xref: /linux/drivers/dma/ep93xx_dma.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Driver for the Cirrus Logic EP93xx DMA Controller
3  *
4  * Copyright (C) 2011 Mika Westerberg
5  *
6  * DMA M2P implementation is based on the original
7  * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8  *
9  *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10  *   Copyright (C) 2006 Applied Data Systems
11  *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12  *
13  * This driver is based on dw_dmac and amba-pl08x drivers.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  */
20 
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 
29 #include <linux/platform_data/dma-ep93xx.h>
30 
31 #include "dmaengine.h"
32 
33 /* M2P registers */
34 #define M2P_CONTROL			0x0000
35 #define M2P_CONTROL_STALLINT		BIT(0)
36 #define M2P_CONTROL_NFBINT		BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT	BIT(3)
38 #define M2P_CONTROL_ENABLE		BIT(4)
39 #define M2P_CONTROL_ICE			BIT(6)
40 
41 #define M2P_INTERRUPT			0x0004
42 #define M2P_INTERRUPT_STALL		BIT(0)
43 #define M2P_INTERRUPT_NFB		BIT(1)
44 #define M2P_INTERRUPT_ERROR		BIT(3)
45 
46 #define M2P_PPALLOC			0x0008
47 #define M2P_STATUS			0x000c
48 
49 #define M2P_MAXCNT0			0x0020
50 #define M2P_BASE0			0x0024
51 #define M2P_MAXCNT1			0x0030
52 #define M2P_BASE1			0x0034
53 
54 #define M2P_STATE_IDLE			0
55 #define M2P_STATE_STALL			1
56 #define M2P_STATE_ON			2
57 #define M2P_STATE_NEXT			3
58 
59 /* M2M registers */
60 #define M2M_CONTROL			0x0000
61 #define M2M_CONTROL_DONEINT		BIT(2)
62 #define M2M_CONTROL_ENABLE		BIT(3)
63 #define M2M_CONTROL_START		BIT(4)
64 #define M2M_CONTROL_DAH			BIT(11)
65 #define M2M_CONTROL_SAH			BIT(12)
66 #define M2M_CONTROL_PW_SHIFT		9
67 #define M2M_CONTROL_PW_8		(0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16		(1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32		(2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK		(3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT		13
72 #define M2M_CONTROL_TM_TX		(1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX		(2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT		BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT		22
76 #define M2M_CONTROL_RSS_SSPRX		(1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX		(2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE		(3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK		BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT		25
81 
82 #define M2M_INTERRUPT			0x0004
83 #define M2M_INTERRUPT_MASK		6
84 
85 #define M2M_STATUS			0x000c
86 #define M2M_STATUS_CTL_SHIFT		1
87 #define M2M_STATUS_CTL_IDLE		(0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL		(1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD		(2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR		(3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT		(4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK		(7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT		4
94 #define M2M_STATUS_BUF_NO		(0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON		(1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT		(2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK		(3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE			BIT(6)
99 
100 #define M2M_BCR0			0x0010
101 #define M2M_BCR1			0x0014
102 #define M2M_SAR_BASE0			0x0018
103 #define M2M_SAR_BASE1			0x001c
104 #define M2M_DAR_BASE0			0x002c
105 #define M2M_DAR_BASE1			0x0030
106 
107 #define DMA_MAX_CHAN_BYTES		0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS	32
109 
110 struct ep93xx_dma_engine;
111 
112 /**
113  * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114  * @src_addr: source address of the transaction
115  * @dst_addr: destination address of the transaction
116  * @size: size of the transaction (in bytes)
117  * @complete: this descriptor is completed
118  * @txd: dmaengine API descriptor
119  * @tx_list: list of linked descriptors
120  * @node: link used for putting this into a channel queue
121  */
122 struct ep93xx_dma_desc {
123 	u32				src_addr;
124 	u32				dst_addr;
125 	size_t				size;
126 	bool				complete;
127 	struct dma_async_tx_descriptor	txd;
128 	struct list_head		tx_list;
129 	struct list_head		node;
130 };
131 
132 /**
133  * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134  * @chan: dmaengine API channel
135  * @edma: pointer to to the engine device
136  * @regs: memory mapped registers
137  * @irq: interrupt number of the channel
138  * @clk: clock used by this channel
139  * @tasklet: channel specific tasklet used for callbacks
140  * @lock: lock protecting the fields following
141  * @flags: flags for the channel
142  * @buffer: which buffer to use next (0/1)
143  * @active: flattened chain of descriptors currently being processed
144  * @queue: pending descriptors which are handled next
145  * @free_list: list of free descriptors which can be used
146  * @runtime_addr: physical address currently used as dest/src (M2M only). This
147  *                is set via .device_config before slave operation is
148  *                prepared
149  * @runtime_ctrl: M2M runtime values for the control register.
150  *
151  * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152  * will have slightly different scheme here: @active points to a head of
153  * flattened DMA descriptor chain.
154  *
155  * @queue holds pending transactions. These are linked through the first
156  * descriptor in the chain. When a descriptor is moved to the @active queue,
157  * the first and chained descriptors are flattened into a single list.
158  *
159  * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160  * necessary channel configuration information. For memcpy channels this must
161  * be %NULL.
162  */
163 struct ep93xx_dma_chan {
164 	struct dma_chan			chan;
165 	const struct ep93xx_dma_engine	*edma;
166 	void __iomem			*regs;
167 	int				irq;
168 	struct clk			*clk;
169 	struct tasklet_struct		tasklet;
170 	/* protects the fields following */
171 	spinlock_t			lock;
172 	unsigned long			flags;
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC		0
175 
176 	int				buffer;
177 	struct list_head		active;
178 	struct list_head		queue;
179 	struct list_head		free_list;
180 	u32				runtime_addr;
181 	u32				runtime_ctrl;
182 };
183 
184 /**
185  * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186  * @dma_dev: holds the dmaengine device
187  * @m2m: is this an M2M or M2P device
188  * @hw_setup: method which sets the channel up for operation
189  * @hw_shutdown: shuts the channel down and flushes whatever is left
190  * @hw_submit: pushes active descriptor(s) to the hardware
191  * @hw_interrupt: handle the interrupt
192  * @num_channels: number of channels for this instance
193  * @channels: array of channels
194  *
195  * There is one instance of this struct for the M2P channels and one for the
196  * M2M channels. hw_xxx() methods are used to perform operations which are
197  * different on M2M and M2P channels. These methods are called with channel
198  * lock held and interrupts disabled so they cannot sleep.
199  */
200 struct ep93xx_dma_engine {
201 	struct dma_device	dma_dev;
202 	bool			m2m;
203 	int			(*hw_setup)(struct ep93xx_dma_chan *);
204 	void			(*hw_shutdown)(struct ep93xx_dma_chan *);
205 	void			(*hw_submit)(struct ep93xx_dma_chan *);
206 	int			(*hw_interrupt)(struct ep93xx_dma_chan *);
207 #define INTERRUPT_UNKNOWN	0
208 #define INTERRUPT_DONE		1
209 #define INTERRUPT_NEXT_BUFFER	2
210 
211 	size_t			num_channels;
212 	struct ep93xx_dma_chan	channels[];
213 };
214 
215 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
216 {
217 	return &edmac->chan.dev->device;
218 }
219 
220 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
221 {
222 	return container_of(chan, struct ep93xx_dma_chan, chan);
223 }
224 
225 /**
226  * ep93xx_dma_set_active - set new active descriptor chain
227  * @edmac: channel
228  * @desc: head of the new active descriptor chain
229  *
230  * Sets @desc to be the head of the new active descriptor chain. This is the
231  * chain which is processed next. The active list must be empty before calling
232  * this function.
233  *
234  * Called with @edmac->lock held and interrupts disabled.
235  */
236 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
237 				  struct ep93xx_dma_desc *desc)
238 {
239 	BUG_ON(!list_empty(&edmac->active));
240 
241 	list_add_tail(&desc->node, &edmac->active);
242 
243 	/* Flatten the @desc->tx_list chain into @edmac->active list */
244 	while (!list_empty(&desc->tx_list)) {
245 		struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
246 			struct ep93xx_dma_desc, node);
247 
248 		/*
249 		 * We copy the callback parameters from the first descriptor
250 		 * to all the chained descriptors. This way we can call the
251 		 * callback without having to find out the first descriptor in
252 		 * the chain. Useful for cyclic transfers.
253 		 */
254 		d->txd.callback = desc->txd.callback;
255 		d->txd.callback_param = desc->txd.callback_param;
256 
257 		list_move_tail(&d->node, &edmac->active);
258 	}
259 }
260 
261 /* Called with @edmac->lock held and interrupts disabled */
262 static struct ep93xx_dma_desc *
263 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
264 {
265 	if (list_empty(&edmac->active))
266 		return NULL;
267 
268 	return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
269 }
270 
271 /**
272  * ep93xx_dma_advance_active - advances to the next active descriptor
273  * @edmac: channel
274  *
275  * Function advances active descriptor to the next in the @edmac->active and
276  * returns %true if we still have descriptors in the chain to process.
277  * Otherwise returns %false.
278  *
279  * When the channel is in cyclic mode always returns %true.
280  *
281  * Called with @edmac->lock held and interrupts disabled.
282  */
283 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
284 {
285 	struct ep93xx_dma_desc *desc;
286 
287 	list_rotate_left(&edmac->active);
288 
289 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
290 		return true;
291 
292 	desc = ep93xx_dma_get_active(edmac);
293 	if (!desc)
294 		return false;
295 
296 	/*
297 	 * If txd.cookie is set it means that we are back in the first
298 	 * descriptor in the chain and hence done with it.
299 	 */
300 	return !desc->txd.cookie;
301 }
302 
303 /*
304  * M2P DMA implementation
305  */
306 
307 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
308 {
309 	writel(control, edmac->regs + M2P_CONTROL);
310 	/*
311 	 * EP93xx User's Guide states that we must perform a dummy read after
312 	 * write to the control register.
313 	 */
314 	readl(edmac->regs + M2P_CONTROL);
315 }
316 
317 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
318 {
319 	struct ep93xx_dma_data *data = edmac->chan.private;
320 	u32 control;
321 
322 	writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
323 
324 	control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
325 		| M2P_CONTROL_ENABLE;
326 	m2p_set_control(edmac, control);
327 
328 	return 0;
329 }
330 
331 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
332 {
333 	return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
334 }
335 
336 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
337 {
338 	u32 control;
339 
340 	control = readl(edmac->regs + M2P_CONTROL);
341 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
342 	m2p_set_control(edmac, control);
343 
344 	while (m2p_channel_state(edmac) >= M2P_STATE_ON)
345 		cpu_relax();
346 
347 	m2p_set_control(edmac, 0);
348 
349 	while (m2p_channel_state(edmac) == M2P_STATE_STALL)
350 		cpu_relax();
351 }
352 
353 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
354 {
355 	struct ep93xx_dma_desc *desc;
356 	u32 bus_addr;
357 
358 	desc = ep93xx_dma_get_active(edmac);
359 	if (!desc) {
360 		dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
361 		return;
362 	}
363 
364 	if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
365 		bus_addr = desc->src_addr;
366 	else
367 		bus_addr = desc->dst_addr;
368 
369 	if (edmac->buffer == 0) {
370 		writel(desc->size, edmac->regs + M2P_MAXCNT0);
371 		writel(bus_addr, edmac->regs + M2P_BASE0);
372 	} else {
373 		writel(desc->size, edmac->regs + M2P_MAXCNT1);
374 		writel(bus_addr, edmac->regs + M2P_BASE1);
375 	}
376 
377 	edmac->buffer ^= 1;
378 }
379 
380 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
381 {
382 	u32 control = readl(edmac->regs + M2P_CONTROL);
383 
384 	m2p_fill_desc(edmac);
385 	control |= M2P_CONTROL_STALLINT;
386 
387 	if (ep93xx_dma_advance_active(edmac)) {
388 		m2p_fill_desc(edmac);
389 		control |= M2P_CONTROL_NFBINT;
390 	}
391 
392 	m2p_set_control(edmac, control);
393 }
394 
395 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
396 {
397 	u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
398 	u32 control;
399 
400 	if (irq_status & M2P_INTERRUPT_ERROR) {
401 		struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
402 
403 		/* Clear the error interrupt */
404 		writel(1, edmac->regs + M2P_INTERRUPT);
405 
406 		/*
407 		 * It seems that there is no easy way of reporting errors back
408 		 * to client so we just report the error here and continue as
409 		 * usual.
410 		 *
411 		 * Revisit this when there is a mechanism to report back the
412 		 * errors.
413 		 */
414 		dev_err(chan2dev(edmac),
415 			"DMA transfer failed! Details:\n"
416 			"\tcookie	: %d\n"
417 			"\tsrc_addr	: 0x%08x\n"
418 			"\tdst_addr	: 0x%08x\n"
419 			"\tsize		: %zu\n",
420 			desc->txd.cookie, desc->src_addr, desc->dst_addr,
421 			desc->size);
422 	}
423 
424 	/*
425 	 * Even latest E2 silicon revision sometimes assert STALL interrupt
426 	 * instead of NFB. Therefore we treat them equally, basing on the
427 	 * amount of data we still have to transfer.
428 	 */
429 	if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
430 		return INTERRUPT_UNKNOWN;
431 
432 	if (ep93xx_dma_advance_active(edmac)) {
433 		m2p_fill_desc(edmac);
434 		return INTERRUPT_NEXT_BUFFER;
435 	}
436 
437 	/* Disable interrupts */
438 	control = readl(edmac->regs + M2P_CONTROL);
439 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
440 	m2p_set_control(edmac, control);
441 
442 	return INTERRUPT_DONE;
443 }
444 
445 /*
446  * M2M DMA implementation
447  */
448 
449 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
450 {
451 	const struct ep93xx_dma_data *data = edmac->chan.private;
452 	u32 control = 0;
453 
454 	if (!data) {
455 		/* This is memcpy channel, nothing to configure */
456 		writel(control, edmac->regs + M2M_CONTROL);
457 		return 0;
458 	}
459 
460 	switch (data->port) {
461 	case EP93XX_DMA_SSP:
462 		/*
463 		 * This was found via experimenting - anything less than 5
464 		 * causes the channel to perform only a partial transfer which
465 		 * leads to problems since we don't get DONE interrupt then.
466 		 */
467 		control = (5 << M2M_CONTROL_PWSC_SHIFT);
468 		control |= M2M_CONTROL_NO_HDSK;
469 
470 		if (data->direction == DMA_MEM_TO_DEV) {
471 			control |= M2M_CONTROL_DAH;
472 			control |= M2M_CONTROL_TM_TX;
473 			control |= M2M_CONTROL_RSS_SSPTX;
474 		} else {
475 			control |= M2M_CONTROL_SAH;
476 			control |= M2M_CONTROL_TM_RX;
477 			control |= M2M_CONTROL_RSS_SSPRX;
478 		}
479 		break;
480 
481 	case EP93XX_DMA_IDE:
482 		/*
483 		 * This IDE part is totally untested. Values below are taken
484 		 * from the EP93xx Users's Guide and might not be correct.
485 		 */
486 		if (data->direction == DMA_MEM_TO_DEV) {
487 			/* Worst case from the UG */
488 			control = (3 << M2M_CONTROL_PWSC_SHIFT);
489 			control |= M2M_CONTROL_DAH;
490 			control |= M2M_CONTROL_TM_TX;
491 		} else {
492 			control = (2 << M2M_CONTROL_PWSC_SHIFT);
493 			control |= M2M_CONTROL_SAH;
494 			control |= M2M_CONTROL_TM_RX;
495 		}
496 
497 		control |= M2M_CONTROL_NO_HDSK;
498 		control |= M2M_CONTROL_RSS_IDE;
499 		control |= M2M_CONTROL_PW_16;
500 		break;
501 
502 	default:
503 		return -EINVAL;
504 	}
505 
506 	writel(control, edmac->regs + M2M_CONTROL);
507 	return 0;
508 }
509 
510 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
511 {
512 	/* Just disable the channel */
513 	writel(0, edmac->regs + M2M_CONTROL);
514 }
515 
516 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
517 {
518 	struct ep93xx_dma_desc *desc;
519 
520 	desc = ep93xx_dma_get_active(edmac);
521 	if (!desc) {
522 		dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
523 		return;
524 	}
525 
526 	if (edmac->buffer == 0) {
527 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
528 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
529 		writel(desc->size, edmac->regs + M2M_BCR0);
530 	} else {
531 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
532 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
533 		writel(desc->size, edmac->regs + M2M_BCR1);
534 	}
535 
536 	edmac->buffer ^= 1;
537 }
538 
539 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
540 {
541 	struct ep93xx_dma_data *data = edmac->chan.private;
542 	u32 control = readl(edmac->regs + M2M_CONTROL);
543 
544 	/*
545 	 * Since we allow clients to configure PW (peripheral width) we always
546 	 * clear PW bits here and then set them according what is given in
547 	 * the runtime configuration.
548 	 */
549 	control &= ~M2M_CONTROL_PW_MASK;
550 	control |= edmac->runtime_ctrl;
551 
552 	m2m_fill_desc(edmac);
553 	control |= M2M_CONTROL_DONEINT;
554 
555 	if (ep93xx_dma_advance_active(edmac)) {
556 		m2m_fill_desc(edmac);
557 		control |= M2M_CONTROL_NFBINT;
558 	}
559 
560 	/*
561 	 * Now we can finally enable the channel. For M2M channel this must be
562 	 * done _after_ the BCRx registers are programmed.
563 	 */
564 	control |= M2M_CONTROL_ENABLE;
565 	writel(control, edmac->regs + M2M_CONTROL);
566 
567 	if (!data) {
568 		/*
569 		 * For memcpy channels the software trigger must be asserted
570 		 * in order to start the memcpy operation.
571 		 */
572 		control |= M2M_CONTROL_START;
573 		writel(control, edmac->regs + M2M_CONTROL);
574 	}
575 }
576 
577 /*
578  * According to EP93xx User's Guide, we should receive DONE interrupt when all
579  * M2M DMA controller transactions complete normally. This is not always the
580  * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
581  * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
582  * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
583  * In effect, disabling the channel when only DONE bit is set could stop
584  * currently running DMA transfer. To avoid this, we use Buffer FSM and
585  * Control FSM to check current state of DMA channel.
586  */
587 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
588 {
589 	u32 status = readl(edmac->regs + M2M_STATUS);
590 	u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
591 	u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
592 	bool done = status & M2M_STATUS_DONE;
593 	bool last_done;
594 	u32 control;
595 	struct ep93xx_dma_desc *desc;
596 
597 	/* Accept only DONE and NFB interrupts */
598 	if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
599 		return INTERRUPT_UNKNOWN;
600 
601 	if (done) {
602 		/* Clear the DONE bit */
603 		writel(0, edmac->regs + M2M_INTERRUPT);
604 	}
605 
606 	/*
607 	 * Check whether we are done with descriptors or not. This, together
608 	 * with DMA channel state, determines action to take in interrupt.
609 	 */
610 	desc = ep93xx_dma_get_active(edmac);
611 	last_done = !desc || desc->txd.cookie;
612 
613 	/*
614 	 * Use M2M DMA Buffer FSM and Control FSM to check current state of
615 	 * DMA channel. Using DONE and NFB bits from channel status register
616 	 * or bits from channel interrupt register is not reliable.
617 	 */
618 	if (!last_done &&
619 	    (buf_fsm == M2M_STATUS_BUF_NO ||
620 	     buf_fsm == M2M_STATUS_BUF_ON)) {
621 		/*
622 		 * Two buffers are ready for update when Buffer FSM is in
623 		 * DMA_NO_BUF state. Only one buffer can be prepared without
624 		 * disabling the channel or polling the DONE bit.
625 		 * To simplify things, always prepare only one buffer.
626 		 */
627 		if (ep93xx_dma_advance_active(edmac)) {
628 			m2m_fill_desc(edmac);
629 			if (done && !edmac->chan.private) {
630 				/* Software trigger for memcpy channel */
631 				control = readl(edmac->regs + M2M_CONTROL);
632 				control |= M2M_CONTROL_START;
633 				writel(control, edmac->regs + M2M_CONTROL);
634 			}
635 			return INTERRUPT_NEXT_BUFFER;
636 		} else {
637 			last_done = true;
638 		}
639 	}
640 
641 	/*
642 	 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
643 	 * and Control FSM is in DMA_STALL state.
644 	 */
645 	if (last_done &&
646 	    buf_fsm == M2M_STATUS_BUF_NO &&
647 	    ctl_fsm == M2M_STATUS_CTL_STALL) {
648 		/* Disable interrupts and the channel */
649 		control = readl(edmac->regs + M2M_CONTROL);
650 		control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
651 			    | M2M_CONTROL_ENABLE);
652 		writel(control, edmac->regs + M2M_CONTROL);
653 		return INTERRUPT_DONE;
654 	}
655 
656 	/*
657 	 * Nothing to do this time.
658 	 */
659 	return INTERRUPT_NEXT_BUFFER;
660 }
661 
662 /*
663  * DMA engine API implementation
664  */
665 
666 static struct ep93xx_dma_desc *
667 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
668 {
669 	struct ep93xx_dma_desc *desc, *_desc;
670 	struct ep93xx_dma_desc *ret = NULL;
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(&edmac->lock, flags);
674 	list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
675 		if (async_tx_test_ack(&desc->txd)) {
676 			list_del_init(&desc->node);
677 
678 			/* Re-initialize the descriptor */
679 			desc->src_addr = 0;
680 			desc->dst_addr = 0;
681 			desc->size = 0;
682 			desc->complete = false;
683 			desc->txd.cookie = 0;
684 			desc->txd.callback = NULL;
685 			desc->txd.callback_param = NULL;
686 
687 			ret = desc;
688 			break;
689 		}
690 	}
691 	spin_unlock_irqrestore(&edmac->lock, flags);
692 	return ret;
693 }
694 
695 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
696 				struct ep93xx_dma_desc *desc)
697 {
698 	if (desc) {
699 		unsigned long flags;
700 
701 		spin_lock_irqsave(&edmac->lock, flags);
702 		list_splice_init(&desc->tx_list, &edmac->free_list);
703 		list_add(&desc->node, &edmac->free_list);
704 		spin_unlock_irqrestore(&edmac->lock, flags);
705 	}
706 }
707 
708 /**
709  * ep93xx_dma_advance_work - start processing the next pending transaction
710  * @edmac: channel
711  *
712  * If we have pending transactions queued and we are currently idling, this
713  * function takes the next queued transaction from the @edmac->queue and
714  * pushes it to the hardware for execution.
715  */
716 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
717 {
718 	struct ep93xx_dma_desc *new;
719 	unsigned long flags;
720 
721 	spin_lock_irqsave(&edmac->lock, flags);
722 	if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
723 		spin_unlock_irqrestore(&edmac->lock, flags);
724 		return;
725 	}
726 
727 	/* Take the next descriptor from the pending queue */
728 	new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
729 	list_del_init(&new->node);
730 
731 	ep93xx_dma_set_active(edmac, new);
732 
733 	/* Push it to the hardware */
734 	edmac->edma->hw_submit(edmac);
735 	spin_unlock_irqrestore(&edmac->lock, flags);
736 }
737 
738 static void ep93xx_dma_tasklet(unsigned long data)
739 {
740 	struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
741 	struct ep93xx_dma_desc *desc, *d;
742 	dma_async_tx_callback callback = NULL;
743 	void *callback_param = NULL;
744 	LIST_HEAD(list);
745 
746 	spin_lock_irq(&edmac->lock);
747 	/*
748 	 * If dma_terminate_all() was called before we get to run, the active
749 	 * list has become empty. If that happens we aren't supposed to do
750 	 * anything more than call ep93xx_dma_advance_work().
751 	 */
752 	desc = ep93xx_dma_get_active(edmac);
753 	if (desc) {
754 		if (desc->complete) {
755 			/* mark descriptor complete for non cyclic case only */
756 			if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
757 				dma_cookie_complete(&desc->txd);
758 			list_splice_init(&edmac->active, &list);
759 		}
760 		callback = desc->txd.callback;
761 		callback_param = desc->txd.callback_param;
762 	}
763 	spin_unlock_irq(&edmac->lock);
764 
765 	/* Pick up the next descriptor from the queue */
766 	ep93xx_dma_advance_work(edmac);
767 
768 	/* Now we can release all the chained descriptors */
769 	list_for_each_entry_safe(desc, d, &list, node) {
770 		dma_descriptor_unmap(&desc->txd);
771 		ep93xx_dma_desc_put(edmac, desc);
772 	}
773 
774 	if (callback)
775 		callback(callback_param);
776 }
777 
778 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
779 {
780 	struct ep93xx_dma_chan *edmac = dev_id;
781 	struct ep93xx_dma_desc *desc;
782 	irqreturn_t ret = IRQ_HANDLED;
783 
784 	spin_lock(&edmac->lock);
785 
786 	desc = ep93xx_dma_get_active(edmac);
787 	if (!desc) {
788 		dev_warn(chan2dev(edmac),
789 			 "got interrupt while active list is empty\n");
790 		spin_unlock(&edmac->lock);
791 		return IRQ_NONE;
792 	}
793 
794 	switch (edmac->edma->hw_interrupt(edmac)) {
795 	case INTERRUPT_DONE:
796 		desc->complete = true;
797 		tasklet_schedule(&edmac->tasklet);
798 		break;
799 
800 	case INTERRUPT_NEXT_BUFFER:
801 		if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
802 			tasklet_schedule(&edmac->tasklet);
803 		break;
804 
805 	default:
806 		dev_warn(chan2dev(edmac), "unknown interrupt!\n");
807 		ret = IRQ_NONE;
808 		break;
809 	}
810 
811 	spin_unlock(&edmac->lock);
812 	return ret;
813 }
814 
815 /**
816  * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
817  * @tx: descriptor to be executed
818  *
819  * Function will execute given descriptor on the hardware or if the hardware
820  * is busy, queue the descriptor to be executed later on. Returns cookie which
821  * can be used to poll the status of the descriptor.
822  */
823 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
824 {
825 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
826 	struct ep93xx_dma_desc *desc;
827 	dma_cookie_t cookie;
828 	unsigned long flags;
829 
830 	spin_lock_irqsave(&edmac->lock, flags);
831 	cookie = dma_cookie_assign(tx);
832 
833 	desc = container_of(tx, struct ep93xx_dma_desc, txd);
834 
835 	/*
836 	 * If nothing is currently prosessed, we push this descriptor
837 	 * directly to the hardware. Otherwise we put the descriptor
838 	 * to the pending queue.
839 	 */
840 	if (list_empty(&edmac->active)) {
841 		ep93xx_dma_set_active(edmac, desc);
842 		edmac->edma->hw_submit(edmac);
843 	} else {
844 		list_add_tail(&desc->node, &edmac->queue);
845 	}
846 
847 	spin_unlock_irqrestore(&edmac->lock, flags);
848 	return cookie;
849 }
850 
851 /**
852  * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
853  * @chan: channel to allocate resources
854  *
855  * Function allocates necessary resources for the given DMA channel and
856  * returns number of allocated descriptors for the channel. Negative errno
857  * is returned in case of failure.
858  */
859 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
860 {
861 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
862 	struct ep93xx_dma_data *data = chan->private;
863 	const char *name = dma_chan_name(chan);
864 	int ret, i;
865 
866 	/* Sanity check the channel parameters */
867 	if (!edmac->edma->m2m) {
868 		if (!data)
869 			return -EINVAL;
870 		if (data->port < EP93XX_DMA_I2S1 ||
871 		    data->port > EP93XX_DMA_IRDA)
872 			return -EINVAL;
873 		if (data->direction != ep93xx_dma_chan_direction(chan))
874 			return -EINVAL;
875 	} else {
876 		if (data) {
877 			switch (data->port) {
878 			case EP93XX_DMA_SSP:
879 			case EP93XX_DMA_IDE:
880 				if (!is_slave_direction(data->direction))
881 					return -EINVAL;
882 				break;
883 			default:
884 				return -EINVAL;
885 			}
886 		}
887 	}
888 
889 	if (data && data->name)
890 		name = data->name;
891 
892 	ret = clk_enable(edmac->clk);
893 	if (ret)
894 		return ret;
895 
896 	ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
897 	if (ret)
898 		goto fail_clk_disable;
899 
900 	spin_lock_irq(&edmac->lock);
901 	dma_cookie_init(&edmac->chan);
902 	ret = edmac->edma->hw_setup(edmac);
903 	spin_unlock_irq(&edmac->lock);
904 
905 	if (ret)
906 		goto fail_free_irq;
907 
908 	for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
909 		struct ep93xx_dma_desc *desc;
910 
911 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
912 		if (!desc) {
913 			dev_warn(chan2dev(edmac), "not enough descriptors\n");
914 			break;
915 		}
916 
917 		INIT_LIST_HEAD(&desc->tx_list);
918 
919 		dma_async_tx_descriptor_init(&desc->txd, chan);
920 		desc->txd.flags = DMA_CTRL_ACK;
921 		desc->txd.tx_submit = ep93xx_dma_tx_submit;
922 
923 		ep93xx_dma_desc_put(edmac, desc);
924 	}
925 
926 	return i;
927 
928 fail_free_irq:
929 	free_irq(edmac->irq, edmac);
930 fail_clk_disable:
931 	clk_disable(edmac->clk);
932 
933 	return ret;
934 }
935 
936 /**
937  * ep93xx_dma_free_chan_resources - release resources for the channel
938  * @chan: channel
939  *
940  * Function releases all the resources allocated for the given channel.
941  * The channel must be idle when this is called.
942  */
943 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
944 {
945 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
946 	struct ep93xx_dma_desc *desc, *d;
947 	unsigned long flags;
948 	LIST_HEAD(list);
949 
950 	BUG_ON(!list_empty(&edmac->active));
951 	BUG_ON(!list_empty(&edmac->queue));
952 
953 	spin_lock_irqsave(&edmac->lock, flags);
954 	edmac->edma->hw_shutdown(edmac);
955 	edmac->runtime_addr = 0;
956 	edmac->runtime_ctrl = 0;
957 	edmac->buffer = 0;
958 	list_splice_init(&edmac->free_list, &list);
959 	spin_unlock_irqrestore(&edmac->lock, flags);
960 
961 	list_for_each_entry_safe(desc, d, &list, node)
962 		kfree(desc);
963 
964 	clk_disable(edmac->clk);
965 	free_irq(edmac->irq, edmac);
966 }
967 
968 /**
969  * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
970  * @chan: channel
971  * @dest: destination bus address
972  * @src: source bus address
973  * @len: size of the transaction
974  * @flags: flags for the descriptor
975  *
976  * Returns a valid DMA descriptor or %NULL in case of failure.
977  */
978 static struct dma_async_tx_descriptor *
979 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
980 			   dma_addr_t src, size_t len, unsigned long flags)
981 {
982 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
983 	struct ep93xx_dma_desc *desc, *first;
984 	size_t bytes, offset;
985 
986 	first = NULL;
987 	for (offset = 0; offset < len; offset += bytes) {
988 		desc = ep93xx_dma_desc_get(edmac);
989 		if (!desc) {
990 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
991 			goto fail;
992 		}
993 
994 		bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
995 
996 		desc->src_addr = src + offset;
997 		desc->dst_addr = dest + offset;
998 		desc->size = bytes;
999 
1000 		if (!first)
1001 			first = desc;
1002 		else
1003 			list_add_tail(&desc->node, &first->tx_list);
1004 	}
1005 
1006 	first->txd.cookie = -EBUSY;
1007 	first->txd.flags = flags;
1008 
1009 	return &first->txd;
1010 fail:
1011 	ep93xx_dma_desc_put(edmac, first);
1012 	return NULL;
1013 }
1014 
1015 /**
1016  * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1017  * @chan: channel
1018  * @sgl: list of buffers to transfer
1019  * @sg_len: number of entries in @sgl
1020  * @dir: direction of tha DMA transfer
1021  * @flags: flags for the descriptor
1022  * @context: operation context (ignored)
1023  *
1024  * Returns a valid DMA descriptor or %NULL in case of failure.
1025  */
1026 static struct dma_async_tx_descriptor *
1027 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1028 			 unsigned int sg_len, enum dma_transfer_direction dir,
1029 			 unsigned long flags, void *context)
1030 {
1031 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1032 	struct ep93xx_dma_desc *desc, *first;
1033 	struct scatterlist *sg;
1034 	int i;
1035 
1036 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1037 		dev_warn(chan2dev(edmac),
1038 			 "channel was configured with different direction\n");
1039 		return NULL;
1040 	}
1041 
1042 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1043 		dev_warn(chan2dev(edmac),
1044 			 "channel is already used for cyclic transfers\n");
1045 		return NULL;
1046 	}
1047 
1048 	first = NULL;
1049 	for_each_sg(sgl, sg, sg_len, i) {
1050 		size_t sg_len = sg_dma_len(sg);
1051 
1052 		if (sg_len > DMA_MAX_CHAN_BYTES) {
1053 			dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1054 				 sg_len);
1055 			goto fail;
1056 		}
1057 
1058 		desc = ep93xx_dma_desc_get(edmac);
1059 		if (!desc) {
1060 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1061 			goto fail;
1062 		}
1063 
1064 		if (dir == DMA_MEM_TO_DEV) {
1065 			desc->src_addr = sg_dma_address(sg);
1066 			desc->dst_addr = edmac->runtime_addr;
1067 		} else {
1068 			desc->src_addr = edmac->runtime_addr;
1069 			desc->dst_addr = sg_dma_address(sg);
1070 		}
1071 		desc->size = sg_len;
1072 
1073 		if (!first)
1074 			first = desc;
1075 		else
1076 			list_add_tail(&desc->node, &first->tx_list);
1077 	}
1078 
1079 	first->txd.cookie = -EBUSY;
1080 	first->txd.flags = flags;
1081 
1082 	return &first->txd;
1083 
1084 fail:
1085 	ep93xx_dma_desc_put(edmac, first);
1086 	return NULL;
1087 }
1088 
1089 /**
1090  * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1091  * @chan: channel
1092  * @dma_addr: DMA mapped address of the buffer
1093  * @buf_len: length of the buffer (in bytes)
1094  * @period_len: length of a single period
1095  * @dir: direction of the operation
1096  * @flags: tx descriptor status flags
1097  *
1098  * Prepares a descriptor for cyclic DMA operation. This means that once the
1099  * descriptor is submitted, we will be submitting in a @period_len sized
1100  * buffers and calling callback once the period has been elapsed. Transfer
1101  * terminates only when client calls dmaengine_terminate_all() for this
1102  * channel.
1103  *
1104  * Returns a valid DMA descriptor or %NULL in case of failure.
1105  */
1106 static struct dma_async_tx_descriptor *
1107 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1108 			   size_t buf_len, size_t period_len,
1109 			   enum dma_transfer_direction dir, unsigned long flags)
1110 {
1111 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1112 	struct ep93xx_dma_desc *desc, *first;
1113 	size_t offset = 0;
1114 
1115 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1116 		dev_warn(chan2dev(edmac),
1117 			 "channel was configured with different direction\n");
1118 		return NULL;
1119 	}
1120 
1121 	if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1122 		dev_warn(chan2dev(edmac),
1123 			 "channel is already used for cyclic transfers\n");
1124 		return NULL;
1125 	}
1126 
1127 	if (period_len > DMA_MAX_CHAN_BYTES) {
1128 		dev_warn(chan2dev(edmac), "too big period length %d\n",
1129 			 period_len);
1130 		return NULL;
1131 	}
1132 
1133 	/* Split the buffer into period size chunks */
1134 	first = NULL;
1135 	for (offset = 0; offset < buf_len; offset += period_len) {
1136 		desc = ep93xx_dma_desc_get(edmac);
1137 		if (!desc) {
1138 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1139 			goto fail;
1140 		}
1141 
1142 		if (dir == DMA_MEM_TO_DEV) {
1143 			desc->src_addr = dma_addr + offset;
1144 			desc->dst_addr = edmac->runtime_addr;
1145 		} else {
1146 			desc->src_addr = edmac->runtime_addr;
1147 			desc->dst_addr = dma_addr + offset;
1148 		}
1149 
1150 		desc->size = period_len;
1151 
1152 		if (!first)
1153 			first = desc;
1154 		else
1155 			list_add_tail(&desc->node, &first->tx_list);
1156 	}
1157 
1158 	first->txd.cookie = -EBUSY;
1159 
1160 	return &first->txd;
1161 
1162 fail:
1163 	ep93xx_dma_desc_put(edmac, first);
1164 	return NULL;
1165 }
1166 
1167 /**
1168  * ep93xx_dma_terminate_all - terminate all transactions
1169  * @chan: channel
1170  *
1171  * Stops all DMA transactions. All descriptors are put back to the
1172  * @edmac->free_list and callbacks are _not_ called.
1173  */
1174 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1175 {
1176 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1177 	struct ep93xx_dma_desc *desc, *_d;
1178 	unsigned long flags;
1179 	LIST_HEAD(list);
1180 
1181 	spin_lock_irqsave(&edmac->lock, flags);
1182 	/* First we disable and flush the DMA channel */
1183 	edmac->edma->hw_shutdown(edmac);
1184 	clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1185 	list_splice_init(&edmac->active, &list);
1186 	list_splice_init(&edmac->queue, &list);
1187 	/*
1188 	 * We then re-enable the channel. This way we can continue submitting
1189 	 * the descriptors by just calling ->hw_submit() again.
1190 	 */
1191 	edmac->edma->hw_setup(edmac);
1192 	spin_unlock_irqrestore(&edmac->lock, flags);
1193 
1194 	list_for_each_entry_safe(desc, _d, &list, node)
1195 		ep93xx_dma_desc_put(edmac, desc);
1196 
1197 	return 0;
1198 }
1199 
1200 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1201 				   struct dma_slave_config *config)
1202 {
1203 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1204 	enum dma_slave_buswidth width;
1205 	unsigned long flags;
1206 	u32 addr, ctrl;
1207 
1208 	if (!edmac->edma->m2m)
1209 		return -EINVAL;
1210 
1211 	switch (config->direction) {
1212 	case DMA_DEV_TO_MEM:
1213 		width = config->src_addr_width;
1214 		addr = config->src_addr;
1215 		break;
1216 
1217 	case DMA_MEM_TO_DEV:
1218 		width = config->dst_addr_width;
1219 		addr = config->dst_addr;
1220 		break;
1221 
1222 	default:
1223 		return -EINVAL;
1224 	}
1225 
1226 	switch (width) {
1227 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1228 		ctrl = 0;
1229 		break;
1230 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1231 		ctrl = M2M_CONTROL_PW_16;
1232 		break;
1233 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1234 		ctrl = M2M_CONTROL_PW_32;
1235 		break;
1236 	default:
1237 		return -EINVAL;
1238 	}
1239 
1240 	spin_lock_irqsave(&edmac->lock, flags);
1241 	edmac->runtime_addr = addr;
1242 	edmac->runtime_ctrl = ctrl;
1243 	spin_unlock_irqrestore(&edmac->lock, flags);
1244 
1245 	return 0;
1246 }
1247 
1248 /**
1249  * ep93xx_dma_tx_status - check if a transaction is completed
1250  * @chan: channel
1251  * @cookie: transaction specific cookie
1252  * @state: state of the transaction is stored here if given
1253  *
1254  * This function can be used to query state of a given transaction.
1255  */
1256 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1257 					    dma_cookie_t cookie,
1258 					    struct dma_tx_state *state)
1259 {
1260 	return dma_cookie_status(chan, cookie, state);
1261 }
1262 
1263 /**
1264  * ep93xx_dma_issue_pending - push pending transactions to the hardware
1265  * @chan: channel
1266  *
1267  * When this function is called, all pending transactions are pushed to the
1268  * hardware and executed.
1269  */
1270 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1271 {
1272 	ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1273 }
1274 
1275 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1276 {
1277 	struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1278 	struct ep93xx_dma_engine *edma;
1279 	struct dma_device *dma_dev;
1280 	size_t edma_size;
1281 	int ret, i;
1282 
1283 	edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1284 	edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1285 	if (!edma)
1286 		return -ENOMEM;
1287 
1288 	dma_dev = &edma->dma_dev;
1289 	edma->m2m = platform_get_device_id(pdev)->driver_data;
1290 	edma->num_channels = pdata->num_channels;
1291 
1292 	INIT_LIST_HEAD(&dma_dev->channels);
1293 	for (i = 0; i < pdata->num_channels; i++) {
1294 		const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1295 		struct ep93xx_dma_chan *edmac = &edma->channels[i];
1296 
1297 		edmac->chan.device = dma_dev;
1298 		edmac->regs = cdata->base;
1299 		edmac->irq = cdata->irq;
1300 		edmac->edma = edma;
1301 
1302 		edmac->clk = clk_get(NULL, cdata->name);
1303 		if (IS_ERR(edmac->clk)) {
1304 			dev_warn(&pdev->dev, "failed to get clock for %s\n",
1305 				 cdata->name);
1306 			continue;
1307 		}
1308 
1309 		spin_lock_init(&edmac->lock);
1310 		INIT_LIST_HEAD(&edmac->active);
1311 		INIT_LIST_HEAD(&edmac->queue);
1312 		INIT_LIST_HEAD(&edmac->free_list);
1313 		tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1314 			     (unsigned long)edmac);
1315 
1316 		list_add_tail(&edmac->chan.device_node,
1317 			      &dma_dev->channels);
1318 	}
1319 
1320 	dma_cap_zero(dma_dev->cap_mask);
1321 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1322 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1323 
1324 	dma_dev->dev = &pdev->dev;
1325 	dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1326 	dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1327 	dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1328 	dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1329 	dma_dev->device_config = ep93xx_dma_slave_config;
1330 	dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1331 	dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1332 	dma_dev->device_tx_status = ep93xx_dma_tx_status;
1333 
1334 	dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1335 
1336 	if (edma->m2m) {
1337 		dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1338 		dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1339 
1340 		edma->hw_setup = m2m_hw_setup;
1341 		edma->hw_shutdown = m2m_hw_shutdown;
1342 		edma->hw_submit = m2m_hw_submit;
1343 		edma->hw_interrupt = m2m_hw_interrupt;
1344 	} else {
1345 		dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1346 
1347 		edma->hw_setup = m2p_hw_setup;
1348 		edma->hw_shutdown = m2p_hw_shutdown;
1349 		edma->hw_submit = m2p_hw_submit;
1350 		edma->hw_interrupt = m2p_hw_interrupt;
1351 	}
1352 
1353 	ret = dma_async_device_register(dma_dev);
1354 	if (unlikely(ret)) {
1355 		for (i = 0; i < edma->num_channels; i++) {
1356 			struct ep93xx_dma_chan *edmac = &edma->channels[i];
1357 			if (!IS_ERR_OR_NULL(edmac->clk))
1358 				clk_put(edmac->clk);
1359 		}
1360 		kfree(edma);
1361 	} else {
1362 		dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1363 			 edma->m2m ? "M" : "P");
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1370 	{ "ep93xx-dma-m2p", 0 },
1371 	{ "ep93xx-dma-m2m", 1 },
1372 	{ },
1373 };
1374 
1375 static struct platform_driver ep93xx_dma_driver = {
1376 	.driver		= {
1377 		.name	= "ep93xx-dma",
1378 	},
1379 	.id_table	= ep93xx_dma_driver_ids,
1380 };
1381 
1382 static int __init ep93xx_dma_module_init(void)
1383 {
1384 	return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1385 }
1386 subsys_initcall(ep93xx_dma_module_init);
1387 
1388 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1389 MODULE_DESCRIPTION("EP93xx DMA driver");
1390 MODULE_LICENSE("GPL");
1391