1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Cirrus Logic EP93xx DMA Controller 4 * 5 * Copyright (C) 2011 Mika Westerberg 6 * 7 * DMA M2P implementation is based on the original 8 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights: 9 * 10 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org> 11 * Copyright (C) 2006 Applied Data Systems 12 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com> 13 * 14 * This driver is based on dw_dmac and amba-pl08x drivers. 15 */ 16 17 #include <linux/clk.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmaengine.h> 22 #include <linux/module.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/of_dma.h> 25 #include <linux/overflow.h> 26 #include <linux/platform_device.h> 27 #include <linux/slab.h> 28 29 #include "dmaengine.h" 30 31 /* M2P registers */ 32 #define M2P_CONTROL 0x0000 33 #define M2P_CONTROL_STALLINT BIT(0) 34 #define M2P_CONTROL_NFBINT BIT(1) 35 #define M2P_CONTROL_CH_ERROR_INT BIT(3) 36 #define M2P_CONTROL_ENABLE BIT(4) 37 #define M2P_CONTROL_ICE BIT(6) 38 39 #define M2P_INTERRUPT 0x0004 40 #define M2P_INTERRUPT_STALL BIT(0) 41 #define M2P_INTERRUPT_NFB BIT(1) 42 #define M2P_INTERRUPT_ERROR BIT(3) 43 44 #define M2P_PPALLOC 0x0008 45 #define M2P_STATUS 0x000c 46 47 #define M2P_MAXCNT0 0x0020 48 #define M2P_BASE0 0x0024 49 #define M2P_MAXCNT1 0x0030 50 #define M2P_BASE1 0x0034 51 52 #define M2P_STATE_IDLE 0 53 #define M2P_STATE_STALL 1 54 #define M2P_STATE_ON 2 55 #define M2P_STATE_NEXT 3 56 57 /* M2M registers */ 58 #define M2M_CONTROL 0x0000 59 #define M2M_CONTROL_DONEINT BIT(2) 60 #define M2M_CONTROL_ENABLE BIT(3) 61 #define M2M_CONTROL_START BIT(4) 62 #define M2M_CONTROL_DAH BIT(11) 63 #define M2M_CONTROL_SAH BIT(12) 64 #define M2M_CONTROL_PW_SHIFT 9 65 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT) 66 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT) 67 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT) 68 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT) 69 #define M2M_CONTROL_TM_SHIFT 13 70 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT) 71 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT) 72 #define M2M_CONTROL_NFBINT BIT(21) 73 #define M2M_CONTROL_RSS_SHIFT 22 74 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT) 75 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT) 76 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT) 77 #define M2M_CONTROL_NO_HDSK BIT(24) 78 #define M2M_CONTROL_PWSC_SHIFT 25 79 80 #define M2M_INTERRUPT 0x0004 81 #define M2M_INTERRUPT_MASK 6 82 83 #define M2M_STATUS 0x000c 84 #define M2M_STATUS_CTL_SHIFT 1 85 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT) 86 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT) 87 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT) 88 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT) 89 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT) 90 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT) 91 #define M2M_STATUS_BUF_SHIFT 4 92 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT) 93 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT) 94 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT) 95 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT) 96 #define M2M_STATUS_DONE BIT(6) 97 98 #define M2M_BCR0 0x0010 99 #define M2M_BCR1 0x0014 100 #define M2M_SAR_BASE0 0x0018 101 #define M2M_SAR_BASE1 0x001c 102 #define M2M_DAR_BASE0 0x002c 103 #define M2M_DAR_BASE1 0x0030 104 105 #define DMA_MAX_CHAN_BYTES 0xffff 106 #define DMA_MAX_CHAN_DESCRIPTORS 32 107 108 /* 109 * M2P channels. 110 * 111 * Note that these values are also directly used for setting the PPALLOC 112 * register. 113 */ 114 #define EP93XX_DMA_I2S1 0 115 #define EP93XX_DMA_I2S2 1 116 #define EP93XX_DMA_AAC1 2 117 #define EP93XX_DMA_AAC2 3 118 #define EP93XX_DMA_AAC3 4 119 #define EP93XX_DMA_I2S3 5 120 #define EP93XX_DMA_UART1 6 121 #define EP93XX_DMA_UART2 7 122 #define EP93XX_DMA_UART3 8 123 #define EP93XX_DMA_IRDA 9 124 /* M2M channels */ 125 #define EP93XX_DMA_SSP 10 126 #define EP93XX_DMA_IDE 11 127 128 enum ep93xx_dma_type { 129 M2P_DMA, 130 M2M_DMA, 131 }; 132 133 struct ep93xx_dma_engine; 134 static int ep93xx_dma_slave_config_write(struct dma_chan *chan, 135 enum dma_transfer_direction dir, 136 struct dma_slave_config *config); 137 138 /** 139 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor 140 * @src_addr: source address of the transaction 141 * @dst_addr: destination address of the transaction 142 * @size: size of the transaction (in bytes) 143 * @complete: this descriptor is completed 144 * @txd: dmaengine API descriptor 145 * @tx_list: list of linked descriptors 146 * @node: link used for putting this into a channel queue 147 */ 148 struct ep93xx_dma_desc { 149 u32 src_addr; 150 u32 dst_addr; 151 size_t size; 152 bool complete; 153 struct dma_async_tx_descriptor txd; 154 struct list_head tx_list; 155 struct list_head node; 156 }; 157 158 struct ep93xx_dma_chan_cfg { 159 u8 port; 160 enum dma_transfer_direction dir; 161 }; 162 163 /** 164 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel 165 * @chan: dmaengine API channel 166 * @edma: pointer to the engine device 167 * @regs: memory mapped registers 168 * @dma_cfg: channel number, direction 169 * @irq: interrupt number of the channel 170 * @clk: clock used by this channel 171 * @tasklet: channel specific tasklet used for callbacks 172 * @lock: lock protecting the fields following 173 * @flags: flags for the channel 174 * @buffer: which buffer to use next (0/1) 175 * @active: flattened chain of descriptors currently being processed 176 * @queue: pending descriptors which are handled next 177 * @free_list: list of free descriptors which can be used 178 * @runtime_addr: physical address currently used as dest/src (M2M only). This 179 * is set via .device_config before slave operation is 180 * prepared 181 * @runtime_ctrl: M2M runtime values for the control register. 182 * @slave_config: slave configuration 183 * 184 * As EP93xx DMA controller doesn't support real chained DMA descriptors we 185 * will have slightly different scheme here: @active points to a head of 186 * flattened DMA descriptor chain. 187 * 188 * @queue holds pending transactions. These are linked through the first 189 * descriptor in the chain. When a descriptor is moved to the @active queue, 190 * the first and chained descriptors are flattened into a single list. 191 * 192 */ 193 struct ep93xx_dma_chan { 194 struct dma_chan chan; 195 const struct ep93xx_dma_engine *edma; 196 void __iomem *regs; 197 struct ep93xx_dma_chan_cfg dma_cfg; 198 int irq; 199 struct clk *clk; 200 struct tasklet_struct tasklet; 201 /* protects the fields following */ 202 spinlock_t lock; 203 unsigned long flags; 204 /* Channel is configured for cyclic transfers */ 205 #define EP93XX_DMA_IS_CYCLIC 0 206 207 int buffer; 208 struct list_head active; 209 struct list_head queue; 210 struct list_head free_list; 211 u32 runtime_addr; 212 u32 runtime_ctrl; 213 struct dma_slave_config slave_config; 214 }; 215 216 /** 217 * struct ep93xx_dma_engine - the EP93xx DMA engine instance 218 * @dma_dev: holds the dmaengine device 219 * @m2m: is this an M2M or M2P device 220 * @hw_setup: method which sets the channel up for operation 221 * @hw_synchronize: synchronizes DMA channel termination to current context 222 * @hw_shutdown: shuts the channel down and flushes whatever is left 223 * @hw_submit: pushes active descriptor(s) to the hardware 224 * @hw_interrupt: handle the interrupt 225 * @num_channels: number of channels for this instance 226 * @channels: array of channels 227 * 228 * There is one instance of this struct for the M2P channels and one for the 229 * M2M channels. hw_xxx() methods are used to perform operations which are 230 * different on M2M and M2P channels. These methods are called with channel 231 * lock held and interrupts disabled so they cannot sleep. 232 */ 233 struct ep93xx_dma_engine { 234 struct dma_device dma_dev; 235 bool m2m; 236 int (*hw_setup)(struct ep93xx_dma_chan *); 237 void (*hw_synchronize)(struct ep93xx_dma_chan *); 238 void (*hw_shutdown)(struct ep93xx_dma_chan *); 239 void (*hw_submit)(struct ep93xx_dma_chan *); 240 int (*hw_interrupt)(struct ep93xx_dma_chan *); 241 #define INTERRUPT_UNKNOWN 0 242 #define INTERRUPT_DONE 1 243 #define INTERRUPT_NEXT_BUFFER 2 244 245 size_t num_channels; 246 struct ep93xx_dma_chan channels[] __counted_by(num_channels); 247 }; 248 249 struct ep93xx_edma_data { 250 u32 id; 251 size_t num_channels; 252 }; 253 254 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac) 255 { 256 return &edmac->chan.dev->device; 257 } 258 259 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan) 260 { 261 return container_of(chan, struct ep93xx_dma_chan, chan); 262 } 263 264 static inline bool ep93xx_dma_chan_is_m2p(struct dma_chan *chan) 265 { 266 if (device_is_compatible(chan->device->dev, "cirrus,ep9301-dma-m2p")) 267 return true; 268 269 return !strcmp(dev_name(chan->device->dev), "ep93xx-dma-m2p"); 270 } 271 272 /* 273 * ep93xx_dma_chan_direction - returns direction the channel can be used 274 * 275 * This function can be used in filter functions to find out whether the 276 * channel supports given DMA direction. Only M2P channels have such 277 * limitation, for M2M channels the direction is configurable. 278 */ 279 static inline enum dma_transfer_direction 280 ep93xx_dma_chan_direction(struct dma_chan *chan) 281 { 282 if (!ep93xx_dma_chan_is_m2p(chan)) 283 return DMA_TRANS_NONE; 284 285 /* even channels are for TX, odd for RX */ 286 return (chan->chan_id % 2 == 0) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; 287 } 288 289 /** 290 * ep93xx_dma_set_active - set new active descriptor chain 291 * @edmac: channel 292 * @desc: head of the new active descriptor chain 293 * 294 * Sets @desc to be the head of the new active descriptor chain. This is the 295 * chain which is processed next. The active list must be empty before calling 296 * this function. 297 * 298 * Called with @edmac->lock held and interrupts disabled. 299 */ 300 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac, 301 struct ep93xx_dma_desc *desc) 302 { 303 BUG_ON(!list_empty(&edmac->active)); 304 305 list_add_tail(&desc->node, &edmac->active); 306 307 /* Flatten the @desc->tx_list chain into @edmac->active list */ 308 while (!list_empty(&desc->tx_list)) { 309 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list, 310 struct ep93xx_dma_desc, node); 311 312 /* 313 * We copy the callback parameters from the first descriptor 314 * to all the chained descriptors. This way we can call the 315 * callback without having to find out the first descriptor in 316 * the chain. Useful for cyclic transfers. 317 */ 318 d->txd.callback = desc->txd.callback; 319 d->txd.callback_param = desc->txd.callback_param; 320 321 list_move_tail(&d->node, &edmac->active); 322 } 323 } 324 325 /* Called with @edmac->lock held and interrupts disabled */ 326 static struct ep93xx_dma_desc * 327 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac) 328 { 329 return list_first_entry_or_null(&edmac->active, 330 struct ep93xx_dma_desc, node); 331 } 332 333 /** 334 * ep93xx_dma_advance_active - advances to the next active descriptor 335 * @edmac: channel 336 * 337 * Function advances active descriptor to the next in the @edmac->active and 338 * returns %true if we still have descriptors in the chain to process. 339 * Otherwise returns %false. 340 * 341 * When the channel is in cyclic mode always returns %true. 342 * 343 * Called with @edmac->lock held and interrupts disabled. 344 */ 345 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac) 346 { 347 struct ep93xx_dma_desc *desc; 348 349 list_rotate_left(&edmac->active); 350 351 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) 352 return true; 353 354 desc = ep93xx_dma_get_active(edmac); 355 if (!desc) 356 return false; 357 358 /* 359 * If txd.cookie is set it means that we are back in the first 360 * descriptor in the chain and hence done with it. 361 */ 362 return !desc->txd.cookie; 363 } 364 365 /* 366 * M2P DMA implementation 367 */ 368 369 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control) 370 { 371 writel(control, edmac->regs + M2P_CONTROL); 372 /* 373 * EP93xx User's Guide states that we must perform a dummy read after 374 * write to the control register. 375 */ 376 readl(edmac->regs + M2P_CONTROL); 377 } 378 379 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac) 380 { 381 u32 control; 382 383 writel(edmac->dma_cfg.port & 0xf, edmac->regs + M2P_PPALLOC); 384 385 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE 386 | M2P_CONTROL_ENABLE; 387 m2p_set_control(edmac, control); 388 389 edmac->buffer = 0; 390 391 return 0; 392 } 393 394 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac) 395 { 396 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3; 397 } 398 399 static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac) 400 { 401 unsigned long flags; 402 u32 control; 403 404 spin_lock_irqsave(&edmac->lock, flags); 405 control = readl(edmac->regs + M2P_CONTROL); 406 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT); 407 m2p_set_control(edmac, control); 408 spin_unlock_irqrestore(&edmac->lock, flags); 409 410 while (m2p_channel_state(edmac) >= M2P_STATE_ON) 411 schedule(); 412 } 413 414 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac) 415 { 416 m2p_set_control(edmac, 0); 417 418 while (m2p_channel_state(edmac) != M2P_STATE_IDLE) 419 dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n"); 420 } 421 422 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac) 423 { 424 struct ep93xx_dma_desc *desc; 425 u32 bus_addr; 426 427 desc = ep93xx_dma_get_active(edmac); 428 if (!desc) { 429 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n"); 430 return; 431 } 432 433 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV) 434 bus_addr = desc->src_addr; 435 else 436 bus_addr = desc->dst_addr; 437 438 if (edmac->buffer == 0) { 439 writel(desc->size, edmac->regs + M2P_MAXCNT0); 440 writel(bus_addr, edmac->regs + M2P_BASE0); 441 } else { 442 writel(desc->size, edmac->regs + M2P_MAXCNT1); 443 writel(bus_addr, edmac->regs + M2P_BASE1); 444 } 445 446 edmac->buffer ^= 1; 447 } 448 449 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac) 450 { 451 u32 control = readl(edmac->regs + M2P_CONTROL); 452 453 m2p_fill_desc(edmac); 454 control |= M2P_CONTROL_STALLINT; 455 456 if (ep93xx_dma_advance_active(edmac)) { 457 m2p_fill_desc(edmac); 458 control |= M2P_CONTROL_NFBINT; 459 } 460 461 m2p_set_control(edmac, control); 462 } 463 464 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac) 465 { 466 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT); 467 u32 control; 468 469 if (irq_status & M2P_INTERRUPT_ERROR) { 470 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac); 471 472 /* Clear the error interrupt */ 473 writel(1, edmac->regs + M2P_INTERRUPT); 474 475 /* 476 * It seems that there is no easy way of reporting errors back 477 * to client so we just report the error here and continue as 478 * usual. 479 * 480 * Revisit this when there is a mechanism to report back the 481 * errors. 482 */ 483 dev_err(chan2dev(edmac), 484 "DMA transfer failed! Details:\n" 485 "\tcookie : %d\n" 486 "\tsrc_addr : 0x%08x\n" 487 "\tdst_addr : 0x%08x\n" 488 "\tsize : %zu\n", 489 desc->txd.cookie, desc->src_addr, desc->dst_addr, 490 desc->size); 491 } 492 493 /* 494 * Even latest E2 silicon revision sometimes assert STALL interrupt 495 * instead of NFB. Therefore we treat them equally, basing on the 496 * amount of data we still have to transfer. 497 */ 498 if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB))) 499 return INTERRUPT_UNKNOWN; 500 501 if (ep93xx_dma_advance_active(edmac)) { 502 m2p_fill_desc(edmac); 503 return INTERRUPT_NEXT_BUFFER; 504 } 505 506 /* Disable interrupts */ 507 control = readl(edmac->regs + M2P_CONTROL); 508 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT); 509 m2p_set_control(edmac, control); 510 511 return INTERRUPT_DONE; 512 } 513 514 /* 515 * M2M DMA implementation 516 */ 517 518 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac) 519 { 520 u32 control = 0; 521 522 if (edmac->dma_cfg.dir == DMA_MEM_TO_MEM) { 523 /* This is memcpy channel, nothing to configure */ 524 writel(control, edmac->regs + M2M_CONTROL); 525 return 0; 526 } 527 528 switch (edmac->dma_cfg.port) { 529 case EP93XX_DMA_SSP: 530 /* 531 * This was found via experimenting - anything less than 5 532 * causes the channel to perform only a partial transfer which 533 * leads to problems since we don't get DONE interrupt then. 534 */ 535 control = (5 << M2M_CONTROL_PWSC_SHIFT); 536 control |= M2M_CONTROL_NO_HDSK; 537 538 if (edmac->dma_cfg.dir == DMA_MEM_TO_DEV) { 539 control |= M2M_CONTROL_DAH; 540 control |= M2M_CONTROL_TM_TX; 541 control |= M2M_CONTROL_RSS_SSPTX; 542 } else { 543 control |= M2M_CONTROL_SAH; 544 control |= M2M_CONTROL_TM_RX; 545 control |= M2M_CONTROL_RSS_SSPRX; 546 } 547 break; 548 549 case EP93XX_DMA_IDE: 550 /* 551 * This IDE part is totally untested. Values below are taken 552 * from the EP93xx Users's Guide and might not be correct. 553 */ 554 if (edmac->dma_cfg.dir == DMA_MEM_TO_DEV) { 555 /* Worst case from the UG */ 556 control = (3 << M2M_CONTROL_PWSC_SHIFT); 557 control |= M2M_CONTROL_DAH; 558 control |= M2M_CONTROL_TM_TX; 559 } else { 560 control = (2 << M2M_CONTROL_PWSC_SHIFT); 561 control |= M2M_CONTROL_SAH; 562 control |= M2M_CONTROL_TM_RX; 563 } 564 565 control |= M2M_CONTROL_NO_HDSK; 566 control |= M2M_CONTROL_RSS_IDE; 567 control |= M2M_CONTROL_PW_16; 568 break; 569 570 default: 571 return -EINVAL; 572 } 573 574 writel(control, edmac->regs + M2M_CONTROL); 575 return 0; 576 } 577 578 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac) 579 { 580 /* Just disable the channel */ 581 writel(0, edmac->regs + M2M_CONTROL); 582 } 583 584 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac) 585 { 586 struct ep93xx_dma_desc *desc; 587 588 desc = ep93xx_dma_get_active(edmac); 589 if (!desc) { 590 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n"); 591 return; 592 } 593 594 if (edmac->buffer == 0) { 595 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0); 596 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0); 597 writel(desc->size, edmac->regs + M2M_BCR0); 598 } else { 599 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1); 600 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1); 601 writel(desc->size, edmac->regs + M2M_BCR1); 602 } 603 604 edmac->buffer ^= 1; 605 } 606 607 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac) 608 { 609 u32 control = readl(edmac->regs + M2M_CONTROL); 610 611 /* 612 * Since we allow clients to configure PW (peripheral width) we always 613 * clear PW bits here and then set them according what is given in 614 * the runtime configuration. 615 */ 616 control &= ~M2M_CONTROL_PW_MASK; 617 control |= edmac->runtime_ctrl; 618 619 m2m_fill_desc(edmac); 620 control |= M2M_CONTROL_DONEINT; 621 622 if (ep93xx_dma_advance_active(edmac)) { 623 m2m_fill_desc(edmac); 624 control |= M2M_CONTROL_NFBINT; 625 } 626 627 /* 628 * Now we can finally enable the channel. For M2M channel this must be 629 * done _after_ the BCRx registers are programmed. 630 */ 631 control |= M2M_CONTROL_ENABLE; 632 writel(control, edmac->regs + M2M_CONTROL); 633 634 if (edmac->dma_cfg.dir == DMA_MEM_TO_MEM) { 635 /* 636 * For memcpy channels the software trigger must be asserted 637 * in order to start the memcpy operation. 638 */ 639 control |= M2M_CONTROL_START; 640 writel(control, edmac->regs + M2M_CONTROL); 641 } 642 } 643 644 /* 645 * According to EP93xx User's Guide, we should receive DONE interrupt when all 646 * M2M DMA controller transactions complete normally. This is not always the 647 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel 648 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel 649 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation). 650 * In effect, disabling the channel when only DONE bit is set could stop 651 * currently running DMA transfer. To avoid this, we use Buffer FSM and 652 * Control FSM to check current state of DMA channel. 653 */ 654 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac) 655 { 656 u32 status = readl(edmac->regs + M2M_STATUS); 657 u32 ctl_fsm = status & M2M_STATUS_CTL_MASK; 658 u32 buf_fsm = status & M2M_STATUS_BUF_MASK; 659 bool done = status & M2M_STATUS_DONE; 660 bool last_done; 661 u32 control; 662 struct ep93xx_dma_desc *desc; 663 664 /* Accept only DONE and NFB interrupts */ 665 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK)) 666 return INTERRUPT_UNKNOWN; 667 668 if (done) { 669 /* Clear the DONE bit */ 670 writel(0, edmac->regs + M2M_INTERRUPT); 671 } 672 673 /* 674 * Check whether we are done with descriptors or not. This, together 675 * with DMA channel state, determines action to take in interrupt. 676 */ 677 desc = ep93xx_dma_get_active(edmac); 678 last_done = !desc || desc->txd.cookie; 679 680 /* 681 * Use M2M DMA Buffer FSM and Control FSM to check current state of 682 * DMA channel. Using DONE and NFB bits from channel status register 683 * or bits from channel interrupt register is not reliable. 684 */ 685 if (!last_done && 686 (buf_fsm == M2M_STATUS_BUF_NO || 687 buf_fsm == M2M_STATUS_BUF_ON)) { 688 /* 689 * Two buffers are ready for update when Buffer FSM is in 690 * DMA_NO_BUF state. Only one buffer can be prepared without 691 * disabling the channel or polling the DONE bit. 692 * To simplify things, always prepare only one buffer. 693 */ 694 if (ep93xx_dma_advance_active(edmac)) { 695 m2m_fill_desc(edmac); 696 if (done && edmac->dma_cfg.dir == DMA_MEM_TO_MEM) { 697 /* Software trigger for memcpy channel */ 698 control = readl(edmac->regs + M2M_CONTROL); 699 control |= M2M_CONTROL_START; 700 writel(control, edmac->regs + M2M_CONTROL); 701 } 702 return INTERRUPT_NEXT_BUFFER; 703 } else { 704 last_done = true; 705 } 706 } 707 708 /* 709 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state 710 * and Control FSM is in DMA_STALL state. 711 */ 712 if (last_done && 713 buf_fsm == M2M_STATUS_BUF_NO && 714 ctl_fsm == M2M_STATUS_CTL_STALL) { 715 /* Disable interrupts and the channel */ 716 control = readl(edmac->regs + M2M_CONTROL); 717 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT 718 | M2M_CONTROL_ENABLE); 719 writel(control, edmac->regs + M2M_CONTROL); 720 return INTERRUPT_DONE; 721 } 722 723 /* 724 * Nothing to do this time. 725 */ 726 return INTERRUPT_NEXT_BUFFER; 727 } 728 729 /* 730 * DMA engine API implementation 731 */ 732 733 static struct ep93xx_dma_desc * 734 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac) 735 { 736 struct ep93xx_dma_desc *desc, *_desc; 737 struct ep93xx_dma_desc *ret = NULL; 738 unsigned long flags; 739 740 spin_lock_irqsave(&edmac->lock, flags); 741 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) { 742 if (async_tx_test_ack(&desc->txd)) { 743 list_del_init(&desc->node); 744 745 /* Re-initialize the descriptor */ 746 desc->src_addr = 0; 747 desc->dst_addr = 0; 748 desc->size = 0; 749 desc->complete = false; 750 desc->txd.cookie = 0; 751 desc->txd.callback = NULL; 752 desc->txd.callback_param = NULL; 753 754 ret = desc; 755 break; 756 } 757 } 758 spin_unlock_irqrestore(&edmac->lock, flags); 759 return ret; 760 } 761 762 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac, 763 struct ep93xx_dma_desc *desc) 764 { 765 if (desc) { 766 unsigned long flags; 767 768 spin_lock_irqsave(&edmac->lock, flags); 769 list_splice_init(&desc->tx_list, &edmac->free_list); 770 list_add(&desc->node, &edmac->free_list); 771 spin_unlock_irqrestore(&edmac->lock, flags); 772 } 773 } 774 775 /** 776 * ep93xx_dma_advance_work - start processing the next pending transaction 777 * @edmac: channel 778 * 779 * If we have pending transactions queued and we are currently idling, this 780 * function takes the next queued transaction from the @edmac->queue and 781 * pushes it to the hardware for execution. 782 */ 783 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac) 784 { 785 struct ep93xx_dma_desc *new; 786 unsigned long flags; 787 788 spin_lock_irqsave(&edmac->lock, flags); 789 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) { 790 spin_unlock_irqrestore(&edmac->lock, flags); 791 return; 792 } 793 794 /* Take the next descriptor from the pending queue */ 795 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node); 796 list_del_init(&new->node); 797 798 ep93xx_dma_set_active(edmac, new); 799 800 /* Push it to the hardware */ 801 edmac->edma->hw_submit(edmac); 802 spin_unlock_irqrestore(&edmac->lock, flags); 803 } 804 805 static void ep93xx_dma_tasklet(struct tasklet_struct *t) 806 { 807 struct ep93xx_dma_chan *edmac = from_tasklet(edmac, t, tasklet); 808 struct ep93xx_dma_desc *desc, *d; 809 struct dmaengine_desc_callback cb; 810 LIST_HEAD(list); 811 812 memset(&cb, 0, sizeof(cb)); 813 spin_lock_irq(&edmac->lock); 814 /* 815 * If dma_terminate_all() was called before we get to run, the active 816 * list has become empty. If that happens we aren't supposed to do 817 * anything more than call ep93xx_dma_advance_work(). 818 */ 819 desc = ep93xx_dma_get_active(edmac); 820 if (desc) { 821 if (desc->complete) { 822 /* mark descriptor complete for non cyclic case only */ 823 if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) 824 dma_cookie_complete(&desc->txd); 825 list_splice_init(&edmac->active, &list); 826 } 827 dmaengine_desc_get_callback(&desc->txd, &cb); 828 } 829 spin_unlock_irq(&edmac->lock); 830 831 /* Pick up the next descriptor from the queue */ 832 ep93xx_dma_advance_work(edmac); 833 834 /* Now we can release all the chained descriptors */ 835 list_for_each_entry_safe(desc, d, &list, node) { 836 dma_descriptor_unmap(&desc->txd); 837 ep93xx_dma_desc_put(edmac, desc); 838 } 839 840 dmaengine_desc_callback_invoke(&cb, NULL); 841 } 842 843 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id) 844 { 845 struct ep93xx_dma_chan *edmac = dev_id; 846 struct ep93xx_dma_desc *desc; 847 irqreturn_t ret = IRQ_HANDLED; 848 849 spin_lock(&edmac->lock); 850 851 desc = ep93xx_dma_get_active(edmac); 852 if (!desc) { 853 dev_warn(chan2dev(edmac), 854 "got interrupt while active list is empty\n"); 855 spin_unlock(&edmac->lock); 856 return IRQ_NONE; 857 } 858 859 switch (edmac->edma->hw_interrupt(edmac)) { 860 case INTERRUPT_DONE: 861 desc->complete = true; 862 tasklet_schedule(&edmac->tasklet); 863 break; 864 865 case INTERRUPT_NEXT_BUFFER: 866 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) 867 tasklet_schedule(&edmac->tasklet); 868 break; 869 870 default: 871 dev_warn(chan2dev(edmac), "unknown interrupt!\n"); 872 ret = IRQ_NONE; 873 break; 874 } 875 876 spin_unlock(&edmac->lock); 877 return ret; 878 } 879 880 /** 881 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed 882 * @tx: descriptor to be executed 883 * 884 * Function will execute given descriptor on the hardware or if the hardware 885 * is busy, queue the descriptor to be executed later on. Returns cookie which 886 * can be used to poll the status of the descriptor. 887 */ 888 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx) 889 { 890 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan); 891 struct ep93xx_dma_desc *desc; 892 dma_cookie_t cookie; 893 unsigned long flags; 894 895 spin_lock_irqsave(&edmac->lock, flags); 896 cookie = dma_cookie_assign(tx); 897 898 desc = container_of(tx, struct ep93xx_dma_desc, txd); 899 900 /* 901 * If nothing is currently processed, we push this descriptor 902 * directly to the hardware. Otherwise we put the descriptor 903 * to the pending queue. 904 */ 905 if (list_empty(&edmac->active)) { 906 ep93xx_dma_set_active(edmac, desc); 907 edmac->edma->hw_submit(edmac); 908 } else { 909 list_add_tail(&desc->node, &edmac->queue); 910 } 911 912 spin_unlock_irqrestore(&edmac->lock, flags); 913 return cookie; 914 } 915 916 /** 917 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel 918 * @chan: channel to allocate resources 919 * 920 * Function allocates necessary resources for the given DMA channel and 921 * returns number of allocated descriptors for the channel. Negative errno 922 * is returned in case of failure. 923 */ 924 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan) 925 { 926 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 927 const char *name = dma_chan_name(chan); 928 int ret, i; 929 930 /* Sanity check the channel parameters */ 931 if (!edmac->edma->m2m) { 932 if (edmac->dma_cfg.port > EP93XX_DMA_IRDA) 933 return -EINVAL; 934 if (edmac->dma_cfg.dir != ep93xx_dma_chan_direction(chan)) 935 return -EINVAL; 936 } else { 937 if (edmac->dma_cfg.dir != DMA_MEM_TO_MEM) { 938 switch (edmac->dma_cfg.port) { 939 case EP93XX_DMA_SSP: 940 case EP93XX_DMA_IDE: 941 if (!is_slave_direction(edmac->dma_cfg.dir)) 942 return -EINVAL; 943 break; 944 default: 945 return -EINVAL; 946 } 947 } 948 } 949 950 ret = clk_prepare_enable(edmac->clk); 951 if (ret) 952 return ret; 953 954 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac); 955 if (ret) 956 goto fail_clk_disable; 957 958 spin_lock_irq(&edmac->lock); 959 dma_cookie_init(&edmac->chan); 960 ret = edmac->edma->hw_setup(edmac); 961 spin_unlock_irq(&edmac->lock); 962 963 if (ret) 964 goto fail_free_irq; 965 966 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) { 967 struct ep93xx_dma_desc *desc; 968 969 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 970 if (!desc) { 971 dev_warn(chan2dev(edmac), "not enough descriptors\n"); 972 break; 973 } 974 975 INIT_LIST_HEAD(&desc->tx_list); 976 977 dma_async_tx_descriptor_init(&desc->txd, chan); 978 desc->txd.flags = DMA_CTRL_ACK; 979 desc->txd.tx_submit = ep93xx_dma_tx_submit; 980 981 ep93xx_dma_desc_put(edmac, desc); 982 } 983 984 return i; 985 986 fail_free_irq: 987 free_irq(edmac->irq, edmac); 988 fail_clk_disable: 989 clk_disable_unprepare(edmac->clk); 990 991 return ret; 992 } 993 994 /** 995 * ep93xx_dma_free_chan_resources - release resources for the channel 996 * @chan: channel 997 * 998 * Function releases all the resources allocated for the given channel. 999 * The channel must be idle when this is called. 1000 */ 1001 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan) 1002 { 1003 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1004 struct ep93xx_dma_desc *desc, *d; 1005 unsigned long flags; 1006 LIST_HEAD(list); 1007 1008 BUG_ON(!list_empty(&edmac->active)); 1009 BUG_ON(!list_empty(&edmac->queue)); 1010 1011 spin_lock_irqsave(&edmac->lock, flags); 1012 edmac->edma->hw_shutdown(edmac); 1013 edmac->runtime_addr = 0; 1014 edmac->runtime_ctrl = 0; 1015 edmac->buffer = 0; 1016 list_splice_init(&edmac->free_list, &list); 1017 spin_unlock_irqrestore(&edmac->lock, flags); 1018 1019 list_for_each_entry_safe(desc, d, &list, node) 1020 kfree(desc); 1021 1022 clk_disable_unprepare(edmac->clk); 1023 free_irq(edmac->irq, edmac); 1024 } 1025 1026 /** 1027 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation 1028 * @chan: channel 1029 * @dest: destination bus address 1030 * @src: source bus address 1031 * @len: size of the transaction 1032 * @flags: flags for the descriptor 1033 * 1034 * Returns a valid DMA descriptor or %NULL in case of failure. 1035 */ 1036 static struct dma_async_tx_descriptor * 1037 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, 1038 dma_addr_t src, size_t len, unsigned long flags) 1039 { 1040 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1041 struct ep93xx_dma_desc *desc, *first; 1042 size_t bytes, offset; 1043 1044 first = NULL; 1045 for (offset = 0; offset < len; offset += bytes) { 1046 desc = ep93xx_dma_desc_get(edmac); 1047 if (!desc) { 1048 dev_warn(chan2dev(edmac), "couldn't get descriptor\n"); 1049 goto fail; 1050 } 1051 1052 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES); 1053 1054 desc->src_addr = src + offset; 1055 desc->dst_addr = dest + offset; 1056 desc->size = bytes; 1057 1058 if (!first) 1059 first = desc; 1060 else 1061 list_add_tail(&desc->node, &first->tx_list); 1062 } 1063 1064 first->txd.cookie = -EBUSY; 1065 first->txd.flags = flags; 1066 1067 return &first->txd; 1068 fail: 1069 ep93xx_dma_desc_put(edmac, first); 1070 return NULL; 1071 } 1072 1073 /** 1074 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation 1075 * @chan: channel 1076 * @sgl: list of buffers to transfer 1077 * @sg_len: number of entries in @sgl 1078 * @dir: direction of the DMA transfer 1079 * @flags: flags for the descriptor 1080 * @context: operation context (ignored) 1081 * 1082 * Returns a valid DMA descriptor or %NULL in case of failure. 1083 */ 1084 static struct dma_async_tx_descriptor * 1085 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1086 unsigned int sg_len, enum dma_transfer_direction dir, 1087 unsigned long flags, void *context) 1088 { 1089 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1090 struct ep93xx_dma_desc *desc, *first; 1091 struct scatterlist *sg; 1092 int i; 1093 1094 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) { 1095 dev_warn(chan2dev(edmac), 1096 "channel was configured with different direction\n"); 1097 return NULL; 1098 } 1099 1100 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) { 1101 dev_warn(chan2dev(edmac), 1102 "channel is already used for cyclic transfers\n"); 1103 return NULL; 1104 } 1105 1106 ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config); 1107 1108 first = NULL; 1109 for_each_sg(sgl, sg, sg_len, i) { 1110 size_t len = sg_dma_len(sg); 1111 1112 if (len > DMA_MAX_CHAN_BYTES) { 1113 dev_warn(chan2dev(edmac), "too big transfer size %zu\n", 1114 len); 1115 goto fail; 1116 } 1117 1118 desc = ep93xx_dma_desc_get(edmac); 1119 if (!desc) { 1120 dev_warn(chan2dev(edmac), "couldn't get descriptor\n"); 1121 goto fail; 1122 } 1123 1124 if (dir == DMA_MEM_TO_DEV) { 1125 desc->src_addr = sg_dma_address(sg); 1126 desc->dst_addr = edmac->runtime_addr; 1127 } else { 1128 desc->src_addr = edmac->runtime_addr; 1129 desc->dst_addr = sg_dma_address(sg); 1130 } 1131 desc->size = len; 1132 1133 if (!first) 1134 first = desc; 1135 else 1136 list_add_tail(&desc->node, &first->tx_list); 1137 } 1138 1139 first->txd.cookie = -EBUSY; 1140 first->txd.flags = flags; 1141 1142 return &first->txd; 1143 1144 fail: 1145 ep93xx_dma_desc_put(edmac, first); 1146 return NULL; 1147 } 1148 1149 /** 1150 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation 1151 * @chan: channel 1152 * @dma_addr: DMA mapped address of the buffer 1153 * @buf_len: length of the buffer (in bytes) 1154 * @period_len: length of a single period 1155 * @dir: direction of the operation 1156 * @flags: tx descriptor status flags 1157 * 1158 * Prepares a descriptor for cyclic DMA operation. This means that once the 1159 * descriptor is submitted, we will be submitting in a @period_len sized 1160 * buffers and calling callback once the period has been elapsed. Transfer 1161 * terminates only when client calls dmaengine_terminate_all() for this 1162 * channel. 1163 * 1164 * Returns a valid DMA descriptor or %NULL in case of failure. 1165 */ 1166 static struct dma_async_tx_descriptor * 1167 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, 1168 size_t buf_len, size_t period_len, 1169 enum dma_transfer_direction dir, unsigned long flags) 1170 { 1171 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1172 struct ep93xx_dma_desc *desc, *first; 1173 size_t offset = 0; 1174 1175 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) { 1176 dev_warn(chan2dev(edmac), 1177 "channel was configured with different direction\n"); 1178 return NULL; 1179 } 1180 1181 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) { 1182 dev_warn(chan2dev(edmac), 1183 "channel is already used for cyclic transfers\n"); 1184 return NULL; 1185 } 1186 1187 if (period_len > DMA_MAX_CHAN_BYTES) { 1188 dev_warn(chan2dev(edmac), "too big period length %zu\n", 1189 period_len); 1190 return NULL; 1191 } 1192 1193 ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config); 1194 1195 /* Split the buffer into period size chunks */ 1196 first = NULL; 1197 for (offset = 0; offset < buf_len; offset += period_len) { 1198 desc = ep93xx_dma_desc_get(edmac); 1199 if (!desc) { 1200 dev_warn(chan2dev(edmac), "couldn't get descriptor\n"); 1201 goto fail; 1202 } 1203 1204 if (dir == DMA_MEM_TO_DEV) { 1205 desc->src_addr = dma_addr + offset; 1206 desc->dst_addr = edmac->runtime_addr; 1207 } else { 1208 desc->src_addr = edmac->runtime_addr; 1209 desc->dst_addr = dma_addr + offset; 1210 } 1211 1212 desc->size = period_len; 1213 1214 if (!first) 1215 first = desc; 1216 else 1217 list_add_tail(&desc->node, &first->tx_list); 1218 } 1219 1220 first->txd.cookie = -EBUSY; 1221 1222 return &first->txd; 1223 1224 fail: 1225 ep93xx_dma_desc_put(edmac, first); 1226 return NULL; 1227 } 1228 1229 /** 1230 * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the 1231 * current context. 1232 * @chan: channel 1233 * 1234 * Synchronizes the DMA channel termination to the current context. When this 1235 * function returns it is guaranteed that all transfers for previously issued 1236 * descriptors have stopped and it is safe to free the memory associated 1237 * with them. Furthermore it is guaranteed that all complete callback functions 1238 * for a previously submitted descriptor have finished running and it is safe to 1239 * free resources accessed from within the complete callbacks. 1240 */ 1241 static void ep93xx_dma_synchronize(struct dma_chan *chan) 1242 { 1243 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1244 1245 if (edmac->edma->hw_synchronize) 1246 edmac->edma->hw_synchronize(edmac); 1247 } 1248 1249 /** 1250 * ep93xx_dma_terminate_all - terminate all transactions 1251 * @chan: channel 1252 * 1253 * Stops all DMA transactions. All descriptors are put back to the 1254 * @edmac->free_list and callbacks are _not_ called. 1255 */ 1256 static int ep93xx_dma_terminate_all(struct dma_chan *chan) 1257 { 1258 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1259 struct ep93xx_dma_desc *desc, *_d; 1260 unsigned long flags; 1261 LIST_HEAD(list); 1262 1263 spin_lock_irqsave(&edmac->lock, flags); 1264 /* First we disable and flush the DMA channel */ 1265 edmac->edma->hw_shutdown(edmac); 1266 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags); 1267 list_splice_init(&edmac->active, &list); 1268 list_splice_init(&edmac->queue, &list); 1269 /* 1270 * We then re-enable the channel. This way we can continue submitting 1271 * the descriptors by just calling ->hw_submit() again. 1272 */ 1273 edmac->edma->hw_setup(edmac); 1274 spin_unlock_irqrestore(&edmac->lock, flags); 1275 1276 list_for_each_entry_safe(desc, _d, &list, node) 1277 ep93xx_dma_desc_put(edmac, desc); 1278 1279 return 0; 1280 } 1281 1282 static int ep93xx_dma_slave_config(struct dma_chan *chan, 1283 struct dma_slave_config *config) 1284 { 1285 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1286 1287 memcpy(&edmac->slave_config, config, sizeof(*config)); 1288 1289 return 0; 1290 } 1291 1292 static int ep93xx_dma_slave_config_write(struct dma_chan *chan, 1293 enum dma_transfer_direction dir, 1294 struct dma_slave_config *config) 1295 { 1296 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1297 enum dma_slave_buswidth width; 1298 unsigned long flags; 1299 u32 addr, ctrl; 1300 1301 if (!edmac->edma->m2m) 1302 return -EINVAL; 1303 1304 switch (dir) { 1305 case DMA_DEV_TO_MEM: 1306 width = config->src_addr_width; 1307 addr = config->src_addr; 1308 break; 1309 1310 case DMA_MEM_TO_DEV: 1311 width = config->dst_addr_width; 1312 addr = config->dst_addr; 1313 break; 1314 1315 default: 1316 return -EINVAL; 1317 } 1318 1319 switch (width) { 1320 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1321 ctrl = 0; 1322 break; 1323 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1324 ctrl = M2M_CONTROL_PW_16; 1325 break; 1326 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1327 ctrl = M2M_CONTROL_PW_32; 1328 break; 1329 default: 1330 return -EINVAL; 1331 } 1332 1333 spin_lock_irqsave(&edmac->lock, flags); 1334 edmac->runtime_addr = addr; 1335 edmac->runtime_ctrl = ctrl; 1336 spin_unlock_irqrestore(&edmac->lock, flags); 1337 1338 return 0; 1339 } 1340 1341 /** 1342 * ep93xx_dma_tx_status - check if a transaction is completed 1343 * @chan: channel 1344 * @cookie: transaction specific cookie 1345 * @state: state of the transaction is stored here if given 1346 * 1347 * This function can be used to query state of a given transaction. 1348 */ 1349 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan, 1350 dma_cookie_t cookie, 1351 struct dma_tx_state *state) 1352 { 1353 return dma_cookie_status(chan, cookie, state); 1354 } 1355 1356 /** 1357 * ep93xx_dma_issue_pending - push pending transactions to the hardware 1358 * @chan: channel 1359 * 1360 * When this function is called, all pending transactions are pushed to the 1361 * hardware and executed. 1362 */ 1363 static void ep93xx_dma_issue_pending(struct dma_chan *chan) 1364 { 1365 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan)); 1366 } 1367 1368 static struct ep93xx_dma_engine *ep93xx_dma_of_probe(struct platform_device *pdev) 1369 { 1370 const struct ep93xx_edma_data *data; 1371 struct device *dev = &pdev->dev; 1372 struct ep93xx_dma_engine *edma; 1373 struct dma_device *dma_dev; 1374 char dma_clk_name[5]; 1375 int i; 1376 1377 data = device_get_match_data(dev); 1378 if (!data) 1379 return ERR_PTR(dev_err_probe(dev, -ENODEV, "No device match found\n")); 1380 1381 edma = devm_kzalloc(dev, struct_size(edma, channels, data->num_channels), 1382 GFP_KERNEL); 1383 if (!edma) 1384 return ERR_PTR(-ENOMEM); 1385 1386 edma->m2m = data->id; 1387 edma->num_channels = data->num_channels; 1388 dma_dev = &edma->dma_dev; 1389 1390 INIT_LIST_HEAD(&dma_dev->channels); 1391 for (i = 0; i < edma->num_channels; i++) { 1392 struct ep93xx_dma_chan *edmac = &edma->channels[i]; 1393 int len; 1394 1395 edmac->chan.device = dma_dev; 1396 edmac->regs = devm_platform_ioremap_resource(pdev, i); 1397 if (IS_ERR(edmac->regs)) 1398 return ERR_CAST(edmac->regs); 1399 1400 edmac->irq = fwnode_irq_get(dev_fwnode(dev), i); 1401 if (edmac->irq < 0) 1402 return ERR_PTR(edmac->irq); 1403 1404 edmac->edma = edma; 1405 1406 if (edma->m2m) 1407 len = snprintf(dma_clk_name, sizeof(dma_clk_name), "m2m%u", i); 1408 else 1409 len = snprintf(dma_clk_name, sizeof(dma_clk_name), "m2p%u", i); 1410 if (len >= sizeof(dma_clk_name)) 1411 return ERR_PTR(-ENOBUFS); 1412 1413 edmac->clk = devm_clk_get(dev, dma_clk_name); 1414 if (IS_ERR(edmac->clk)) { 1415 dev_err_probe(dev, PTR_ERR(edmac->clk), 1416 "no %s clock found\n", dma_clk_name); 1417 return ERR_CAST(edmac->clk); 1418 } 1419 1420 spin_lock_init(&edmac->lock); 1421 INIT_LIST_HEAD(&edmac->active); 1422 INIT_LIST_HEAD(&edmac->queue); 1423 INIT_LIST_HEAD(&edmac->free_list); 1424 tasklet_setup(&edmac->tasklet, ep93xx_dma_tasklet); 1425 1426 list_add_tail(&edmac->chan.device_node, 1427 &dma_dev->channels); 1428 } 1429 1430 return edma; 1431 } 1432 1433 static bool ep93xx_m2p_dma_filter(struct dma_chan *chan, void *filter_param) 1434 { 1435 struct ep93xx_dma_chan *echan = to_ep93xx_dma_chan(chan); 1436 struct ep93xx_dma_chan_cfg *cfg = filter_param; 1437 1438 if (cfg->dir != ep93xx_dma_chan_direction(chan)) 1439 return false; 1440 1441 echan->dma_cfg = *cfg; 1442 return true; 1443 } 1444 1445 static struct dma_chan *ep93xx_m2p_dma_of_xlate(struct of_phandle_args *dma_spec, 1446 struct of_dma *ofdma) 1447 { 1448 struct ep93xx_dma_engine *edma = ofdma->of_dma_data; 1449 dma_cap_mask_t mask = edma->dma_dev.cap_mask; 1450 struct ep93xx_dma_chan_cfg dma_cfg; 1451 u8 port = dma_spec->args[0]; 1452 u8 direction = dma_spec->args[1]; 1453 1454 if (port > EP93XX_DMA_IRDA) 1455 return NULL; 1456 1457 if (!is_slave_direction(direction)) 1458 return NULL; 1459 1460 dma_cfg.port = port; 1461 dma_cfg.dir = direction; 1462 1463 return __dma_request_channel(&mask, ep93xx_m2p_dma_filter, &dma_cfg, ofdma->of_node); 1464 } 1465 1466 static bool ep93xx_m2m_dma_filter(struct dma_chan *chan, void *filter_param) 1467 { 1468 struct ep93xx_dma_chan *echan = to_ep93xx_dma_chan(chan); 1469 struct ep93xx_dma_chan_cfg *cfg = filter_param; 1470 1471 echan->dma_cfg = *cfg; 1472 1473 return true; 1474 } 1475 1476 static struct dma_chan *ep93xx_m2m_dma_of_xlate(struct of_phandle_args *dma_spec, 1477 struct of_dma *ofdma) 1478 { 1479 struct ep93xx_dma_engine *edma = ofdma->of_dma_data; 1480 dma_cap_mask_t mask = edma->dma_dev.cap_mask; 1481 struct ep93xx_dma_chan_cfg dma_cfg; 1482 u8 port = dma_spec->args[0]; 1483 u8 direction = dma_spec->args[1]; 1484 1485 if (!is_slave_direction(direction)) 1486 return NULL; 1487 1488 switch (port) { 1489 case EP93XX_DMA_SSP: 1490 case EP93XX_DMA_IDE: 1491 break; 1492 default: 1493 return NULL; 1494 } 1495 1496 dma_cfg.port = port; 1497 dma_cfg.dir = direction; 1498 1499 return __dma_request_channel(&mask, ep93xx_m2m_dma_filter, &dma_cfg, ofdma->of_node); 1500 } 1501 1502 static int ep93xx_dma_probe(struct platform_device *pdev) 1503 { 1504 struct ep93xx_dma_engine *edma; 1505 struct dma_device *dma_dev; 1506 int ret; 1507 1508 edma = ep93xx_dma_of_probe(pdev); 1509 if (IS_ERR(edma)) 1510 return PTR_ERR(edma); 1511 1512 dma_dev = &edma->dma_dev; 1513 1514 dma_cap_zero(dma_dev->cap_mask); 1515 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); 1516 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); 1517 1518 dma_dev->dev = &pdev->dev; 1519 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources; 1520 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources; 1521 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg; 1522 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic; 1523 dma_dev->device_config = ep93xx_dma_slave_config; 1524 dma_dev->device_synchronize = ep93xx_dma_synchronize; 1525 dma_dev->device_terminate_all = ep93xx_dma_terminate_all; 1526 dma_dev->device_issue_pending = ep93xx_dma_issue_pending; 1527 dma_dev->device_tx_status = ep93xx_dma_tx_status; 1528 1529 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES); 1530 1531 if (edma->m2m) { 1532 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 1533 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy; 1534 1535 edma->hw_setup = m2m_hw_setup; 1536 edma->hw_shutdown = m2m_hw_shutdown; 1537 edma->hw_submit = m2m_hw_submit; 1538 edma->hw_interrupt = m2m_hw_interrupt; 1539 } else { 1540 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); 1541 1542 edma->hw_synchronize = m2p_hw_synchronize; 1543 edma->hw_setup = m2p_hw_setup; 1544 edma->hw_shutdown = m2p_hw_shutdown; 1545 edma->hw_submit = m2p_hw_submit; 1546 edma->hw_interrupt = m2p_hw_interrupt; 1547 } 1548 1549 ret = dma_async_device_register(dma_dev); 1550 if (ret) 1551 return ret; 1552 1553 if (edma->m2m) { 1554 ret = of_dma_controller_register(pdev->dev.of_node, ep93xx_m2m_dma_of_xlate, 1555 edma); 1556 } else { 1557 ret = of_dma_controller_register(pdev->dev.of_node, ep93xx_m2p_dma_of_xlate, 1558 edma); 1559 } 1560 if (ret) 1561 goto err_dma_unregister; 1562 1563 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n", edma->m2m ? "M" : "P"); 1564 1565 return 0; 1566 1567 err_dma_unregister: 1568 dma_async_device_unregister(dma_dev); 1569 1570 return ret; 1571 } 1572 1573 static const struct ep93xx_edma_data edma_m2p = { 1574 .id = M2P_DMA, 1575 .num_channels = 10, 1576 }; 1577 1578 static const struct ep93xx_edma_data edma_m2m = { 1579 .id = M2M_DMA, 1580 .num_channels = 2, 1581 }; 1582 1583 static const struct of_device_id ep93xx_dma_of_ids[] = { 1584 { .compatible = "cirrus,ep9301-dma-m2p", .data = &edma_m2p }, 1585 { .compatible = "cirrus,ep9301-dma-m2m", .data = &edma_m2m }, 1586 { /* sentinel */ } 1587 }; 1588 MODULE_DEVICE_TABLE(of, ep93xx_dma_of_ids); 1589 1590 static const struct platform_device_id ep93xx_dma_driver_ids[] = { 1591 { "ep93xx-dma-m2p", 0 }, 1592 { "ep93xx-dma-m2m", 1 }, 1593 { }, 1594 }; 1595 1596 static struct platform_driver ep93xx_dma_driver = { 1597 .driver = { 1598 .name = "ep93xx-dma", 1599 .of_match_table = ep93xx_dma_of_ids, 1600 }, 1601 .id_table = ep93xx_dma_driver_ids, 1602 .probe = ep93xx_dma_probe, 1603 }; 1604 1605 module_platform_driver(ep93xx_dma_driver); 1606 1607 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); 1608 MODULE_DESCRIPTION("EP93xx DMA driver"); 1609