); 642 643 /* run until we are out of scatterlist entries */ 644 while (true) { 645 646 /* create the largest transaction possible */ 647 len = min_t(size_t, src_avail, dst_avail); 648 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT); 649 if (len == 0) 650 goto fetch; 651 652 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; 653 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; 654 655 /* allocate and populate the descriptor */ 656 new = fsl_dma_alloc_descriptor(chan); 657 if (!new) { 658 chan_err(chan, "%s\n", msg_ld_oom); 659 goto fail; 660 } 661 662 set_desc_cnt(chan, &new->hw, len); 663 set_desc_src(chan, &new->hw, src); 664 set_desc_dst(chan, &new->hw, dst); 665 666 if (!first) 667 first = new; 668 else 669 set_desc_next(chan, &prev->hw, new->async_tx.phys); 670 671 new->async_tx.cookie = 0; 672 async_tx_ack(&new->async_tx); 673 prev = new; 674 675 /* Insert the link descriptor to the LD ring */ 676 list_add_tail(&new->node, &first->tx_list); 677 678 /* update metadata */ 679 dst_avail -= len; 680 src_avail -= len; 681 682 fetch: 683 /* fetch the next dst scatterlist entry */ 684 if (dst_avail == 0) { 685 686 /* no more entries: we're done */ 687 if (dst_nents == 0) 688 break; 689 690 /* fetch the next entry: if there are no more: done */ 691 dst_sg = sg_next(dst_sg); 692 if (dst_sg == NULL) 693 break; 694 695 dst_nents--; 696 dst_avail = sg_dma_len(dst_sg); 697 } 698 699 /* fetch the next src scatterlist entry */ 700 if (src_avail == 0) { 701 702 /* no more entries: we're done */ 703 if (src_nents == 0) 704 break; 705 706 /* fetch the next entry: if there are no more: done */ 707 src_sg = sg_next(src_sg); 708 if (src_sg == NULL) 709 break; 710 711 src_nents--; 712 src_avail = sg_dma_len(src_sg); 713 } 714 } 715 716 new->async_tx.flags = flags; /* client is in control of this ack */ 717 new->async_tx.cookie = -EBUSY; 718 719 /* Set End-of-link to the last link descriptor of new list */ 720 set_ld_eol(chan, new); 721 722 return &first->async_tx; 723 724 fail: 725 if (!first) 726 return NULL; 727 728 fsldma_free_desc_list_reverse(chan, &first->tx_list); 729 return NULL; 730 } 731 732 /** 733 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 734 * @chan: DMA channel 735 * @sgl: scatterlist to transfer to/from 736 * @sg_len: number of entries in @scatterlist 737 * @direction: DMA direction 738 * @flags: DMAEngine flags 739 * @context: transaction context (ignored) 740 * 741 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the 742 * DMA_SLAVE API, this gets the device-specific information from the 743 * chan->private variable. 744 */ 745 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( 746 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, 747 enum dma_transfer_direction direction, unsigned long flags, 748 void *context) 749 { 750 /* 751 * This operation is not supported on the Freescale DMA controller 752 * 753 * However, we need to provide the function pointer to allow the 754 * device_control() method to work. 755 */ 756 return NULL; 757 } 758 759 static int fsl_dma_device_control(struct dma_chan *dchan, 760 enum dma_ctrl_cmd cmd, unsigned long arg) 761 { 762 struct dma_slave_config *config; 763 struct fsldma_chan *chan; 764 unsigned long flags; 765 int size; 766 767 if (!dchan) 768 return -EINVAL; 769 770 chan = to_fsl_chan(dchan); 771 772 switch (cmd) { 773 case DMA_TERMINATE_ALL: 774 spin_lock_irqsave(&chan->desc_lock, flags); 775 776 /* Halt the DMA engine */ 777 dma_halt(chan); 778 779 /* Remove and free all of the descriptors in the LD queue */ 780 fsldma_free_desc_list(chan, &chan->ld_pending); 781 fsldma_free_desc_list(chan, &chan->ld_running); 782 chan->idle = true; 783 784 spin_unlock_irqrestore(&chan->desc_lock, flags); 785 return 0; 786 787 case DMA_SLAVE_CONFIG: 788 config = (struct dma_slave_config *)arg; 789 790 /* make sure the channel supports setting burst size */ 791 if (!chan->set_request_count) 792 return -ENXIO; 793 794 /* we set the controller burst size depending on direction */ 795 if (config->direction == DMA_MEM_TO_DEV) 796 size = config->dst_addr_width * config->dst_maxburst; 797 else 798 size = config->src_addr_width * config->src_maxburst; 799 800 chan->set_request_count(chan, size); 801 return 0; 802 803 case FSLDMA_EXTERNAL_START: 804 805 /* make sure the channel supports external start */ 806 if (!chan->toggle_ext_start) 807 return -ENXIO; 808 809 chan->toggle_ext_start(chan, arg); 810 return 0; 811 812 default: 813 return -ENXIO; 814 } 815 816 return 0; 817 } 818 819 /** 820 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor 821 * @chan: Freescale DMA channel 822 * @desc: descriptor to cleanup and free 823 * 824 * This function is used on a descriptor which has been executed by the DMA 825 * controller. It will run any callbacks, submit any dependencies, and then 826 * free the descriptor. 827 */ 828 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan, 829 struct fsl_desc_sw *desc) 830 { 831 struct dma_async_tx_descriptor *txd = &desc->async_tx; 832 833 /* Run the link descriptor callback function */ 834 if (txd->callback) { 835 #ifdef FSL_DMA_LD_DEBUG 836 chan_dbg(chan, "LD %p callback\n", desc); 837 #endif 838 txd->callback(txd->callback_param); 839 } 840 841 /* Run any dependencies */ 842 dma_run_dependencies(txd); 843 844 dma_descriptor_unmap(txd); 845 #ifdef FSL_DMA_LD_DEBUG 846 chan_dbg(chan, "LD %p free\n", desc); 847 #endif 848 dma_pool_free(chan->desc_pool, desc, txd->phys); 849 } 850 851 /** 852 * fsl_chan_xfer_ld_queue - transfer any pending transactions 853 * @chan : Freescale DMA channel 854 * 855 * HARDWARE STATE: idle 856 * LOCKING: must hold chan->desc_lock 857 */ 858 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) 859 { 860 struct fsl_desc_sw *desc; 861 862 /* 863 * If the list of pending descriptors is empty, then we 864 * don't need to do any work at all 865 */ 866 if (list_empty(&chan->ld_pending)) { 867 chan_dbg(chan, "no pending LDs\n"); 868 return; 869 } 870 871 /* 872 * The DMA controller is not idle, which means that the interrupt 873 * handler will start any queued transactions when it runs after 874 * this transaction finishes 875 */ 876 if (!chan->idle) { 877 chan_dbg(chan, "DMA controller still busy\n"); 878 return; 879 } 880 881 /* 882 * If there are some link descriptors which have not been 883 * transferred, we need to start the controller 884 */ 885 886 /* 887 * Move all elements from the queue of pending transactions 888 * onto the list of running transactions 889 */ 890 chan_dbg(chan, "idle, starting controller\n"); 891 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); 892 list_splice_tail_init(&chan->ld_pending, &chan->ld_running); 893 894 /* 895 * The 85xx DMA controller doesn't clear the channel start bit 896 * automatically at the end of a transfer. Therefore we must clear 897 * it in software before starting the transfer. 898 */ 899 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 900 u32 mode; 901 902 mode = DMA_IN(chan, &chan->regs->mr, 32); 903 mode &= ~FSL_DMA_MR_CS; 904 DMA_OUT(chan, &chan->regs->mr, mode, 32); 905 } 906 907 /* 908 * Program the descriptor's address into the DMA controller, 909 * then start the DMA transaction 910 */ 911 set_cdar(chan, desc->async_tx.phys); 912 get_cdar(chan); 913 914 dma_start(chan); 915 chan->idle = false; 916 } 917 918 /** 919 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 920 * @chan : Freescale DMA channel 921 */ 922 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) 923 { 924 struct fsldma_chan *chan = to_fsl_chan(dchan); 925 unsigned long flags; 926 927 spin_lock_irqsave(&chan->desc_lock, flags); 928 fsl_chan_xfer_ld_queue(chan); 929 spin_unlock_irqrestore(&chan->desc_lock, flags); 930 } 931 932 /** 933 * fsl_tx_status - Determine the DMA status 934 * @chan : Freescale DMA channel 935 */ 936 static enum dma_status fsl_tx_status(struct dma_chan *dchan, 937 dma_cookie_t cookie, 938 struct dma_tx_state *txstate) 939 { 940 return dma_cookie_status(dchan, cookie, txstate); 941 } 942 943 /*----------------------------------------------------------------------------*/ 944 /* Interrupt Handling */ 945 /*----------------------------------------------------------------------------*/ 946 947 static irqreturn_t fsldma_chan_irq(int irq, void *data) 948 { 949 struct fsldma_chan *chan = data; 950 u32 stat; 951 952 /* save and clear the status register */ 953 stat = get_sr(chan); 954 set_sr(chan, stat); 955 chan_dbg(chan, "irq: stat = 0x%x\n", stat); 956 957 /* check that this was really our device */ 958 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 959 if (!stat) 960 return IRQ_NONE; 961 962 if (stat & FSL_DMA_SR_TE) 963 chan_err(chan, "Transfer Error!\n"); 964 965 /* 966 * Programming Error 967 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 968 * trigger a PE interrupt. 969 */ 970 if (stat & FSL_DMA_SR_PE) { 971 chan_dbg(chan, "irq: Programming Error INT\n"); 972 stat &= ~FSL_DMA_SR_PE; 973 if (get_bcr(chan) != 0) 974 chan_err(chan, "Programming Error!\n"); 975 } 976 977 /* 978 * For MPC8349, EOCDI event need to update cookie 979 * and start the next transfer if it exist. 980 */ 981 if (stat & FSL_DMA_SR_EOCDI) { 982 chan_dbg(chan, "irq: End-of-Chain link INT\n"); 983 stat &= ~FSL_DMA_SR_EOCDI; 984 } 985 986 /* 987 * If it current transfer is the end-of-transfer, 988 * we should clear the Channel Start bit for 989 * prepare next transfer. 990 */ 991 if (stat & FSL_DMA_SR_EOLNI) { 992 chan_dbg(chan, "irq: End-of-link INT\n"); 993 stat &= ~FSL_DMA_SR_EOLNI; 994 } 995 996 /* check that the DMA controller is really idle */ 997 if (!dma_is_idle(chan)) 998 chan_err(chan, "irq: controller not idle!\n"); 999 1000 /* check that we handled all of the bits */ 1001 if (stat) 1002 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat); 1003 1004 /* 1005 * Schedule the tasklet to handle all cleanup of the current 1006 * transaction. It will start a new transaction if there is 1007 * one pending. 1008 */ 1009 tasklet_schedule(&chan->tasklet); 1010 chan_dbg(chan, "irq: Exit\n"); 1011 return IRQ_HANDLED; 1012 } 1013 1014 static void dma_do_tasklet(unsigned long data) 1015 { 1016 struct fsldma_chan *chan = (struct fsldma_chan *)data; 1017 struct fsl_desc_sw *desc, *_desc; 1018 LIST_HEAD(ld_cleanup); 1019 unsigned long flags; 1020 1021 chan_dbg(chan, "tasklet entry\n"); 1022 1023 spin_lock_irqsave(&chan->desc_lock, flags); 1024 1025 /* update the cookie if we have some descriptors to cleanup */ 1026 if (!list_empty(&chan->ld_running)) { 1027 dma_cookie_t cookie; 1028 1029 desc = to_fsl_desc(chan->ld_running.prev); 1030 cookie = desc->async_tx.cookie; 1031 dma_cookie_complete(&desc->async_tx); 1032 1033 chan_dbg(chan, "completed_cookie=%d\n", cookie); 1034 } 1035 1036 /* 1037 * move the descriptors to a temporary list so we can drop the lock 1038 * during the entire cleanup operation 1039 */ 1040 list_splice_tail_init(&chan->ld_running, &ld_cleanup); 1041 1042 /* the hardware is now idle and ready for more */ 1043 chan->idle = true; 1044 1045 /* 1046 * Start any pending transactions automatically 1047 * 1048 * In the ideal case, we keep the DMA controller busy while we go 1049 * ahead and free the descriptors below. 1050 */ 1051 fsl_chan_xfer_ld_queue(chan); 1052 spin_unlock_irqrestore(&chan->desc_lock, flags); 1053 1054 /* Run the callback for each descriptor, in order */ 1055 list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) { 1056 1057 /* Remove from the list of transactions */ 1058 list_del(&desc->node); 1059 1060 /* Run all cleanup for this descriptor */ 1061 fsldma_cleanup_descriptor(chan, desc); 1062 } 1063 1064 chan_dbg(chan, "tasklet exit\n"); 1065 } 1066 1067 static irqreturn_t fsldma_ctrl_irq(int irq, void *data) 1068 { 1069 struct fsldma_device *fdev = data; 1070 struct fsldma_chan *chan; 1071 unsigned int handled = 0; 1072 u32 gsr, mask; 1073 int i; 1074 1075 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs) 1076 : in_le32(fdev->regs); 1077 mask = 0xff000000; 1078 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr); 1079 1080 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1081 chan = fdev->chan[i]; 1082 if (!chan) 1083 continue; 1084 1085 if (gsr & mask) { 1086 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id); 1087 fsldma_chan_irq(irq, chan); 1088 handled++; 1089 } 1090 1091 gsr &= ~mask; 1092 mask >>= 8; 1093 } 1094 1095 return IRQ_RETVAL(handled); 1096 } 1097 1098 static void fsldma_free_irqs(struct fsldma_device *fdev) 1099 { 1100 struct fsldma_chan *chan; 1101 int i; 1102 1103 if (fdev->irq != NO_IRQ) { 1104 dev_dbg(fdev->dev, "free per-controller IRQ\n"); 1105 free_irq(fdev->irq, fdev); 1106 return; 1107 } 1108 1109 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1110 chan = fdev->chan[i]; 1111 if (chan && chan->irq != NO_IRQ) { 1112 chan_dbg(chan, "free per-channel IRQ\n"); 1113 free_irq(chan->irq, chan); 1114 } 1115 } 1116 } 1117 1118 static int fsldma_request_irqs(struct fsldma_device *fdev) 1119 { 1120 struct fsldma_chan *chan; 1121 int ret; 1122 int i; 1123 1124 /* if we have a per-controller IRQ, use that */ 1125 if (fdev->irq != NO_IRQ) { 1126 dev_dbg(fdev->dev, "request per-controller IRQ\n"); 1127 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED, 1128 "fsldma-controller", fdev); 1129 return ret; 1130 } 1131 1132 /* no per-controller IRQ, use the per-channel IRQs */ 1133 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1134 chan = fdev->chan[i]; 1135 if (!chan) 1136 continue; 1137 1138 if (chan->irq == NO_IRQ) { 1139 chan_err(chan, "interrupts property missing in device tree\n"); 1140 ret = -ENODEV; 1141 goto out_unwind; 1142 } 1143 1144 chan_dbg(chan, "request per-channel IRQ\n"); 1145 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, 1146 "fsldma-chan", chan); 1147 if (ret) { 1148 chan_err(chan, "unable to request per-channel IRQ\n"); 1149 goto out_unwind; 1150 } 1151 } 1152 1153 return 0; 1154 1155 out_unwind: 1156 for (/* none */; i >= 0; i--) { 1157 chan = fdev->chan[i]; 1158 if (!chan) 1159 continue; 1160 1161 if (chan->irq == NO_IRQ) 1162 continue; 1163 1164 free_irq(chan->irq, chan); 1165 } 1166 1167 return ret; 1168 } 1169 1170 /*----------------------------------------------------------------------------*/ 1171 /* OpenFirmware Subsystem */ 1172 /*----------------------------------------------------------------------------*/ 1173 1174 static int fsl_dma_chan_probe(struct fsldma_device *fdev, 1175 struct device_node *node, u32 feature, const char *compatible) 1176 { 1177 struct fsldma_chan *chan; 1178 struct resource res; 1179 int err; 1180 1181 /* alloc channel */ 1182 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1183 if (!chan) { 1184 dev_err(fdev->dev, "no free memory for DMA channels!\n"); 1185 err = -ENOMEM; 1186 goto out_return; 1187 } 1188 1189 /* ioremap registers for use */ 1190 chan->regs = of_iomap(node, 0); 1191 if (!chan->regs) { 1192 dev_err(fdev->dev, "unable to ioremap registers\n"); 1193 err = -ENOMEM; 1194 goto out_free_chan; 1195 } 1196 1197 err = of_address_to_resource(node, 0, &res); 1198 if (err) { 1199 dev_err(fdev->dev, "unable to find 'reg' property\n"); 1200 goto out_iounmap_regs; 1201 } 1202 1203 chan->feature = feature; 1204 if (!fdev->feature) 1205 fdev->feature = chan->feature; 1206 1207 /* 1208 * If the DMA device's feature is different than the feature 1209 * of its channels, report the bug 1210 */ 1211 WARN_ON(fdev->feature != chan->feature); 1212 1213 chan->dev = fdev->dev; 1214 chan->id = (res.start & 0xfff) < 0x300 ? 1215 ((res.start - 0x100) & 0xfff) >> 7 : 1216 ((res.start - 0x200) & 0xfff) >> 7; 1217 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 1218 dev_err(fdev->dev, "too many channels for device\n"); 1219 err = -EINVAL; 1220 goto out_iounmap_regs; 1221 } 1222 1223 fdev->chan[chan->id] = chan; 1224 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 1225 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id); 1226 1227 /* Initialize the channel */ 1228 dma_init(chan); 1229 1230 /* Clear cdar registers */ 1231 set_cdar(chan, 0); 1232 1233 switch (chan->feature & FSL_DMA_IP_MASK) { 1234 case FSL_DMA_IP_85XX: 1235 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 1236 case FSL_DMA_IP_83XX: 1237 chan->toggle_ext_start = fsl_chan_toggle_ext_start; 1238 chan->set_src_loop_size = fsl_chan_set_src_loop_size; 1239 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size; 1240 chan->set_request_count = fsl_chan_set_request_count; 1241 } 1242 1243 spin_lock_init(&chan->desc_lock); 1244 INIT_LIST_HEAD(&chan->ld_pending); 1245 INIT_LIST_HEAD(&chan->ld_running); 1246 chan->idle = true; 1247 1248 chan->common.device = &fdev->common; 1249 dma_cookie_init(&chan->common); 1250 1251 /* find the IRQ line, if it exists in the device tree */ 1252 chan->irq = irq_of_parse_and_map(node, 0); 1253 1254 /* Add the channel to DMA device channel list */ 1255 list_add_tail(&chan->common.device_node, &fdev->common.channels); 1256 fdev->common.chancnt++; 1257 1258 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible, 1259 chan->irq != NO_IRQ ? chan->irq : fdev->irq); 1260 1261 return 0; 1262 1263 out_iounmap_regs: 1264 iounmap(chan->regs); 1265 out_free_chan: 1266 kfree(chan); 1267 out_return: 1268 return err; 1269 } 1270 1271 static void fsl_dma_chan_remove(struct fsldma_chan *chan) 1272 { 1273 irq_dispose_mapping(chan->irq); 1274 list_del(&chan->common.device_node); 1275 iounmap(chan->regs); 1276 kfree(chan); 1277 } 1278 1279 static int fsldma_of_probe(struct platform_device *op) 1280 { 1281 struct fsldma_device *fdev; 1282 struct device_node *child; 1283 int err; 1284 1285 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL); 1286 if (!fdev) { 1287 dev_err(&op->dev, "No enough memory for 'priv'\n"); 1288 err = -ENOMEM; 1289 goto out_return; 1290 } 1291 1292 fdev->dev = &op->dev; 1293 INIT_LIST_HEAD(&fdev->common.channels); 1294 1295 /* ioremap the registers for use */ 1296 fdev->regs = of_iomap(op->dev.of_node, 0); 1297 if (!fdev->regs) { 1298 dev_err(&op->dev, "unable to ioremap registers\n"); 1299 err = -ENOMEM; 1300 goto out_free_fdev; 1301 } 1302 1303 /* map the channel IRQ if it exists, but don't hookup the handler yet */ 1304 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0); 1305 1306 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1307 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); 1308 dma_cap_set(DMA_SG, fdev->common.cap_mask); 1309 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); 1310 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1311 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1312 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; 1313 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1314 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg; 1315 fdev->common.device_tx_status = fsl_tx_status; 1316 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1317 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg; 1318 fdev->common.device_control = fsl_dma_device_control; 1319 fdev->common.dev = &op->dev; 1320 1321 dma_set_mask(&(op->dev), DMA_BIT_MASK(36)); 1322 1323 platform_set_drvdata(op, fdev); 1324 1325 /* 1326 * We cannot use of_platform_bus_probe() because there is no 1327 * of_platform_bus_remove(). Instead, we manually instantiate every DMA 1328 * channel object. 1329 */ 1330 for_each_child_of_node(op->dev.of_node, child) { 1331 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) { 1332 fsl_dma_chan_probe(fdev, child, 1333 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 1334 "fsl,eloplus-dma-channel"); 1335 } 1336 1337 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) { 1338 fsl_dma_chan_probe(fdev, child, 1339 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 1340 "fsl,elo-dma-channel"); 1341 } 1342 } 1343 1344 /* 1345 * Hookup the IRQ handler(s) 1346 * 1347 * If we have a per-controller interrupt, we prefer that to the 1348 * per-channel interrupts to reduce the number of shared interrupt 1349 * handlers on the same IRQ line 1350 */ 1351 err = fsldma_request_irqs(fdev); 1352 if (err) { 1353 dev_err(fdev->dev, "unable to request IRQs\n"); 1354 goto out_free_fdev; 1355 } 1356 1357 dma_async_device_register(&fdev->common); 1358 return 0; 1359 1360 out_free_fdev: 1361 irq_dispose_mapping(fdev->irq); 1362 kfree(fdev); 1363 out_return: 1364 return err; 1365 } 1366 1367 static int fsldma_of_remove(struct platform_device *op) 1368 { 1369 struct fsldma_device *fdev; 1370 unsigned int i; 1371 1372 fdev = platform_get_drvdata(op); 1373 dma_async_device_unregister(&fdev->common); 1374 1375 fsldma_free_irqs(fdev); 1376 1377 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1378 if (fdev->chan[i]) 1379 fsl_dma_chan_remove(fdev->chan[i]); 1380 } 1381 1382 iounmap(fdev->regs); 1383 kfree(fdev); 1384 1385 return 0; 1386 } 1387 1388 static const struct of_device_id fsldma_of_ids[] = { 1389 { .compatible = "fsl,elo3-dma", }, 1390 { .compatible = "fsl,eloplus-dma", }, 1391 { .compatible = "fsl,elo-dma", }, 1392 {} 1393 }; 1394 1395 static struct platform_driver fsldma_of_driver = { 1396 .driver = { 1397 .name = "fsl-elo-dma", 1398 .owner = THIS_MODULE, 1399 .of_match_table = fsldma_of_ids, 1400 }, 1401 .probe = fsldma_of_probe, 1402 .remove = fsldma_of_remove, 1403 }; 1404 1405 /*----------------------------------------------------------------------------*/ 1406 /* Module Init / Exit */ 1407 /*----------------------------------------------------------------------------*/ 1408 1409 static __init int fsldma_init(void) 1410 { 1411 pr_info("Freescale Elo series DMA driver\n"); 1412 return platform_driver_register(&fsldma_of_driver); 1413 } 1414 1415 static void __exit fsldma_exit(void) 1416 { 1417 platform_driver_unregister(&fsldma_of_driver); 1418 } 1419 1420 subsys_initcall(fsldma_init); 1421 module_exit(fsldma_exit); 1422 1423 MODULE_DESCRIPTION("Freescale Elo series DMA driver"); 1424 MODULE_LICENSE("GPL"); 1425