xref: /linux/drivers/dma/ep93xx_dma.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Driver for the Cirrus Logic EP93xx DMA Controller
3  *
4  * Copyright (C) 2011 Mika Westerberg
5  *
6  * DMA M2P implementation is based on the original
7  * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8  *
9  *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10  *   Copyright (C) 2006 Applied Data Systems
11  *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12  *
13  * This driver is based on dw_dmac and amba-pl08x drivers.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  */
20 
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 
29 #include <mach/dma.h>
30 
31 /* M2P registers */
32 #define M2P_CONTROL			0x0000
33 #define M2P_CONTROL_STALLINT		BIT(0)
34 #define M2P_CONTROL_NFBINT		BIT(1)
35 #define M2P_CONTROL_CH_ERROR_INT	BIT(3)
36 #define M2P_CONTROL_ENABLE		BIT(4)
37 #define M2P_CONTROL_ICE			BIT(6)
38 
39 #define M2P_INTERRUPT			0x0004
40 #define M2P_INTERRUPT_STALL		BIT(0)
41 #define M2P_INTERRUPT_NFB		BIT(1)
42 #define M2P_INTERRUPT_ERROR		BIT(3)
43 
44 #define M2P_PPALLOC			0x0008
45 #define M2P_STATUS			0x000c
46 
47 #define M2P_MAXCNT0			0x0020
48 #define M2P_BASE0			0x0024
49 #define M2P_MAXCNT1			0x0030
50 #define M2P_BASE1			0x0034
51 
52 #define M2P_STATE_IDLE			0
53 #define M2P_STATE_STALL			1
54 #define M2P_STATE_ON			2
55 #define M2P_STATE_NEXT			3
56 
57 /* M2M registers */
58 #define M2M_CONTROL			0x0000
59 #define M2M_CONTROL_DONEINT		BIT(2)
60 #define M2M_CONTROL_ENABLE		BIT(3)
61 #define M2M_CONTROL_START		BIT(4)
62 #define M2M_CONTROL_DAH			BIT(11)
63 #define M2M_CONTROL_SAH			BIT(12)
64 #define M2M_CONTROL_PW_SHIFT		9
65 #define M2M_CONTROL_PW_8		(0 << M2M_CONTROL_PW_SHIFT)
66 #define M2M_CONTROL_PW_16		(1 << M2M_CONTROL_PW_SHIFT)
67 #define M2M_CONTROL_PW_32		(2 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_MASK		(3 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_TM_SHIFT		13
70 #define M2M_CONTROL_TM_TX		(1 << M2M_CONTROL_TM_SHIFT)
71 #define M2M_CONTROL_TM_RX		(2 << M2M_CONTROL_TM_SHIFT)
72 #define M2M_CONTROL_RSS_SHIFT		22
73 #define M2M_CONTROL_RSS_SSPRX		(1 << M2M_CONTROL_RSS_SHIFT)
74 #define M2M_CONTROL_RSS_SSPTX		(2 << M2M_CONTROL_RSS_SHIFT)
75 #define M2M_CONTROL_RSS_IDE		(3 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_NO_HDSK		BIT(24)
77 #define M2M_CONTROL_PWSC_SHIFT		25
78 
79 #define M2M_INTERRUPT			0x0004
80 #define M2M_INTERRUPT_DONEINT		BIT(1)
81 
82 #define M2M_BCR0			0x0010
83 #define M2M_BCR1			0x0014
84 #define M2M_SAR_BASE0			0x0018
85 #define M2M_SAR_BASE1			0x001c
86 #define M2M_DAR_BASE0			0x002c
87 #define M2M_DAR_BASE1			0x0030
88 
89 #define DMA_MAX_CHAN_BYTES		0xffff
90 #define DMA_MAX_CHAN_DESCRIPTORS	32
91 
92 struct ep93xx_dma_engine;
93 
94 /**
95  * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
96  * @src_addr: source address of the transaction
97  * @dst_addr: destination address of the transaction
98  * @size: size of the transaction (in bytes)
99  * @complete: this descriptor is completed
100  * @txd: dmaengine API descriptor
101  * @tx_list: list of linked descriptors
102  * @node: link used for putting this into a channel queue
103  */
104 struct ep93xx_dma_desc {
105 	u32				src_addr;
106 	u32				dst_addr;
107 	size_t				size;
108 	bool				complete;
109 	struct dma_async_tx_descriptor	txd;
110 	struct list_head		tx_list;
111 	struct list_head		node;
112 };
113 
114 /**
115  * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
116  * @chan: dmaengine API channel
117  * @edma: pointer to to the engine device
118  * @regs: memory mapped registers
119  * @irq: interrupt number of the channel
120  * @clk: clock used by this channel
121  * @tasklet: channel specific tasklet used for callbacks
122  * @lock: lock protecting the fields following
123  * @flags: flags for the channel
124  * @buffer: which buffer to use next (0/1)
125  * @last_completed: last completed cookie value
126  * @active: flattened chain of descriptors currently being processed
127  * @queue: pending descriptors which are handled next
128  * @free_list: list of free descriptors which can be used
129  * @runtime_addr: physical address currently used as dest/src (M2M only). This
130  *                is set via %DMA_SLAVE_CONFIG before slave operation is
131  *                prepared
132  * @runtime_ctrl: M2M runtime values for the control register.
133  *
134  * As EP93xx DMA controller doesn't support real chained DMA descriptors we
135  * will have slightly different scheme here: @active points to a head of
136  * flattened DMA descriptor chain.
137  *
138  * @queue holds pending transactions. These are linked through the first
139  * descriptor in the chain. When a descriptor is moved to the @active queue,
140  * the first and chained descriptors are flattened into a single list.
141  *
142  * @chan.private holds pointer to &struct ep93xx_dma_data which contains
143  * necessary channel configuration information. For memcpy channels this must
144  * be %NULL.
145  */
146 struct ep93xx_dma_chan {
147 	struct dma_chan			chan;
148 	const struct ep93xx_dma_engine	*edma;
149 	void __iomem			*regs;
150 	int				irq;
151 	struct clk			*clk;
152 	struct tasklet_struct		tasklet;
153 	/* protects the fields following */
154 	spinlock_t			lock;
155 	unsigned long			flags;
156 /* Channel is configured for cyclic transfers */
157 #define EP93XX_DMA_IS_CYCLIC		0
158 
159 	int				buffer;
160 	dma_cookie_t			last_completed;
161 	struct list_head		active;
162 	struct list_head		queue;
163 	struct list_head		free_list;
164 	u32				runtime_addr;
165 	u32				runtime_ctrl;
166 };
167 
168 /**
169  * struct ep93xx_dma_engine - the EP93xx DMA engine instance
170  * @dma_dev: holds the dmaengine device
171  * @m2m: is this an M2M or M2P device
172  * @hw_setup: method which sets the channel up for operation
173  * @hw_shutdown: shuts the channel down and flushes whatever is left
174  * @hw_submit: pushes active descriptor(s) to the hardware
175  * @hw_interrupt: handle the interrupt
176  * @num_channels: number of channels for this instance
177  * @channels: array of channels
178  *
179  * There is one instance of this struct for the M2P channels and one for the
180  * M2M channels. hw_xxx() methods are used to perform operations which are
181  * different on M2M and M2P channels. These methods are called with channel
182  * lock held and interrupts disabled so they cannot sleep.
183  */
184 struct ep93xx_dma_engine {
185 	struct dma_device	dma_dev;
186 	bool			m2m;
187 	int			(*hw_setup)(struct ep93xx_dma_chan *);
188 	void			(*hw_shutdown)(struct ep93xx_dma_chan *);
189 	void			(*hw_submit)(struct ep93xx_dma_chan *);
190 	int			(*hw_interrupt)(struct ep93xx_dma_chan *);
191 #define INTERRUPT_UNKNOWN	0
192 #define INTERRUPT_DONE		1
193 #define INTERRUPT_NEXT_BUFFER	2
194 
195 	size_t			num_channels;
196 	struct ep93xx_dma_chan	channels[];
197 };
198 
199 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
200 {
201 	return &edmac->chan.dev->device;
202 }
203 
204 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
205 {
206 	return container_of(chan, struct ep93xx_dma_chan, chan);
207 }
208 
209 /**
210  * ep93xx_dma_set_active - set new active descriptor chain
211  * @edmac: channel
212  * @desc: head of the new active descriptor chain
213  *
214  * Sets @desc to be the head of the new active descriptor chain. This is the
215  * chain which is processed next. The active list must be empty before calling
216  * this function.
217  *
218  * Called with @edmac->lock held and interrupts disabled.
219  */
220 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
221 				  struct ep93xx_dma_desc *desc)
222 {
223 	BUG_ON(!list_empty(&edmac->active));
224 
225 	list_add_tail(&desc->node, &edmac->active);
226 
227 	/* Flatten the @desc->tx_list chain into @edmac->active list */
228 	while (!list_empty(&desc->tx_list)) {
229 		struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
230 			struct ep93xx_dma_desc, node);
231 
232 		/*
233 		 * We copy the callback parameters from the first descriptor
234 		 * to all the chained descriptors. This way we can call the
235 		 * callback without having to find out the first descriptor in
236 		 * the chain. Useful for cyclic transfers.
237 		 */
238 		d->txd.callback = desc->txd.callback;
239 		d->txd.callback_param = desc->txd.callback_param;
240 
241 		list_move_tail(&d->node, &edmac->active);
242 	}
243 }
244 
245 /* Called with @edmac->lock held and interrupts disabled */
246 static struct ep93xx_dma_desc *
247 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
248 {
249 	if (list_empty(&edmac->active))
250 		return NULL;
251 
252 	return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
253 }
254 
255 /**
256  * ep93xx_dma_advance_active - advances to the next active descriptor
257  * @edmac: channel
258  *
259  * Function advances active descriptor to the next in the @edmac->active and
260  * returns %true if we still have descriptors in the chain to process.
261  * Otherwise returns %false.
262  *
263  * When the channel is in cyclic mode always returns %true.
264  *
265  * Called with @edmac->lock held and interrupts disabled.
266  */
267 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
268 {
269 	struct ep93xx_dma_desc *desc;
270 
271 	list_rotate_left(&edmac->active);
272 
273 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
274 		return true;
275 
276 	desc = ep93xx_dma_get_active(edmac);
277 	if (!desc)
278 		return false;
279 
280 	/*
281 	 * If txd.cookie is set it means that we are back in the first
282 	 * descriptor in the chain and hence done with it.
283 	 */
284 	return !desc->txd.cookie;
285 }
286 
287 /*
288  * M2P DMA implementation
289  */
290 
291 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
292 {
293 	writel(control, edmac->regs + M2P_CONTROL);
294 	/*
295 	 * EP93xx User's Guide states that we must perform a dummy read after
296 	 * write to the control register.
297 	 */
298 	readl(edmac->regs + M2P_CONTROL);
299 }
300 
301 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
302 {
303 	struct ep93xx_dma_data *data = edmac->chan.private;
304 	u32 control;
305 
306 	writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
307 
308 	control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
309 		| M2P_CONTROL_ENABLE;
310 	m2p_set_control(edmac, control);
311 
312 	return 0;
313 }
314 
315 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
316 {
317 	return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
318 }
319 
320 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
321 {
322 	u32 control;
323 
324 	control = readl(edmac->regs + M2P_CONTROL);
325 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
326 	m2p_set_control(edmac, control);
327 
328 	while (m2p_channel_state(edmac) >= M2P_STATE_ON)
329 		cpu_relax();
330 
331 	m2p_set_control(edmac, 0);
332 
333 	while (m2p_channel_state(edmac) == M2P_STATE_STALL)
334 		cpu_relax();
335 }
336 
337 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
338 {
339 	struct ep93xx_dma_desc *desc;
340 	u32 bus_addr;
341 
342 	desc = ep93xx_dma_get_active(edmac);
343 	if (!desc) {
344 		dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
345 		return;
346 	}
347 
348 	if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
349 		bus_addr = desc->src_addr;
350 	else
351 		bus_addr = desc->dst_addr;
352 
353 	if (edmac->buffer == 0) {
354 		writel(desc->size, edmac->regs + M2P_MAXCNT0);
355 		writel(bus_addr, edmac->regs + M2P_BASE0);
356 	} else {
357 		writel(desc->size, edmac->regs + M2P_MAXCNT1);
358 		writel(bus_addr, edmac->regs + M2P_BASE1);
359 	}
360 
361 	edmac->buffer ^= 1;
362 }
363 
364 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
365 {
366 	u32 control = readl(edmac->regs + M2P_CONTROL);
367 
368 	m2p_fill_desc(edmac);
369 	control |= M2P_CONTROL_STALLINT;
370 
371 	if (ep93xx_dma_advance_active(edmac)) {
372 		m2p_fill_desc(edmac);
373 		control |= M2P_CONTROL_NFBINT;
374 	}
375 
376 	m2p_set_control(edmac, control);
377 }
378 
379 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
380 {
381 	u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
382 	u32 control;
383 
384 	if (irq_status & M2P_INTERRUPT_ERROR) {
385 		struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
386 
387 		/* Clear the error interrupt */
388 		writel(1, edmac->regs + M2P_INTERRUPT);
389 
390 		/*
391 		 * It seems that there is no easy way of reporting errors back
392 		 * to client so we just report the error here and continue as
393 		 * usual.
394 		 *
395 		 * Revisit this when there is a mechanism to report back the
396 		 * errors.
397 		 */
398 		dev_err(chan2dev(edmac),
399 			"DMA transfer failed! Details:\n"
400 			"\tcookie	: %d\n"
401 			"\tsrc_addr	: 0x%08x\n"
402 			"\tdst_addr	: 0x%08x\n"
403 			"\tsize		: %zu\n",
404 			desc->txd.cookie, desc->src_addr, desc->dst_addr,
405 			desc->size);
406 	}
407 
408 	switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
409 	case M2P_INTERRUPT_STALL:
410 		/* Disable interrupts */
411 		control = readl(edmac->regs + M2P_CONTROL);
412 		control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
413 		m2p_set_control(edmac, control);
414 
415 		return INTERRUPT_DONE;
416 
417 	case M2P_INTERRUPT_NFB:
418 		if (ep93xx_dma_advance_active(edmac))
419 			m2p_fill_desc(edmac);
420 
421 		return INTERRUPT_NEXT_BUFFER;
422 	}
423 
424 	return INTERRUPT_UNKNOWN;
425 }
426 
427 /*
428  * M2M DMA implementation
429  *
430  * For the M2M transfers we don't use NFB at all. This is because it simply
431  * doesn't work well with memcpy transfers. When you submit both buffers it is
432  * extremely unlikely that you get an NFB interrupt, but it instead reports
433  * DONE interrupt and both buffers are already transferred which means that we
434  * weren't able to update the next buffer.
435  *
436  * So for now we "simulate" NFB by just submitting buffer after buffer
437  * without double buffering.
438  */
439 
440 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
441 {
442 	const struct ep93xx_dma_data *data = edmac->chan.private;
443 	u32 control = 0;
444 
445 	if (!data) {
446 		/* This is memcpy channel, nothing to configure */
447 		writel(control, edmac->regs + M2M_CONTROL);
448 		return 0;
449 	}
450 
451 	switch (data->port) {
452 	case EP93XX_DMA_SSP:
453 		/*
454 		 * This was found via experimenting - anything less than 5
455 		 * causes the channel to perform only a partial transfer which
456 		 * leads to problems since we don't get DONE interrupt then.
457 		 */
458 		control = (5 << M2M_CONTROL_PWSC_SHIFT);
459 		control |= M2M_CONTROL_NO_HDSK;
460 
461 		if (data->direction == DMA_MEM_TO_DEV) {
462 			control |= M2M_CONTROL_DAH;
463 			control |= M2M_CONTROL_TM_TX;
464 			control |= M2M_CONTROL_RSS_SSPTX;
465 		} else {
466 			control |= M2M_CONTROL_SAH;
467 			control |= M2M_CONTROL_TM_RX;
468 			control |= M2M_CONTROL_RSS_SSPRX;
469 		}
470 		break;
471 
472 	case EP93XX_DMA_IDE:
473 		/*
474 		 * This IDE part is totally untested. Values below are taken
475 		 * from the EP93xx Users's Guide and might not be correct.
476 		 */
477 		if (data->direction == DMA_MEM_TO_DEV) {
478 			/* Worst case from the UG */
479 			control = (3 << M2M_CONTROL_PWSC_SHIFT);
480 			control |= M2M_CONTROL_DAH;
481 			control |= M2M_CONTROL_TM_TX;
482 		} else {
483 			control = (2 << M2M_CONTROL_PWSC_SHIFT);
484 			control |= M2M_CONTROL_SAH;
485 			control |= M2M_CONTROL_TM_RX;
486 		}
487 
488 		control |= M2M_CONTROL_NO_HDSK;
489 		control |= M2M_CONTROL_RSS_IDE;
490 		control |= M2M_CONTROL_PW_16;
491 		break;
492 
493 	default:
494 		return -EINVAL;
495 	}
496 
497 	writel(control, edmac->regs + M2M_CONTROL);
498 	return 0;
499 }
500 
501 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
502 {
503 	/* Just disable the channel */
504 	writel(0, edmac->regs + M2M_CONTROL);
505 }
506 
507 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
508 {
509 	struct ep93xx_dma_desc *desc;
510 
511 	desc = ep93xx_dma_get_active(edmac);
512 	if (!desc) {
513 		dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
514 		return;
515 	}
516 
517 	if (edmac->buffer == 0) {
518 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
519 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
520 		writel(desc->size, edmac->regs + M2M_BCR0);
521 	} else {
522 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
523 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
524 		writel(desc->size, edmac->regs + M2M_BCR1);
525 	}
526 
527 	edmac->buffer ^= 1;
528 }
529 
530 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
531 {
532 	struct ep93xx_dma_data *data = edmac->chan.private;
533 	u32 control = readl(edmac->regs + M2M_CONTROL);
534 
535 	/*
536 	 * Since we allow clients to configure PW (peripheral width) we always
537 	 * clear PW bits here and then set them according what is given in
538 	 * the runtime configuration.
539 	 */
540 	control &= ~M2M_CONTROL_PW_MASK;
541 	control |= edmac->runtime_ctrl;
542 
543 	m2m_fill_desc(edmac);
544 	control |= M2M_CONTROL_DONEINT;
545 
546 	/*
547 	 * Now we can finally enable the channel. For M2M channel this must be
548 	 * done _after_ the BCRx registers are programmed.
549 	 */
550 	control |= M2M_CONTROL_ENABLE;
551 	writel(control, edmac->regs + M2M_CONTROL);
552 
553 	if (!data) {
554 		/*
555 		 * For memcpy channels the software trigger must be asserted
556 		 * in order to start the memcpy operation.
557 		 */
558 		control |= M2M_CONTROL_START;
559 		writel(control, edmac->regs + M2M_CONTROL);
560 	}
561 }
562 
563 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
564 {
565 	u32 control;
566 
567 	if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_DONEINT))
568 		return INTERRUPT_UNKNOWN;
569 
570 	/* Clear the DONE bit */
571 	writel(0, edmac->regs + M2M_INTERRUPT);
572 
573 	/* Disable interrupts and the channel */
574 	control = readl(edmac->regs + M2M_CONTROL);
575 	control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_ENABLE);
576 	writel(control, edmac->regs + M2M_CONTROL);
577 
578 	/*
579 	 * Since we only get DONE interrupt we have to find out ourselves
580 	 * whether there still is something to process. So we try to advance
581 	 * the chain an see whether it succeeds.
582 	 */
583 	if (ep93xx_dma_advance_active(edmac)) {
584 		edmac->edma->hw_submit(edmac);
585 		return INTERRUPT_NEXT_BUFFER;
586 	}
587 
588 	return INTERRUPT_DONE;
589 }
590 
591 /*
592  * DMA engine API implementation
593  */
594 
595 static struct ep93xx_dma_desc *
596 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
597 {
598 	struct ep93xx_dma_desc *desc, *_desc;
599 	struct ep93xx_dma_desc *ret = NULL;
600 	unsigned long flags;
601 
602 	spin_lock_irqsave(&edmac->lock, flags);
603 	list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
604 		if (async_tx_test_ack(&desc->txd)) {
605 			list_del_init(&desc->node);
606 
607 			/* Re-initialize the descriptor */
608 			desc->src_addr = 0;
609 			desc->dst_addr = 0;
610 			desc->size = 0;
611 			desc->complete = false;
612 			desc->txd.cookie = 0;
613 			desc->txd.callback = NULL;
614 			desc->txd.callback_param = NULL;
615 
616 			ret = desc;
617 			break;
618 		}
619 	}
620 	spin_unlock_irqrestore(&edmac->lock, flags);
621 	return ret;
622 }
623 
624 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
625 				struct ep93xx_dma_desc *desc)
626 {
627 	if (desc) {
628 		unsigned long flags;
629 
630 		spin_lock_irqsave(&edmac->lock, flags);
631 		list_splice_init(&desc->tx_list, &edmac->free_list);
632 		list_add(&desc->node, &edmac->free_list);
633 		spin_unlock_irqrestore(&edmac->lock, flags);
634 	}
635 }
636 
637 /**
638  * ep93xx_dma_advance_work - start processing the next pending transaction
639  * @edmac: channel
640  *
641  * If we have pending transactions queued and we are currently idling, this
642  * function takes the next queued transaction from the @edmac->queue and
643  * pushes it to the hardware for execution.
644  */
645 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
646 {
647 	struct ep93xx_dma_desc *new;
648 	unsigned long flags;
649 
650 	spin_lock_irqsave(&edmac->lock, flags);
651 	if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
652 		spin_unlock_irqrestore(&edmac->lock, flags);
653 		return;
654 	}
655 
656 	/* Take the next descriptor from the pending queue */
657 	new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
658 	list_del_init(&new->node);
659 
660 	ep93xx_dma_set_active(edmac, new);
661 
662 	/* Push it to the hardware */
663 	edmac->edma->hw_submit(edmac);
664 	spin_unlock_irqrestore(&edmac->lock, flags);
665 }
666 
667 static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
668 {
669 	struct device *dev = desc->txd.chan->device->dev;
670 
671 	if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
672 		if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
673 			dma_unmap_single(dev, desc->src_addr, desc->size,
674 					 DMA_TO_DEVICE);
675 		else
676 			dma_unmap_page(dev, desc->src_addr, desc->size,
677 				       DMA_TO_DEVICE);
678 	}
679 	if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
680 		if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
681 			dma_unmap_single(dev, desc->dst_addr, desc->size,
682 					 DMA_FROM_DEVICE);
683 		else
684 			dma_unmap_page(dev, desc->dst_addr, desc->size,
685 				       DMA_FROM_DEVICE);
686 	}
687 }
688 
689 static void ep93xx_dma_tasklet(unsigned long data)
690 {
691 	struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
692 	struct ep93xx_dma_desc *desc, *d;
693 	dma_async_tx_callback callback = NULL;
694 	void *callback_param = NULL;
695 	LIST_HEAD(list);
696 
697 	spin_lock_irq(&edmac->lock);
698 	/*
699 	 * If dma_terminate_all() was called before we get to run, the active
700 	 * list has become empty. If that happens we aren't supposed to do
701 	 * anything more than call ep93xx_dma_advance_work().
702 	 */
703 	desc = ep93xx_dma_get_active(edmac);
704 	if (desc) {
705 		if (desc->complete) {
706 			edmac->last_completed = desc->txd.cookie;
707 			list_splice_init(&edmac->active, &list);
708 		}
709 		callback = desc->txd.callback;
710 		callback_param = desc->txd.callback_param;
711 	}
712 	spin_unlock_irq(&edmac->lock);
713 
714 	/* Pick up the next descriptor from the queue */
715 	ep93xx_dma_advance_work(edmac);
716 
717 	/* Now we can release all the chained descriptors */
718 	list_for_each_entry_safe(desc, d, &list, node) {
719 		/*
720 		 * For the memcpy channels the API requires us to unmap the
721 		 * buffers unless requested otherwise.
722 		 */
723 		if (!edmac->chan.private)
724 			ep93xx_dma_unmap_buffers(desc);
725 
726 		ep93xx_dma_desc_put(edmac, desc);
727 	}
728 
729 	if (callback)
730 		callback(callback_param);
731 }
732 
733 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
734 {
735 	struct ep93xx_dma_chan *edmac = dev_id;
736 	struct ep93xx_dma_desc *desc;
737 	irqreturn_t ret = IRQ_HANDLED;
738 
739 	spin_lock(&edmac->lock);
740 
741 	desc = ep93xx_dma_get_active(edmac);
742 	if (!desc) {
743 		dev_warn(chan2dev(edmac),
744 			 "got interrupt while active list is empty\n");
745 		spin_unlock(&edmac->lock);
746 		return IRQ_NONE;
747 	}
748 
749 	switch (edmac->edma->hw_interrupt(edmac)) {
750 	case INTERRUPT_DONE:
751 		desc->complete = true;
752 		tasklet_schedule(&edmac->tasklet);
753 		break;
754 
755 	case INTERRUPT_NEXT_BUFFER:
756 		if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
757 			tasklet_schedule(&edmac->tasklet);
758 		break;
759 
760 	default:
761 		dev_warn(chan2dev(edmac), "unknown interrupt!\n");
762 		ret = IRQ_NONE;
763 		break;
764 	}
765 
766 	spin_unlock(&edmac->lock);
767 	return ret;
768 }
769 
770 /**
771  * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
772  * @tx: descriptor to be executed
773  *
774  * Function will execute given descriptor on the hardware or if the hardware
775  * is busy, queue the descriptor to be executed later on. Returns cookie which
776  * can be used to poll the status of the descriptor.
777  */
778 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
779 {
780 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
781 	struct ep93xx_dma_desc *desc;
782 	dma_cookie_t cookie;
783 	unsigned long flags;
784 
785 	spin_lock_irqsave(&edmac->lock, flags);
786 
787 	cookie = edmac->chan.cookie;
788 
789 	if (++cookie < 0)
790 		cookie = 1;
791 
792 	desc = container_of(tx, struct ep93xx_dma_desc, txd);
793 
794 	edmac->chan.cookie = cookie;
795 	desc->txd.cookie = cookie;
796 
797 	/*
798 	 * If nothing is currently prosessed, we push this descriptor
799 	 * directly to the hardware. Otherwise we put the descriptor
800 	 * to the pending queue.
801 	 */
802 	if (list_empty(&edmac->active)) {
803 		ep93xx_dma_set_active(edmac, desc);
804 		edmac->edma->hw_submit(edmac);
805 	} else {
806 		list_add_tail(&desc->node, &edmac->queue);
807 	}
808 
809 	spin_unlock_irqrestore(&edmac->lock, flags);
810 	return cookie;
811 }
812 
813 /**
814  * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
815  * @chan: channel to allocate resources
816  *
817  * Function allocates necessary resources for the given DMA channel and
818  * returns number of allocated descriptors for the channel. Negative errno
819  * is returned in case of failure.
820  */
821 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
822 {
823 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
824 	struct ep93xx_dma_data *data = chan->private;
825 	const char *name = dma_chan_name(chan);
826 	int ret, i;
827 
828 	/* Sanity check the channel parameters */
829 	if (!edmac->edma->m2m) {
830 		if (!data)
831 			return -EINVAL;
832 		if (data->port < EP93XX_DMA_I2S1 ||
833 		    data->port > EP93XX_DMA_IRDA)
834 			return -EINVAL;
835 		if (data->direction != ep93xx_dma_chan_direction(chan))
836 			return -EINVAL;
837 	} else {
838 		if (data) {
839 			switch (data->port) {
840 			case EP93XX_DMA_SSP:
841 			case EP93XX_DMA_IDE:
842 				if (data->direction != DMA_MEM_TO_DEV &&
843 				    data->direction != DMA_DEV_TO_MEM)
844 					return -EINVAL;
845 				break;
846 			default:
847 				return -EINVAL;
848 			}
849 		}
850 	}
851 
852 	if (data && data->name)
853 		name = data->name;
854 
855 	ret = clk_enable(edmac->clk);
856 	if (ret)
857 		return ret;
858 
859 	ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
860 	if (ret)
861 		goto fail_clk_disable;
862 
863 	spin_lock_irq(&edmac->lock);
864 	edmac->last_completed = 1;
865 	edmac->chan.cookie = 1;
866 	ret = edmac->edma->hw_setup(edmac);
867 	spin_unlock_irq(&edmac->lock);
868 
869 	if (ret)
870 		goto fail_free_irq;
871 
872 	for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
873 		struct ep93xx_dma_desc *desc;
874 
875 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
876 		if (!desc) {
877 			dev_warn(chan2dev(edmac), "not enough descriptors\n");
878 			break;
879 		}
880 
881 		INIT_LIST_HEAD(&desc->tx_list);
882 
883 		dma_async_tx_descriptor_init(&desc->txd, chan);
884 		desc->txd.flags = DMA_CTRL_ACK;
885 		desc->txd.tx_submit = ep93xx_dma_tx_submit;
886 
887 		ep93xx_dma_desc_put(edmac, desc);
888 	}
889 
890 	return i;
891 
892 fail_free_irq:
893 	free_irq(edmac->irq, edmac);
894 fail_clk_disable:
895 	clk_disable(edmac->clk);
896 
897 	return ret;
898 }
899 
900 /**
901  * ep93xx_dma_free_chan_resources - release resources for the channel
902  * @chan: channel
903  *
904  * Function releases all the resources allocated for the given channel.
905  * The channel must be idle when this is called.
906  */
907 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
908 {
909 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
910 	struct ep93xx_dma_desc *desc, *d;
911 	unsigned long flags;
912 	LIST_HEAD(list);
913 
914 	BUG_ON(!list_empty(&edmac->active));
915 	BUG_ON(!list_empty(&edmac->queue));
916 
917 	spin_lock_irqsave(&edmac->lock, flags);
918 	edmac->edma->hw_shutdown(edmac);
919 	edmac->runtime_addr = 0;
920 	edmac->runtime_ctrl = 0;
921 	edmac->buffer = 0;
922 	list_splice_init(&edmac->free_list, &list);
923 	spin_unlock_irqrestore(&edmac->lock, flags);
924 
925 	list_for_each_entry_safe(desc, d, &list, node)
926 		kfree(desc);
927 
928 	clk_disable(edmac->clk);
929 	free_irq(edmac->irq, edmac);
930 }
931 
932 /**
933  * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
934  * @chan: channel
935  * @dest: destination bus address
936  * @src: source bus address
937  * @len: size of the transaction
938  * @flags: flags for the descriptor
939  *
940  * Returns a valid DMA descriptor or %NULL in case of failure.
941  */
942 static struct dma_async_tx_descriptor *
943 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
944 			   dma_addr_t src, size_t len, unsigned long flags)
945 {
946 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
947 	struct ep93xx_dma_desc *desc, *first;
948 	size_t bytes, offset;
949 
950 	first = NULL;
951 	for (offset = 0; offset < len; offset += bytes) {
952 		desc = ep93xx_dma_desc_get(edmac);
953 		if (!desc) {
954 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
955 			goto fail;
956 		}
957 
958 		bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
959 
960 		desc->src_addr = src + offset;
961 		desc->dst_addr = dest + offset;
962 		desc->size = bytes;
963 
964 		if (!first)
965 			first = desc;
966 		else
967 			list_add_tail(&desc->node, &first->tx_list);
968 	}
969 
970 	first->txd.cookie = -EBUSY;
971 	first->txd.flags = flags;
972 
973 	return &first->txd;
974 fail:
975 	ep93xx_dma_desc_put(edmac, first);
976 	return NULL;
977 }
978 
979 /**
980  * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
981  * @chan: channel
982  * @sgl: list of buffers to transfer
983  * @sg_len: number of entries in @sgl
984  * @dir: direction of tha DMA transfer
985  * @flags: flags for the descriptor
986  *
987  * Returns a valid DMA descriptor or %NULL in case of failure.
988  */
989 static struct dma_async_tx_descriptor *
990 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
991 			 unsigned int sg_len, enum dma_transfer_direction dir,
992 			 unsigned long flags)
993 {
994 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
995 	struct ep93xx_dma_desc *desc, *first;
996 	struct scatterlist *sg;
997 	int i;
998 
999 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1000 		dev_warn(chan2dev(edmac),
1001 			 "channel was configured with different direction\n");
1002 		return NULL;
1003 	}
1004 
1005 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1006 		dev_warn(chan2dev(edmac),
1007 			 "channel is already used for cyclic transfers\n");
1008 		return NULL;
1009 	}
1010 
1011 	first = NULL;
1012 	for_each_sg(sgl, sg, sg_len, i) {
1013 		size_t sg_len = sg_dma_len(sg);
1014 
1015 		if (sg_len > DMA_MAX_CHAN_BYTES) {
1016 			dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1017 				 sg_len);
1018 			goto fail;
1019 		}
1020 
1021 		desc = ep93xx_dma_desc_get(edmac);
1022 		if (!desc) {
1023 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1024 			goto fail;
1025 		}
1026 
1027 		if (dir == DMA_MEM_TO_DEV) {
1028 			desc->src_addr = sg_dma_address(sg);
1029 			desc->dst_addr = edmac->runtime_addr;
1030 		} else {
1031 			desc->src_addr = edmac->runtime_addr;
1032 			desc->dst_addr = sg_dma_address(sg);
1033 		}
1034 		desc->size = sg_len;
1035 
1036 		if (!first)
1037 			first = desc;
1038 		else
1039 			list_add_tail(&desc->node, &first->tx_list);
1040 	}
1041 
1042 	first->txd.cookie = -EBUSY;
1043 	first->txd.flags = flags;
1044 
1045 	return &first->txd;
1046 
1047 fail:
1048 	ep93xx_dma_desc_put(edmac, first);
1049 	return NULL;
1050 }
1051 
1052 /**
1053  * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1054  * @chan: channel
1055  * @dma_addr: DMA mapped address of the buffer
1056  * @buf_len: length of the buffer (in bytes)
1057  * @period_len: lenght of a single period
1058  * @dir: direction of the operation
1059  *
1060  * Prepares a descriptor for cyclic DMA operation. This means that once the
1061  * descriptor is submitted, we will be submitting in a @period_len sized
1062  * buffers and calling callback once the period has been elapsed. Transfer
1063  * terminates only when client calls dmaengine_terminate_all() for this
1064  * channel.
1065  *
1066  * Returns a valid DMA descriptor or %NULL in case of failure.
1067  */
1068 static struct dma_async_tx_descriptor *
1069 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1070 			   size_t buf_len, size_t period_len,
1071 			   enum dma_transfer_direction dir)
1072 {
1073 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1074 	struct ep93xx_dma_desc *desc, *first;
1075 	size_t offset = 0;
1076 
1077 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1078 		dev_warn(chan2dev(edmac),
1079 			 "channel was configured with different direction\n");
1080 		return NULL;
1081 	}
1082 
1083 	if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1084 		dev_warn(chan2dev(edmac),
1085 			 "channel is already used for cyclic transfers\n");
1086 		return NULL;
1087 	}
1088 
1089 	if (period_len > DMA_MAX_CHAN_BYTES) {
1090 		dev_warn(chan2dev(edmac), "too big period length %d\n",
1091 			 period_len);
1092 		return NULL;
1093 	}
1094 
1095 	/* Split the buffer into period size chunks */
1096 	first = NULL;
1097 	for (offset = 0; offset < buf_len; offset += period_len) {
1098 		desc = ep93xx_dma_desc_get(edmac);
1099 		if (!desc) {
1100 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1101 			goto fail;
1102 		}
1103 
1104 		if (dir == DMA_MEM_TO_DEV) {
1105 			desc->src_addr = dma_addr + offset;
1106 			desc->dst_addr = edmac->runtime_addr;
1107 		} else {
1108 			desc->src_addr = edmac->runtime_addr;
1109 			desc->dst_addr = dma_addr + offset;
1110 		}
1111 
1112 		desc->size = period_len;
1113 
1114 		if (!first)
1115 			first = desc;
1116 		else
1117 			list_add_tail(&desc->node, &first->tx_list);
1118 	}
1119 
1120 	first->txd.cookie = -EBUSY;
1121 
1122 	return &first->txd;
1123 
1124 fail:
1125 	ep93xx_dma_desc_put(edmac, first);
1126 	return NULL;
1127 }
1128 
1129 /**
1130  * ep93xx_dma_terminate_all - terminate all transactions
1131  * @edmac: channel
1132  *
1133  * Stops all DMA transactions. All descriptors are put back to the
1134  * @edmac->free_list and callbacks are _not_ called.
1135  */
1136 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1137 {
1138 	struct ep93xx_dma_desc *desc, *_d;
1139 	unsigned long flags;
1140 	LIST_HEAD(list);
1141 
1142 	spin_lock_irqsave(&edmac->lock, flags);
1143 	/* First we disable and flush the DMA channel */
1144 	edmac->edma->hw_shutdown(edmac);
1145 	clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1146 	list_splice_init(&edmac->active, &list);
1147 	list_splice_init(&edmac->queue, &list);
1148 	/*
1149 	 * We then re-enable the channel. This way we can continue submitting
1150 	 * the descriptors by just calling ->hw_submit() again.
1151 	 */
1152 	edmac->edma->hw_setup(edmac);
1153 	spin_unlock_irqrestore(&edmac->lock, flags);
1154 
1155 	list_for_each_entry_safe(desc, _d, &list, node)
1156 		ep93xx_dma_desc_put(edmac, desc);
1157 
1158 	return 0;
1159 }
1160 
1161 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1162 				   struct dma_slave_config *config)
1163 {
1164 	enum dma_slave_buswidth width;
1165 	unsigned long flags;
1166 	u32 addr, ctrl;
1167 
1168 	if (!edmac->edma->m2m)
1169 		return -EINVAL;
1170 
1171 	switch (config->direction) {
1172 	case DMA_DEV_TO_MEM:
1173 		width = config->src_addr_width;
1174 		addr = config->src_addr;
1175 		break;
1176 
1177 	case DMA_MEM_TO_DEV:
1178 		width = config->dst_addr_width;
1179 		addr = config->dst_addr;
1180 		break;
1181 
1182 	default:
1183 		return -EINVAL;
1184 	}
1185 
1186 	switch (width) {
1187 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1188 		ctrl = 0;
1189 		break;
1190 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1191 		ctrl = M2M_CONTROL_PW_16;
1192 		break;
1193 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1194 		ctrl = M2M_CONTROL_PW_32;
1195 		break;
1196 	default:
1197 		return -EINVAL;
1198 	}
1199 
1200 	spin_lock_irqsave(&edmac->lock, flags);
1201 	edmac->runtime_addr = addr;
1202 	edmac->runtime_ctrl = ctrl;
1203 	spin_unlock_irqrestore(&edmac->lock, flags);
1204 
1205 	return 0;
1206 }
1207 
1208 /**
1209  * ep93xx_dma_control - manipulate all pending operations on a channel
1210  * @chan: channel
1211  * @cmd: control command to perform
1212  * @arg: optional argument
1213  *
1214  * Controls the channel. Function returns %0 in case of success or negative
1215  * error in case of failure.
1216  */
1217 static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1218 			      unsigned long arg)
1219 {
1220 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1221 	struct dma_slave_config *config;
1222 
1223 	switch (cmd) {
1224 	case DMA_TERMINATE_ALL:
1225 		return ep93xx_dma_terminate_all(edmac);
1226 
1227 	case DMA_SLAVE_CONFIG:
1228 		config = (struct dma_slave_config *)arg;
1229 		return ep93xx_dma_slave_config(edmac, config);
1230 
1231 	default:
1232 		break;
1233 	}
1234 
1235 	return -ENOSYS;
1236 }
1237 
1238 /**
1239  * ep93xx_dma_tx_status - check if a transaction is completed
1240  * @chan: channel
1241  * @cookie: transaction specific cookie
1242  * @state: state of the transaction is stored here if given
1243  *
1244  * This function can be used to query state of a given transaction.
1245  */
1246 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1247 					    dma_cookie_t cookie,
1248 					    struct dma_tx_state *state)
1249 {
1250 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1251 	dma_cookie_t last_used, last_completed;
1252 	enum dma_status ret;
1253 	unsigned long flags;
1254 
1255 	spin_lock_irqsave(&edmac->lock, flags);
1256 	last_used = chan->cookie;
1257 	last_completed = edmac->last_completed;
1258 	spin_unlock_irqrestore(&edmac->lock, flags);
1259 
1260 	ret = dma_async_is_complete(cookie, last_completed, last_used);
1261 	dma_set_tx_state(state, last_completed, last_used, 0);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * ep93xx_dma_issue_pending - push pending transactions to the hardware
1268  * @chan: channel
1269  *
1270  * When this function is called, all pending transactions are pushed to the
1271  * hardware and executed.
1272  */
1273 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1274 {
1275 	ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1276 }
1277 
1278 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1279 {
1280 	struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1281 	struct ep93xx_dma_engine *edma;
1282 	struct dma_device *dma_dev;
1283 	size_t edma_size;
1284 	int ret, i;
1285 
1286 	edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1287 	edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1288 	if (!edma)
1289 		return -ENOMEM;
1290 
1291 	dma_dev = &edma->dma_dev;
1292 	edma->m2m = platform_get_device_id(pdev)->driver_data;
1293 	edma->num_channels = pdata->num_channels;
1294 
1295 	INIT_LIST_HEAD(&dma_dev->channels);
1296 	for (i = 0; i < pdata->num_channels; i++) {
1297 		const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1298 		struct ep93xx_dma_chan *edmac = &edma->channels[i];
1299 
1300 		edmac->chan.device = dma_dev;
1301 		edmac->regs = cdata->base;
1302 		edmac->irq = cdata->irq;
1303 		edmac->edma = edma;
1304 
1305 		edmac->clk = clk_get(NULL, cdata->name);
1306 		if (IS_ERR(edmac->clk)) {
1307 			dev_warn(&pdev->dev, "failed to get clock for %s\n",
1308 				 cdata->name);
1309 			continue;
1310 		}
1311 
1312 		spin_lock_init(&edmac->lock);
1313 		INIT_LIST_HEAD(&edmac->active);
1314 		INIT_LIST_HEAD(&edmac->queue);
1315 		INIT_LIST_HEAD(&edmac->free_list);
1316 		tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1317 			     (unsigned long)edmac);
1318 
1319 		list_add_tail(&edmac->chan.device_node,
1320 			      &dma_dev->channels);
1321 	}
1322 
1323 	dma_cap_zero(dma_dev->cap_mask);
1324 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1325 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1326 
1327 	dma_dev->dev = &pdev->dev;
1328 	dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1329 	dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1330 	dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1331 	dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1332 	dma_dev->device_control = ep93xx_dma_control;
1333 	dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1334 	dma_dev->device_tx_status = ep93xx_dma_tx_status;
1335 
1336 	dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1337 
1338 	if (edma->m2m) {
1339 		dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1340 		dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1341 
1342 		edma->hw_setup = m2m_hw_setup;
1343 		edma->hw_shutdown = m2m_hw_shutdown;
1344 		edma->hw_submit = m2m_hw_submit;
1345 		edma->hw_interrupt = m2m_hw_interrupt;
1346 	} else {
1347 		dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1348 
1349 		edma->hw_setup = m2p_hw_setup;
1350 		edma->hw_shutdown = m2p_hw_shutdown;
1351 		edma->hw_submit = m2p_hw_submit;
1352 		edma->hw_interrupt = m2p_hw_interrupt;
1353 	}
1354 
1355 	ret = dma_async_device_register(dma_dev);
1356 	if (unlikely(ret)) {
1357 		for (i = 0; i < edma->num_channels; i++) {
1358 			struct ep93xx_dma_chan *edmac = &edma->channels[i];
1359 			if (!IS_ERR_OR_NULL(edmac->clk))
1360 				clk_put(edmac->clk);
1361 		}
1362 		kfree(edma);
1363 	} else {
1364 		dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1365 			 edma->m2m ? "M" : "P");
1366 	}
1367 
1368 	return ret;
1369 }
1370 
1371 static struct platform_device_id ep93xx_dma_driver_ids[] = {
1372 	{ "ep93xx-dma-m2p", 0 },
1373 	{ "ep93xx-dma-m2m", 1 },
1374 	{ },
1375 };
1376 
1377 static struct platform_driver ep93xx_dma_driver = {
1378 	.driver		= {
1379 		.name	= "ep93xx-dma",
1380 	},
1381 	.id_table	= ep93xx_dma_driver_ids,
1382 };
1383 
1384 static int __init ep93xx_dma_module_init(void)
1385 {
1386 	return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1387 }
1388 subsys_initcall(ep93xx_dma_module_init);
1389 
1390 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1391 MODULE_DESCRIPTION("EP93xx DMA driver");
1392 MODULE_LICENSE("GPL");
1393