xref: /linux/drivers/dma/fsldma.c (revision 08b7174fb8d126e607e385e34b9e1da4f3be274f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale MPC85xx, MPC83xx DMA Engine support
4  *
5  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
6  *
7  * Author:
8  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
9  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10  *
11  * Description:
12  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
13  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
14  *   The support for MPC8349 DMA controller is also added.
15  *
16  * This driver instructs the DMA controller to issue the PCI Read Multiple
17  * command for PCI read operations, instead of using the default PCI Read Line
18  * command. Please be aware that this setting may result in read pre-fetching
19  * on some platforms.
20  */
21 
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/dmaengine.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/fsldma.h>
36 #include "dmaengine.h"
37 #include "fsldma.h"
38 
39 #define chan_dbg(chan, fmt, arg...)					\
40 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
41 #define chan_err(chan, fmt, arg...)					\
42 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
43 
44 static const char msg_ld_oom[] = "No free memory for link descriptor";
45 
46 /*
47  * Register Helpers
48  */
49 
50 static void set_sr(struct fsldma_chan *chan, u32 val)
51 {
52 	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
53 }
54 
55 static u32 get_sr(struct fsldma_chan *chan)
56 {
57 	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
58 }
59 
60 static void set_mr(struct fsldma_chan *chan, u32 val)
61 {
62 	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
63 }
64 
65 static u32 get_mr(struct fsldma_chan *chan)
66 {
67 	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
68 }
69 
70 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
71 {
72 	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
73 }
74 
75 static dma_addr_t get_cdar(struct fsldma_chan *chan)
76 {
77 	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
78 }
79 
80 static void set_bcr(struct fsldma_chan *chan, u32 val)
81 {
82 	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
83 }
84 
85 static u32 get_bcr(struct fsldma_chan *chan)
86 {
87 	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
88 }
89 
90 /*
91  * Descriptor Helpers
92  */
93 
94 static void set_desc_cnt(struct fsldma_chan *chan,
95 				struct fsl_dma_ld_hw *hw, u32 count)
96 {
97 	hw->count = CPU_TO_DMA(chan, count, 32);
98 }
99 
100 static void set_desc_src(struct fsldma_chan *chan,
101 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
102 {
103 	u64 snoop_bits;
104 
105 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
106 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
107 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
108 }
109 
110 static void set_desc_dst(struct fsldma_chan *chan,
111 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
112 {
113 	u64 snoop_bits;
114 
115 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
116 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
117 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
118 }
119 
120 static void set_desc_next(struct fsldma_chan *chan,
121 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
122 {
123 	u64 snoop_bits;
124 
125 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
126 		? FSL_DMA_SNEN : 0;
127 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
128 }
129 
130 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
131 {
132 	u64 snoop_bits;
133 
134 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
135 		? FSL_DMA_SNEN : 0;
136 
137 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
138 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
139 			| snoop_bits, 64);
140 }
141 
142 /*
143  * DMA Engine Hardware Control Helpers
144  */
145 
146 static void dma_init(struct fsldma_chan *chan)
147 {
148 	/* Reset the channel */
149 	set_mr(chan, 0);
150 
151 	switch (chan->feature & FSL_DMA_IP_MASK) {
152 	case FSL_DMA_IP_85XX:
153 		/* Set the channel to below modes:
154 		 * EIE - Error interrupt enable
155 		 * EOLNIE - End of links interrupt enable
156 		 * BWC - Bandwidth sharing among channels
157 		 */
158 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
159 			| FSL_DMA_MR_EOLNIE);
160 		break;
161 	case FSL_DMA_IP_83XX:
162 		/* Set the channel to below modes:
163 		 * EOTIE - End-of-transfer interrupt enable
164 		 * PRC_RM - PCI read multiple
165 		 */
166 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
167 		break;
168 	}
169 }
170 
171 static int dma_is_idle(struct fsldma_chan *chan)
172 {
173 	u32 sr = get_sr(chan);
174 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
175 }
176 
177 /*
178  * Start the DMA controller
179  *
180  * Preconditions:
181  * - the CDAR register must point to the start descriptor
182  * - the MRn[CS] bit must be cleared
183  */
184 static void dma_start(struct fsldma_chan *chan)
185 {
186 	u32 mode;
187 
188 	mode = get_mr(chan);
189 
190 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
191 		set_bcr(chan, 0);
192 		mode |= FSL_DMA_MR_EMP_EN;
193 	} else {
194 		mode &= ~FSL_DMA_MR_EMP_EN;
195 	}
196 
197 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
198 		mode |= FSL_DMA_MR_EMS_EN;
199 	} else {
200 		mode &= ~FSL_DMA_MR_EMS_EN;
201 		mode |= FSL_DMA_MR_CS;
202 	}
203 
204 	set_mr(chan, mode);
205 }
206 
207 static void dma_halt(struct fsldma_chan *chan)
208 {
209 	u32 mode;
210 	int i;
211 
212 	/* read the mode register */
213 	mode = get_mr(chan);
214 
215 	/*
216 	 * The 85xx controller supports channel abort, which will stop
217 	 * the current transfer. On 83xx, this bit is the transfer error
218 	 * mask bit, which should not be changed.
219 	 */
220 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
221 		mode |= FSL_DMA_MR_CA;
222 		set_mr(chan, mode);
223 
224 		mode &= ~FSL_DMA_MR_CA;
225 	}
226 
227 	/* stop the DMA controller */
228 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
229 	set_mr(chan, mode);
230 
231 	/* wait for the DMA controller to become idle */
232 	for (i = 0; i < 100; i++) {
233 		if (dma_is_idle(chan))
234 			return;
235 
236 		udelay(10);
237 	}
238 
239 	if (!dma_is_idle(chan))
240 		chan_err(chan, "DMA halt timeout!\n");
241 }
242 
243 /**
244  * fsl_chan_set_src_loop_size - Set source address hold transfer size
245  * @chan : Freescale DMA channel
246  * @size     : Address loop size, 0 for disable loop
247  *
248  * The set source address hold transfer size. The source
249  * address hold or loop transfer size is when the DMA transfer
250  * data from source address (SA), if the loop size is 4, the DMA will
251  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
252  * SA + 1 ... and so on.
253  */
254 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
255 {
256 	u32 mode;
257 
258 	mode = get_mr(chan);
259 
260 	switch (size) {
261 	case 0:
262 		mode &= ~FSL_DMA_MR_SAHE;
263 		break;
264 	case 1:
265 	case 2:
266 	case 4:
267 	case 8:
268 		mode &= ~FSL_DMA_MR_SAHTS_MASK;
269 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
270 		break;
271 	}
272 
273 	set_mr(chan, mode);
274 }
275 
276 /**
277  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
278  * @chan : Freescale DMA channel
279  * @size     : Address loop size, 0 for disable loop
280  *
281  * The set destination address hold transfer size. The destination
282  * address hold or loop transfer size is when the DMA transfer
283  * data to destination address (TA), if the loop size is 4, the DMA will
284  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
285  * TA + 1 ... and so on.
286  */
287 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
288 {
289 	u32 mode;
290 
291 	mode = get_mr(chan);
292 
293 	switch (size) {
294 	case 0:
295 		mode &= ~FSL_DMA_MR_DAHE;
296 		break;
297 	case 1:
298 	case 2:
299 	case 4:
300 	case 8:
301 		mode &= ~FSL_DMA_MR_DAHTS_MASK;
302 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
303 		break;
304 	}
305 
306 	set_mr(chan, mode);
307 }
308 
309 /**
310  * fsl_chan_set_request_count - Set DMA Request Count for external control
311  * @chan : Freescale DMA channel
312  * @size     : Number of bytes to transfer in a single request
313  *
314  * The Freescale DMA channel can be controlled by the external signal DREQ#.
315  * The DMA request count is how many bytes are allowed to transfer before
316  * pausing the channel, after which a new assertion of DREQ# resumes channel
317  * operation.
318  *
319  * A size of 0 disables external pause control. The maximum size is 1024.
320  */
321 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
322 {
323 	u32 mode;
324 
325 	BUG_ON(size > 1024);
326 
327 	mode = get_mr(chan);
328 	mode &= ~FSL_DMA_MR_BWC_MASK;
329 	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
330 
331 	set_mr(chan, mode);
332 }
333 
334 /**
335  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
336  * @chan : Freescale DMA channel
337  * @enable   : 0 is disabled, 1 is enabled.
338  *
339  * The Freescale DMA channel can be controlled by the external signal DREQ#.
340  * The DMA Request Count feature should be used in addition to this feature
341  * to set the number of bytes to transfer before pausing the channel.
342  */
343 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
344 {
345 	if (enable)
346 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
347 	else
348 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
349 }
350 
351 /**
352  * fsl_chan_toggle_ext_start - Toggle channel external start status
353  * @chan : Freescale DMA channel
354  * @enable   : 0 is disabled, 1 is enabled.
355  *
356  * If enable the external start, the channel can be started by an
357  * external DMA start pin. So the dma_start() does not start the
358  * transfer immediately. The DMA channel will wait for the
359  * control pin asserted.
360  */
361 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
362 {
363 	if (enable)
364 		chan->feature |= FSL_DMA_CHAN_START_EXT;
365 	else
366 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
367 }
368 
369 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
370 {
371 	struct fsldma_chan *chan;
372 
373 	if (!dchan)
374 		return -EINVAL;
375 
376 	chan = to_fsl_chan(dchan);
377 
378 	fsl_chan_toggle_ext_start(chan, enable);
379 	return 0;
380 }
381 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
382 
383 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
384 {
385 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
386 
387 	if (list_empty(&chan->ld_pending))
388 		goto out_splice;
389 
390 	/*
391 	 * Add the hardware descriptor to the chain of hardware descriptors
392 	 * that already exists in memory.
393 	 *
394 	 * This will un-set the EOL bit of the existing transaction, and the
395 	 * last link in this transaction will become the EOL descriptor.
396 	 */
397 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
398 
399 	/*
400 	 * Add the software descriptor and all children to the list
401 	 * of pending transactions
402 	 */
403 out_splice:
404 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
405 }
406 
407 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
408 {
409 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
410 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
411 	struct fsl_desc_sw *child;
412 	dma_cookie_t cookie = -EINVAL;
413 
414 	spin_lock_bh(&chan->desc_lock);
415 
416 #ifdef CONFIG_PM
417 	if (unlikely(chan->pm_state != RUNNING)) {
418 		chan_dbg(chan, "cannot submit due to suspend\n");
419 		spin_unlock_bh(&chan->desc_lock);
420 		return -1;
421 	}
422 #endif
423 
424 	/*
425 	 * assign cookies to all of the software descriptors
426 	 * that make up this transaction
427 	 */
428 	list_for_each_entry(child, &desc->tx_list, node) {
429 		cookie = dma_cookie_assign(&child->async_tx);
430 	}
431 
432 	/* put this transaction onto the tail of the pending queue */
433 	append_ld_queue(chan, desc);
434 
435 	spin_unlock_bh(&chan->desc_lock);
436 
437 	return cookie;
438 }
439 
440 /**
441  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
442  * @chan : Freescale DMA channel
443  * @desc: descriptor to be freed
444  */
445 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
446 		struct fsl_desc_sw *desc)
447 {
448 	list_del(&desc->node);
449 	chan_dbg(chan, "LD %p free\n", desc);
450 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
451 }
452 
453 /**
454  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
455  * @chan : Freescale DMA channel
456  *
457  * Return - The descriptor allocated. NULL for failed.
458  */
459 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
460 {
461 	struct fsl_desc_sw *desc;
462 	dma_addr_t pdesc;
463 
464 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
465 	if (!desc) {
466 		chan_dbg(chan, "out of memory for link descriptor\n");
467 		return NULL;
468 	}
469 
470 	INIT_LIST_HEAD(&desc->tx_list);
471 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
472 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
473 	desc->async_tx.phys = pdesc;
474 
475 	chan_dbg(chan, "LD %p allocated\n", desc);
476 
477 	return desc;
478 }
479 
480 /**
481  * fsldma_clean_completed_descriptor - free all descriptors which
482  * has been completed and acked
483  * @chan: Freescale DMA channel
484  *
485  * This function is used on all completed and acked descriptors.
486  * All descriptors should only be freed in this function.
487  */
488 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
489 {
490 	struct fsl_desc_sw *desc, *_desc;
491 
492 	/* Run the callback for each descriptor, in order */
493 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
494 		if (async_tx_test_ack(&desc->async_tx))
495 			fsl_dma_free_descriptor(chan, desc);
496 }
497 
498 /**
499  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
500  * @chan: Freescale DMA channel
501  * @desc: descriptor to cleanup and free
502  * @cookie: Freescale DMA transaction identifier
503  *
504  * This function is used on a descriptor which has been executed by the DMA
505  * controller. It will run any callbacks, submit any dependencies.
506  */
507 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
508 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
509 {
510 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
511 	dma_cookie_t ret = cookie;
512 
513 	BUG_ON(txd->cookie < 0);
514 
515 	if (txd->cookie > 0) {
516 		ret = txd->cookie;
517 
518 		dma_descriptor_unmap(txd);
519 		/* Run the link descriptor callback function */
520 		dmaengine_desc_get_callback_invoke(txd, NULL);
521 	}
522 
523 	/* Run any dependencies */
524 	dma_run_dependencies(txd);
525 
526 	return ret;
527 }
528 
529 /**
530  * fsldma_clean_running_descriptor - move the completed descriptor from
531  * ld_running to ld_completed
532  * @chan: Freescale DMA channel
533  * @desc: the descriptor which is completed
534  *
535  * Free the descriptor directly if acked by async_tx api, or move it to
536  * queue ld_completed.
537  */
538 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
539 		struct fsl_desc_sw *desc)
540 {
541 	/* Remove from the list of transactions */
542 	list_del(&desc->node);
543 
544 	/*
545 	 * the client is allowed to attach dependent operations
546 	 * until 'ack' is set
547 	 */
548 	if (!async_tx_test_ack(&desc->async_tx)) {
549 		/*
550 		 * Move this descriptor to the list of descriptors which is
551 		 * completed, but still awaiting the 'ack' bit to be set.
552 		 */
553 		list_add_tail(&desc->node, &chan->ld_completed);
554 		return;
555 	}
556 
557 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
558 }
559 
560 /**
561  * fsl_chan_xfer_ld_queue - transfer any pending transactions
562  * @chan : Freescale DMA channel
563  *
564  * HARDWARE STATE: idle
565  * LOCKING: must hold chan->desc_lock
566  */
567 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
568 {
569 	struct fsl_desc_sw *desc;
570 
571 	/*
572 	 * If the list of pending descriptors is empty, then we
573 	 * don't need to do any work at all
574 	 */
575 	if (list_empty(&chan->ld_pending)) {
576 		chan_dbg(chan, "no pending LDs\n");
577 		return;
578 	}
579 
580 	/*
581 	 * The DMA controller is not idle, which means that the interrupt
582 	 * handler will start any queued transactions when it runs after
583 	 * this transaction finishes
584 	 */
585 	if (!chan->idle) {
586 		chan_dbg(chan, "DMA controller still busy\n");
587 		return;
588 	}
589 
590 	/*
591 	 * If there are some link descriptors which have not been
592 	 * transferred, we need to start the controller
593 	 */
594 
595 	/*
596 	 * Move all elements from the queue of pending transactions
597 	 * onto the list of running transactions
598 	 */
599 	chan_dbg(chan, "idle, starting controller\n");
600 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
601 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
602 
603 	/*
604 	 * The 85xx DMA controller doesn't clear the channel start bit
605 	 * automatically at the end of a transfer. Therefore we must clear
606 	 * it in software before starting the transfer.
607 	 */
608 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
609 		u32 mode;
610 
611 		mode = get_mr(chan);
612 		mode &= ~FSL_DMA_MR_CS;
613 		set_mr(chan, mode);
614 	}
615 
616 	/*
617 	 * Program the descriptor's address into the DMA controller,
618 	 * then start the DMA transaction
619 	 */
620 	set_cdar(chan, desc->async_tx.phys);
621 	get_cdar(chan);
622 
623 	dma_start(chan);
624 	chan->idle = false;
625 }
626 
627 /**
628  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
629  * and move them to ld_completed to free until flag 'ack' is set
630  * @chan: Freescale DMA channel
631  *
632  * This function is used on descriptors which have been executed by the DMA
633  * controller. It will run any callbacks, submit any dependencies, then
634  * free these descriptors if flag 'ack' is set.
635  */
636 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
637 {
638 	struct fsl_desc_sw *desc, *_desc;
639 	dma_cookie_t cookie = 0;
640 	dma_addr_t curr_phys = get_cdar(chan);
641 	int seen_current = 0;
642 
643 	fsldma_clean_completed_descriptor(chan);
644 
645 	/* Run the callback for each descriptor, in order */
646 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
647 		/*
648 		 * do not advance past the current descriptor loaded into the
649 		 * hardware channel, subsequent descriptors are either in
650 		 * process or have not been submitted
651 		 */
652 		if (seen_current)
653 			break;
654 
655 		/*
656 		 * stop the search if we reach the current descriptor and the
657 		 * channel is busy
658 		 */
659 		if (desc->async_tx.phys == curr_phys) {
660 			seen_current = 1;
661 			if (!dma_is_idle(chan))
662 				break;
663 		}
664 
665 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
666 
667 		fsldma_clean_running_descriptor(chan, desc);
668 	}
669 
670 	/*
671 	 * Start any pending transactions automatically
672 	 *
673 	 * In the ideal case, we keep the DMA controller busy while we go
674 	 * ahead and free the descriptors below.
675 	 */
676 	fsl_chan_xfer_ld_queue(chan);
677 
678 	if (cookie > 0)
679 		chan->common.completed_cookie = cookie;
680 }
681 
682 /**
683  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
684  * @chan : Freescale DMA channel
685  *
686  * This function will create a dma pool for descriptor allocation.
687  *
688  * Return - The number of descriptors allocated.
689  */
690 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
691 {
692 	struct fsldma_chan *chan = to_fsl_chan(dchan);
693 
694 	/* Has this channel already been allocated? */
695 	if (chan->desc_pool)
696 		return 1;
697 
698 	/*
699 	 * We need the descriptor to be aligned to 32bytes
700 	 * for meeting FSL DMA specification requirement.
701 	 */
702 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
703 					  sizeof(struct fsl_desc_sw),
704 					  __alignof__(struct fsl_desc_sw), 0);
705 	if (!chan->desc_pool) {
706 		chan_err(chan, "unable to allocate descriptor pool\n");
707 		return -ENOMEM;
708 	}
709 
710 	/* there is at least one descriptor free to be allocated */
711 	return 1;
712 }
713 
714 /**
715  * fsldma_free_desc_list - Free all descriptors in a queue
716  * @chan: Freescae DMA channel
717  * @list: the list to free
718  *
719  * LOCKING: must hold chan->desc_lock
720  */
721 static void fsldma_free_desc_list(struct fsldma_chan *chan,
722 				  struct list_head *list)
723 {
724 	struct fsl_desc_sw *desc, *_desc;
725 
726 	list_for_each_entry_safe(desc, _desc, list, node)
727 		fsl_dma_free_descriptor(chan, desc);
728 }
729 
730 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
731 					  struct list_head *list)
732 {
733 	struct fsl_desc_sw *desc, *_desc;
734 
735 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
736 		fsl_dma_free_descriptor(chan, desc);
737 }
738 
739 /**
740  * fsl_dma_free_chan_resources - Free all resources of the channel.
741  * @chan : Freescale DMA channel
742  */
743 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
744 {
745 	struct fsldma_chan *chan = to_fsl_chan(dchan);
746 
747 	chan_dbg(chan, "free all channel resources\n");
748 	spin_lock_bh(&chan->desc_lock);
749 	fsldma_cleanup_descriptors(chan);
750 	fsldma_free_desc_list(chan, &chan->ld_pending);
751 	fsldma_free_desc_list(chan, &chan->ld_running);
752 	fsldma_free_desc_list(chan, &chan->ld_completed);
753 	spin_unlock_bh(&chan->desc_lock);
754 
755 	dma_pool_destroy(chan->desc_pool);
756 	chan->desc_pool = NULL;
757 }
758 
759 static struct dma_async_tx_descriptor *
760 fsl_dma_prep_memcpy(struct dma_chan *dchan,
761 	dma_addr_t dma_dst, dma_addr_t dma_src,
762 	size_t len, unsigned long flags)
763 {
764 	struct fsldma_chan *chan;
765 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
766 	size_t copy;
767 
768 	if (!dchan)
769 		return NULL;
770 
771 	if (!len)
772 		return NULL;
773 
774 	chan = to_fsl_chan(dchan);
775 
776 	do {
777 
778 		/* Allocate the link descriptor from DMA pool */
779 		new = fsl_dma_alloc_descriptor(chan);
780 		if (!new) {
781 			chan_err(chan, "%s\n", msg_ld_oom);
782 			goto fail;
783 		}
784 
785 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
786 
787 		set_desc_cnt(chan, &new->hw, copy);
788 		set_desc_src(chan, &new->hw, dma_src);
789 		set_desc_dst(chan, &new->hw, dma_dst);
790 
791 		if (!first)
792 			first = new;
793 		else
794 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
795 
796 		new->async_tx.cookie = 0;
797 		async_tx_ack(&new->async_tx);
798 
799 		prev = new;
800 		len -= copy;
801 		dma_src += copy;
802 		dma_dst += copy;
803 
804 		/* Insert the link descriptor to the LD ring */
805 		list_add_tail(&new->node, &first->tx_list);
806 	} while (len);
807 
808 	new->async_tx.flags = flags; /* client is in control of this ack */
809 	new->async_tx.cookie = -EBUSY;
810 
811 	/* Set End-of-link to the last link descriptor of new list */
812 	set_ld_eol(chan, new);
813 
814 	return &first->async_tx;
815 
816 fail:
817 	if (!first)
818 		return NULL;
819 
820 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
821 	return NULL;
822 }
823 
824 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
825 {
826 	struct fsldma_chan *chan;
827 
828 	if (!dchan)
829 		return -EINVAL;
830 
831 	chan = to_fsl_chan(dchan);
832 
833 	spin_lock_bh(&chan->desc_lock);
834 
835 	/* Halt the DMA engine */
836 	dma_halt(chan);
837 
838 	/* Remove and free all of the descriptors in the LD queue */
839 	fsldma_free_desc_list(chan, &chan->ld_pending);
840 	fsldma_free_desc_list(chan, &chan->ld_running);
841 	fsldma_free_desc_list(chan, &chan->ld_completed);
842 	chan->idle = true;
843 
844 	spin_unlock_bh(&chan->desc_lock);
845 	return 0;
846 }
847 
848 static int fsl_dma_device_config(struct dma_chan *dchan,
849 				 struct dma_slave_config *config)
850 {
851 	struct fsldma_chan *chan;
852 	int size;
853 
854 	if (!dchan)
855 		return -EINVAL;
856 
857 	chan = to_fsl_chan(dchan);
858 
859 	/* make sure the channel supports setting burst size */
860 	if (!chan->set_request_count)
861 		return -ENXIO;
862 
863 	/* we set the controller burst size depending on direction */
864 	if (config->direction == DMA_MEM_TO_DEV)
865 		size = config->dst_addr_width * config->dst_maxburst;
866 	else
867 		size = config->src_addr_width * config->src_maxburst;
868 
869 	chan->set_request_count(chan, size);
870 	return 0;
871 }
872 
873 
874 /**
875  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
876  * @chan : Freescale DMA channel
877  */
878 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
879 {
880 	struct fsldma_chan *chan = to_fsl_chan(dchan);
881 
882 	spin_lock_bh(&chan->desc_lock);
883 	fsl_chan_xfer_ld_queue(chan);
884 	spin_unlock_bh(&chan->desc_lock);
885 }
886 
887 /**
888  * fsl_tx_status - Determine the DMA status
889  * @chan : Freescale DMA channel
890  */
891 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
892 					dma_cookie_t cookie,
893 					struct dma_tx_state *txstate)
894 {
895 	struct fsldma_chan *chan = to_fsl_chan(dchan);
896 	enum dma_status ret;
897 
898 	ret = dma_cookie_status(dchan, cookie, txstate);
899 	if (ret == DMA_COMPLETE)
900 		return ret;
901 
902 	spin_lock_bh(&chan->desc_lock);
903 	fsldma_cleanup_descriptors(chan);
904 	spin_unlock_bh(&chan->desc_lock);
905 
906 	return dma_cookie_status(dchan, cookie, txstate);
907 }
908 
909 /*----------------------------------------------------------------------------*/
910 /* Interrupt Handling                                                         */
911 /*----------------------------------------------------------------------------*/
912 
913 static irqreturn_t fsldma_chan_irq(int irq, void *data)
914 {
915 	struct fsldma_chan *chan = data;
916 	u32 stat;
917 
918 	/* save and clear the status register */
919 	stat = get_sr(chan);
920 	set_sr(chan, stat);
921 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
922 
923 	/* check that this was really our device */
924 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
925 	if (!stat)
926 		return IRQ_NONE;
927 
928 	if (stat & FSL_DMA_SR_TE)
929 		chan_err(chan, "Transfer Error!\n");
930 
931 	/*
932 	 * Programming Error
933 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
934 	 * trigger a PE interrupt.
935 	 */
936 	if (stat & FSL_DMA_SR_PE) {
937 		chan_dbg(chan, "irq: Programming Error INT\n");
938 		stat &= ~FSL_DMA_SR_PE;
939 		if (get_bcr(chan) != 0)
940 			chan_err(chan, "Programming Error!\n");
941 	}
942 
943 	/*
944 	 * For MPC8349, EOCDI event need to update cookie
945 	 * and start the next transfer if it exist.
946 	 */
947 	if (stat & FSL_DMA_SR_EOCDI) {
948 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
949 		stat &= ~FSL_DMA_SR_EOCDI;
950 	}
951 
952 	/*
953 	 * If it current transfer is the end-of-transfer,
954 	 * we should clear the Channel Start bit for
955 	 * prepare next transfer.
956 	 */
957 	if (stat & FSL_DMA_SR_EOLNI) {
958 		chan_dbg(chan, "irq: End-of-link INT\n");
959 		stat &= ~FSL_DMA_SR_EOLNI;
960 	}
961 
962 	/* check that the DMA controller is really idle */
963 	if (!dma_is_idle(chan))
964 		chan_err(chan, "irq: controller not idle!\n");
965 
966 	/* check that we handled all of the bits */
967 	if (stat)
968 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
969 
970 	/*
971 	 * Schedule the tasklet to handle all cleanup of the current
972 	 * transaction. It will start a new transaction if there is
973 	 * one pending.
974 	 */
975 	tasklet_schedule(&chan->tasklet);
976 	chan_dbg(chan, "irq: Exit\n");
977 	return IRQ_HANDLED;
978 }
979 
980 static void dma_do_tasklet(struct tasklet_struct *t)
981 {
982 	struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
983 
984 	chan_dbg(chan, "tasklet entry\n");
985 
986 	spin_lock(&chan->desc_lock);
987 
988 	/* the hardware is now idle and ready for more */
989 	chan->idle = true;
990 
991 	/* Run all cleanup for descriptors which have been completed */
992 	fsldma_cleanup_descriptors(chan);
993 
994 	spin_unlock(&chan->desc_lock);
995 
996 	chan_dbg(chan, "tasklet exit\n");
997 }
998 
999 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1000 {
1001 	struct fsldma_device *fdev = data;
1002 	struct fsldma_chan *chan;
1003 	unsigned int handled = 0;
1004 	u32 gsr, mask;
1005 	int i;
1006 
1007 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1008 						   : in_le32(fdev->regs);
1009 	mask = 0xff000000;
1010 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1011 
1012 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1013 		chan = fdev->chan[i];
1014 		if (!chan)
1015 			continue;
1016 
1017 		if (gsr & mask) {
1018 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1019 			fsldma_chan_irq(irq, chan);
1020 			handled++;
1021 		}
1022 
1023 		gsr &= ~mask;
1024 		mask >>= 8;
1025 	}
1026 
1027 	return IRQ_RETVAL(handled);
1028 }
1029 
1030 static void fsldma_free_irqs(struct fsldma_device *fdev)
1031 {
1032 	struct fsldma_chan *chan;
1033 	int i;
1034 
1035 	if (fdev->irq) {
1036 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1037 		free_irq(fdev->irq, fdev);
1038 		return;
1039 	}
1040 
1041 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1042 		chan = fdev->chan[i];
1043 		if (chan && chan->irq) {
1044 			chan_dbg(chan, "free per-channel IRQ\n");
1045 			free_irq(chan->irq, chan);
1046 		}
1047 	}
1048 }
1049 
1050 static int fsldma_request_irqs(struct fsldma_device *fdev)
1051 {
1052 	struct fsldma_chan *chan;
1053 	int ret;
1054 	int i;
1055 
1056 	/* if we have a per-controller IRQ, use that */
1057 	if (fdev->irq) {
1058 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1059 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1060 				  "fsldma-controller", fdev);
1061 		return ret;
1062 	}
1063 
1064 	/* no per-controller IRQ, use the per-channel IRQs */
1065 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1066 		chan = fdev->chan[i];
1067 		if (!chan)
1068 			continue;
1069 
1070 		if (!chan->irq) {
1071 			chan_err(chan, "interrupts property missing in device tree\n");
1072 			ret = -ENODEV;
1073 			goto out_unwind;
1074 		}
1075 
1076 		chan_dbg(chan, "request per-channel IRQ\n");
1077 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1078 				  "fsldma-chan", chan);
1079 		if (ret) {
1080 			chan_err(chan, "unable to request per-channel IRQ\n");
1081 			goto out_unwind;
1082 		}
1083 	}
1084 
1085 	return 0;
1086 
1087 out_unwind:
1088 	for (/* none */; i >= 0; i--) {
1089 		chan = fdev->chan[i];
1090 		if (!chan)
1091 			continue;
1092 
1093 		if (!chan->irq)
1094 			continue;
1095 
1096 		free_irq(chan->irq, chan);
1097 	}
1098 
1099 	return ret;
1100 }
1101 
1102 /*----------------------------------------------------------------------------*/
1103 /* OpenFirmware Subsystem                                                     */
1104 /*----------------------------------------------------------------------------*/
1105 
1106 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1107 	struct device_node *node, u32 feature, const char *compatible)
1108 {
1109 	struct fsldma_chan *chan;
1110 	struct resource res;
1111 	int err;
1112 
1113 	/* alloc channel */
1114 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1115 	if (!chan) {
1116 		err = -ENOMEM;
1117 		goto out_return;
1118 	}
1119 
1120 	/* ioremap registers for use */
1121 	chan->regs = of_iomap(node, 0);
1122 	if (!chan->regs) {
1123 		dev_err(fdev->dev, "unable to ioremap registers\n");
1124 		err = -ENOMEM;
1125 		goto out_free_chan;
1126 	}
1127 
1128 	err = of_address_to_resource(node, 0, &res);
1129 	if (err) {
1130 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1131 		goto out_iounmap_regs;
1132 	}
1133 
1134 	chan->feature = feature;
1135 	if (!fdev->feature)
1136 		fdev->feature = chan->feature;
1137 
1138 	/*
1139 	 * If the DMA device's feature is different than the feature
1140 	 * of its channels, report the bug
1141 	 */
1142 	WARN_ON(fdev->feature != chan->feature);
1143 
1144 	chan->dev = fdev->dev;
1145 	chan->id = (res.start & 0xfff) < 0x300 ?
1146 		   ((res.start - 0x100) & 0xfff) >> 7 :
1147 		   ((res.start - 0x200) & 0xfff) >> 7;
1148 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1149 		dev_err(fdev->dev, "too many channels for device\n");
1150 		err = -EINVAL;
1151 		goto out_iounmap_regs;
1152 	}
1153 
1154 	fdev->chan[chan->id] = chan;
1155 	tasklet_setup(&chan->tasklet, dma_do_tasklet);
1156 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1157 
1158 	/* Initialize the channel */
1159 	dma_init(chan);
1160 
1161 	/* Clear cdar registers */
1162 	set_cdar(chan, 0);
1163 
1164 	switch (chan->feature & FSL_DMA_IP_MASK) {
1165 	case FSL_DMA_IP_85XX:
1166 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1167 		fallthrough;
1168 	case FSL_DMA_IP_83XX:
1169 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1170 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1171 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1172 		chan->set_request_count = fsl_chan_set_request_count;
1173 	}
1174 
1175 	spin_lock_init(&chan->desc_lock);
1176 	INIT_LIST_HEAD(&chan->ld_pending);
1177 	INIT_LIST_HEAD(&chan->ld_running);
1178 	INIT_LIST_HEAD(&chan->ld_completed);
1179 	chan->idle = true;
1180 #ifdef CONFIG_PM
1181 	chan->pm_state = RUNNING;
1182 #endif
1183 
1184 	chan->common.device = &fdev->common;
1185 	dma_cookie_init(&chan->common);
1186 
1187 	/* find the IRQ line, if it exists in the device tree */
1188 	chan->irq = irq_of_parse_and_map(node, 0);
1189 
1190 	/* Add the channel to DMA device channel list */
1191 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1192 
1193 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1194 		 chan->irq ? chan->irq : fdev->irq);
1195 
1196 	return 0;
1197 
1198 out_iounmap_regs:
1199 	iounmap(chan->regs);
1200 out_free_chan:
1201 	kfree(chan);
1202 out_return:
1203 	return err;
1204 }
1205 
1206 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1207 {
1208 	irq_dispose_mapping(chan->irq);
1209 	list_del(&chan->common.device_node);
1210 	iounmap(chan->regs);
1211 	kfree(chan);
1212 }
1213 
1214 static int fsldma_of_probe(struct platform_device *op)
1215 {
1216 	struct fsldma_device *fdev;
1217 	struct device_node *child;
1218 	unsigned int i;
1219 	int err;
1220 
1221 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1222 	if (!fdev) {
1223 		err = -ENOMEM;
1224 		goto out_return;
1225 	}
1226 
1227 	fdev->dev = &op->dev;
1228 	INIT_LIST_HEAD(&fdev->common.channels);
1229 
1230 	/* ioremap the registers for use */
1231 	fdev->regs = of_iomap(op->dev.of_node, 0);
1232 	if (!fdev->regs) {
1233 		dev_err(&op->dev, "unable to ioremap registers\n");
1234 		err = -ENOMEM;
1235 		goto out_free;
1236 	}
1237 
1238 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1239 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1240 
1241 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1242 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1243 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1244 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1245 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1246 	fdev->common.device_tx_status = fsl_tx_status;
1247 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1248 	fdev->common.device_config = fsl_dma_device_config;
1249 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1250 	fdev->common.dev = &op->dev;
1251 
1252 	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1253 	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1254 	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1255 	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1256 
1257 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1258 
1259 	platform_set_drvdata(op, fdev);
1260 
1261 	/*
1262 	 * We cannot use of_platform_bus_probe() because there is no
1263 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1264 	 * channel object.
1265 	 */
1266 	for_each_child_of_node(op->dev.of_node, child) {
1267 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1268 			fsl_dma_chan_probe(fdev, child,
1269 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1270 				"fsl,eloplus-dma-channel");
1271 		}
1272 
1273 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1274 			fsl_dma_chan_probe(fdev, child,
1275 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1276 				"fsl,elo-dma-channel");
1277 		}
1278 	}
1279 
1280 	/*
1281 	 * Hookup the IRQ handler(s)
1282 	 *
1283 	 * If we have a per-controller interrupt, we prefer that to the
1284 	 * per-channel interrupts to reduce the number of shared interrupt
1285 	 * handlers on the same IRQ line
1286 	 */
1287 	err = fsldma_request_irqs(fdev);
1288 	if (err) {
1289 		dev_err(fdev->dev, "unable to request IRQs\n");
1290 		goto out_free_fdev;
1291 	}
1292 
1293 	dma_async_device_register(&fdev->common);
1294 	return 0;
1295 
1296 out_free_fdev:
1297 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1298 		if (fdev->chan[i])
1299 			fsl_dma_chan_remove(fdev->chan[i]);
1300 	}
1301 	irq_dispose_mapping(fdev->irq);
1302 	iounmap(fdev->regs);
1303 out_free:
1304 	kfree(fdev);
1305 out_return:
1306 	return err;
1307 }
1308 
1309 static int fsldma_of_remove(struct platform_device *op)
1310 {
1311 	struct fsldma_device *fdev;
1312 	unsigned int i;
1313 
1314 	fdev = platform_get_drvdata(op);
1315 	dma_async_device_unregister(&fdev->common);
1316 
1317 	fsldma_free_irqs(fdev);
1318 
1319 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1320 		if (fdev->chan[i])
1321 			fsl_dma_chan_remove(fdev->chan[i]);
1322 	}
1323 	irq_dispose_mapping(fdev->irq);
1324 
1325 	iounmap(fdev->regs);
1326 	kfree(fdev);
1327 
1328 	return 0;
1329 }
1330 
1331 #ifdef CONFIG_PM
1332 static int fsldma_suspend_late(struct device *dev)
1333 {
1334 	struct fsldma_device *fdev = dev_get_drvdata(dev);
1335 	struct fsldma_chan *chan;
1336 	int i;
1337 
1338 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1339 		chan = fdev->chan[i];
1340 		if (!chan)
1341 			continue;
1342 
1343 		spin_lock_bh(&chan->desc_lock);
1344 		if (unlikely(!chan->idle))
1345 			goto out;
1346 		chan->regs_save.mr = get_mr(chan);
1347 		chan->pm_state = SUSPENDED;
1348 		spin_unlock_bh(&chan->desc_lock);
1349 	}
1350 	return 0;
1351 
1352 out:
1353 	for (; i >= 0; i--) {
1354 		chan = fdev->chan[i];
1355 		if (!chan)
1356 			continue;
1357 		chan->pm_state = RUNNING;
1358 		spin_unlock_bh(&chan->desc_lock);
1359 	}
1360 	return -EBUSY;
1361 }
1362 
1363 static int fsldma_resume_early(struct device *dev)
1364 {
1365 	struct fsldma_device *fdev = dev_get_drvdata(dev);
1366 	struct fsldma_chan *chan;
1367 	u32 mode;
1368 	int i;
1369 
1370 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1371 		chan = fdev->chan[i];
1372 		if (!chan)
1373 			continue;
1374 
1375 		spin_lock_bh(&chan->desc_lock);
1376 		mode = chan->regs_save.mr
1377 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1378 		set_mr(chan, mode);
1379 		chan->pm_state = RUNNING;
1380 		spin_unlock_bh(&chan->desc_lock);
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static const struct dev_pm_ops fsldma_pm_ops = {
1387 	.suspend_late	= fsldma_suspend_late,
1388 	.resume_early	= fsldma_resume_early,
1389 };
1390 #endif
1391 
1392 static const struct of_device_id fsldma_of_ids[] = {
1393 	{ .compatible = "fsl,elo3-dma", },
1394 	{ .compatible = "fsl,eloplus-dma", },
1395 	{ .compatible = "fsl,elo-dma", },
1396 	{}
1397 };
1398 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1399 
1400 static struct platform_driver fsldma_of_driver = {
1401 	.driver = {
1402 		.name = "fsl-elo-dma",
1403 		.of_match_table = fsldma_of_ids,
1404 #ifdef CONFIG_PM
1405 		.pm = &fsldma_pm_ops,
1406 #endif
1407 	},
1408 	.probe = fsldma_of_probe,
1409 	.remove = fsldma_of_remove,
1410 };
1411 
1412 /*----------------------------------------------------------------------------*/
1413 /* Module Init / Exit                                                         */
1414 /*----------------------------------------------------------------------------*/
1415 
1416 static __init int fsldma_init(void)
1417 {
1418 	pr_info("Freescale Elo series DMA driver\n");
1419 	return platform_driver_register(&fsldma_of_driver);
1420 }
1421 
1422 static void __exit fsldma_exit(void)
1423 {
1424 	platform_driver_unregister(&fsldma_of_driver);
1425 }
1426 
1427 subsys_initcall(fsldma_init);
1428 module_exit(fsldma_exit);
1429 
1430 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1431 MODULE_LICENSE("GPL");
1432