xref: /linux/drivers/dma/ep93xx_dma.c (revision 409c38d4f156740bf3165fd6ceae4fa6425eebf4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for the Cirrus Logic EP93xx DMA Controller
4  *
5  * Copyright (C) 2011 Mika Westerberg
6  *
7  * DMA M2P implementation is based on the original
8  * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9  *
10  *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
11  *   Copyright (C) 2006 Applied Data Systems
12  *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13  *
14  * This driver is based on dw_dmac and amba-pl08x drivers.
15  */
16 
17 #include <linux/clk.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/dmaengine.h>
21 #include <linux/module.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 
26 #include <linux/platform_data/dma-ep93xx.h>
27 
28 #include "dmaengine.h"
29 
30 /* M2P registers */
31 #define M2P_CONTROL			0x0000
32 #define M2P_CONTROL_STALLINT		BIT(0)
33 #define M2P_CONTROL_NFBINT		BIT(1)
34 #define M2P_CONTROL_CH_ERROR_INT	BIT(3)
35 #define M2P_CONTROL_ENABLE		BIT(4)
36 #define M2P_CONTROL_ICE			BIT(6)
37 
38 #define M2P_INTERRUPT			0x0004
39 #define M2P_INTERRUPT_STALL		BIT(0)
40 #define M2P_INTERRUPT_NFB		BIT(1)
41 #define M2P_INTERRUPT_ERROR		BIT(3)
42 
43 #define M2P_PPALLOC			0x0008
44 #define M2P_STATUS			0x000c
45 
46 #define M2P_MAXCNT0			0x0020
47 #define M2P_BASE0			0x0024
48 #define M2P_MAXCNT1			0x0030
49 #define M2P_BASE1			0x0034
50 
51 #define M2P_STATE_IDLE			0
52 #define M2P_STATE_STALL			1
53 #define M2P_STATE_ON			2
54 #define M2P_STATE_NEXT			3
55 
56 /* M2M registers */
57 #define M2M_CONTROL			0x0000
58 #define M2M_CONTROL_DONEINT		BIT(2)
59 #define M2M_CONTROL_ENABLE		BIT(3)
60 #define M2M_CONTROL_START		BIT(4)
61 #define M2M_CONTROL_DAH			BIT(11)
62 #define M2M_CONTROL_SAH			BIT(12)
63 #define M2M_CONTROL_PW_SHIFT		9
64 #define M2M_CONTROL_PW_8		(0 << M2M_CONTROL_PW_SHIFT)
65 #define M2M_CONTROL_PW_16		(1 << M2M_CONTROL_PW_SHIFT)
66 #define M2M_CONTROL_PW_32		(2 << M2M_CONTROL_PW_SHIFT)
67 #define M2M_CONTROL_PW_MASK		(3 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_TM_SHIFT		13
69 #define M2M_CONTROL_TM_TX		(1 << M2M_CONTROL_TM_SHIFT)
70 #define M2M_CONTROL_TM_RX		(2 << M2M_CONTROL_TM_SHIFT)
71 #define M2M_CONTROL_NFBINT		BIT(21)
72 #define M2M_CONTROL_RSS_SHIFT		22
73 #define M2M_CONTROL_RSS_SSPRX		(1 << M2M_CONTROL_RSS_SHIFT)
74 #define M2M_CONTROL_RSS_SSPTX		(2 << M2M_CONTROL_RSS_SHIFT)
75 #define M2M_CONTROL_RSS_IDE		(3 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_NO_HDSK		BIT(24)
77 #define M2M_CONTROL_PWSC_SHIFT		25
78 
79 #define M2M_INTERRUPT			0x0004
80 #define M2M_INTERRUPT_MASK		6
81 
82 #define M2M_STATUS			0x000c
83 #define M2M_STATUS_CTL_SHIFT		1
84 #define M2M_STATUS_CTL_IDLE		(0 << M2M_STATUS_CTL_SHIFT)
85 #define M2M_STATUS_CTL_STALL		(1 << M2M_STATUS_CTL_SHIFT)
86 #define M2M_STATUS_CTL_MEMRD		(2 << M2M_STATUS_CTL_SHIFT)
87 #define M2M_STATUS_CTL_MEMWR		(3 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_BWCWAIT		(4 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MASK		(7 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_BUF_SHIFT		4
91 #define M2M_STATUS_BUF_NO		(0 << M2M_STATUS_BUF_SHIFT)
92 #define M2M_STATUS_BUF_ON		(1 << M2M_STATUS_BUF_SHIFT)
93 #define M2M_STATUS_BUF_NEXT		(2 << M2M_STATUS_BUF_SHIFT)
94 #define M2M_STATUS_BUF_MASK		(3 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_DONE			BIT(6)
96 
97 #define M2M_BCR0			0x0010
98 #define M2M_BCR1			0x0014
99 #define M2M_SAR_BASE0			0x0018
100 #define M2M_SAR_BASE1			0x001c
101 #define M2M_DAR_BASE0			0x002c
102 #define M2M_DAR_BASE1			0x0030
103 
104 #define DMA_MAX_CHAN_BYTES		0xffff
105 #define DMA_MAX_CHAN_DESCRIPTORS	32
106 
107 struct ep93xx_dma_engine;
108 static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
109 					 enum dma_transfer_direction dir,
110 					 struct dma_slave_config *config);
111 
112 /**
113  * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114  * @src_addr: source address of the transaction
115  * @dst_addr: destination address of the transaction
116  * @size: size of the transaction (in bytes)
117  * @complete: this descriptor is completed
118  * @txd: dmaengine API descriptor
119  * @tx_list: list of linked descriptors
120  * @node: link used for putting this into a channel queue
121  */
122 struct ep93xx_dma_desc {
123 	u32				src_addr;
124 	u32				dst_addr;
125 	size_t				size;
126 	bool				complete;
127 	struct dma_async_tx_descriptor	txd;
128 	struct list_head		tx_list;
129 	struct list_head		node;
130 };
131 
132 /**
133  * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134  * @chan: dmaengine API channel
135  * @edma: pointer to the engine device
136  * @regs: memory mapped registers
137  * @irq: interrupt number of the channel
138  * @clk: clock used by this channel
139  * @tasklet: channel specific tasklet used for callbacks
140  * @lock: lock protecting the fields following
141  * @flags: flags for the channel
142  * @buffer: which buffer to use next (0/1)
143  * @active: flattened chain of descriptors currently being processed
144  * @queue: pending descriptors which are handled next
145  * @free_list: list of free descriptors which can be used
146  * @runtime_addr: physical address currently used as dest/src (M2M only). This
147  *                is set via .device_config before slave operation is
148  *                prepared
149  * @runtime_ctrl: M2M runtime values for the control register.
150  * @slave_config: slave configuration
151  *
152  * As EP93xx DMA controller doesn't support real chained DMA descriptors we
153  * will have slightly different scheme here: @active points to a head of
154  * flattened DMA descriptor chain.
155  *
156  * @queue holds pending transactions. These are linked through the first
157  * descriptor in the chain. When a descriptor is moved to the @active queue,
158  * the first and chained descriptors are flattened into a single list.
159  *
160  * @chan.private holds pointer to &struct ep93xx_dma_data which contains
161  * necessary channel configuration information. For memcpy channels this must
162  * be %NULL.
163  */
164 struct ep93xx_dma_chan {
165 	struct dma_chan			chan;
166 	const struct ep93xx_dma_engine	*edma;
167 	void __iomem			*regs;
168 	int				irq;
169 	struct clk			*clk;
170 	struct tasklet_struct		tasklet;
171 	/* protects the fields following */
172 	spinlock_t			lock;
173 	unsigned long			flags;
174 /* Channel is configured for cyclic transfers */
175 #define EP93XX_DMA_IS_CYCLIC		0
176 
177 	int				buffer;
178 	struct list_head		active;
179 	struct list_head		queue;
180 	struct list_head		free_list;
181 	u32				runtime_addr;
182 	u32				runtime_ctrl;
183 	struct dma_slave_config		slave_config;
184 };
185 
186 /**
187  * struct ep93xx_dma_engine - the EP93xx DMA engine instance
188  * @dma_dev: holds the dmaengine device
189  * @m2m: is this an M2M or M2P device
190  * @hw_setup: method which sets the channel up for operation
191  * @hw_synchronize: synchronizes DMA channel termination to current context
192  * @hw_shutdown: shuts the channel down and flushes whatever is left
193  * @hw_submit: pushes active descriptor(s) to the hardware
194  * @hw_interrupt: handle the interrupt
195  * @num_channels: number of channels for this instance
196  * @channels: array of channels
197  *
198  * There is one instance of this struct for the M2P channels and one for the
199  * M2M channels. hw_xxx() methods are used to perform operations which are
200  * different on M2M and M2P channels. These methods are called with channel
201  * lock held and interrupts disabled so they cannot sleep.
202  */
203 struct ep93xx_dma_engine {
204 	struct dma_device	dma_dev;
205 	bool			m2m;
206 	int			(*hw_setup)(struct ep93xx_dma_chan *);
207 	void			(*hw_synchronize)(struct ep93xx_dma_chan *);
208 	void			(*hw_shutdown)(struct ep93xx_dma_chan *);
209 	void			(*hw_submit)(struct ep93xx_dma_chan *);
210 	int			(*hw_interrupt)(struct ep93xx_dma_chan *);
211 #define INTERRUPT_UNKNOWN	0
212 #define INTERRUPT_DONE		1
213 #define INTERRUPT_NEXT_BUFFER	2
214 
215 	size_t			num_channels;
216 	struct ep93xx_dma_chan	channels[] __counted_by(num_channels);
217 };
218 
219 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
220 {
221 	return &edmac->chan.dev->device;
222 }
223 
224 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
225 {
226 	return container_of(chan, struct ep93xx_dma_chan, chan);
227 }
228 
229 /**
230  * ep93xx_dma_set_active - set new active descriptor chain
231  * @edmac: channel
232  * @desc: head of the new active descriptor chain
233  *
234  * Sets @desc to be the head of the new active descriptor chain. This is the
235  * chain which is processed next. The active list must be empty before calling
236  * this function.
237  *
238  * Called with @edmac->lock held and interrupts disabled.
239  */
240 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
241 				  struct ep93xx_dma_desc *desc)
242 {
243 	BUG_ON(!list_empty(&edmac->active));
244 
245 	list_add_tail(&desc->node, &edmac->active);
246 
247 	/* Flatten the @desc->tx_list chain into @edmac->active list */
248 	while (!list_empty(&desc->tx_list)) {
249 		struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
250 			struct ep93xx_dma_desc, node);
251 
252 		/*
253 		 * We copy the callback parameters from the first descriptor
254 		 * to all the chained descriptors. This way we can call the
255 		 * callback without having to find out the first descriptor in
256 		 * the chain. Useful for cyclic transfers.
257 		 */
258 		d->txd.callback = desc->txd.callback;
259 		d->txd.callback_param = desc->txd.callback_param;
260 
261 		list_move_tail(&d->node, &edmac->active);
262 	}
263 }
264 
265 /* Called with @edmac->lock held and interrupts disabled */
266 static struct ep93xx_dma_desc *
267 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
268 {
269 	return list_first_entry_or_null(&edmac->active,
270 					struct ep93xx_dma_desc, node);
271 }
272 
273 /**
274  * ep93xx_dma_advance_active - advances to the next active descriptor
275  * @edmac: channel
276  *
277  * Function advances active descriptor to the next in the @edmac->active and
278  * returns %true if we still have descriptors in the chain to process.
279  * Otherwise returns %false.
280  *
281  * When the channel is in cyclic mode always returns %true.
282  *
283  * Called with @edmac->lock held and interrupts disabled.
284  */
285 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
286 {
287 	struct ep93xx_dma_desc *desc;
288 
289 	list_rotate_left(&edmac->active);
290 
291 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
292 		return true;
293 
294 	desc = ep93xx_dma_get_active(edmac);
295 	if (!desc)
296 		return false;
297 
298 	/*
299 	 * If txd.cookie is set it means that we are back in the first
300 	 * descriptor in the chain and hence done with it.
301 	 */
302 	return !desc->txd.cookie;
303 }
304 
305 /*
306  * M2P DMA implementation
307  */
308 
309 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
310 {
311 	writel(control, edmac->regs + M2P_CONTROL);
312 	/*
313 	 * EP93xx User's Guide states that we must perform a dummy read after
314 	 * write to the control register.
315 	 */
316 	readl(edmac->regs + M2P_CONTROL);
317 }
318 
319 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
320 {
321 	struct ep93xx_dma_data *data = edmac->chan.private;
322 	u32 control;
323 
324 	writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
325 
326 	control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
327 		| M2P_CONTROL_ENABLE;
328 	m2p_set_control(edmac, control);
329 
330 	edmac->buffer = 0;
331 
332 	return 0;
333 }
334 
335 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
336 {
337 	return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
338 }
339 
340 static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac)
341 {
342 	unsigned long flags;
343 	u32 control;
344 
345 	spin_lock_irqsave(&edmac->lock, flags);
346 	control = readl(edmac->regs + M2P_CONTROL);
347 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
348 	m2p_set_control(edmac, control);
349 	spin_unlock_irqrestore(&edmac->lock, flags);
350 
351 	while (m2p_channel_state(edmac) >= M2P_STATE_ON)
352 		schedule();
353 }
354 
355 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
356 {
357 	m2p_set_control(edmac, 0);
358 
359 	while (m2p_channel_state(edmac) != M2P_STATE_IDLE)
360 		dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n");
361 }
362 
363 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
364 {
365 	struct ep93xx_dma_desc *desc;
366 	u32 bus_addr;
367 
368 	desc = ep93xx_dma_get_active(edmac);
369 	if (!desc) {
370 		dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
371 		return;
372 	}
373 
374 	if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
375 		bus_addr = desc->src_addr;
376 	else
377 		bus_addr = desc->dst_addr;
378 
379 	if (edmac->buffer == 0) {
380 		writel(desc->size, edmac->regs + M2P_MAXCNT0);
381 		writel(bus_addr, edmac->regs + M2P_BASE0);
382 	} else {
383 		writel(desc->size, edmac->regs + M2P_MAXCNT1);
384 		writel(bus_addr, edmac->regs + M2P_BASE1);
385 	}
386 
387 	edmac->buffer ^= 1;
388 }
389 
390 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
391 {
392 	u32 control = readl(edmac->regs + M2P_CONTROL);
393 
394 	m2p_fill_desc(edmac);
395 	control |= M2P_CONTROL_STALLINT;
396 
397 	if (ep93xx_dma_advance_active(edmac)) {
398 		m2p_fill_desc(edmac);
399 		control |= M2P_CONTROL_NFBINT;
400 	}
401 
402 	m2p_set_control(edmac, control);
403 }
404 
405 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
406 {
407 	u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
408 	u32 control;
409 
410 	if (irq_status & M2P_INTERRUPT_ERROR) {
411 		struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
412 
413 		/* Clear the error interrupt */
414 		writel(1, edmac->regs + M2P_INTERRUPT);
415 
416 		/*
417 		 * It seems that there is no easy way of reporting errors back
418 		 * to client so we just report the error here and continue as
419 		 * usual.
420 		 *
421 		 * Revisit this when there is a mechanism to report back the
422 		 * errors.
423 		 */
424 		dev_err(chan2dev(edmac),
425 			"DMA transfer failed! Details:\n"
426 			"\tcookie	: %d\n"
427 			"\tsrc_addr	: 0x%08x\n"
428 			"\tdst_addr	: 0x%08x\n"
429 			"\tsize		: %zu\n",
430 			desc->txd.cookie, desc->src_addr, desc->dst_addr,
431 			desc->size);
432 	}
433 
434 	/*
435 	 * Even latest E2 silicon revision sometimes assert STALL interrupt
436 	 * instead of NFB. Therefore we treat them equally, basing on the
437 	 * amount of data we still have to transfer.
438 	 */
439 	if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
440 		return INTERRUPT_UNKNOWN;
441 
442 	if (ep93xx_dma_advance_active(edmac)) {
443 		m2p_fill_desc(edmac);
444 		return INTERRUPT_NEXT_BUFFER;
445 	}
446 
447 	/* Disable interrupts */
448 	control = readl(edmac->regs + M2P_CONTROL);
449 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
450 	m2p_set_control(edmac, control);
451 
452 	return INTERRUPT_DONE;
453 }
454 
455 /*
456  * M2M DMA implementation
457  */
458 
459 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
460 {
461 	const struct ep93xx_dma_data *data = edmac->chan.private;
462 	u32 control = 0;
463 
464 	if (!data) {
465 		/* This is memcpy channel, nothing to configure */
466 		writel(control, edmac->regs + M2M_CONTROL);
467 		return 0;
468 	}
469 
470 	switch (data->port) {
471 	case EP93XX_DMA_SSP:
472 		/*
473 		 * This was found via experimenting - anything less than 5
474 		 * causes the channel to perform only a partial transfer which
475 		 * leads to problems since we don't get DONE interrupt then.
476 		 */
477 		control = (5 << M2M_CONTROL_PWSC_SHIFT);
478 		control |= M2M_CONTROL_NO_HDSK;
479 
480 		if (data->direction == DMA_MEM_TO_DEV) {
481 			control |= M2M_CONTROL_DAH;
482 			control |= M2M_CONTROL_TM_TX;
483 			control |= M2M_CONTROL_RSS_SSPTX;
484 		} else {
485 			control |= M2M_CONTROL_SAH;
486 			control |= M2M_CONTROL_TM_RX;
487 			control |= M2M_CONTROL_RSS_SSPRX;
488 		}
489 		break;
490 
491 	case EP93XX_DMA_IDE:
492 		/*
493 		 * This IDE part is totally untested. Values below are taken
494 		 * from the EP93xx Users's Guide and might not be correct.
495 		 */
496 		if (data->direction == DMA_MEM_TO_DEV) {
497 			/* Worst case from the UG */
498 			control = (3 << M2M_CONTROL_PWSC_SHIFT);
499 			control |= M2M_CONTROL_DAH;
500 			control |= M2M_CONTROL_TM_TX;
501 		} else {
502 			control = (2 << M2M_CONTROL_PWSC_SHIFT);
503 			control |= M2M_CONTROL_SAH;
504 			control |= M2M_CONTROL_TM_RX;
505 		}
506 
507 		control |= M2M_CONTROL_NO_HDSK;
508 		control |= M2M_CONTROL_RSS_IDE;
509 		control |= M2M_CONTROL_PW_16;
510 		break;
511 
512 	default:
513 		return -EINVAL;
514 	}
515 
516 	writel(control, edmac->regs + M2M_CONTROL);
517 	return 0;
518 }
519 
520 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
521 {
522 	/* Just disable the channel */
523 	writel(0, edmac->regs + M2M_CONTROL);
524 }
525 
526 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
527 {
528 	struct ep93xx_dma_desc *desc;
529 
530 	desc = ep93xx_dma_get_active(edmac);
531 	if (!desc) {
532 		dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
533 		return;
534 	}
535 
536 	if (edmac->buffer == 0) {
537 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
538 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
539 		writel(desc->size, edmac->regs + M2M_BCR0);
540 	} else {
541 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
542 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
543 		writel(desc->size, edmac->regs + M2M_BCR1);
544 	}
545 
546 	edmac->buffer ^= 1;
547 }
548 
549 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
550 {
551 	struct ep93xx_dma_data *data = edmac->chan.private;
552 	u32 control = readl(edmac->regs + M2M_CONTROL);
553 
554 	/*
555 	 * Since we allow clients to configure PW (peripheral width) we always
556 	 * clear PW bits here and then set them according what is given in
557 	 * the runtime configuration.
558 	 */
559 	control &= ~M2M_CONTROL_PW_MASK;
560 	control |= edmac->runtime_ctrl;
561 
562 	m2m_fill_desc(edmac);
563 	control |= M2M_CONTROL_DONEINT;
564 
565 	if (ep93xx_dma_advance_active(edmac)) {
566 		m2m_fill_desc(edmac);
567 		control |= M2M_CONTROL_NFBINT;
568 	}
569 
570 	/*
571 	 * Now we can finally enable the channel. For M2M channel this must be
572 	 * done _after_ the BCRx registers are programmed.
573 	 */
574 	control |= M2M_CONTROL_ENABLE;
575 	writel(control, edmac->regs + M2M_CONTROL);
576 
577 	if (!data) {
578 		/*
579 		 * For memcpy channels the software trigger must be asserted
580 		 * in order to start the memcpy operation.
581 		 */
582 		control |= M2M_CONTROL_START;
583 		writel(control, edmac->regs + M2M_CONTROL);
584 	}
585 }
586 
587 /*
588  * According to EP93xx User's Guide, we should receive DONE interrupt when all
589  * M2M DMA controller transactions complete normally. This is not always the
590  * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
591  * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
592  * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
593  * In effect, disabling the channel when only DONE bit is set could stop
594  * currently running DMA transfer. To avoid this, we use Buffer FSM and
595  * Control FSM to check current state of DMA channel.
596  */
597 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
598 {
599 	u32 status = readl(edmac->regs + M2M_STATUS);
600 	u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
601 	u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
602 	bool done = status & M2M_STATUS_DONE;
603 	bool last_done;
604 	u32 control;
605 	struct ep93xx_dma_desc *desc;
606 
607 	/* Accept only DONE and NFB interrupts */
608 	if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
609 		return INTERRUPT_UNKNOWN;
610 
611 	if (done) {
612 		/* Clear the DONE bit */
613 		writel(0, edmac->regs + M2M_INTERRUPT);
614 	}
615 
616 	/*
617 	 * Check whether we are done with descriptors or not. This, together
618 	 * with DMA channel state, determines action to take in interrupt.
619 	 */
620 	desc = ep93xx_dma_get_active(edmac);
621 	last_done = !desc || desc->txd.cookie;
622 
623 	/*
624 	 * Use M2M DMA Buffer FSM and Control FSM to check current state of
625 	 * DMA channel. Using DONE and NFB bits from channel status register
626 	 * or bits from channel interrupt register is not reliable.
627 	 */
628 	if (!last_done &&
629 	    (buf_fsm == M2M_STATUS_BUF_NO ||
630 	     buf_fsm == M2M_STATUS_BUF_ON)) {
631 		/*
632 		 * Two buffers are ready for update when Buffer FSM is in
633 		 * DMA_NO_BUF state. Only one buffer can be prepared without
634 		 * disabling the channel or polling the DONE bit.
635 		 * To simplify things, always prepare only one buffer.
636 		 */
637 		if (ep93xx_dma_advance_active(edmac)) {
638 			m2m_fill_desc(edmac);
639 			if (done && !edmac->chan.private) {
640 				/* Software trigger for memcpy channel */
641 				control = readl(edmac->regs + M2M_CONTROL);
642 				control |= M2M_CONTROL_START;
643 				writel(control, edmac->regs + M2M_CONTROL);
644 			}
645 			return INTERRUPT_NEXT_BUFFER;
646 		} else {
647 			last_done = true;
648 		}
649 	}
650 
651 	/*
652 	 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
653 	 * and Control FSM is in DMA_STALL state.
654 	 */
655 	if (last_done &&
656 	    buf_fsm == M2M_STATUS_BUF_NO &&
657 	    ctl_fsm == M2M_STATUS_CTL_STALL) {
658 		/* Disable interrupts and the channel */
659 		control = readl(edmac->regs + M2M_CONTROL);
660 		control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
661 			    | M2M_CONTROL_ENABLE);
662 		writel(control, edmac->regs + M2M_CONTROL);
663 		return INTERRUPT_DONE;
664 	}
665 
666 	/*
667 	 * Nothing to do this time.
668 	 */
669 	return INTERRUPT_NEXT_BUFFER;
670 }
671 
672 /*
673  * DMA engine API implementation
674  */
675 
676 static struct ep93xx_dma_desc *
677 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
678 {
679 	struct ep93xx_dma_desc *desc, *_desc;
680 	struct ep93xx_dma_desc *ret = NULL;
681 	unsigned long flags;
682 
683 	spin_lock_irqsave(&edmac->lock, flags);
684 	list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
685 		if (async_tx_test_ack(&desc->txd)) {
686 			list_del_init(&desc->node);
687 
688 			/* Re-initialize the descriptor */
689 			desc->src_addr = 0;
690 			desc->dst_addr = 0;
691 			desc->size = 0;
692 			desc->complete = false;
693 			desc->txd.cookie = 0;
694 			desc->txd.callback = NULL;
695 			desc->txd.callback_param = NULL;
696 
697 			ret = desc;
698 			break;
699 		}
700 	}
701 	spin_unlock_irqrestore(&edmac->lock, flags);
702 	return ret;
703 }
704 
705 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
706 				struct ep93xx_dma_desc *desc)
707 {
708 	if (desc) {
709 		unsigned long flags;
710 
711 		spin_lock_irqsave(&edmac->lock, flags);
712 		list_splice_init(&desc->tx_list, &edmac->free_list);
713 		list_add(&desc->node, &edmac->free_list);
714 		spin_unlock_irqrestore(&edmac->lock, flags);
715 	}
716 }
717 
718 /**
719  * ep93xx_dma_advance_work - start processing the next pending transaction
720  * @edmac: channel
721  *
722  * If we have pending transactions queued and we are currently idling, this
723  * function takes the next queued transaction from the @edmac->queue and
724  * pushes it to the hardware for execution.
725  */
726 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
727 {
728 	struct ep93xx_dma_desc *new;
729 	unsigned long flags;
730 
731 	spin_lock_irqsave(&edmac->lock, flags);
732 	if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
733 		spin_unlock_irqrestore(&edmac->lock, flags);
734 		return;
735 	}
736 
737 	/* Take the next descriptor from the pending queue */
738 	new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
739 	list_del_init(&new->node);
740 
741 	ep93xx_dma_set_active(edmac, new);
742 
743 	/* Push it to the hardware */
744 	edmac->edma->hw_submit(edmac);
745 	spin_unlock_irqrestore(&edmac->lock, flags);
746 }
747 
748 static void ep93xx_dma_tasklet(struct tasklet_struct *t)
749 {
750 	struct ep93xx_dma_chan *edmac = from_tasklet(edmac, t, tasklet);
751 	struct ep93xx_dma_desc *desc, *d;
752 	struct dmaengine_desc_callback cb;
753 	LIST_HEAD(list);
754 
755 	memset(&cb, 0, sizeof(cb));
756 	spin_lock_irq(&edmac->lock);
757 	/*
758 	 * If dma_terminate_all() was called before we get to run, the active
759 	 * list has become empty. If that happens we aren't supposed to do
760 	 * anything more than call ep93xx_dma_advance_work().
761 	 */
762 	desc = ep93xx_dma_get_active(edmac);
763 	if (desc) {
764 		if (desc->complete) {
765 			/* mark descriptor complete for non cyclic case only */
766 			if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
767 				dma_cookie_complete(&desc->txd);
768 			list_splice_init(&edmac->active, &list);
769 		}
770 		dmaengine_desc_get_callback(&desc->txd, &cb);
771 	}
772 	spin_unlock_irq(&edmac->lock);
773 
774 	/* Pick up the next descriptor from the queue */
775 	ep93xx_dma_advance_work(edmac);
776 
777 	/* Now we can release all the chained descriptors */
778 	list_for_each_entry_safe(desc, d, &list, node) {
779 		dma_descriptor_unmap(&desc->txd);
780 		ep93xx_dma_desc_put(edmac, desc);
781 	}
782 
783 	dmaengine_desc_callback_invoke(&cb, NULL);
784 }
785 
786 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
787 {
788 	struct ep93xx_dma_chan *edmac = dev_id;
789 	struct ep93xx_dma_desc *desc;
790 	irqreturn_t ret = IRQ_HANDLED;
791 
792 	spin_lock(&edmac->lock);
793 
794 	desc = ep93xx_dma_get_active(edmac);
795 	if (!desc) {
796 		dev_warn(chan2dev(edmac),
797 			 "got interrupt while active list is empty\n");
798 		spin_unlock(&edmac->lock);
799 		return IRQ_NONE;
800 	}
801 
802 	switch (edmac->edma->hw_interrupt(edmac)) {
803 	case INTERRUPT_DONE:
804 		desc->complete = true;
805 		tasklet_schedule(&edmac->tasklet);
806 		break;
807 
808 	case INTERRUPT_NEXT_BUFFER:
809 		if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
810 			tasklet_schedule(&edmac->tasklet);
811 		break;
812 
813 	default:
814 		dev_warn(chan2dev(edmac), "unknown interrupt!\n");
815 		ret = IRQ_NONE;
816 		break;
817 	}
818 
819 	spin_unlock(&edmac->lock);
820 	return ret;
821 }
822 
823 /**
824  * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
825  * @tx: descriptor to be executed
826  *
827  * Function will execute given descriptor on the hardware or if the hardware
828  * is busy, queue the descriptor to be executed later on. Returns cookie which
829  * can be used to poll the status of the descriptor.
830  */
831 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
832 {
833 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
834 	struct ep93xx_dma_desc *desc;
835 	dma_cookie_t cookie;
836 	unsigned long flags;
837 
838 	spin_lock_irqsave(&edmac->lock, flags);
839 	cookie = dma_cookie_assign(tx);
840 
841 	desc = container_of(tx, struct ep93xx_dma_desc, txd);
842 
843 	/*
844 	 * If nothing is currently prosessed, we push this descriptor
845 	 * directly to the hardware. Otherwise we put the descriptor
846 	 * to the pending queue.
847 	 */
848 	if (list_empty(&edmac->active)) {
849 		ep93xx_dma_set_active(edmac, desc);
850 		edmac->edma->hw_submit(edmac);
851 	} else {
852 		list_add_tail(&desc->node, &edmac->queue);
853 	}
854 
855 	spin_unlock_irqrestore(&edmac->lock, flags);
856 	return cookie;
857 }
858 
859 /**
860  * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
861  * @chan: channel to allocate resources
862  *
863  * Function allocates necessary resources for the given DMA channel and
864  * returns number of allocated descriptors for the channel. Negative errno
865  * is returned in case of failure.
866  */
867 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
868 {
869 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
870 	struct ep93xx_dma_data *data = chan->private;
871 	const char *name = dma_chan_name(chan);
872 	int ret, i;
873 
874 	/* Sanity check the channel parameters */
875 	if (!edmac->edma->m2m) {
876 		if (!data)
877 			return -EINVAL;
878 		if (data->port < EP93XX_DMA_I2S1 ||
879 		    data->port > EP93XX_DMA_IRDA)
880 			return -EINVAL;
881 		if (data->direction != ep93xx_dma_chan_direction(chan))
882 			return -EINVAL;
883 	} else {
884 		if (data) {
885 			switch (data->port) {
886 			case EP93XX_DMA_SSP:
887 			case EP93XX_DMA_IDE:
888 				if (!is_slave_direction(data->direction))
889 					return -EINVAL;
890 				break;
891 			default:
892 				return -EINVAL;
893 			}
894 		}
895 	}
896 
897 	if (data && data->name)
898 		name = data->name;
899 
900 	ret = clk_prepare_enable(edmac->clk);
901 	if (ret)
902 		return ret;
903 
904 	ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
905 	if (ret)
906 		goto fail_clk_disable;
907 
908 	spin_lock_irq(&edmac->lock);
909 	dma_cookie_init(&edmac->chan);
910 	ret = edmac->edma->hw_setup(edmac);
911 	spin_unlock_irq(&edmac->lock);
912 
913 	if (ret)
914 		goto fail_free_irq;
915 
916 	for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
917 		struct ep93xx_dma_desc *desc;
918 
919 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
920 		if (!desc) {
921 			dev_warn(chan2dev(edmac), "not enough descriptors\n");
922 			break;
923 		}
924 
925 		INIT_LIST_HEAD(&desc->tx_list);
926 
927 		dma_async_tx_descriptor_init(&desc->txd, chan);
928 		desc->txd.flags = DMA_CTRL_ACK;
929 		desc->txd.tx_submit = ep93xx_dma_tx_submit;
930 
931 		ep93xx_dma_desc_put(edmac, desc);
932 	}
933 
934 	return i;
935 
936 fail_free_irq:
937 	free_irq(edmac->irq, edmac);
938 fail_clk_disable:
939 	clk_disable_unprepare(edmac->clk);
940 
941 	return ret;
942 }
943 
944 /**
945  * ep93xx_dma_free_chan_resources - release resources for the channel
946  * @chan: channel
947  *
948  * Function releases all the resources allocated for the given channel.
949  * The channel must be idle when this is called.
950  */
951 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
952 {
953 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
954 	struct ep93xx_dma_desc *desc, *d;
955 	unsigned long flags;
956 	LIST_HEAD(list);
957 
958 	BUG_ON(!list_empty(&edmac->active));
959 	BUG_ON(!list_empty(&edmac->queue));
960 
961 	spin_lock_irqsave(&edmac->lock, flags);
962 	edmac->edma->hw_shutdown(edmac);
963 	edmac->runtime_addr = 0;
964 	edmac->runtime_ctrl = 0;
965 	edmac->buffer = 0;
966 	list_splice_init(&edmac->free_list, &list);
967 	spin_unlock_irqrestore(&edmac->lock, flags);
968 
969 	list_for_each_entry_safe(desc, d, &list, node)
970 		kfree(desc);
971 
972 	clk_disable_unprepare(edmac->clk);
973 	free_irq(edmac->irq, edmac);
974 }
975 
976 /**
977  * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
978  * @chan: channel
979  * @dest: destination bus address
980  * @src: source bus address
981  * @len: size of the transaction
982  * @flags: flags for the descriptor
983  *
984  * Returns a valid DMA descriptor or %NULL in case of failure.
985  */
986 static struct dma_async_tx_descriptor *
987 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
988 			   dma_addr_t src, size_t len, unsigned long flags)
989 {
990 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
991 	struct ep93xx_dma_desc *desc, *first;
992 	size_t bytes, offset;
993 
994 	first = NULL;
995 	for (offset = 0; offset < len; offset += bytes) {
996 		desc = ep93xx_dma_desc_get(edmac);
997 		if (!desc) {
998 			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
999 			goto fail;
1000 		}
1001 
1002 		bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1003 
1004 		desc->src_addr = src + offset;
1005 		desc->dst_addr = dest + offset;
1006 		desc->size = bytes;
1007 
1008 		if (!first)
1009 			first = desc;
1010 		else
1011 			list_add_tail(&desc->node, &first->tx_list);
1012 	}
1013 
1014 	first->txd.cookie = -EBUSY;
1015 	first->txd.flags = flags;
1016 
1017 	return &first->txd;
1018 fail:
1019 	ep93xx_dma_desc_put(edmac, first);
1020 	return NULL;
1021 }
1022 
1023 /**
1024  * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1025  * @chan: channel
1026  * @sgl: list of buffers to transfer
1027  * @sg_len: number of entries in @sgl
1028  * @dir: direction of tha DMA transfer
1029  * @flags: flags for the descriptor
1030  * @context: operation context (ignored)
1031  *
1032  * Returns a valid DMA descriptor or %NULL in case of failure.
1033  */
1034 static struct dma_async_tx_descriptor *
1035 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1036 			 unsigned int sg_len, enum dma_transfer_direction dir,
1037 			 unsigned long flags, void *context)
1038 {
1039 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1040 	struct ep93xx_dma_desc *desc, *first;
1041 	struct scatterlist *sg;
1042 	int i;
1043 
1044 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1045 		dev_warn(chan2dev(edmac),
1046 			 "channel was configured with different direction\n");
1047 		return NULL;
1048 	}
1049 
1050 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1051 		dev_warn(chan2dev(edmac),
1052 			 "channel is already used for cyclic transfers\n");
1053 		return NULL;
1054 	}
1055 
1056 	ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1057 
1058 	first = NULL;
1059 	for_each_sg(sgl, sg, sg_len, i) {
1060 		size_t len = sg_dma_len(sg);
1061 
1062 		if (len > DMA_MAX_CHAN_BYTES) {
1063 			dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1064 				 len);
1065 			goto fail;
1066 		}
1067 
1068 		desc = ep93xx_dma_desc_get(edmac);
1069 		if (!desc) {
1070 			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1071 			goto fail;
1072 		}
1073 
1074 		if (dir == DMA_MEM_TO_DEV) {
1075 			desc->src_addr = sg_dma_address(sg);
1076 			desc->dst_addr = edmac->runtime_addr;
1077 		} else {
1078 			desc->src_addr = edmac->runtime_addr;
1079 			desc->dst_addr = sg_dma_address(sg);
1080 		}
1081 		desc->size = len;
1082 
1083 		if (!first)
1084 			first = desc;
1085 		else
1086 			list_add_tail(&desc->node, &first->tx_list);
1087 	}
1088 
1089 	first->txd.cookie = -EBUSY;
1090 	first->txd.flags = flags;
1091 
1092 	return &first->txd;
1093 
1094 fail:
1095 	ep93xx_dma_desc_put(edmac, first);
1096 	return NULL;
1097 }
1098 
1099 /**
1100  * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1101  * @chan: channel
1102  * @dma_addr: DMA mapped address of the buffer
1103  * @buf_len: length of the buffer (in bytes)
1104  * @period_len: length of a single period
1105  * @dir: direction of the operation
1106  * @flags: tx descriptor status flags
1107  *
1108  * Prepares a descriptor for cyclic DMA operation. This means that once the
1109  * descriptor is submitted, we will be submitting in a @period_len sized
1110  * buffers and calling callback once the period has been elapsed. Transfer
1111  * terminates only when client calls dmaengine_terminate_all() for this
1112  * channel.
1113  *
1114  * Returns a valid DMA descriptor or %NULL in case of failure.
1115  */
1116 static struct dma_async_tx_descriptor *
1117 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1118 			   size_t buf_len, size_t period_len,
1119 			   enum dma_transfer_direction dir, unsigned long flags)
1120 {
1121 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1122 	struct ep93xx_dma_desc *desc, *first;
1123 	size_t offset = 0;
1124 
1125 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1126 		dev_warn(chan2dev(edmac),
1127 			 "channel was configured with different direction\n");
1128 		return NULL;
1129 	}
1130 
1131 	if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1132 		dev_warn(chan2dev(edmac),
1133 			 "channel is already used for cyclic transfers\n");
1134 		return NULL;
1135 	}
1136 
1137 	if (period_len > DMA_MAX_CHAN_BYTES) {
1138 		dev_warn(chan2dev(edmac), "too big period length %zu\n",
1139 			 period_len);
1140 		return NULL;
1141 	}
1142 
1143 	ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1144 
1145 	/* Split the buffer into period size chunks */
1146 	first = NULL;
1147 	for (offset = 0; offset < buf_len; offset += period_len) {
1148 		desc = ep93xx_dma_desc_get(edmac);
1149 		if (!desc) {
1150 			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1151 			goto fail;
1152 		}
1153 
1154 		if (dir == DMA_MEM_TO_DEV) {
1155 			desc->src_addr = dma_addr + offset;
1156 			desc->dst_addr = edmac->runtime_addr;
1157 		} else {
1158 			desc->src_addr = edmac->runtime_addr;
1159 			desc->dst_addr = dma_addr + offset;
1160 		}
1161 
1162 		desc->size = period_len;
1163 
1164 		if (!first)
1165 			first = desc;
1166 		else
1167 			list_add_tail(&desc->node, &first->tx_list);
1168 	}
1169 
1170 	first->txd.cookie = -EBUSY;
1171 
1172 	return &first->txd;
1173 
1174 fail:
1175 	ep93xx_dma_desc_put(edmac, first);
1176 	return NULL;
1177 }
1178 
1179 /**
1180  * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1181  * current context.
1182  * @chan: channel
1183  *
1184  * Synchronizes the DMA channel termination to the current context. When this
1185  * function returns it is guaranteed that all transfers for previously issued
1186  * descriptors have stopped and it is safe to free the memory associated
1187  * with them. Furthermore it is guaranteed that all complete callback functions
1188  * for a previously submitted descriptor have finished running and it is safe to
1189  * free resources accessed from within the complete callbacks.
1190  */
1191 static void ep93xx_dma_synchronize(struct dma_chan *chan)
1192 {
1193 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1194 
1195 	if (edmac->edma->hw_synchronize)
1196 		edmac->edma->hw_synchronize(edmac);
1197 }
1198 
1199 /**
1200  * ep93xx_dma_terminate_all - terminate all transactions
1201  * @chan: channel
1202  *
1203  * Stops all DMA transactions. All descriptors are put back to the
1204  * @edmac->free_list and callbacks are _not_ called.
1205  */
1206 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1207 {
1208 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1209 	struct ep93xx_dma_desc *desc, *_d;
1210 	unsigned long flags;
1211 	LIST_HEAD(list);
1212 
1213 	spin_lock_irqsave(&edmac->lock, flags);
1214 	/* First we disable and flush the DMA channel */
1215 	edmac->edma->hw_shutdown(edmac);
1216 	clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1217 	list_splice_init(&edmac->active, &list);
1218 	list_splice_init(&edmac->queue, &list);
1219 	/*
1220 	 * We then re-enable the channel. This way we can continue submitting
1221 	 * the descriptors by just calling ->hw_submit() again.
1222 	 */
1223 	edmac->edma->hw_setup(edmac);
1224 	spin_unlock_irqrestore(&edmac->lock, flags);
1225 
1226 	list_for_each_entry_safe(desc, _d, &list, node)
1227 		ep93xx_dma_desc_put(edmac, desc);
1228 
1229 	return 0;
1230 }
1231 
1232 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1233 				   struct dma_slave_config *config)
1234 {
1235 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1236 
1237 	memcpy(&edmac->slave_config, config, sizeof(*config));
1238 
1239 	return 0;
1240 }
1241 
1242 static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
1243 					 enum dma_transfer_direction dir,
1244 					 struct dma_slave_config *config)
1245 {
1246 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1247 	enum dma_slave_buswidth width;
1248 	unsigned long flags;
1249 	u32 addr, ctrl;
1250 
1251 	if (!edmac->edma->m2m)
1252 		return -EINVAL;
1253 
1254 	switch (dir) {
1255 	case DMA_DEV_TO_MEM:
1256 		width = config->src_addr_width;
1257 		addr = config->src_addr;
1258 		break;
1259 
1260 	case DMA_MEM_TO_DEV:
1261 		width = config->dst_addr_width;
1262 		addr = config->dst_addr;
1263 		break;
1264 
1265 	default:
1266 		return -EINVAL;
1267 	}
1268 
1269 	switch (width) {
1270 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1271 		ctrl = 0;
1272 		break;
1273 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1274 		ctrl = M2M_CONTROL_PW_16;
1275 		break;
1276 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1277 		ctrl = M2M_CONTROL_PW_32;
1278 		break;
1279 	default:
1280 		return -EINVAL;
1281 	}
1282 
1283 	spin_lock_irqsave(&edmac->lock, flags);
1284 	edmac->runtime_addr = addr;
1285 	edmac->runtime_ctrl = ctrl;
1286 	spin_unlock_irqrestore(&edmac->lock, flags);
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * ep93xx_dma_tx_status - check if a transaction is completed
1293  * @chan: channel
1294  * @cookie: transaction specific cookie
1295  * @state: state of the transaction is stored here if given
1296  *
1297  * This function can be used to query state of a given transaction.
1298  */
1299 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1300 					    dma_cookie_t cookie,
1301 					    struct dma_tx_state *state)
1302 {
1303 	return dma_cookie_status(chan, cookie, state);
1304 }
1305 
1306 /**
1307  * ep93xx_dma_issue_pending - push pending transactions to the hardware
1308  * @chan: channel
1309  *
1310  * When this function is called, all pending transactions are pushed to the
1311  * hardware and executed.
1312  */
1313 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1314 {
1315 	ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1316 }
1317 
1318 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1319 {
1320 	struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1321 	struct ep93xx_dma_engine *edma;
1322 	struct dma_device *dma_dev;
1323 	int ret, i;
1324 
1325 	edma = kzalloc(struct_size(edma, channels, pdata->num_channels), GFP_KERNEL);
1326 	if (!edma)
1327 		return -ENOMEM;
1328 
1329 	dma_dev = &edma->dma_dev;
1330 	edma->m2m = platform_get_device_id(pdev)->driver_data;
1331 	edma->num_channels = pdata->num_channels;
1332 
1333 	INIT_LIST_HEAD(&dma_dev->channels);
1334 	for (i = 0; i < pdata->num_channels; i++) {
1335 		const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1336 		struct ep93xx_dma_chan *edmac = &edma->channels[i];
1337 
1338 		edmac->chan.device = dma_dev;
1339 		edmac->regs = cdata->base;
1340 		edmac->irq = cdata->irq;
1341 		edmac->edma = edma;
1342 
1343 		edmac->clk = clk_get(NULL, cdata->name);
1344 		if (IS_ERR(edmac->clk)) {
1345 			dev_warn(&pdev->dev, "failed to get clock for %s\n",
1346 				 cdata->name);
1347 			continue;
1348 		}
1349 
1350 		spin_lock_init(&edmac->lock);
1351 		INIT_LIST_HEAD(&edmac->active);
1352 		INIT_LIST_HEAD(&edmac->queue);
1353 		INIT_LIST_HEAD(&edmac->free_list);
1354 		tasklet_setup(&edmac->tasklet, ep93xx_dma_tasklet);
1355 
1356 		list_add_tail(&edmac->chan.device_node,
1357 			      &dma_dev->channels);
1358 	}
1359 
1360 	dma_cap_zero(dma_dev->cap_mask);
1361 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1362 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1363 
1364 	dma_dev->dev = &pdev->dev;
1365 	dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1366 	dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1367 	dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1368 	dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1369 	dma_dev->device_config = ep93xx_dma_slave_config;
1370 	dma_dev->device_synchronize = ep93xx_dma_synchronize;
1371 	dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1372 	dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1373 	dma_dev->device_tx_status = ep93xx_dma_tx_status;
1374 
1375 	dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1376 
1377 	if (edma->m2m) {
1378 		dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1379 		dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1380 
1381 		edma->hw_setup = m2m_hw_setup;
1382 		edma->hw_shutdown = m2m_hw_shutdown;
1383 		edma->hw_submit = m2m_hw_submit;
1384 		edma->hw_interrupt = m2m_hw_interrupt;
1385 	} else {
1386 		dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1387 
1388 		edma->hw_synchronize = m2p_hw_synchronize;
1389 		edma->hw_setup = m2p_hw_setup;
1390 		edma->hw_shutdown = m2p_hw_shutdown;
1391 		edma->hw_submit = m2p_hw_submit;
1392 		edma->hw_interrupt = m2p_hw_interrupt;
1393 	}
1394 
1395 	ret = dma_async_device_register(dma_dev);
1396 	if (unlikely(ret)) {
1397 		for (i = 0; i < edma->num_channels; i++) {
1398 			struct ep93xx_dma_chan *edmac = &edma->channels[i];
1399 			if (!IS_ERR_OR_NULL(edmac->clk))
1400 				clk_put(edmac->clk);
1401 		}
1402 		kfree(edma);
1403 	} else {
1404 		dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1405 			 edma->m2m ? "M" : "P");
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1412 	{ "ep93xx-dma-m2p", 0 },
1413 	{ "ep93xx-dma-m2m", 1 },
1414 	{ },
1415 };
1416 
1417 static struct platform_driver ep93xx_dma_driver = {
1418 	.driver		= {
1419 		.name	= "ep93xx-dma",
1420 	},
1421 	.id_table	= ep93xx_dma_driver_ids,
1422 };
1423 
1424 static int __init ep93xx_dma_module_init(void)
1425 {
1426 	return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1427 }
1428 subsys_initcall(ep93xx_dma_module_init);
1429 
1430 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1431 MODULE_DESCRIPTION("EP93xx DMA driver");
1432