xref: /linux/drivers/dma/fsldma.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 	DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68 
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73 
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78 
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83 
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 	DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88 
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 	return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93 
94 /*
95  * Descriptor Helpers
96  */
97 
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 				struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 	hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103 
104 static void set_desc_src(struct fsldma_chan *chan,
105 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static void set_desc_next(struct fsldma_chan *chan,
125 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 		? FSL_DMA_SNEN : 0;
131 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133 
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 	u64 snoop_bits;
137 
138 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 		? FSL_DMA_SNEN : 0;
140 
141 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 			| snoop_bits, 64);
144 }
145 
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149 
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 	/* Reset the channel */
153 	set_mr(chan, 0);
154 
155 	switch (chan->feature & FSL_DMA_IP_MASK) {
156 	case FSL_DMA_IP_85XX:
157 		/* Set the channel to below modes:
158 		 * EIE - Error interrupt enable
159 		 * EOLNIE - End of links interrupt enable
160 		 * BWC - Bandwidth sharing among channels
161 		 */
162 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 			| FSL_DMA_MR_EOLNIE);
164 		break;
165 	case FSL_DMA_IP_83XX:
166 		/* Set the channel to below modes:
167 		 * EOTIE - End-of-transfer interrupt enable
168 		 * PRC_RM - PCI read multiple
169 		 */
170 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 		break;
172 	}
173 }
174 
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 	u32 sr = get_sr(chan);
178 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180 
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 	u32 mode;
191 
192 	mode = get_mr(chan);
193 
194 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 		set_bcr(chan, 0);
196 		mode |= FSL_DMA_MR_EMP_EN;
197 	} else {
198 		mode &= ~FSL_DMA_MR_EMP_EN;
199 	}
200 
201 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 		mode |= FSL_DMA_MR_EMS_EN;
203 	} else {
204 		mode &= ~FSL_DMA_MR_EMS_EN;
205 		mode |= FSL_DMA_MR_CS;
206 	}
207 
208 	set_mr(chan, mode);
209 }
210 
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 	u32 mode;
214 	int i;
215 
216 	/* read the mode register */
217 	mode = get_mr(chan);
218 
219 	/*
220 	 * The 85xx controller supports channel abort, which will stop
221 	 * the current transfer. On 83xx, this bit is the transfer error
222 	 * mask bit, which should not be changed.
223 	 */
224 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 		mode |= FSL_DMA_MR_CA;
226 		set_mr(chan, mode);
227 
228 		mode &= ~FSL_DMA_MR_CA;
229 	}
230 
231 	/* stop the DMA controller */
232 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 	set_mr(chan, mode);
234 
235 	/* wait for the DMA controller to become idle */
236 	for (i = 0; i < 100; i++) {
237 		if (dma_is_idle(chan))
238 			return;
239 
240 		udelay(10);
241 	}
242 
243 	if (!dma_is_idle(chan))
244 		chan_err(chan, "DMA halt timeout!\n");
245 }
246 
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 	u32 mode;
261 
262 	mode = get_mr(chan);
263 
264 	switch (size) {
265 	case 0:
266 		mode &= ~FSL_DMA_MR_SAHE;
267 		break;
268 	case 1:
269 	case 2:
270 	case 4:
271 	case 8:
272 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 		break;
274 	}
275 
276 	set_mr(chan, mode);
277 }
278 
279 /**
280  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281  * @chan : Freescale DMA channel
282  * @size     : Address loop size, 0 for disable loop
283  *
284  * The set destination address hold transfer size. The destination
285  * address hold or loop transfer size is when the DMA transfer
286  * data to destination address (TA), if the loop size is 4, the DMA will
287  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288  * TA + 1 ... and so on.
289  */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 	u32 mode;
293 
294 	mode = get_mr(chan);
295 
296 	switch (size) {
297 	case 0:
298 		mode &= ~FSL_DMA_MR_DAHE;
299 		break;
300 	case 1:
301 	case 2:
302 	case 4:
303 	case 8:
304 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 		break;
306 	}
307 
308 	set_mr(chan, mode);
309 }
310 
311 /**
312  * fsl_chan_set_request_count - Set DMA Request Count for external control
313  * @chan : Freescale DMA channel
314  * @size     : Number of bytes to transfer in a single request
315  *
316  * The Freescale DMA channel can be controlled by the external signal DREQ#.
317  * The DMA request count is how many bytes are allowed to transfer before
318  * pausing the channel, after which a new assertion of DREQ# resumes channel
319  * operation.
320  *
321  * A size of 0 disables external pause control. The maximum size is 1024.
322  */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 	u32 mode;
326 
327 	BUG_ON(size > 1024);
328 
329 	mode = get_mr(chan);
330 	mode |= (__ilog2(size) << 24) & 0x0f000000;
331 
332 	set_mr(chan, mode);
333 }
334 
335 /**
336  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337  * @chan : Freescale DMA channel
338  * @enable   : 0 is disabled, 1 is enabled.
339  *
340  * The Freescale DMA channel can be controlled by the external signal DREQ#.
341  * The DMA Request Count feature should be used in addition to this feature
342  * to set the number of bytes to transfer before pausing the channel.
343  */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 	if (enable)
347 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 	else
349 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351 
352 /**
353  * fsl_chan_toggle_ext_start - Toggle channel external start status
354  * @chan : Freescale DMA channel
355  * @enable   : 0 is disabled, 1 is enabled.
356  *
357  * If enable the external start, the channel can be started by an
358  * external DMA start pin. So the dma_start() does not start the
359  * transfer immediately. The DMA channel will wait for the
360  * control pin asserted.
361  */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 	if (enable)
365 		chan->feature |= FSL_DMA_CHAN_START_EXT;
366 	else
367 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369 
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
371 {
372 	struct fsldma_chan *chan;
373 
374 	if (!dchan)
375 		return -EINVAL;
376 
377 	chan = to_fsl_chan(dchan);
378 
379 	fsl_chan_toggle_ext_start(chan, enable);
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
383 
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
385 {
386 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
387 
388 	if (list_empty(&chan->ld_pending))
389 		goto out_splice;
390 
391 	/*
392 	 * Add the hardware descriptor to the chain of hardware descriptors
393 	 * that already exists in memory.
394 	 *
395 	 * This will un-set the EOL bit of the existing transaction, and the
396 	 * last link in this transaction will become the EOL descriptor.
397 	 */
398 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
399 
400 	/*
401 	 * Add the software descriptor and all children to the list
402 	 * of pending transactions
403 	 */
404 out_splice:
405 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
406 }
407 
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
409 {
410 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 	struct fsl_desc_sw *child;
413 	dma_cookie_t cookie = -EINVAL;
414 
415 	spin_lock_bh(&chan->desc_lock);
416 
417 #ifdef CONFIG_PM
418 	if (unlikely(chan->pm_state != RUNNING)) {
419 		chan_dbg(chan, "cannot submit due to suspend\n");
420 		spin_unlock_bh(&chan->desc_lock);
421 		return -1;
422 	}
423 #endif
424 
425 	/*
426 	 * assign cookies to all of the software descriptors
427 	 * that make up this transaction
428 	 */
429 	list_for_each_entry(child, &desc->tx_list, node) {
430 		cookie = dma_cookie_assign(&child->async_tx);
431 	}
432 
433 	/* put this transaction onto the tail of the pending queue */
434 	append_ld_queue(chan, desc);
435 
436 	spin_unlock_bh(&chan->desc_lock);
437 
438 	return cookie;
439 }
440 
441 /**
442  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443  * @chan : Freescale DMA channel
444  * @desc: descriptor to be freed
445  */
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 		struct fsl_desc_sw *desc)
448 {
449 	list_del(&desc->node);
450 	chan_dbg(chan, "LD %p free\n", desc);
451 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
452 }
453 
454 /**
455  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456  * @chan : Freescale DMA channel
457  *
458  * Return - The descriptor allocated. NULL for failed.
459  */
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
461 {
462 	struct fsl_desc_sw *desc;
463 	dma_addr_t pdesc;
464 
465 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 	if (!desc) {
467 		chan_dbg(chan, "out of memory for link descriptor\n");
468 		return NULL;
469 	}
470 
471 	INIT_LIST_HEAD(&desc->tx_list);
472 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
473 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
474 	desc->async_tx.phys = pdesc;
475 
476 	chan_dbg(chan, "LD %p allocated\n", desc);
477 
478 	return desc;
479 }
480 
481 /**
482  * fsldma_clean_completed_descriptor - free all descriptors which
483  * has been completed and acked
484  * @chan: Freescale DMA channel
485  *
486  * This function is used on all completed and acked descriptors.
487  * All descriptors should only be freed in this function.
488  */
489 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
490 {
491 	struct fsl_desc_sw *desc, *_desc;
492 
493 	/* Run the callback for each descriptor, in order */
494 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
495 		if (async_tx_test_ack(&desc->async_tx))
496 			fsl_dma_free_descriptor(chan, desc);
497 }
498 
499 /**
500  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
501  * @chan: Freescale DMA channel
502  * @desc: descriptor to cleanup and free
503  * @cookie: Freescale DMA transaction identifier
504  *
505  * This function is used on a descriptor which has been executed by the DMA
506  * controller. It will run any callbacks, submit any dependencies.
507  */
508 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
509 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
510 {
511 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
512 	dma_cookie_t ret = cookie;
513 
514 	BUG_ON(txd->cookie < 0);
515 
516 	if (txd->cookie > 0) {
517 		ret = txd->cookie;
518 
519 		/* Run the link descriptor callback function */
520 		if (txd->callback) {
521 			chan_dbg(chan, "LD %p callback\n", desc);
522 			txd->callback(txd->callback_param);
523 		}
524 
525 		dma_descriptor_unmap(txd);
526 	}
527 
528 	/* Run any dependencies */
529 	dma_run_dependencies(txd);
530 
531 	return ret;
532 }
533 
534 /**
535  * fsldma_clean_running_descriptor - move the completed descriptor from
536  * ld_running to ld_completed
537  * @chan: Freescale DMA channel
538  * @desc: the descriptor which is completed
539  *
540  * Free the descriptor directly if acked by async_tx api, or move it to
541  * queue ld_completed.
542  */
543 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
544 		struct fsl_desc_sw *desc)
545 {
546 	/* Remove from the list of transactions */
547 	list_del(&desc->node);
548 
549 	/*
550 	 * the client is allowed to attach dependent operations
551 	 * until 'ack' is set
552 	 */
553 	if (!async_tx_test_ack(&desc->async_tx)) {
554 		/*
555 		 * Move this descriptor to the list of descriptors which is
556 		 * completed, but still awaiting the 'ack' bit to be set.
557 		 */
558 		list_add_tail(&desc->node, &chan->ld_completed);
559 		return;
560 	}
561 
562 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
563 }
564 
565 /**
566  * fsl_chan_xfer_ld_queue - transfer any pending transactions
567  * @chan : Freescale DMA channel
568  *
569  * HARDWARE STATE: idle
570  * LOCKING: must hold chan->desc_lock
571  */
572 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
573 {
574 	struct fsl_desc_sw *desc;
575 
576 	/*
577 	 * If the list of pending descriptors is empty, then we
578 	 * don't need to do any work at all
579 	 */
580 	if (list_empty(&chan->ld_pending)) {
581 		chan_dbg(chan, "no pending LDs\n");
582 		return;
583 	}
584 
585 	/*
586 	 * The DMA controller is not idle, which means that the interrupt
587 	 * handler will start any queued transactions when it runs after
588 	 * this transaction finishes
589 	 */
590 	if (!chan->idle) {
591 		chan_dbg(chan, "DMA controller still busy\n");
592 		return;
593 	}
594 
595 	/*
596 	 * If there are some link descriptors which have not been
597 	 * transferred, we need to start the controller
598 	 */
599 
600 	/*
601 	 * Move all elements from the queue of pending transactions
602 	 * onto the list of running transactions
603 	 */
604 	chan_dbg(chan, "idle, starting controller\n");
605 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
606 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
607 
608 	/*
609 	 * The 85xx DMA controller doesn't clear the channel start bit
610 	 * automatically at the end of a transfer. Therefore we must clear
611 	 * it in software before starting the transfer.
612 	 */
613 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
614 		u32 mode;
615 
616 		mode = get_mr(chan);
617 		mode &= ~FSL_DMA_MR_CS;
618 		set_mr(chan, mode);
619 	}
620 
621 	/*
622 	 * Program the descriptor's address into the DMA controller,
623 	 * then start the DMA transaction
624 	 */
625 	set_cdar(chan, desc->async_tx.phys);
626 	get_cdar(chan);
627 
628 	dma_start(chan);
629 	chan->idle = false;
630 }
631 
632 /**
633  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
634  * and move them to ld_completed to free until flag 'ack' is set
635  * @chan: Freescale DMA channel
636  *
637  * This function is used on descriptors which have been executed by the DMA
638  * controller. It will run any callbacks, submit any dependencies, then
639  * free these descriptors if flag 'ack' is set.
640  */
641 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
642 {
643 	struct fsl_desc_sw *desc, *_desc;
644 	dma_cookie_t cookie = 0;
645 	dma_addr_t curr_phys = get_cdar(chan);
646 	int seen_current = 0;
647 
648 	fsldma_clean_completed_descriptor(chan);
649 
650 	/* Run the callback for each descriptor, in order */
651 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
652 		/*
653 		 * do not advance past the current descriptor loaded into the
654 		 * hardware channel, subsequent descriptors are either in
655 		 * process or have not been submitted
656 		 */
657 		if (seen_current)
658 			break;
659 
660 		/*
661 		 * stop the search if we reach the current descriptor and the
662 		 * channel is busy
663 		 */
664 		if (desc->async_tx.phys == curr_phys) {
665 			seen_current = 1;
666 			if (!dma_is_idle(chan))
667 				break;
668 		}
669 
670 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
671 
672 		fsldma_clean_running_descriptor(chan, desc);
673 	}
674 
675 	/*
676 	 * Start any pending transactions automatically
677 	 *
678 	 * In the ideal case, we keep the DMA controller busy while we go
679 	 * ahead and free the descriptors below.
680 	 */
681 	fsl_chan_xfer_ld_queue(chan);
682 
683 	if (cookie > 0)
684 		chan->common.completed_cookie = cookie;
685 }
686 
687 /**
688  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
689  * @chan : Freescale DMA channel
690  *
691  * This function will create a dma pool for descriptor allocation.
692  *
693  * Return - The number of descriptors allocated.
694  */
695 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
696 {
697 	struct fsldma_chan *chan = to_fsl_chan(dchan);
698 
699 	/* Has this channel already been allocated? */
700 	if (chan->desc_pool)
701 		return 1;
702 
703 	/*
704 	 * We need the descriptor to be aligned to 32bytes
705 	 * for meeting FSL DMA specification requirement.
706 	 */
707 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
708 					  sizeof(struct fsl_desc_sw),
709 					  __alignof__(struct fsl_desc_sw), 0);
710 	if (!chan->desc_pool) {
711 		chan_err(chan, "unable to allocate descriptor pool\n");
712 		return -ENOMEM;
713 	}
714 
715 	/* there is at least one descriptor free to be allocated */
716 	return 1;
717 }
718 
719 /**
720  * fsldma_free_desc_list - Free all descriptors in a queue
721  * @chan: Freescae DMA channel
722  * @list: the list to free
723  *
724  * LOCKING: must hold chan->desc_lock
725  */
726 static void fsldma_free_desc_list(struct fsldma_chan *chan,
727 				  struct list_head *list)
728 {
729 	struct fsl_desc_sw *desc, *_desc;
730 
731 	list_for_each_entry_safe(desc, _desc, list, node)
732 		fsl_dma_free_descriptor(chan, desc);
733 }
734 
735 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
736 					  struct list_head *list)
737 {
738 	struct fsl_desc_sw *desc, *_desc;
739 
740 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
741 		fsl_dma_free_descriptor(chan, desc);
742 }
743 
744 /**
745  * fsl_dma_free_chan_resources - Free all resources of the channel.
746  * @chan : Freescale DMA channel
747  */
748 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
749 {
750 	struct fsldma_chan *chan = to_fsl_chan(dchan);
751 
752 	chan_dbg(chan, "free all channel resources\n");
753 	spin_lock_bh(&chan->desc_lock);
754 	fsldma_cleanup_descriptors(chan);
755 	fsldma_free_desc_list(chan, &chan->ld_pending);
756 	fsldma_free_desc_list(chan, &chan->ld_running);
757 	fsldma_free_desc_list(chan, &chan->ld_completed);
758 	spin_unlock_bh(&chan->desc_lock);
759 
760 	dma_pool_destroy(chan->desc_pool);
761 	chan->desc_pool = NULL;
762 }
763 
764 static struct dma_async_tx_descriptor *
765 fsl_dma_prep_memcpy(struct dma_chan *dchan,
766 	dma_addr_t dma_dst, dma_addr_t dma_src,
767 	size_t len, unsigned long flags)
768 {
769 	struct fsldma_chan *chan;
770 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
771 	size_t copy;
772 
773 	if (!dchan)
774 		return NULL;
775 
776 	if (!len)
777 		return NULL;
778 
779 	chan = to_fsl_chan(dchan);
780 
781 	do {
782 
783 		/* Allocate the link descriptor from DMA pool */
784 		new = fsl_dma_alloc_descriptor(chan);
785 		if (!new) {
786 			chan_err(chan, "%s\n", msg_ld_oom);
787 			goto fail;
788 		}
789 
790 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
791 
792 		set_desc_cnt(chan, &new->hw, copy);
793 		set_desc_src(chan, &new->hw, dma_src);
794 		set_desc_dst(chan, &new->hw, dma_dst);
795 
796 		if (!first)
797 			first = new;
798 		else
799 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
800 
801 		new->async_tx.cookie = 0;
802 		async_tx_ack(&new->async_tx);
803 
804 		prev = new;
805 		len -= copy;
806 		dma_src += copy;
807 		dma_dst += copy;
808 
809 		/* Insert the link descriptor to the LD ring */
810 		list_add_tail(&new->node, &first->tx_list);
811 	} while (len);
812 
813 	new->async_tx.flags = flags; /* client is in control of this ack */
814 	new->async_tx.cookie = -EBUSY;
815 
816 	/* Set End-of-link to the last link descriptor of new list */
817 	set_ld_eol(chan, new);
818 
819 	return &first->async_tx;
820 
821 fail:
822 	if (!first)
823 		return NULL;
824 
825 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
826 	return NULL;
827 }
828 
829 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
830 	struct scatterlist *dst_sg, unsigned int dst_nents,
831 	struct scatterlist *src_sg, unsigned int src_nents,
832 	unsigned long flags)
833 {
834 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
835 	struct fsldma_chan *chan = to_fsl_chan(dchan);
836 	size_t dst_avail, src_avail;
837 	dma_addr_t dst, src;
838 	size_t len;
839 
840 	/* basic sanity checks */
841 	if (dst_nents == 0 || src_nents == 0)
842 		return NULL;
843 
844 	if (dst_sg == NULL || src_sg == NULL)
845 		return NULL;
846 
847 	/*
848 	 * TODO: should we check that both scatterlists have the same
849 	 * TODO: number of bytes in total? Is that really an error?
850 	 */
851 
852 	/* get prepared for the loop */
853 	dst_avail = sg_dma_len(dst_sg);
854 	src_avail = sg_dma_len(src_sg);
855 
856 	/* run until we are out of scatterlist entries */
857 	while (true) {
858 
859 		/* create the largest transaction possible */
860 		len = min_t(size_t, src_avail, dst_avail);
861 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
862 		if (len == 0)
863 			goto fetch;
864 
865 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
866 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
867 
868 		/* allocate and populate the descriptor */
869 		new = fsl_dma_alloc_descriptor(chan);
870 		if (!new) {
871 			chan_err(chan, "%s\n", msg_ld_oom);
872 			goto fail;
873 		}
874 
875 		set_desc_cnt(chan, &new->hw, len);
876 		set_desc_src(chan, &new->hw, src);
877 		set_desc_dst(chan, &new->hw, dst);
878 
879 		if (!first)
880 			first = new;
881 		else
882 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
883 
884 		new->async_tx.cookie = 0;
885 		async_tx_ack(&new->async_tx);
886 		prev = new;
887 
888 		/* Insert the link descriptor to the LD ring */
889 		list_add_tail(&new->node, &first->tx_list);
890 
891 		/* update metadata */
892 		dst_avail -= len;
893 		src_avail -= len;
894 
895 fetch:
896 		/* fetch the next dst scatterlist entry */
897 		if (dst_avail == 0) {
898 
899 			/* no more entries: we're done */
900 			if (dst_nents == 0)
901 				break;
902 
903 			/* fetch the next entry: if there are no more: done */
904 			dst_sg = sg_next(dst_sg);
905 			if (dst_sg == NULL)
906 				break;
907 
908 			dst_nents--;
909 			dst_avail = sg_dma_len(dst_sg);
910 		}
911 
912 		/* fetch the next src scatterlist entry */
913 		if (src_avail == 0) {
914 
915 			/* no more entries: we're done */
916 			if (src_nents == 0)
917 				break;
918 
919 			/* fetch the next entry: if there are no more: done */
920 			src_sg = sg_next(src_sg);
921 			if (src_sg == NULL)
922 				break;
923 
924 			src_nents--;
925 			src_avail = sg_dma_len(src_sg);
926 		}
927 	}
928 
929 	new->async_tx.flags = flags; /* client is in control of this ack */
930 	new->async_tx.cookie = -EBUSY;
931 
932 	/* Set End-of-link to the last link descriptor of new list */
933 	set_ld_eol(chan, new);
934 
935 	return &first->async_tx;
936 
937 fail:
938 	if (!first)
939 		return NULL;
940 
941 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
942 	return NULL;
943 }
944 
945 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
946 {
947 	struct fsldma_chan *chan;
948 
949 	if (!dchan)
950 		return -EINVAL;
951 
952 	chan = to_fsl_chan(dchan);
953 
954 	spin_lock_bh(&chan->desc_lock);
955 
956 	/* Halt the DMA engine */
957 	dma_halt(chan);
958 
959 	/* Remove and free all of the descriptors in the LD queue */
960 	fsldma_free_desc_list(chan, &chan->ld_pending);
961 	fsldma_free_desc_list(chan, &chan->ld_running);
962 	fsldma_free_desc_list(chan, &chan->ld_completed);
963 	chan->idle = true;
964 
965 	spin_unlock_bh(&chan->desc_lock);
966 	return 0;
967 }
968 
969 static int fsl_dma_device_config(struct dma_chan *dchan,
970 				 struct dma_slave_config *config)
971 {
972 	struct fsldma_chan *chan;
973 	int size;
974 
975 	if (!dchan)
976 		return -EINVAL;
977 
978 	chan = to_fsl_chan(dchan);
979 
980 	/* make sure the channel supports setting burst size */
981 	if (!chan->set_request_count)
982 		return -ENXIO;
983 
984 	/* we set the controller burst size depending on direction */
985 	if (config->direction == DMA_MEM_TO_DEV)
986 		size = config->dst_addr_width * config->dst_maxburst;
987 	else
988 		size = config->src_addr_width * config->src_maxburst;
989 
990 	chan->set_request_count(chan, size);
991 	return 0;
992 }
993 
994 
995 /**
996  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
997  * @chan : Freescale DMA channel
998  */
999 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1000 {
1001 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1002 
1003 	spin_lock_bh(&chan->desc_lock);
1004 	fsl_chan_xfer_ld_queue(chan);
1005 	spin_unlock_bh(&chan->desc_lock);
1006 }
1007 
1008 /**
1009  * fsl_tx_status - Determine the DMA status
1010  * @chan : Freescale DMA channel
1011  */
1012 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1013 					dma_cookie_t cookie,
1014 					struct dma_tx_state *txstate)
1015 {
1016 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1017 	enum dma_status ret;
1018 
1019 	ret = dma_cookie_status(dchan, cookie, txstate);
1020 	if (ret == DMA_COMPLETE)
1021 		return ret;
1022 
1023 	spin_lock_bh(&chan->desc_lock);
1024 	fsldma_cleanup_descriptors(chan);
1025 	spin_unlock_bh(&chan->desc_lock);
1026 
1027 	return dma_cookie_status(dchan, cookie, txstate);
1028 }
1029 
1030 /*----------------------------------------------------------------------------*/
1031 /* Interrupt Handling                                                         */
1032 /*----------------------------------------------------------------------------*/
1033 
1034 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1035 {
1036 	struct fsldma_chan *chan = data;
1037 	u32 stat;
1038 
1039 	/* save and clear the status register */
1040 	stat = get_sr(chan);
1041 	set_sr(chan, stat);
1042 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1043 
1044 	/* check that this was really our device */
1045 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1046 	if (!stat)
1047 		return IRQ_NONE;
1048 
1049 	if (stat & FSL_DMA_SR_TE)
1050 		chan_err(chan, "Transfer Error!\n");
1051 
1052 	/*
1053 	 * Programming Error
1054 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1055 	 * trigger a PE interrupt.
1056 	 */
1057 	if (stat & FSL_DMA_SR_PE) {
1058 		chan_dbg(chan, "irq: Programming Error INT\n");
1059 		stat &= ~FSL_DMA_SR_PE;
1060 		if (get_bcr(chan) != 0)
1061 			chan_err(chan, "Programming Error!\n");
1062 	}
1063 
1064 	/*
1065 	 * For MPC8349, EOCDI event need to update cookie
1066 	 * and start the next transfer if it exist.
1067 	 */
1068 	if (stat & FSL_DMA_SR_EOCDI) {
1069 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1070 		stat &= ~FSL_DMA_SR_EOCDI;
1071 	}
1072 
1073 	/*
1074 	 * If it current transfer is the end-of-transfer,
1075 	 * we should clear the Channel Start bit for
1076 	 * prepare next transfer.
1077 	 */
1078 	if (stat & FSL_DMA_SR_EOLNI) {
1079 		chan_dbg(chan, "irq: End-of-link INT\n");
1080 		stat &= ~FSL_DMA_SR_EOLNI;
1081 	}
1082 
1083 	/* check that the DMA controller is really idle */
1084 	if (!dma_is_idle(chan))
1085 		chan_err(chan, "irq: controller not idle!\n");
1086 
1087 	/* check that we handled all of the bits */
1088 	if (stat)
1089 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1090 
1091 	/*
1092 	 * Schedule the tasklet to handle all cleanup of the current
1093 	 * transaction. It will start a new transaction if there is
1094 	 * one pending.
1095 	 */
1096 	tasklet_schedule(&chan->tasklet);
1097 	chan_dbg(chan, "irq: Exit\n");
1098 	return IRQ_HANDLED;
1099 }
1100 
1101 static void dma_do_tasklet(unsigned long data)
1102 {
1103 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1104 
1105 	chan_dbg(chan, "tasklet entry\n");
1106 
1107 	spin_lock_bh(&chan->desc_lock);
1108 
1109 	/* the hardware is now idle and ready for more */
1110 	chan->idle = true;
1111 
1112 	/* Run all cleanup for descriptors which have been completed */
1113 	fsldma_cleanup_descriptors(chan);
1114 
1115 	spin_unlock_bh(&chan->desc_lock);
1116 
1117 	chan_dbg(chan, "tasklet exit\n");
1118 }
1119 
1120 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1121 {
1122 	struct fsldma_device *fdev = data;
1123 	struct fsldma_chan *chan;
1124 	unsigned int handled = 0;
1125 	u32 gsr, mask;
1126 	int i;
1127 
1128 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1129 						   : in_le32(fdev->regs);
1130 	mask = 0xff000000;
1131 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1132 
1133 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1134 		chan = fdev->chan[i];
1135 		if (!chan)
1136 			continue;
1137 
1138 		if (gsr & mask) {
1139 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1140 			fsldma_chan_irq(irq, chan);
1141 			handled++;
1142 		}
1143 
1144 		gsr &= ~mask;
1145 		mask >>= 8;
1146 	}
1147 
1148 	return IRQ_RETVAL(handled);
1149 }
1150 
1151 static void fsldma_free_irqs(struct fsldma_device *fdev)
1152 {
1153 	struct fsldma_chan *chan;
1154 	int i;
1155 
1156 	if (fdev->irq != NO_IRQ) {
1157 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1158 		free_irq(fdev->irq, fdev);
1159 		return;
1160 	}
1161 
1162 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1163 		chan = fdev->chan[i];
1164 		if (chan && chan->irq != NO_IRQ) {
1165 			chan_dbg(chan, "free per-channel IRQ\n");
1166 			free_irq(chan->irq, chan);
1167 		}
1168 	}
1169 }
1170 
1171 static int fsldma_request_irqs(struct fsldma_device *fdev)
1172 {
1173 	struct fsldma_chan *chan;
1174 	int ret;
1175 	int i;
1176 
1177 	/* if we have a per-controller IRQ, use that */
1178 	if (fdev->irq != NO_IRQ) {
1179 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1180 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1181 				  "fsldma-controller", fdev);
1182 		return ret;
1183 	}
1184 
1185 	/* no per-controller IRQ, use the per-channel IRQs */
1186 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1187 		chan = fdev->chan[i];
1188 		if (!chan)
1189 			continue;
1190 
1191 		if (chan->irq == NO_IRQ) {
1192 			chan_err(chan, "interrupts property missing in device tree\n");
1193 			ret = -ENODEV;
1194 			goto out_unwind;
1195 		}
1196 
1197 		chan_dbg(chan, "request per-channel IRQ\n");
1198 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1199 				  "fsldma-chan", chan);
1200 		if (ret) {
1201 			chan_err(chan, "unable to request per-channel IRQ\n");
1202 			goto out_unwind;
1203 		}
1204 	}
1205 
1206 	return 0;
1207 
1208 out_unwind:
1209 	for (/* none */; i >= 0; i--) {
1210 		chan = fdev->chan[i];
1211 		if (!chan)
1212 			continue;
1213 
1214 		if (chan->irq == NO_IRQ)
1215 			continue;
1216 
1217 		free_irq(chan->irq, chan);
1218 	}
1219 
1220 	return ret;
1221 }
1222 
1223 /*----------------------------------------------------------------------------*/
1224 /* OpenFirmware Subsystem                                                     */
1225 /*----------------------------------------------------------------------------*/
1226 
1227 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1228 	struct device_node *node, u32 feature, const char *compatible)
1229 {
1230 	struct fsldma_chan *chan;
1231 	struct resource res;
1232 	int err;
1233 
1234 	/* alloc channel */
1235 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1236 	if (!chan) {
1237 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1238 		err = -ENOMEM;
1239 		goto out_return;
1240 	}
1241 
1242 	/* ioremap registers for use */
1243 	chan->regs = of_iomap(node, 0);
1244 	if (!chan->regs) {
1245 		dev_err(fdev->dev, "unable to ioremap registers\n");
1246 		err = -ENOMEM;
1247 		goto out_free_chan;
1248 	}
1249 
1250 	err = of_address_to_resource(node, 0, &res);
1251 	if (err) {
1252 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1253 		goto out_iounmap_regs;
1254 	}
1255 
1256 	chan->feature = feature;
1257 	if (!fdev->feature)
1258 		fdev->feature = chan->feature;
1259 
1260 	/*
1261 	 * If the DMA device's feature is different than the feature
1262 	 * of its channels, report the bug
1263 	 */
1264 	WARN_ON(fdev->feature != chan->feature);
1265 
1266 	chan->dev = fdev->dev;
1267 	chan->id = (res.start & 0xfff) < 0x300 ?
1268 		   ((res.start - 0x100) & 0xfff) >> 7 :
1269 		   ((res.start - 0x200) & 0xfff) >> 7;
1270 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1271 		dev_err(fdev->dev, "too many channels for device\n");
1272 		err = -EINVAL;
1273 		goto out_iounmap_regs;
1274 	}
1275 
1276 	fdev->chan[chan->id] = chan;
1277 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1278 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1279 
1280 	/* Initialize the channel */
1281 	dma_init(chan);
1282 
1283 	/* Clear cdar registers */
1284 	set_cdar(chan, 0);
1285 
1286 	switch (chan->feature & FSL_DMA_IP_MASK) {
1287 	case FSL_DMA_IP_85XX:
1288 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1289 	case FSL_DMA_IP_83XX:
1290 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1291 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1292 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1293 		chan->set_request_count = fsl_chan_set_request_count;
1294 	}
1295 
1296 	spin_lock_init(&chan->desc_lock);
1297 	INIT_LIST_HEAD(&chan->ld_pending);
1298 	INIT_LIST_HEAD(&chan->ld_running);
1299 	INIT_LIST_HEAD(&chan->ld_completed);
1300 	chan->idle = true;
1301 #ifdef CONFIG_PM
1302 	chan->pm_state = RUNNING;
1303 #endif
1304 
1305 	chan->common.device = &fdev->common;
1306 	dma_cookie_init(&chan->common);
1307 
1308 	/* find the IRQ line, if it exists in the device tree */
1309 	chan->irq = irq_of_parse_and_map(node, 0);
1310 
1311 	/* Add the channel to DMA device channel list */
1312 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1313 
1314 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1315 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1316 
1317 	return 0;
1318 
1319 out_iounmap_regs:
1320 	iounmap(chan->regs);
1321 out_free_chan:
1322 	kfree(chan);
1323 out_return:
1324 	return err;
1325 }
1326 
1327 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1328 {
1329 	irq_dispose_mapping(chan->irq);
1330 	list_del(&chan->common.device_node);
1331 	iounmap(chan->regs);
1332 	kfree(chan);
1333 }
1334 
1335 static int fsldma_of_probe(struct platform_device *op)
1336 {
1337 	struct fsldma_device *fdev;
1338 	struct device_node *child;
1339 	int err;
1340 
1341 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1342 	if (!fdev) {
1343 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1344 		err = -ENOMEM;
1345 		goto out_return;
1346 	}
1347 
1348 	fdev->dev = &op->dev;
1349 	INIT_LIST_HEAD(&fdev->common.channels);
1350 
1351 	/* ioremap the registers for use */
1352 	fdev->regs = of_iomap(op->dev.of_node, 0);
1353 	if (!fdev->regs) {
1354 		dev_err(&op->dev, "unable to ioremap registers\n");
1355 		err = -ENOMEM;
1356 		goto out_free_fdev;
1357 	}
1358 
1359 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1360 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1361 
1362 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1363 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1364 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1365 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1366 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1367 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1368 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1369 	fdev->common.device_tx_status = fsl_tx_status;
1370 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1371 	fdev->common.device_config = fsl_dma_device_config;
1372 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1373 	fdev->common.dev = &op->dev;
1374 
1375 	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1376 	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1377 	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1378 	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1379 
1380 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1381 
1382 	platform_set_drvdata(op, fdev);
1383 
1384 	/*
1385 	 * We cannot use of_platform_bus_probe() because there is no
1386 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1387 	 * channel object.
1388 	 */
1389 	for_each_child_of_node(op->dev.of_node, child) {
1390 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1391 			fsl_dma_chan_probe(fdev, child,
1392 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1393 				"fsl,eloplus-dma-channel");
1394 		}
1395 
1396 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1397 			fsl_dma_chan_probe(fdev, child,
1398 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1399 				"fsl,elo-dma-channel");
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * Hookup the IRQ handler(s)
1405 	 *
1406 	 * If we have a per-controller interrupt, we prefer that to the
1407 	 * per-channel interrupts to reduce the number of shared interrupt
1408 	 * handlers on the same IRQ line
1409 	 */
1410 	err = fsldma_request_irqs(fdev);
1411 	if (err) {
1412 		dev_err(fdev->dev, "unable to request IRQs\n");
1413 		goto out_free_fdev;
1414 	}
1415 
1416 	dma_async_device_register(&fdev->common);
1417 	return 0;
1418 
1419 out_free_fdev:
1420 	irq_dispose_mapping(fdev->irq);
1421 	kfree(fdev);
1422 out_return:
1423 	return err;
1424 }
1425 
1426 static int fsldma_of_remove(struct platform_device *op)
1427 {
1428 	struct fsldma_device *fdev;
1429 	unsigned int i;
1430 
1431 	fdev = platform_get_drvdata(op);
1432 	dma_async_device_unregister(&fdev->common);
1433 
1434 	fsldma_free_irqs(fdev);
1435 
1436 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1437 		if (fdev->chan[i])
1438 			fsl_dma_chan_remove(fdev->chan[i]);
1439 	}
1440 
1441 	iounmap(fdev->regs);
1442 	kfree(fdev);
1443 
1444 	return 0;
1445 }
1446 
1447 #ifdef CONFIG_PM
1448 static int fsldma_suspend_late(struct device *dev)
1449 {
1450 	struct platform_device *pdev = to_platform_device(dev);
1451 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1452 	struct fsldma_chan *chan;
1453 	int i;
1454 
1455 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1456 		chan = fdev->chan[i];
1457 		if (!chan)
1458 			continue;
1459 
1460 		spin_lock_bh(&chan->desc_lock);
1461 		if (unlikely(!chan->idle))
1462 			goto out;
1463 		chan->regs_save.mr = get_mr(chan);
1464 		chan->pm_state = SUSPENDED;
1465 		spin_unlock_bh(&chan->desc_lock);
1466 	}
1467 	return 0;
1468 
1469 out:
1470 	for (; i >= 0; i--) {
1471 		chan = fdev->chan[i];
1472 		if (!chan)
1473 			continue;
1474 		chan->pm_state = RUNNING;
1475 		spin_unlock_bh(&chan->desc_lock);
1476 	}
1477 	return -EBUSY;
1478 }
1479 
1480 static int fsldma_resume_early(struct device *dev)
1481 {
1482 	struct platform_device *pdev = to_platform_device(dev);
1483 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1484 	struct fsldma_chan *chan;
1485 	u32 mode;
1486 	int i;
1487 
1488 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1489 		chan = fdev->chan[i];
1490 		if (!chan)
1491 			continue;
1492 
1493 		spin_lock_bh(&chan->desc_lock);
1494 		mode = chan->regs_save.mr
1495 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1496 		set_mr(chan, mode);
1497 		chan->pm_state = RUNNING;
1498 		spin_unlock_bh(&chan->desc_lock);
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static const struct dev_pm_ops fsldma_pm_ops = {
1505 	.suspend_late	= fsldma_suspend_late,
1506 	.resume_early	= fsldma_resume_early,
1507 };
1508 #endif
1509 
1510 static const struct of_device_id fsldma_of_ids[] = {
1511 	{ .compatible = "fsl,elo3-dma", },
1512 	{ .compatible = "fsl,eloplus-dma", },
1513 	{ .compatible = "fsl,elo-dma", },
1514 	{}
1515 };
1516 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1517 
1518 static struct platform_driver fsldma_of_driver = {
1519 	.driver = {
1520 		.name = "fsl-elo-dma",
1521 		.of_match_table = fsldma_of_ids,
1522 #ifdef CONFIG_PM
1523 		.pm = &fsldma_pm_ops,
1524 #endif
1525 	},
1526 	.probe = fsldma_of_probe,
1527 	.remove = fsldma_of_remove,
1528 };
1529 
1530 /*----------------------------------------------------------------------------*/
1531 /* Module Init / Exit                                                         */
1532 /*----------------------------------------------------------------------------*/
1533 
1534 static __init int fsldma_init(void)
1535 {
1536 	pr_info("Freescale Elo series DMA driver\n");
1537 	return platform_driver_register(&fsldma_of_driver);
1538 }
1539 
1540 static void __exit fsldma_exit(void)
1541 {
1542 	platform_driver_unregister(&fsldma_of_driver);
1543 }
1544 
1545 subsys_initcall(fsldma_init);
1546 module_exit(fsldma_exit);
1547 
1548 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1549 MODULE_LICENSE("GPL");
1550