1 /* 2 * drivers/dma/fsl_raid.c 3 * 4 * Freescale RAID Engine device driver 5 * 6 * Author: 7 * Harninder Rai <harninder.rai@freescale.com> 8 * Naveen Burmi <naveenburmi@freescale.com> 9 * 10 * Rewrite: 11 * Xuelin Shi <xuelin.shi@freescale.com> 12 * 13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions are met: 17 * * Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * * Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * * Neither the name of Freescale Semiconductor nor the 23 * names of its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written permission. 25 * 26 * ALTERNATIVELY, this software may be distributed under the terms of the 27 * GNU General Public License ("GPL") as published by the Free Software 28 * Foundation, either version 2 of that License or (at your option) any 29 * later version. 30 * 31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 41 * 42 * Theory of operation: 43 * 44 * General capabilities: 45 * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q 46 * calculations required in RAID5 and RAID6 operations. RE driver 47 * registers with Linux's ASYNC layer as dma driver. RE hardware 48 * maintains strict ordering of the requests through chained 49 * command queueing. 50 * 51 * Data flow: 52 * Software RAID layer of Linux (MD layer) maintains RAID partitions, 53 * strips, stripes etc. It sends requests to the underlying ASYNC layer 54 * which further passes it to RE driver. ASYNC layer decides which request 55 * goes to which job ring of RE hardware. For every request processed by 56 * RAID Engine, driver gets an interrupt unless coalescing is set. The 57 * per job ring interrupt handler checks the status register for errors, 58 * clears the interrupt and leave the post interrupt processing to the irq 59 * thread. 60 */ 61 #include <linux/interrupt.h> 62 #include <linux/module.h> 63 #include <linux/of_irq.h> 64 #include <linux/of_address.h> 65 #include <linux/of_platform.h> 66 #include <linux/dma-mapping.h> 67 #include <linux/dmapool.h> 68 #include <linux/dmaengine.h> 69 #include <linux/io.h> 70 #include <linux/spinlock.h> 71 #include <linux/slab.h> 72 73 #include "dmaengine.h" 74 #include "fsl_raid.h" 75 76 #define FSL_RE_MAX_XOR_SRCS 16 77 #define FSL_RE_MAX_PQ_SRCS 16 78 #define FSL_RE_MIN_DESCS 256 79 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS) 80 #define FSL_RE_FRAME_FORMAT 0x1 81 #define FSL_RE_MAX_DATA_LEN (1024*1024) 82 83 #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx) 84 85 /* Add descriptors into per chan software queue - submit_q */ 86 static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx) 87 { 88 struct fsl_re_desc *desc; 89 struct fsl_re_chan *re_chan; 90 dma_cookie_t cookie; 91 unsigned long flags; 92 93 desc = to_fsl_re_dma_desc(tx); 94 re_chan = container_of(tx->chan, struct fsl_re_chan, chan); 95 96 spin_lock_irqsave(&re_chan->desc_lock, flags); 97 cookie = dma_cookie_assign(tx); 98 list_add_tail(&desc->node, &re_chan->submit_q); 99 spin_unlock_irqrestore(&re_chan->desc_lock, flags); 100 101 return cookie; 102 } 103 104 /* Copy descriptor from per chan software queue into hardware job ring */ 105 static void fsl_re_issue_pending(struct dma_chan *chan) 106 { 107 struct fsl_re_chan *re_chan; 108 int avail; 109 struct fsl_re_desc *desc, *_desc; 110 unsigned long flags; 111 112 re_chan = container_of(chan, struct fsl_re_chan, chan); 113 114 spin_lock_irqsave(&re_chan->desc_lock, flags); 115 avail = FSL_RE_SLOT_AVAIL( 116 in_be32(&re_chan->jrregs->inbring_slot_avail)); 117 118 list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) { 119 if (!avail) 120 break; 121 122 list_move_tail(&desc->node, &re_chan->active_q); 123 124 memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count], 125 &desc->hwdesc, sizeof(struct fsl_re_hw_desc)); 126 127 re_chan->inb_count = (re_chan->inb_count + 1) & 128 FSL_RE_RING_SIZE_MASK; 129 out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1)); 130 avail--; 131 } 132 spin_unlock_irqrestore(&re_chan->desc_lock, flags); 133 } 134 135 static void fsl_re_desc_done(struct fsl_re_desc *desc) 136 { 137 dma_cookie_complete(&desc->async_tx); 138 dma_descriptor_unmap(&desc->async_tx); 139 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL); 140 } 141 142 static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan) 143 { 144 struct fsl_re_desc *desc, *_desc; 145 unsigned long flags; 146 147 spin_lock_irqsave(&re_chan->desc_lock, flags); 148 list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) { 149 if (async_tx_test_ack(&desc->async_tx)) 150 list_move_tail(&desc->node, &re_chan->free_q); 151 } 152 spin_unlock_irqrestore(&re_chan->desc_lock, flags); 153 154 fsl_re_issue_pending(&re_chan->chan); 155 } 156 157 static void fsl_re_dequeue(unsigned long data) 158 { 159 struct fsl_re_chan *re_chan; 160 struct fsl_re_desc *desc, *_desc; 161 struct fsl_re_hw_desc *hwdesc; 162 unsigned long flags; 163 unsigned int count, oub_count; 164 int found; 165 166 re_chan = dev_get_drvdata((struct device *)data); 167 168 fsl_re_cleanup_descs(re_chan); 169 170 spin_lock_irqsave(&re_chan->desc_lock, flags); 171 count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full)); 172 while (count--) { 173 found = 0; 174 hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count]; 175 list_for_each_entry_safe(desc, _desc, &re_chan->active_q, 176 node) { 177 /* compare the hw dma addr to find the completed */ 178 if (desc->hwdesc.lbea32 == hwdesc->lbea32 && 179 desc->hwdesc.addr_low == hwdesc->addr_low) { 180 found = 1; 181 break; 182 } 183 } 184 185 if (found) { 186 fsl_re_desc_done(desc); 187 list_move_tail(&desc->node, &re_chan->ack_q); 188 } else { 189 dev_err(re_chan->dev, 190 "found hwdesc not in sw queue, discard it\n"); 191 } 192 193 oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK; 194 re_chan->oub_count = oub_count; 195 196 out_be32(&re_chan->jrregs->oubring_job_rmvd, 197 FSL_RE_RMVD_JOB(1)); 198 } 199 spin_unlock_irqrestore(&re_chan->desc_lock, flags); 200 } 201 202 /* Per Job Ring interrupt handler */ 203 static irqreturn_t fsl_re_isr(int irq, void *data) 204 { 205 struct fsl_re_chan *re_chan; 206 u32 irqstate, status; 207 208 re_chan = dev_get_drvdata((struct device *)data); 209 210 irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status); 211 if (!irqstate) 212 return IRQ_NONE; 213 214 /* 215 * There's no way in upper layer (read MD layer) to recover from 216 * error conditions except restart everything. In long term we 217 * need to do something more than just crashing 218 */ 219 if (irqstate & FSL_RE_ERROR) { 220 status = in_be32(&re_chan->jrregs->jr_status); 221 dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n", 222 irqstate, status); 223 } 224 225 /* Clear interrupt */ 226 out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR); 227 228 tasklet_schedule(&re_chan->irqtask); 229 230 return IRQ_HANDLED; 231 } 232 233 static enum dma_status fsl_re_tx_status(struct dma_chan *chan, 234 dma_cookie_t cookie, 235 struct dma_tx_state *txstate) 236 { 237 return dma_cookie_status(chan, cookie, txstate); 238 } 239 240 static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index, 241 size_t length, dma_addr_t addr, bool final) 242 { 243 u32 efrl = length & FSL_RE_CF_LENGTH_MASK; 244 245 efrl |= final << FSL_RE_CF_FINAL_SHIFT; 246 cf[index].efrl32 = efrl; 247 cf[index].addr_high = upper_32_bits(addr); 248 cf[index].addr_low = lower_32_bits(addr); 249 } 250 251 static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan, 252 struct fsl_re_desc *desc, 253 void *cf, dma_addr_t paddr) 254 { 255 desc->re_chan = re_chan; 256 desc->async_tx.tx_submit = fsl_re_tx_submit; 257 dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan); 258 INIT_LIST_HEAD(&desc->node); 259 260 desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT; 261 desc->hwdesc.lbea32 = upper_32_bits(paddr); 262 desc->hwdesc.addr_low = lower_32_bits(paddr); 263 desc->cf_addr = cf; 264 desc->cf_paddr = paddr; 265 266 desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE); 267 desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE; 268 269 return desc; 270 } 271 272 static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan, 273 unsigned long flags) 274 { 275 struct fsl_re_desc *desc = NULL; 276 void *cf; 277 dma_addr_t paddr; 278 unsigned long lock_flag; 279 280 fsl_re_cleanup_descs(re_chan); 281 282 spin_lock_irqsave(&re_chan->desc_lock, lock_flag); 283 if (!list_empty(&re_chan->free_q)) { 284 /* take one desc from free_q */ 285 desc = list_first_entry(&re_chan->free_q, 286 struct fsl_re_desc, node); 287 list_del(&desc->node); 288 289 desc->async_tx.flags = flags; 290 } 291 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); 292 293 if (!desc) { 294 desc = kzalloc(sizeof(*desc), GFP_NOWAIT); 295 if (!desc) 296 return NULL; 297 298 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT, 299 &paddr); 300 if (!cf) { 301 kfree(desc); 302 return NULL; 303 } 304 305 desc = fsl_re_init_desc(re_chan, desc, cf, paddr); 306 desc->async_tx.flags = flags; 307 308 spin_lock_irqsave(&re_chan->desc_lock, lock_flag); 309 re_chan->alloc_count++; 310 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); 311 } 312 313 return desc; 314 } 315 316 static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq( 317 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 318 unsigned int src_cnt, const unsigned char *scf, size_t len, 319 unsigned long flags) 320 { 321 struct fsl_re_chan *re_chan; 322 struct fsl_re_desc *desc; 323 struct fsl_re_xor_cdb *xor; 324 struct fsl_re_cmpnd_frame *cf; 325 u32 cdb; 326 unsigned int i, j; 327 unsigned int save_src_cnt = src_cnt; 328 int cont_q = 0; 329 330 re_chan = container_of(chan, struct fsl_re_chan, chan); 331 if (len > FSL_RE_MAX_DATA_LEN) { 332 dev_err(re_chan->dev, "genq tx length %zu, max length %d\n", 333 len, FSL_RE_MAX_DATA_LEN); 334 return NULL; 335 } 336 337 desc = fsl_re_chan_alloc_desc(re_chan, flags); 338 if (desc <= 0) 339 return NULL; 340 341 if (scf && (flags & DMA_PREP_CONTINUE)) { 342 cont_q = 1; 343 src_cnt += 1; 344 } 345 346 /* Filling xor CDB */ 347 cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; 348 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; 349 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; 350 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; 351 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; 352 xor = desc->cdb_addr; 353 xor->cdb32 = cdb; 354 355 if (scf) { 356 /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ 357 for (i = 0; i < save_src_cnt; i++) 358 xor->gfm[i] = scf[i]; 359 if (cont_q) 360 xor->gfm[i++] = 1; 361 } else { 362 /* compute P, that is XOR all srcs */ 363 for (i = 0; i < src_cnt; i++) 364 xor->gfm[i] = 1; 365 } 366 367 /* Filling frame 0 of compound frame descriptor with CDB */ 368 cf = desc->cf_addr; 369 fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0); 370 371 /* Fill CFD's 1st frame with dest buffer */ 372 fill_cfd_frame(cf, 1, len, dest, 0); 373 374 /* Fill CFD's rest of the frames with source buffers */ 375 for (i = 2, j = 0; j < save_src_cnt; i++, j++) 376 fill_cfd_frame(cf, i, len, src[j], 0); 377 378 if (cont_q) 379 fill_cfd_frame(cf, i++, len, dest, 0); 380 381 /* Setting the final bit in the last source buffer frame in CFD */ 382 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; 383 384 return &desc->async_tx; 385 } 386 387 /* 388 * Prep function for P parity calculation.In RAID Engine terminology, 389 * XOR calculation is called GenQ calculation done through GenQ command 390 */ 391 static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor( 392 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 393 unsigned int src_cnt, size_t len, unsigned long flags) 394 { 395 /* NULL let genq take all coef as 1 */ 396 return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags); 397 } 398 399 /* 400 * Prep function for P/Q parity calculation.In RAID Engine terminology, 401 * P/Q calculation is called GenQQ done through GenQQ command 402 */ 403 static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq( 404 struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, 405 unsigned int src_cnt, const unsigned char *scf, size_t len, 406 unsigned long flags) 407 { 408 struct fsl_re_chan *re_chan; 409 struct fsl_re_desc *desc; 410 struct fsl_re_pq_cdb *pq; 411 struct fsl_re_cmpnd_frame *cf; 412 u32 cdb; 413 u8 *p; 414 int gfmq_len, i, j; 415 unsigned int save_src_cnt = src_cnt; 416 417 re_chan = container_of(chan, struct fsl_re_chan, chan); 418 if (len > FSL_RE_MAX_DATA_LEN) { 419 dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n", 420 len, FSL_RE_MAX_DATA_LEN); 421 return NULL; 422 } 423 424 /* 425 * RE requires at least 2 sources, if given only one source, we pass the 426 * second source same as the first one. 427 * With only one source, generating P is meaningless, only generate Q. 428 */ 429 if (src_cnt == 1) { 430 struct dma_async_tx_descriptor *tx; 431 dma_addr_t dma_src[2]; 432 unsigned char coef[2]; 433 434 dma_src[0] = *src; 435 coef[0] = *scf; 436 dma_src[1] = *src; 437 coef[1] = 0; 438 tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len, 439 flags); 440 if (tx) 441 desc = to_fsl_re_dma_desc(tx); 442 443 return tx; 444 } 445 446 /* 447 * During RAID6 array creation, Linux's MD layer gets P and Q 448 * calculated separately in two steps. But our RAID Engine has 449 * the capability to calculate both P and Q with a single command 450 * Hence to merge well with MD layer, we need to provide a hook 451 * here and call re_jq_prep_dma_genq() function 452 */ 453 454 if (flags & DMA_PREP_PQ_DISABLE_P) 455 return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt, 456 scf, len, flags); 457 458 if (flags & DMA_PREP_CONTINUE) 459 src_cnt += 3; 460 461 desc = fsl_re_chan_alloc_desc(re_chan, flags); 462 if (desc <= 0) 463 return NULL; 464 465 /* Filling GenQQ CDB */ 466 cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; 467 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; 468 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; 469 cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT; 470 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; 471 472 pq = desc->cdb_addr; 473 pq->cdb32 = cdb; 474 475 p = pq->gfm_q1; 476 /* Init gfm_q1[] */ 477 for (i = 0; i < src_cnt; i++) 478 p[i] = 1; 479 480 /* Align gfm[] to 32bit */ 481 gfmq_len = ALIGN(src_cnt, 4); 482 483 /* Init gfm_q2[] */ 484 p += gfmq_len; 485 for (i = 0; i < src_cnt; i++) 486 p[i] = scf[i]; 487 488 /* Filling frame 0 of compound frame descriptor with CDB */ 489 cf = desc->cf_addr; 490 fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0); 491 492 /* Fill CFD's 1st & 2nd frame with dest buffers */ 493 for (i = 1, j = 0; i < 3; i++, j++) 494 fill_cfd_frame(cf, i, len, dest[j], 0); 495 496 /* Fill CFD's rest of the frames with source buffers */ 497 for (i = 3, j = 0; j < save_src_cnt; i++, j++) 498 fill_cfd_frame(cf, i, len, src[j], 0); 499 500 /* PQ computation continuation */ 501 if (flags & DMA_PREP_CONTINUE) { 502 if (src_cnt - save_src_cnt == 3) { 503 p[save_src_cnt] = 0; 504 p[save_src_cnt + 1] = 0; 505 p[save_src_cnt + 2] = 1; 506 fill_cfd_frame(cf, i++, len, dest[0], 0); 507 fill_cfd_frame(cf, i++, len, dest[1], 0); 508 fill_cfd_frame(cf, i++, len, dest[1], 0); 509 } else { 510 dev_err(re_chan->dev, "PQ tx continuation error!\n"); 511 return NULL; 512 } 513 } 514 515 /* Setting the final bit in the last source buffer frame in CFD */ 516 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; 517 518 return &desc->async_tx; 519 } 520 521 /* 522 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE 523 * command. Logic of this function will need to be modified once multipage 524 * support is added in Linux's MD/ASYNC Layer 525 */ 526 static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy( 527 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 528 size_t len, unsigned long flags) 529 { 530 struct fsl_re_chan *re_chan; 531 struct fsl_re_desc *desc; 532 size_t length; 533 struct fsl_re_cmpnd_frame *cf; 534 struct fsl_re_move_cdb *move; 535 u32 cdb; 536 537 re_chan = container_of(chan, struct fsl_re_chan, chan); 538 539 if (len > FSL_RE_MAX_DATA_LEN) { 540 dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n", 541 len, FSL_RE_MAX_DATA_LEN); 542 return NULL; 543 } 544 545 desc = fsl_re_chan_alloc_desc(re_chan, flags); 546 if (desc <= 0) 547 return NULL; 548 549 /* Filling move CDB */ 550 cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; 551 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; 552 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; 553 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; 554 555 move = desc->cdb_addr; 556 move->cdb32 = cdb; 557 558 /* Filling frame 0 of CFD with move CDB */ 559 cf = desc->cf_addr; 560 fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0); 561 562 length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN); 563 564 /* Fill CFD's 1st frame with dest buffer */ 565 fill_cfd_frame(cf, 1, length, dest, 0); 566 567 /* Fill CFD's 2nd frame with src buffer */ 568 fill_cfd_frame(cf, 2, length, src, 1); 569 570 return &desc->async_tx; 571 } 572 573 static int fsl_re_alloc_chan_resources(struct dma_chan *chan) 574 { 575 struct fsl_re_chan *re_chan; 576 struct fsl_re_desc *desc; 577 void *cf; 578 dma_addr_t paddr; 579 int i; 580 581 re_chan = container_of(chan, struct fsl_re_chan, chan); 582 for (i = 0; i < FSL_RE_MIN_DESCS; i++) { 583 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 584 if (!desc) 585 break; 586 587 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL, 588 &paddr); 589 if (!cf) { 590 kfree(desc); 591 break; 592 } 593 594 INIT_LIST_HEAD(&desc->node); 595 fsl_re_init_desc(re_chan, desc, cf, paddr); 596 597 list_add_tail(&desc->node, &re_chan->free_q); 598 re_chan->alloc_count++; 599 } 600 return re_chan->alloc_count; 601 } 602 603 static void fsl_re_free_chan_resources(struct dma_chan *chan) 604 { 605 struct fsl_re_chan *re_chan; 606 struct fsl_re_desc *desc; 607 608 re_chan = container_of(chan, struct fsl_re_chan, chan); 609 while (re_chan->alloc_count--) { 610 desc = list_first_entry(&re_chan->free_q, 611 struct fsl_re_desc, 612 node); 613 614 list_del(&desc->node); 615 dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr, 616 desc->cf_paddr); 617 kfree(desc); 618 } 619 620 if (!list_empty(&re_chan->free_q)) 621 dev_err(re_chan->dev, "chan resource cannot be cleaned!\n"); 622 } 623 624 static int fsl_re_chan_probe(struct platform_device *ofdev, 625 struct device_node *np, u8 q, u32 off) 626 { 627 struct device *dev, *chandev; 628 struct fsl_re_drv_private *re_priv; 629 struct fsl_re_chan *chan; 630 struct dma_device *dma_dev; 631 u32 ptr; 632 u32 status; 633 int ret = 0, rc; 634 struct platform_device *chan_ofdev; 635 636 dev = &ofdev->dev; 637 re_priv = dev_get_drvdata(dev); 638 dma_dev = &re_priv->dma_dev; 639 640 chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL); 641 if (!chan) 642 return -ENOMEM; 643 644 /* create platform device for chan node */ 645 chan_ofdev = of_platform_device_create(np, NULL, dev); 646 if (!chan_ofdev) { 647 dev_err(dev, "Not able to create ofdev for jr %d\n", q); 648 ret = -EINVAL; 649 goto err_free; 650 } 651 652 /* read reg property from dts */ 653 rc = of_property_read_u32(np, "reg", &ptr); 654 if (rc) { 655 dev_err(dev, "Reg property not found in jr %d\n", q); 656 ret = -ENODEV; 657 goto err_free; 658 } 659 660 chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs + 661 off + ptr); 662 663 /* read irq property from dts */ 664 chan->irq = irq_of_parse_and_map(np, 0); 665 if (!chan->irq) { 666 dev_err(dev, "No IRQ defined for JR %d\n", q); 667 ret = -ENODEV; 668 goto err_free; 669 } 670 671 snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q); 672 673 chandev = &chan_ofdev->dev; 674 tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev); 675 676 ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev); 677 if (ret) { 678 dev_err(dev, "Unable to register interrupt for JR %d\n", q); 679 ret = -EINVAL; 680 goto err_free; 681 } 682 683 re_priv->re_jrs[q] = chan; 684 chan->chan.device = dma_dev; 685 chan->chan.private = chan; 686 chan->dev = chandev; 687 chan->re_dev = re_priv; 688 689 spin_lock_init(&chan->desc_lock); 690 INIT_LIST_HEAD(&chan->ack_q); 691 INIT_LIST_HEAD(&chan->active_q); 692 INIT_LIST_HEAD(&chan->submit_q); 693 INIT_LIST_HEAD(&chan->free_q); 694 695 chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, 696 GFP_KERNEL, &chan->inb_phys_addr); 697 if (!chan->inb_ring_virt_addr) { 698 dev_err(dev, "No dma memory for inb_ring_virt_addr\n"); 699 ret = -ENOMEM; 700 goto err_free; 701 } 702 703 chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, 704 GFP_KERNEL, &chan->oub_phys_addr); 705 if (!chan->oub_ring_virt_addr) { 706 dev_err(dev, "No dma memory for oub_ring_virt_addr\n"); 707 ret = -ENOMEM; 708 goto err_free_1; 709 } 710 711 /* Program the Inbound/Outbound ring base addresses and size */ 712 out_be32(&chan->jrregs->inbring_base_h, 713 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK); 714 out_be32(&chan->jrregs->oubring_base_h, 715 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK); 716 out_be32(&chan->jrregs->inbring_base_l, 717 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); 718 out_be32(&chan->jrregs->oubring_base_l, 719 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); 720 out_be32(&chan->jrregs->inbring_size, 721 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); 722 out_be32(&chan->jrregs->oubring_size, 723 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); 724 725 /* Read LIODN value from u-boot */ 726 status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK; 727 728 /* Program the CFG reg */ 729 out_be32(&chan->jrregs->jr_config_1, 730 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status); 731 732 dev_set_drvdata(chandev, chan); 733 734 /* Enable RE/CHAN */ 735 out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE); 736 737 return 0; 738 739 err_free_1: 740 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, 741 chan->inb_phys_addr); 742 err_free: 743 return ret; 744 } 745 746 /* Probe function for RAID Engine */ 747 static int fsl_re_probe(struct platform_device *ofdev) 748 { 749 struct fsl_re_drv_private *re_priv; 750 struct device_node *np; 751 struct device_node *child; 752 u32 off; 753 u8 ridx = 0; 754 struct dma_device *dma_dev; 755 struct resource *res; 756 int rc; 757 struct device *dev = &ofdev->dev; 758 759 re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL); 760 if (!re_priv) 761 return -ENOMEM; 762 763 res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); 764 if (!res) 765 return -ENODEV; 766 767 /* IOMAP the entire RAID Engine region */ 768 re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res)); 769 if (!re_priv->re_regs) 770 return -EBUSY; 771 772 /* Program the RE mode */ 773 out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE); 774 775 /* Program Galois Field polynomial */ 776 out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY); 777 778 dev_info(dev, "version %x, mode %x, gfp %x\n", 779 in_be32(&re_priv->re_regs->re_version_id), 780 in_be32(&re_priv->re_regs->global_config), 781 in_be32(&re_priv->re_regs->galois_field_config)); 782 783 dma_dev = &re_priv->dma_dev; 784 dma_dev->dev = dev; 785 INIT_LIST_HEAD(&dma_dev->channels); 786 dma_set_mask(dev, DMA_BIT_MASK(40)); 787 788 dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources; 789 dma_dev->device_tx_status = fsl_re_tx_status; 790 dma_dev->device_issue_pending = fsl_re_issue_pending; 791 792 dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS; 793 dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor; 794 dma_cap_set(DMA_XOR, dma_dev->cap_mask); 795 796 dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS; 797 dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq; 798 dma_cap_set(DMA_PQ, dma_dev->cap_mask); 799 800 dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy; 801 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 802 803 dma_dev->device_free_chan_resources = fsl_re_free_chan_resources; 804 805 re_priv->total_chans = 0; 806 807 re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev, 808 FSL_RE_CF_CDB_SIZE, 809 FSL_RE_CF_CDB_ALIGN, 0); 810 811 if (!re_priv->cf_desc_pool) { 812 dev_err(dev, "No memory for fsl re_cf desc pool\n"); 813 return -ENOMEM; 814 } 815 816 re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev, 817 sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE, 818 FSL_RE_FRAME_ALIGN, 0); 819 if (!re_priv->hw_desc_pool) { 820 dev_err(dev, "No memory for fsl re_hw desc pool\n"); 821 return -ENOMEM; 822 } 823 824 dev_set_drvdata(dev, re_priv); 825 826 /* Parse Device tree to find out the total number of JQs present */ 827 for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { 828 rc = of_property_read_u32(np, "reg", &off); 829 if (rc) { 830 dev_err(dev, "Reg property not found in JQ node\n"); 831 of_node_put(np); 832 return -ENODEV; 833 } 834 /* Find out the Job Rings present under each JQ */ 835 for_each_child_of_node(np, child) { 836 rc = of_device_is_compatible(child, 837 "fsl,raideng-v1.0-job-ring"); 838 if (rc) { 839 fsl_re_chan_probe(ofdev, child, ridx++, off); 840 re_priv->total_chans++; 841 } 842 } 843 } 844 845 dma_async_device_register(dma_dev); 846 847 return 0; 848 } 849 850 static void fsl_re_remove_chan(struct fsl_re_chan *chan) 851 { 852 tasklet_kill(&chan->irqtask); 853 854 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, 855 chan->inb_phys_addr); 856 857 dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr, 858 chan->oub_phys_addr); 859 } 860 861 static int fsl_re_remove(struct platform_device *ofdev) 862 { 863 struct fsl_re_drv_private *re_priv; 864 struct device *dev; 865 int i; 866 867 dev = &ofdev->dev; 868 re_priv = dev_get_drvdata(dev); 869 870 /* Cleanup chan related memory areas */ 871 for (i = 0; i < re_priv->total_chans; i++) 872 fsl_re_remove_chan(re_priv->re_jrs[i]); 873 874 /* Unregister the driver */ 875 dma_async_device_unregister(&re_priv->dma_dev); 876 877 return 0; 878 } 879 880 static const struct of_device_id fsl_re_ids[] = { 881 { .compatible = "fsl,raideng-v1.0", }, 882 {} 883 }; 884 MODULE_DEVICE_TABLE(of, fsl_re_ids); 885 886 static struct platform_driver fsl_re_driver = { 887 .driver = { 888 .name = "fsl-raideng", 889 .of_match_table = fsl_re_ids, 890 }, 891 .probe = fsl_re_probe, 892 .remove = fsl_re_remove, 893 }; 894 895 module_platform_driver(fsl_re_driver); 896 897 MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>"); 898 MODULE_LICENSE("GPL v2"); 899 MODULE_DESCRIPTION("Freescale RAID Engine Device Driver"); 900