1 /* 2 * drivers/dma/fsl_raid.c 3 * 4 * Freescale RAID Engine device driver 5 * 6 * Author: 7 * Harninder Rai <harninder.rai@freescale.com> 8 * Naveen Burmi <naveenburmi@freescale.com> 9 * 10 * Rewrite: 11 * Xuelin Shi <xuelin.shi@freescale.com> 12 * 13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions are met: 17 * * Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * * Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * * Neither the name of Freescale Semiconductor nor the 23 * names of its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written permission. 25 * 26 * ALTERNATIVELY, this software may be distributed under the terms of the 27 * GNU General Public License ("GPL") as published by the Free Software 28 * Foundation, either version 2 of that License or (at your option) any 29 * later version. 30 * 31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 41 * 42 * Theory of operation: 43 * 44 * General capabilities: 45 * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q 46 * calculations required in RAID5 and RAID6 operations. RE driver 47 * registers with Linux's ASYNC layer as dma driver. RE hardware 48 * maintains strict ordering of the requests through chained 49 * command queueing. 50 * 51 * Data flow: 52 * Software RAID layer of Linux (MD layer) maintains RAID partitions, 53 * strips, stripes etc. It sends requests to the underlying ASYNC layer 54 * which further passes it to RE driver. ASYNC layer decides which request 55 * goes to which job ring of RE hardware. For every request processed by 56 * RAID Engine, driver gets an interrupt unless coalescing is set. The 57 * per job ring interrupt handler checks the status register for errors, 58 * clears the interrupt and leave the post interrupt processing to the irq 59 * thread. 60 */ 61 #include <linux/interrupt.h> 62 #include <linux/module.h> 63 #include <linux/of_irq.h> 64 #include <linux/of_address.h> 65 #include <linux/of_platform.h> 66 #include <linux/dma-mapping.h> 67 #include <linux/dmapool.h> 68 #include <linux/dmaengine.h> 69 #include <linux/io.h> 70 #include <linux/spinlock.h> 71 #include <linux/slab.h> 72 73 #include "dmaengine.h" 74 #include "fsl_raid.h" 75 76 #define FSL_RE_MAX_XOR_SRCS 16 77 #define FSL_RE_MAX_PQ_SRCS 16 78 #define FSL_RE_MIN_DESCS 256 79 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS) 80 #define FSL_RE_FRAME_FORMAT 0x1 81 #define FSL_RE_MAX_DATA_LEN (1024*1024) 82 83 #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx) 84 85 /* Add descriptors into per chan software queue - submit_q */ 86 static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx) 87 { 88 struct fsl_re_desc *desc; 89 struct fsl_re_chan *re_chan; 90 dma_cookie_t cookie; 91 unsigned long flags; 92 93 desc = to_fsl_re_dma_desc(tx); 94 re_chan = container_of(tx->chan, struct fsl_re_chan, chan); 95 96 spin_lock_irqsave(&re_chan->desc_lock, flags); 97 cookie = dma_cookie_assign(tx); 98 list_add_tail(&desc->node, &re_chan->submit_q); 99 spin_unlock_irqrestore(&re_chan->desc_lock, flags); 100 101 return cookie; 102 } 103 104 /* Copy descriptor from per chan software queue into hardware job ring */ 105 static void fsl_re_issue_pending(struct dma_chan *chan) 106 { 107 struct fsl_re_chan *re_chan; 108 int avail; 109 struct fsl_re_desc *desc, *_desc; 110 unsigned long flags; 111 112 re_chan = container_of(chan, struct fsl_re_chan, chan); 113 114 spin_lock_irqsave(&re_chan->desc_lock, flags); 115 avail = FSL_RE_SLOT_AVAIL( 116 in_be32(&re_chan->jrregs->inbring_slot_avail)); 117 118 list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) { 119 if (!avail) 120 break; 121 122 list_move_tail(&desc->node, &re_chan->active_q); 123 124 memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count], 125 &desc->hwdesc, sizeof(struct fsl_re_hw_desc)); 126 127 re_chan->inb_count = (re_chan->inb_count + 1) & 128 FSL_RE_RING_SIZE_MASK; 129 out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1)); 130 avail--; 131 } 132 spin_unlock_irqrestore(&re_chan->desc_lock, flags); 133 } 134 135 static void fsl_re_desc_done(struct fsl_re_desc *desc) 136 { 137 dma_async_tx_callback callback; 138 void *callback_param; 139 140 dma_cookie_complete(&desc->async_tx); 141 142 callback = desc->async_tx.callback; 143 callback_param = desc->async_tx.callback_param; 144 if (callback) 145 callback(callback_param); 146 147 dma_descriptor_unmap(&desc->async_tx); 148 } 149 150 static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan) 151 { 152 struct fsl_re_desc *desc, *_desc; 153 unsigned long flags; 154 155 spin_lock_irqsave(&re_chan->desc_lock, flags); 156 list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) { 157 if (async_tx_test_ack(&desc->async_tx)) 158 list_move_tail(&desc->node, &re_chan->free_q); 159 } 160 spin_unlock_irqrestore(&re_chan->desc_lock, flags); 161 162 fsl_re_issue_pending(&re_chan->chan); 163 } 164 165 static void fsl_re_dequeue(unsigned long data) 166 { 167 struct fsl_re_chan *re_chan; 168 struct fsl_re_desc *desc, *_desc; 169 struct fsl_re_hw_desc *hwdesc; 170 unsigned long flags; 171 unsigned int count, oub_count; 172 int found; 173 174 re_chan = dev_get_drvdata((struct device *)data); 175 176 fsl_re_cleanup_descs(re_chan); 177 178 spin_lock_irqsave(&re_chan->desc_lock, flags); 179 count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full)); 180 while (count--) { 181 found = 0; 182 hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count]; 183 list_for_each_entry_safe(desc, _desc, &re_chan->active_q, 184 node) { 185 /* compare the hw dma addr to find the completed */ 186 if (desc->hwdesc.lbea32 == hwdesc->lbea32 && 187 desc->hwdesc.addr_low == hwdesc->addr_low) { 188 found = 1; 189 break; 190 } 191 } 192 193 if (found) { 194 fsl_re_desc_done(desc); 195 list_move_tail(&desc->node, &re_chan->ack_q); 196 } else { 197 dev_err(re_chan->dev, 198 "found hwdesc not in sw queue, discard it\n"); 199 } 200 201 oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK; 202 re_chan->oub_count = oub_count; 203 204 out_be32(&re_chan->jrregs->oubring_job_rmvd, 205 FSL_RE_RMVD_JOB(1)); 206 } 207 spin_unlock_irqrestore(&re_chan->desc_lock, flags); 208 } 209 210 /* Per Job Ring interrupt handler */ 211 static irqreturn_t fsl_re_isr(int irq, void *data) 212 { 213 struct fsl_re_chan *re_chan; 214 u32 irqstate, status; 215 216 re_chan = dev_get_drvdata((struct device *)data); 217 218 irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status); 219 if (!irqstate) 220 return IRQ_NONE; 221 222 /* 223 * There's no way in upper layer (read MD layer) to recover from 224 * error conditions except restart everything. In long term we 225 * need to do something more than just crashing 226 */ 227 if (irqstate & FSL_RE_ERROR) { 228 status = in_be32(&re_chan->jrregs->jr_status); 229 dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n", 230 irqstate, status); 231 } 232 233 /* Clear interrupt */ 234 out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR); 235 236 tasklet_schedule(&re_chan->irqtask); 237 238 return IRQ_HANDLED; 239 } 240 241 static enum dma_status fsl_re_tx_status(struct dma_chan *chan, 242 dma_cookie_t cookie, 243 struct dma_tx_state *txstate) 244 { 245 return dma_cookie_status(chan, cookie, txstate); 246 } 247 248 static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index, 249 size_t length, dma_addr_t addr, bool final) 250 { 251 u32 efrl = length & FSL_RE_CF_LENGTH_MASK; 252 253 efrl |= final << FSL_RE_CF_FINAL_SHIFT; 254 cf[index].efrl32 = efrl; 255 cf[index].addr_high = upper_32_bits(addr); 256 cf[index].addr_low = lower_32_bits(addr); 257 } 258 259 static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan, 260 struct fsl_re_desc *desc, 261 void *cf, dma_addr_t paddr) 262 { 263 desc->re_chan = re_chan; 264 desc->async_tx.tx_submit = fsl_re_tx_submit; 265 dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan); 266 INIT_LIST_HEAD(&desc->node); 267 268 desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT; 269 desc->hwdesc.lbea32 = upper_32_bits(paddr); 270 desc->hwdesc.addr_low = lower_32_bits(paddr); 271 desc->cf_addr = cf; 272 desc->cf_paddr = paddr; 273 274 desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE); 275 desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE; 276 277 return desc; 278 } 279 280 static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan, 281 unsigned long flags) 282 { 283 struct fsl_re_desc *desc = NULL; 284 void *cf; 285 dma_addr_t paddr; 286 unsigned long lock_flag; 287 288 fsl_re_cleanup_descs(re_chan); 289 290 spin_lock_irqsave(&re_chan->desc_lock, lock_flag); 291 if (!list_empty(&re_chan->free_q)) { 292 /* take one desc from free_q */ 293 desc = list_first_entry(&re_chan->free_q, 294 struct fsl_re_desc, node); 295 list_del(&desc->node); 296 297 desc->async_tx.flags = flags; 298 } 299 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); 300 301 if (!desc) { 302 desc = kzalloc(sizeof(*desc), GFP_NOWAIT); 303 if (!desc) 304 return NULL; 305 306 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT, 307 &paddr); 308 if (!cf) { 309 kfree(desc); 310 return NULL; 311 } 312 313 desc = fsl_re_init_desc(re_chan, desc, cf, paddr); 314 desc->async_tx.flags = flags; 315 316 spin_lock_irqsave(&re_chan->desc_lock, lock_flag); 317 re_chan->alloc_count++; 318 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); 319 } 320 321 return desc; 322 } 323 324 static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq( 325 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 326 unsigned int src_cnt, const unsigned char *scf, size_t len, 327 unsigned long flags) 328 { 329 struct fsl_re_chan *re_chan; 330 struct fsl_re_desc *desc; 331 struct fsl_re_xor_cdb *xor; 332 struct fsl_re_cmpnd_frame *cf; 333 u32 cdb; 334 unsigned int i, j; 335 unsigned int save_src_cnt = src_cnt; 336 int cont_q = 0; 337 338 re_chan = container_of(chan, struct fsl_re_chan, chan); 339 if (len > FSL_RE_MAX_DATA_LEN) { 340 dev_err(re_chan->dev, "genq tx length %lu, max length %d\n", 341 len, FSL_RE_MAX_DATA_LEN); 342 return NULL; 343 } 344 345 desc = fsl_re_chan_alloc_desc(re_chan, flags); 346 if (desc <= 0) 347 return NULL; 348 349 if (scf && (flags & DMA_PREP_CONTINUE)) { 350 cont_q = 1; 351 src_cnt += 1; 352 } 353 354 /* Filling xor CDB */ 355 cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; 356 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; 357 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; 358 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; 359 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; 360 xor = desc->cdb_addr; 361 xor->cdb32 = cdb; 362 363 if (scf) { 364 /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ 365 for (i = 0; i < save_src_cnt; i++) 366 xor->gfm[i] = scf[i]; 367 if (cont_q) 368 xor->gfm[i++] = 1; 369 } else { 370 /* compute P, that is XOR all srcs */ 371 for (i = 0; i < src_cnt; i++) 372 xor->gfm[i] = 1; 373 } 374 375 /* Filling frame 0 of compound frame descriptor with CDB */ 376 cf = desc->cf_addr; 377 fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0); 378 379 /* Fill CFD's 1st frame with dest buffer */ 380 fill_cfd_frame(cf, 1, len, dest, 0); 381 382 /* Fill CFD's rest of the frames with source buffers */ 383 for (i = 2, j = 0; j < save_src_cnt; i++, j++) 384 fill_cfd_frame(cf, i, len, src[j], 0); 385 386 if (cont_q) 387 fill_cfd_frame(cf, i++, len, dest, 0); 388 389 /* Setting the final bit in the last source buffer frame in CFD */ 390 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; 391 392 return &desc->async_tx; 393 } 394 395 /* 396 * Prep function for P parity calculation.In RAID Engine terminology, 397 * XOR calculation is called GenQ calculation done through GenQ command 398 */ 399 static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor( 400 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 401 unsigned int src_cnt, size_t len, unsigned long flags) 402 { 403 /* NULL let genq take all coef as 1 */ 404 return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags); 405 } 406 407 /* 408 * Prep function for P/Q parity calculation.In RAID Engine terminology, 409 * P/Q calculation is called GenQQ done through GenQQ command 410 */ 411 static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq( 412 struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, 413 unsigned int src_cnt, const unsigned char *scf, size_t len, 414 unsigned long flags) 415 { 416 struct fsl_re_chan *re_chan; 417 struct fsl_re_desc *desc; 418 struct fsl_re_pq_cdb *pq; 419 struct fsl_re_cmpnd_frame *cf; 420 u32 cdb; 421 u8 *p; 422 int gfmq_len, i, j; 423 unsigned int save_src_cnt = src_cnt; 424 425 re_chan = container_of(chan, struct fsl_re_chan, chan); 426 if (len > FSL_RE_MAX_DATA_LEN) { 427 dev_err(re_chan->dev, "pq tx length is %lu, max length is %d\n", 428 len, FSL_RE_MAX_DATA_LEN); 429 return NULL; 430 } 431 432 /* 433 * RE requires at least 2 sources, if given only one source, we pass the 434 * second source same as the first one. 435 * With only one source, generating P is meaningless, only generate Q. 436 */ 437 if (src_cnt == 1) { 438 struct dma_async_tx_descriptor *tx; 439 dma_addr_t dma_src[2]; 440 unsigned char coef[2]; 441 442 dma_src[0] = *src; 443 coef[0] = *scf; 444 dma_src[1] = *src; 445 coef[1] = 0; 446 tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len, 447 flags); 448 if (tx) 449 desc = to_fsl_re_dma_desc(tx); 450 451 return tx; 452 } 453 454 /* 455 * During RAID6 array creation, Linux's MD layer gets P and Q 456 * calculated separately in two steps. But our RAID Engine has 457 * the capability to calculate both P and Q with a single command 458 * Hence to merge well with MD layer, we need to provide a hook 459 * here and call re_jq_prep_dma_genq() function 460 */ 461 462 if (flags & DMA_PREP_PQ_DISABLE_P) 463 return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt, 464 scf, len, flags); 465 466 if (flags & DMA_PREP_CONTINUE) 467 src_cnt += 3; 468 469 desc = fsl_re_chan_alloc_desc(re_chan, flags); 470 if (desc <= 0) 471 return NULL; 472 473 /* Filling GenQQ CDB */ 474 cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; 475 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; 476 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; 477 cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT; 478 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; 479 480 pq = desc->cdb_addr; 481 pq->cdb32 = cdb; 482 483 p = pq->gfm_q1; 484 /* Init gfm_q1[] */ 485 for (i = 0; i < src_cnt; i++) 486 p[i] = 1; 487 488 /* Align gfm[] to 32bit */ 489 gfmq_len = ALIGN(src_cnt, 4); 490 491 /* Init gfm_q2[] */ 492 p += gfmq_len; 493 for (i = 0; i < src_cnt; i++) 494 p[i] = scf[i]; 495 496 /* Filling frame 0 of compound frame descriptor with CDB */ 497 cf = desc->cf_addr; 498 fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0); 499 500 /* Fill CFD's 1st & 2nd frame with dest buffers */ 501 for (i = 1, j = 0; i < 3; i++, j++) 502 fill_cfd_frame(cf, i, len, dest[j], 0); 503 504 /* Fill CFD's rest of the frames with source buffers */ 505 for (i = 3, j = 0; j < save_src_cnt; i++, j++) 506 fill_cfd_frame(cf, i, len, src[j], 0); 507 508 /* PQ computation continuation */ 509 if (flags & DMA_PREP_CONTINUE) { 510 if (src_cnt - save_src_cnt == 3) { 511 p[save_src_cnt] = 0; 512 p[save_src_cnt + 1] = 0; 513 p[save_src_cnt + 2] = 1; 514 fill_cfd_frame(cf, i++, len, dest[0], 0); 515 fill_cfd_frame(cf, i++, len, dest[1], 0); 516 fill_cfd_frame(cf, i++, len, dest[1], 0); 517 } else { 518 dev_err(re_chan->dev, "PQ tx continuation error!\n"); 519 return NULL; 520 } 521 } 522 523 /* Setting the final bit in the last source buffer frame in CFD */ 524 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; 525 526 return &desc->async_tx; 527 } 528 529 /* 530 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE 531 * command. Logic of this function will need to be modified once multipage 532 * support is added in Linux's MD/ASYNC Layer 533 */ 534 static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy( 535 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 536 size_t len, unsigned long flags) 537 { 538 struct fsl_re_chan *re_chan; 539 struct fsl_re_desc *desc; 540 size_t length; 541 struct fsl_re_cmpnd_frame *cf; 542 struct fsl_re_move_cdb *move; 543 u32 cdb; 544 545 re_chan = container_of(chan, struct fsl_re_chan, chan); 546 547 if (len > FSL_RE_MAX_DATA_LEN) { 548 dev_err(re_chan->dev, "cp tx length is %lu, max length is %d\n", 549 len, FSL_RE_MAX_DATA_LEN); 550 return NULL; 551 } 552 553 desc = fsl_re_chan_alloc_desc(re_chan, flags); 554 if (desc <= 0) 555 return NULL; 556 557 /* Filling move CDB */ 558 cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; 559 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; 560 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; 561 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; 562 563 move = desc->cdb_addr; 564 move->cdb32 = cdb; 565 566 /* Filling frame 0 of CFD with move CDB */ 567 cf = desc->cf_addr; 568 fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0); 569 570 length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN); 571 572 /* Fill CFD's 1st frame with dest buffer */ 573 fill_cfd_frame(cf, 1, length, dest, 0); 574 575 /* Fill CFD's 2nd frame with src buffer */ 576 fill_cfd_frame(cf, 2, length, src, 1); 577 578 return &desc->async_tx; 579 } 580 581 static int fsl_re_alloc_chan_resources(struct dma_chan *chan) 582 { 583 struct fsl_re_chan *re_chan; 584 struct fsl_re_desc *desc; 585 void *cf; 586 dma_addr_t paddr; 587 int i; 588 589 re_chan = container_of(chan, struct fsl_re_chan, chan); 590 for (i = 0; i < FSL_RE_MIN_DESCS; i++) { 591 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 592 if (!desc) 593 break; 594 595 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL, 596 &paddr); 597 if (!cf) { 598 kfree(desc); 599 break; 600 } 601 602 INIT_LIST_HEAD(&desc->node); 603 fsl_re_init_desc(re_chan, desc, cf, paddr); 604 605 list_add_tail(&desc->node, &re_chan->free_q); 606 re_chan->alloc_count++; 607 } 608 return re_chan->alloc_count; 609 } 610 611 static void fsl_re_free_chan_resources(struct dma_chan *chan) 612 { 613 struct fsl_re_chan *re_chan; 614 struct fsl_re_desc *desc; 615 616 re_chan = container_of(chan, struct fsl_re_chan, chan); 617 while (re_chan->alloc_count--) { 618 desc = list_first_entry(&re_chan->free_q, 619 struct fsl_re_desc, 620 node); 621 622 list_del(&desc->node); 623 dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr, 624 desc->cf_paddr); 625 kfree(desc); 626 } 627 628 if (!list_empty(&re_chan->free_q)) 629 dev_err(re_chan->dev, "chan resource cannot be cleaned!\n"); 630 } 631 632 static int fsl_re_chan_probe(struct platform_device *ofdev, 633 struct device_node *np, u8 q, u32 off) 634 { 635 struct device *dev, *chandev; 636 struct fsl_re_drv_private *re_priv; 637 struct fsl_re_chan *chan; 638 struct dma_device *dma_dev; 639 u32 ptr; 640 u32 status; 641 int ret = 0, rc; 642 struct platform_device *chan_ofdev; 643 644 dev = &ofdev->dev; 645 re_priv = dev_get_drvdata(dev); 646 dma_dev = &re_priv->dma_dev; 647 648 chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL); 649 if (!chan) 650 return -ENOMEM; 651 652 /* create platform device for chan node */ 653 chan_ofdev = of_platform_device_create(np, NULL, dev); 654 if (!chan_ofdev) { 655 dev_err(dev, "Not able to create ofdev for jr %d\n", q); 656 ret = -EINVAL; 657 goto err_free; 658 } 659 660 /* read reg property from dts */ 661 rc = of_property_read_u32(np, "reg", &ptr); 662 if (rc) { 663 dev_err(dev, "Reg property not found in jr %d\n", q); 664 ret = -ENODEV; 665 goto err_free; 666 } 667 668 chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs + 669 off + ptr); 670 671 /* read irq property from dts */ 672 chan->irq = irq_of_parse_and_map(np, 0); 673 if (chan->irq == NO_IRQ) { 674 dev_err(dev, "No IRQ defined for JR %d\n", q); 675 ret = -ENODEV; 676 goto err_free; 677 } 678 679 snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q); 680 681 chandev = &chan_ofdev->dev; 682 tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev); 683 684 ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev); 685 if (ret) { 686 dev_err(dev, "Unable to register interrupt for JR %d\n", q); 687 ret = -EINVAL; 688 goto err_free; 689 } 690 691 re_priv->re_jrs[q] = chan; 692 chan->chan.device = dma_dev; 693 chan->chan.private = chan; 694 chan->dev = chandev; 695 chan->re_dev = re_priv; 696 697 spin_lock_init(&chan->desc_lock); 698 INIT_LIST_HEAD(&chan->ack_q); 699 INIT_LIST_HEAD(&chan->active_q); 700 INIT_LIST_HEAD(&chan->submit_q); 701 INIT_LIST_HEAD(&chan->free_q); 702 703 chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, 704 GFP_KERNEL, &chan->inb_phys_addr); 705 if (!chan->inb_ring_virt_addr) { 706 dev_err(dev, "No dma memory for inb_ring_virt_addr\n"); 707 ret = -ENOMEM; 708 goto err_free; 709 } 710 711 chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, 712 GFP_KERNEL, &chan->oub_phys_addr); 713 if (!chan->oub_ring_virt_addr) { 714 dev_err(dev, "No dma memory for oub_ring_virt_addr\n"); 715 ret = -ENOMEM; 716 goto err_free_1; 717 } 718 719 /* Program the Inbound/Outbound ring base addresses and size */ 720 out_be32(&chan->jrregs->inbring_base_h, 721 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK); 722 out_be32(&chan->jrregs->oubring_base_h, 723 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK); 724 out_be32(&chan->jrregs->inbring_base_l, 725 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); 726 out_be32(&chan->jrregs->oubring_base_l, 727 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); 728 out_be32(&chan->jrregs->inbring_size, 729 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); 730 out_be32(&chan->jrregs->oubring_size, 731 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); 732 733 /* Read LIODN value from u-boot */ 734 status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK; 735 736 /* Program the CFG reg */ 737 out_be32(&chan->jrregs->jr_config_1, 738 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status); 739 740 dev_set_drvdata(chandev, chan); 741 742 /* Enable RE/CHAN */ 743 out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE); 744 745 return 0; 746 747 err_free_1: 748 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, 749 chan->inb_phys_addr); 750 err_free: 751 return ret; 752 } 753 754 /* Probe function for RAID Engine */ 755 static int fsl_re_probe(struct platform_device *ofdev) 756 { 757 struct fsl_re_drv_private *re_priv; 758 struct device_node *np; 759 struct device_node *child; 760 u32 off; 761 u8 ridx = 0; 762 struct dma_device *dma_dev; 763 struct resource *res; 764 int rc; 765 struct device *dev = &ofdev->dev; 766 767 re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL); 768 if (!re_priv) 769 return -ENOMEM; 770 771 res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); 772 if (!res) 773 return -ENODEV; 774 775 /* IOMAP the entire RAID Engine region */ 776 re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res)); 777 if (!re_priv->re_regs) 778 return -EBUSY; 779 780 /* Program the RE mode */ 781 out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE); 782 783 /* Program Galois Field polynomial */ 784 out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY); 785 786 dev_info(dev, "version %x, mode %x, gfp %x\n", 787 in_be32(&re_priv->re_regs->re_version_id), 788 in_be32(&re_priv->re_regs->global_config), 789 in_be32(&re_priv->re_regs->galois_field_config)); 790 791 dma_dev = &re_priv->dma_dev; 792 dma_dev->dev = dev; 793 INIT_LIST_HEAD(&dma_dev->channels); 794 dma_set_mask(dev, DMA_BIT_MASK(40)); 795 796 dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources; 797 dma_dev->device_tx_status = fsl_re_tx_status; 798 dma_dev->device_issue_pending = fsl_re_issue_pending; 799 800 dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS; 801 dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor; 802 dma_cap_set(DMA_XOR, dma_dev->cap_mask); 803 804 dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS; 805 dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq; 806 dma_cap_set(DMA_PQ, dma_dev->cap_mask); 807 808 dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy; 809 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 810 811 dma_dev->device_free_chan_resources = fsl_re_free_chan_resources; 812 813 re_priv->total_chans = 0; 814 815 re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev, 816 FSL_RE_CF_CDB_SIZE, 817 FSL_RE_CF_CDB_ALIGN, 0); 818 819 if (!re_priv->cf_desc_pool) { 820 dev_err(dev, "No memory for fsl re_cf desc pool\n"); 821 return -ENOMEM; 822 } 823 824 re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev, 825 sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE, 826 FSL_RE_FRAME_ALIGN, 0); 827 if (!re_priv->hw_desc_pool) { 828 dev_err(dev, "No memory for fsl re_hw desc pool\n"); 829 return -ENOMEM; 830 } 831 832 dev_set_drvdata(dev, re_priv); 833 834 /* Parse Device tree to find out the total number of JQs present */ 835 for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { 836 rc = of_property_read_u32(np, "reg", &off); 837 if (rc) { 838 dev_err(dev, "Reg property not found in JQ node\n"); 839 return -ENODEV; 840 } 841 /* Find out the Job Rings present under each JQ */ 842 for_each_child_of_node(np, child) { 843 rc = of_device_is_compatible(child, 844 "fsl,raideng-v1.0-job-ring"); 845 if (rc) { 846 fsl_re_chan_probe(ofdev, child, ridx++, off); 847 re_priv->total_chans++; 848 } 849 } 850 } 851 852 dma_async_device_register(dma_dev); 853 854 return 0; 855 } 856 857 static void fsl_re_remove_chan(struct fsl_re_chan *chan) 858 { 859 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, 860 chan->inb_phys_addr); 861 862 dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr, 863 chan->oub_phys_addr); 864 } 865 866 static int fsl_re_remove(struct platform_device *ofdev) 867 { 868 struct fsl_re_drv_private *re_priv; 869 struct device *dev; 870 int i; 871 872 dev = &ofdev->dev; 873 re_priv = dev_get_drvdata(dev); 874 875 /* Cleanup chan related memory areas */ 876 for (i = 0; i < re_priv->total_chans; i++) 877 fsl_re_remove_chan(re_priv->re_jrs[i]); 878 879 /* Unregister the driver */ 880 dma_async_device_unregister(&re_priv->dma_dev); 881 882 return 0; 883 } 884 885 static struct of_device_id fsl_re_ids[] = { 886 { .compatible = "fsl,raideng-v1.0", }, 887 {} 888 }; 889 890 static struct platform_driver fsl_re_driver = { 891 .driver = { 892 .name = "fsl-raideng", 893 .owner = THIS_MODULE, 894 .of_match_table = fsl_re_ids, 895 }, 896 .probe = fsl_re_probe, 897 .remove = fsl_re_remove, 898 }; 899 900 module_platform_driver(fsl_re_driver); 901 902 MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>"); 903 MODULE_LICENSE("GPL v2"); 904 MODULE_DESCRIPTION("Freescale RAID Engine Device Driver"); 905