xref: /linux/drivers/dma/dw-edma/dw-edma-core.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
4  * Synopsys DesignWare eDMA core driver
5  *
6  * Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/dma/edma.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "dw-edma-core.h"
21 #include "dw-edma-v0-core.h"
22 #include "../dmaengine.h"
23 #include "../virt-dma.h"
24 
25 static inline
26 struct device *dchan2dev(struct dma_chan *dchan)
27 {
28 	return &dchan->dev->device;
29 }
30 
31 static inline
32 struct device *chan2dev(struct dw_edma_chan *chan)
33 {
34 	return &chan->vc.chan.dev->device;
35 }
36 
37 static inline
38 struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
39 {
40 	return container_of(vd, struct dw_edma_desc, vd);
41 }
42 
43 static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
44 {
45 	struct dw_edma_burst *burst;
46 
47 	burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
48 	if (unlikely(!burst))
49 		return NULL;
50 
51 	INIT_LIST_HEAD(&burst->list);
52 	if (chunk->burst) {
53 		/* Create and add new element into the linked list */
54 		chunk->bursts_alloc++;
55 		list_add_tail(&burst->list, &chunk->burst->list);
56 	} else {
57 		/* List head */
58 		chunk->bursts_alloc = 0;
59 		chunk->burst = burst;
60 	}
61 
62 	return burst;
63 }
64 
65 static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
66 {
67 	struct dw_edma_chip *chip = desc->chan->dw->chip;
68 	struct dw_edma_chan *chan = desc->chan;
69 	struct dw_edma_chunk *chunk;
70 
71 	chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
72 	if (unlikely(!chunk))
73 		return NULL;
74 
75 	INIT_LIST_HEAD(&chunk->list);
76 	chunk->chan = chan;
77 	/* Toggling change bit (CB) in each chunk, this is a mechanism to
78 	 * inform the eDMA HW block that this is a new linked list ready
79 	 * to be consumed.
80 	 *  - Odd chunks originate CB equal to 0
81 	 *  - Even chunks originate CB equal to 1
82 	 */
83 	chunk->cb = !(desc->chunks_alloc % 2);
84 	if (chan->dir == EDMA_DIR_WRITE) {
85 		chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
86 		chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
87 	} else {
88 		chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
89 		chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
90 	}
91 
92 	if (desc->chunk) {
93 		/* Create and add new element into the linked list */
94 		if (!dw_edma_alloc_burst(chunk)) {
95 			kfree(chunk);
96 			return NULL;
97 		}
98 		desc->chunks_alloc++;
99 		list_add_tail(&chunk->list, &desc->chunk->list);
100 	} else {
101 		/* List head */
102 		chunk->burst = NULL;
103 		desc->chunks_alloc = 0;
104 		desc->chunk = chunk;
105 	}
106 
107 	return chunk;
108 }
109 
110 static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
111 {
112 	struct dw_edma_desc *desc;
113 
114 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
115 	if (unlikely(!desc))
116 		return NULL;
117 
118 	desc->chan = chan;
119 	if (!dw_edma_alloc_chunk(desc)) {
120 		kfree(desc);
121 		return NULL;
122 	}
123 
124 	return desc;
125 }
126 
127 static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
128 {
129 	struct dw_edma_burst *child, *_next;
130 
131 	/* Remove all the list elements */
132 	list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
133 		list_del(&child->list);
134 		kfree(child);
135 		chunk->bursts_alloc--;
136 	}
137 
138 	/* Remove the list head */
139 	kfree(child);
140 	chunk->burst = NULL;
141 }
142 
143 static void dw_edma_free_chunk(struct dw_edma_desc *desc)
144 {
145 	struct dw_edma_chunk *child, *_next;
146 
147 	if (!desc->chunk)
148 		return;
149 
150 	/* Remove all the list elements */
151 	list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
152 		dw_edma_free_burst(child);
153 		list_del(&child->list);
154 		kfree(child);
155 		desc->chunks_alloc--;
156 	}
157 
158 	/* Remove the list head */
159 	kfree(child);
160 	desc->chunk = NULL;
161 }
162 
163 static void dw_edma_free_desc(struct dw_edma_desc *desc)
164 {
165 	dw_edma_free_chunk(desc);
166 	kfree(desc);
167 }
168 
169 static void vchan_free_desc(struct virt_dma_desc *vdesc)
170 {
171 	dw_edma_free_desc(vd2dw_edma_desc(vdesc));
172 }
173 
174 static void dw_edma_start_transfer(struct dw_edma_chan *chan)
175 {
176 	struct dw_edma_chunk *child;
177 	struct dw_edma_desc *desc;
178 	struct virt_dma_desc *vd;
179 
180 	vd = vchan_next_desc(&chan->vc);
181 	if (!vd)
182 		return;
183 
184 	desc = vd2dw_edma_desc(vd);
185 	if (!desc)
186 		return;
187 
188 	child = list_first_entry_or_null(&desc->chunk->list,
189 					 struct dw_edma_chunk, list);
190 	if (!child)
191 		return;
192 
193 	dw_edma_v0_core_start(child, !desc->xfer_sz);
194 	desc->xfer_sz += child->ll_region.sz;
195 	dw_edma_free_burst(child);
196 	list_del(&child->list);
197 	kfree(child);
198 	desc->chunks_alloc--;
199 }
200 
201 static int dw_edma_device_config(struct dma_chan *dchan,
202 				 struct dma_slave_config *config)
203 {
204 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
205 
206 	memcpy(&chan->config, config, sizeof(*config));
207 	chan->configured = true;
208 
209 	return 0;
210 }
211 
212 static int dw_edma_device_pause(struct dma_chan *dchan)
213 {
214 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
215 	int err = 0;
216 
217 	if (!chan->configured)
218 		err = -EPERM;
219 	else if (chan->status != EDMA_ST_BUSY)
220 		err = -EPERM;
221 	else if (chan->request != EDMA_REQ_NONE)
222 		err = -EPERM;
223 	else
224 		chan->request = EDMA_REQ_PAUSE;
225 
226 	return err;
227 }
228 
229 static int dw_edma_device_resume(struct dma_chan *dchan)
230 {
231 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
232 	int err = 0;
233 
234 	if (!chan->configured) {
235 		err = -EPERM;
236 	} else if (chan->status != EDMA_ST_PAUSE) {
237 		err = -EPERM;
238 	} else if (chan->request != EDMA_REQ_NONE) {
239 		err = -EPERM;
240 	} else {
241 		chan->status = EDMA_ST_BUSY;
242 		dw_edma_start_transfer(chan);
243 	}
244 
245 	return err;
246 }
247 
248 static int dw_edma_device_terminate_all(struct dma_chan *dchan)
249 {
250 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
251 	int err = 0;
252 
253 	if (!chan->configured) {
254 		/* Do nothing */
255 	} else if (chan->status == EDMA_ST_PAUSE) {
256 		chan->status = EDMA_ST_IDLE;
257 		chan->configured = false;
258 	} else if (chan->status == EDMA_ST_IDLE) {
259 		chan->configured = false;
260 	} else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
261 		/*
262 		 * The channel is in a false BUSY state, probably didn't
263 		 * receive or lost an interrupt
264 		 */
265 		chan->status = EDMA_ST_IDLE;
266 		chan->configured = false;
267 	} else if (chan->request > EDMA_REQ_PAUSE) {
268 		err = -EPERM;
269 	} else {
270 		chan->request = EDMA_REQ_STOP;
271 	}
272 
273 	return err;
274 }
275 
276 static void dw_edma_device_issue_pending(struct dma_chan *dchan)
277 {
278 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
279 	unsigned long flags;
280 
281 	spin_lock_irqsave(&chan->vc.lock, flags);
282 	if (chan->configured && chan->request == EDMA_REQ_NONE &&
283 	    chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) {
284 		chan->status = EDMA_ST_BUSY;
285 		dw_edma_start_transfer(chan);
286 	}
287 	spin_unlock_irqrestore(&chan->vc.lock, flags);
288 }
289 
290 static enum dma_status
291 dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
292 			 struct dma_tx_state *txstate)
293 {
294 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
295 	struct dw_edma_desc *desc;
296 	struct virt_dma_desc *vd;
297 	unsigned long flags;
298 	enum dma_status ret;
299 	u32 residue = 0;
300 
301 	ret = dma_cookie_status(dchan, cookie, txstate);
302 	if (ret == DMA_COMPLETE)
303 		return ret;
304 
305 	if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
306 		ret = DMA_PAUSED;
307 
308 	if (!txstate)
309 		goto ret_residue;
310 
311 	spin_lock_irqsave(&chan->vc.lock, flags);
312 	vd = vchan_find_desc(&chan->vc, cookie);
313 	if (vd) {
314 		desc = vd2dw_edma_desc(vd);
315 		if (desc)
316 			residue = desc->alloc_sz - desc->xfer_sz;
317 	}
318 	spin_unlock_irqrestore(&chan->vc.lock, flags);
319 
320 ret_residue:
321 	dma_set_residue(txstate, residue);
322 
323 	return ret;
324 }
325 
326 static struct dma_async_tx_descriptor *
327 dw_edma_device_transfer(struct dw_edma_transfer *xfer)
328 {
329 	struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
330 	enum dma_transfer_direction dir = xfer->direction;
331 	phys_addr_t src_addr, dst_addr;
332 	struct scatterlist *sg = NULL;
333 	struct dw_edma_chunk *chunk;
334 	struct dw_edma_burst *burst;
335 	struct dw_edma_desc *desc;
336 	u32 cnt = 0;
337 	int i;
338 
339 	if (!chan->configured)
340 		return NULL;
341 
342 	/*
343 	 * Local Root Port/End-point              Remote End-point
344 	 * +-----------------------+ PCIe bus +----------------------+
345 	 * |                       |    +-+   |                      |
346 	 * |    DEV_TO_MEM   Rx Ch <----+ +---+ Tx Ch  DEV_TO_MEM    |
347 	 * |                       |    | |   |                      |
348 	 * |    MEM_TO_DEV   Tx Ch +----+ +---> Rx Ch  MEM_TO_DEV    |
349 	 * |                       |    +-+   |                      |
350 	 * +-----------------------+          +----------------------+
351 	 *
352 	 * 1. Normal logic:
353 	 * If eDMA is embedded into the DW PCIe RP/EP and controlled from the
354 	 * CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
355 	 * for the device read operations (DEV_TO_MEM) and the Tx channel
356 	 * (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
357 	 *
358 	 * 2. Inverted logic:
359 	 * If eDMA is embedded into a Remote PCIe EP and is controlled by the
360 	 * MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
361 	 * channel (EDMA_DIR_WRITE) will be used for the device read operations
362 	 * (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
363 	 * operations (MEM_TO_DEV).
364 	 *
365 	 * It is the client driver responsibility to choose a proper channel
366 	 * for the DMA transfers.
367 	 */
368 	if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
369 		if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
370 		    (chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
371 			return NULL;
372 	} else {
373 		if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
374 		    (chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
375 			return NULL;
376 	}
377 
378 	if (xfer->type == EDMA_XFER_CYCLIC) {
379 		if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
380 			return NULL;
381 	} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
382 		if (xfer->xfer.sg.len < 1)
383 			return NULL;
384 	} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
385 		if (!xfer->xfer.il->numf)
386 			return NULL;
387 		if (xfer->xfer.il->numf > 0 && xfer->xfer.il->frame_size > 0)
388 			return NULL;
389 	} else {
390 		return NULL;
391 	}
392 
393 	desc = dw_edma_alloc_desc(chan);
394 	if (unlikely(!desc))
395 		goto err_alloc;
396 
397 	chunk = dw_edma_alloc_chunk(desc);
398 	if (unlikely(!chunk))
399 		goto err_alloc;
400 
401 	if (xfer->type == EDMA_XFER_INTERLEAVED) {
402 		src_addr = xfer->xfer.il->src_start;
403 		dst_addr = xfer->xfer.il->dst_start;
404 	} else {
405 		src_addr = chan->config.src_addr;
406 		dst_addr = chan->config.dst_addr;
407 	}
408 
409 	if (xfer->type == EDMA_XFER_CYCLIC) {
410 		cnt = xfer->xfer.cyclic.cnt;
411 	} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
412 		cnt = xfer->xfer.sg.len;
413 		sg = xfer->xfer.sg.sgl;
414 	} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
415 		if (xfer->xfer.il->numf > 0)
416 			cnt = xfer->xfer.il->numf;
417 		else
418 			cnt = xfer->xfer.il->frame_size;
419 	}
420 
421 	for (i = 0; i < cnt; i++) {
422 		if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
423 			break;
424 
425 		if (chunk->bursts_alloc == chan->ll_max) {
426 			chunk = dw_edma_alloc_chunk(desc);
427 			if (unlikely(!chunk))
428 				goto err_alloc;
429 		}
430 
431 		burst = dw_edma_alloc_burst(chunk);
432 		if (unlikely(!burst))
433 			goto err_alloc;
434 
435 		if (xfer->type == EDMA_XFER_CYCLIC)
436 			burst->sz = xfer->xfer.cyclic.len;
437 		else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
438 			burst->sz = sg_dma_len(sg);
439 		else if (xfer->type == EDMA_XFER_INTERLEAVED)
440 			burst->sz = xfer->xfer.il->sgl[i].size;
441 
442 		chunk->ll_region.sz += burst->sz;
443 		desc->alloc_sz += burst->sz;
444 
445 		if (dir == DMA_DEV_TO_MEM) {
446 			burst->sar = src_addr;
447 			if (xfer->type == EDMA_XFER_CYCLIC) {
448 				burst->dar = xfer->xfer.cyclic.paddr;
449 			} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
450 				src_addr += sg_dma_len(sg);
451 				burst->dar = sg_dma_address(sg);
452 				/* Unlike the typical assumption by other
453 				 * drivers/IPs the peripheral memory isn't
454 				 * a FIFO memory, in this case, it's a
455 				 * linear memory and that why the source
456 				 * and destination addresses are increased
457 				 * by the same portion (data length)
458 				 */
459 			}
460 		} else {
461 			burst->dar = dst_addr;
462 			if (xfer->type == EDMA_XFER_CYCLIC) {
463 				burst->sar = xfer->xfer.cyclic.paddr;
464 			} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
465 				dst_addr += sg_dma_len(sg);
466 				burst->sar = sg_dma_address(sg);
467 				/* Unlike the typical assumption by other
468 				 * drivers/IPs the peripheral memory isn't
469 				 * a FIFO memory, in this case, it's a
470 				 * linear memory and that why the source
471 				 * and destination addresses are increased
472 				 * by the same portion (data length)
473 				 */
474 			}
475 		}
476 
477 		if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
478 			sg = sg_next(sg);
479 		} else if (xfer->type == EDMA_XFER_INTERLEAVED &&
480 			   xfer->xfer.il->frame_size > 0) {
481 			struct dma_interleaved_template *il = xfer->xfer.il;
482 			struct data_chunk *dc = &il->sgl[i];
483 
484 			if (il->src_sgl) {
485 				src_addr += burst->sz;
486 				src_addr += dmaengine_get_src_icg(il, dc);
487 			}
488 
489 			if (il->dst_sgl) {
490 				dst_addr += burst->sz;
491 				dst_addr += dmaengine_get_dst_icg(il, dc);
492 			}
493 		}
494 	}
495 
496 	return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
497 
498 err_alloc:
499 	if (desc)
500 		dw_edma_free_desc(desc);
501 
502 	return NULL;
503 }
504 
505 static struct dma_async_tx_descriptor *
506 dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
507 			     unsigned int len,
508 			     enum dma_transfer_direction direction,
509 			     unsigned long flags, void *context)
510 {
511 	struct dw_edma_transfer xfer;
512 
513 	xfer.dchan = dchan;
514 	xfer.direction = direction;
515 	xfer.xfer.sg.sgl = sgl;
516 	xfer.xfer.sg.len = len;
517 	xfer.flags = flags;
518 	xfer.type = EDMA_XFER_SCATTER_GATHER;
519 
520 	return dw_edma_device_transfer(&xfer);
521 }
522 
523 static struct dma_async_tx_descriptor *
524 dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
525 			       size_t len, size_t count,
526 			       enum dma_transfer_direction direction,
527 			       unsigned long flags)
528 {
529 	struct dw_edma_transfer xfer;
530 
531 	xfer.dchan = dchan;
532 	xfer.direction = direction;
533 	xfer.xfer.cyclic.paddr = paddr;
534 	xfer.xfer.cyclic.len = len;
535 	xfer.xfer.cyclic.cnt = count;
536 	xfer.flags = flags;
537 	xfer.type = EDMA_XFER_CYCLIC;
538 
539 	return dw_edma_device_transfer(&xfer);
540 }
541 
542 static struct dma_async_tx_descriptor *
543 dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
544 				    struct dma_interleaved_template *ilt,
545 				    unsigned long flags)
546 {
547 	struct dw_edma_transfer xfer;
548 
549 	xfer.dchan = dchan;
550 	xfer.direction = ilt->dir;
551 	xfer.xfer.il = ilt;
552 	xfer.flags = flags;
553 	xfer.type = EDMA_XFER_INTERLEAVED;
554 
555 	return dw_edma_device_transfer(&xfer);
556 }
557 
558 static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
559 {
560 	struct dw_edma_desc *desc;
561 	struct virt_dma_desc *vd;
562 	unsigned long flags;
563 
564 	dw_edma_v0_core_clear_done_int(chan);
565 
566 	spin_lock_irqsave(&chan->vc.lock, flags);
567 	vd = vchan_next_desc(&chan->vc);
568 	if (vd) {
569 		switch (chan->request) {
570 		case EDMA_REQ_NONE:
571 			desc = vd2dw_edma_desc(vd);
572 			if (desc->chunks_alloc) {
573 				chan->status = EDMA_ST_BUSY;
574 				dw_edma_start_transfer(chan);
575 			} else {
576 				list_del(&vd->node);
577 				vchan_cookie_complete(vd);
578 				chan->status = EDMA_ST_IDLE;
579 			}
580 			break;
581 
582 		case EDMA_REQ_STOP:
583 			list_del(&vd->node);
584 			vchan_cookie_complete(vd);
585 			chan->request = EDMA_REQ_NONE;
586 			chan->status = EDMA_ST_IDLE;
587 			break;
588 
589 		case EDMA_REQ_PAUSE:
590 			chan->request = EDMA_REQ_NONE;
591 			chan->status = EDMA_ST_PAUSE;
592 			break;
593 
594 		default:
595 			break;
596 		}
597 	}
598 	spin_unlock_irqrestore(&chan->vc.lock, flags);
599 }
600 
601 static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
602 {
603 	struct virt_dma_desc *vd;
604 	unsigned long flags;
605 
606 	dw_edma_v0_core_clear_abort_int(chan);
607 
608 	spin_lock_irqsave(&chan->vc.lock, flags);
609 	vd = vchan_next_desc(&chan->vc);
610 	if (vd) {
611 		list_del(&vd->node);
612 		vchan_cookie_complete(vd);
613 	}
614 	spin_unlock_irqrestore(&chan->vc.lock, flags);
615 	chan->request = EDMA_REQ_NONE;
616 	chan->status = EDMA_ST_IDLE;
617 }
618 
619 static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
620 {
621 	struct dw_edma_irq *dw_irq = data;
622 	struct dw_edma *dw = dw_irq->dw;
623 	unsigned long total, pos, val;
624 	unsigned long off;
625 	u32 mask;
626 
627 	if (write) {
628 		total = dw->wr_ch_cnt;
629 		off = 0;
630 		mask = dw_irq->wr_mask;
631 	} else {
632 		total = dw->rd_ch_cnt;
633 		off = dw->wr_ch_cnt;
634 		mask = dw_irq->rd_mask;
635 	}
636 
637 	val = dw_edma_v0_core_status_done_int(dw, write ?
638 							  EDMA_DIR_WRITE :
639 							  EDMA_DIR_READ);
640 	val &= mask;
641 	for_each_set_bit(pos, &val, total) {
642 		struct dw_edma_chan *chan = &dw->chan[pos + off];
643 
644 		dw_edma_done_interrupt(chan);
645 	}
646 
647 	val = dw_edma_v0_core_status_abort_int(dw, write ?
648 							   EDMA_DIR_WRITE :
649 							   EDMA_DIR_READ);
650 	val &= mask;
651 	for_each_set_bit(pos, &val, total) {
652 		struct dw_edma_chan *chan = &dw->chan[pos + off];
653 
654 		dw_edma_abort_interrupt(chan);
655 	}
656 
657 	return IRQ_HANDLED;
658 }
659 
660 static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
661 {
662 	return dw_edma_interrupt(irq, data, true);
663 }
664 
665 static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
666 {
667 	return dw_edma_interrupt(irq, data, false);
668 }
669 
670 static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
671 {
672 	dw_edma_interrupt(irq, data, true);
673 	dw_edma_interrupt(irq, data, false);
674 
675 	return IRQ_HANDLED;
676 }
677 
678 static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
679 {
680 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
681 
682 	if (chan->status != EDMA_ST_IDLE)
683 		return -EBUSY;
684 
685 	pm_runtime_get(chan->dw->chip->dev);
686 
687 	return 0;
688 }
689 
690 static void dw_edma_free_chan_resources(struct dma_chan *dchan)
691 {
692 	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
693 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
694 	int ret;
695 
696 	while (time_before(jiffies, timeout)) {
697 		ret = dw_edma_device_terminate_all(dchan);
698 		if (!ret)
699 			break;
700 
701 		if (time_after_eq(jiffies, timeout))
702 			return;
703 
704 		cpu_relax();
705 	}
706 
707 	pm_runtime_put(chan->dw->chip->dev);
708 }
709 
710 static int dw_edma_channel_setup(struct dw_edma *dw, bool write,
711 				 u32 wr_alloc, u32 rd_alloc)
712 {
713 	struct dw_edma_chip *chip = dw->chip;
714 	struct dw_edma_region *dt_region;
715 	struct device *dev = chip->dev;
716 	struct dw_edma_chan *chan;
717 	struct dw_edma_irq *irq;
718 	struct dma_device *dma;
719 	u32 alloc, off_alloc;
720 	u32 i, j, cnt;
721 	int err = 0;
722 	u32 pos;
723 
724 	if (write) {
725 		i = 0;
726 		cnt = dw->wr_ch_cnt;
727 		dma = &dw->wr_edma;
728 		alloc = wr_alloc;
729 		off_alloc = 0;
730 	} else {
731 		i = dw->wr_ch_cnt;
732 		cnt = dw->rd_ch_cnt;
733 		dma = &dw->rd_edma;
734 		alloc = rd_alloc;
735 		off_alloc = wr_alloc;
736 	}
737 
738 	INIT_LIST_HEAD(&dma->channels);
739 	for (j = 0; (alloc || dw->nr_irqs == 1) && j < cnt; j++, i++) {
740 		chan = &dw->chan[i];
741 
742 		dt_region = devm_kzalloc(dev, sizeof(*dt_region), GFP_KERNEL);
743 		if (!dt_region)
744 			return -ENOMEM;
745 
746 		chan->vc.chan.private = dt_region;
747 
748 		chan->dw = dw;
749 		chan->id = j;
750 		chan->dir = write ? EDMA_DIR_WRITE : EDMA_DIR_READ;
751 		chan->configured = false;
752 		chan->request = EDMA_REQ_NONE;
753 		chan->status = EDMA_ST_IDLE;
754 
755 		if (write)
756 			chan->ll_max = (chip->ll_region_wr[j].sz / EDMA_LL_SZ);
757 		else
758 			chan->ll_max = (chip->ll_region_rd[j].sz / EDMA_LL_SZ);
759 		chan->ll_max -= 1;
760 
761 		dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
762 			 write ? "write" : "read", j, chan->ll_max);
763 
764 		if (dw->nr_irqs == 1)
765 			pos = 0;
766 		else
767 			pos = off_alloc + (j % alloc);
768 
769 		irq = &dw->irq[pos];
770 
771 		if (write)
772 			irq->wr_mask |= BIT(j);
773 		else
774 			irq->rd_mask |= BIT(j);
775 
776 		irq->dw = dw;
777 		memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
778 
779 		dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
780 			 write ? "write" : "read", j,
781 			 chan->msi.address_hi, chan->msi.address_lo,
782 			 chan->msi.data);
783 
784 		chan->vc.desc_free = vchan_free_desc;
785 		vchan_init(&chan->vc, dma);
786 
787 		if (write) {
788 			dt_region->paddr = chip->dt_region_wr[j].paddr;
789 			dt_region->vaddr = chip->dt_region_wr[j].vaddr;
790 			dt_region->sz = chip->dt_region_wr[j].sz;
791 		} else {
792 			dt_region->paddr = chip->dt_region_rd[j].paddr;
793 			dt_region->vaddr = chip->dt_region_rd[j].vaddr;
794 			dt_region->sz = chip->dt_region_rd[j].sz;
795 		}
796 
797 		dw_edma_v0_core_device_config(chan);
798 	}
799 
800 	/* Set DMA channel capabilities */
801 	dma_cap_zero(dma->cap_mask);
802 	dma_cap_set(DMA_SLAVE, dma->cap_mask);
803 	dma_cap_set(DMA_CYCLIC, dma->cap_mask);
804 	dma_cap_set(DMA_PRIVATE, dma->cap_mask);
805 	dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
806 	dma->directions = BIT(write ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV);
807 	dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
808 	dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
809 	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
810 	dma->chancnt = cnt;
811 
812 	/* Set DMA channel callbacks */
813 	dma->dev = chip->dev;
814 	dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
815 	dma->device_free_chan_resources = dw_edma_free_chan_resources;
816 	dma->device_config = dw_edma_device_config;
817 	dma->device_pause = dw_edma_device_pause;
818 	dma->device_resume = dw_edma_device_resume;
819 	dma->device_terminate_all = dw_edma_device_terminate_all;
820 	dma->device_issue_pending = dw_edma_device_issue_pending;
821 	dma->device_tx_status = dw_edma_device_tx_status;
822 	dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
823 	dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
824 	dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
825 
826 	dma_set_max_seg_size(dma->dev, U32_MAX);
827 
828 	/* Register DMA device */
829 	err = dma_async_device_register(dma);
830 
831 	return err;
832 }
833 
834 static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
835 {
836 	if (*nr_irqs && *alloc < cnt) {
837 		(*alloc)++;
838 		(*nr_irqs)--;
839 	}
840 }
841 
842 static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
843 {
844 	while (*mask * alloc < cnt)
845 		(*mask)++;
846 }
847 
848 static int dw_edma_irq_request(struct dw_edma *dw,
849 			       u32 *wr_alloc, u32 *rd_alloc)
850 {
851 	struct dw_edma_chip *chip = dw->chip;
852 	struct device *dev = dw->chip->dev;
853 	u32 wr_mask = 1;
854 	u32 rd_mask = 1;
855 	int i, err = 0;
856 	u32 ch_cnt;
857 	int irq;
858 
859 	ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
860 
861 	if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
862 		return -EINVAL;
863 
864 	dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
865 	if (!dw->irq)
866 		return -ENOMEM;
867 
868 	if (chip->nr_irqs == 1) {
869 		/* Common IRQ shared among all channels */
870 		irq = chip->ops->irq_vector(dev, 0);
871 		err = request_irq(irq, dw_edma_interrupt_common,
872 				  IRQF_SHARED, dw->name, &dw->irq[0]);
873 		if (err) {
874 			dw->nr_irqs = 0;
875 			return err;
876 		}
877 
878 		if (irq_get_msi_desc(irq))
879 			get_cached_msi_msg(irq, &dw->irq[0].msi);
880 
881 		dw->nr_irqs = 1;
882 	} else {
883 		/* Distribute IRQs equally among all channels */
884 		int tmp = chip->nr_irqs;
885 
886 		while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
887 			dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
888 			dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
889 		}
890 
891 		dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
892 		dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
893 
894 		for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
895 			irq = chip->ops->irq_vector(dev, i);
896 			err = request_irq(irq,
897 					  i < *wr_alloc ?
898 						dw_edma_interrupt_write :
899 						dw_edma_interrupt_read,
900 					  IRQF_SHARED, dw->name,
901 					  &dw->irq[i]);
902 			if (err) {
903 				dw->nr_irqs = i;
904 				return err;
905 			}
906 
907 			if (irq_get_msi_desc(irq))
908 				get_cached_msi_msg(irq, &dw->irq[i].msi);
909 		}
910 
911 		dw->nr_irqs = i;
912 	}
913 
914 	return err;
915 }
916 
917 int dw_edma_probe(struct dw_edma_chip *chip)
918 {
919 	struct device *dev;
920 	struct dw_edma *dw;
921 	u32 wr_alloc = 0;
922 	u32 rd_alloc = 0;
923 	int i, err;
924 
925 	if (!chip)
926 		return -EINVAL;
927 
928 	dev = chip->dev;
929 	if (!dev || !chip->ops)
930 		return -EINVAL;
931 
932 	dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
933 	if (!dw)
934 		return -ENOMEM;
935 
936 	dw->chip = chip;
937 
938 	raw_spin_lock_init(&dw->lock);
939 
940 	dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
941 			      dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE));
942 	dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
943 
944 	dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
945 			      dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ));
946 	dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
947 
948 	if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
949 		return -EINVAL;
950 
951 	dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
952 		 dw->wr_ch_cnt, dw->rd_ch_cnt);
953 
954 	/* Allocate channels */
955 	dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
956 				sizeof(*dw->chan), GFP_KERNEL);
957 	if (!dw->chan)
958 		return -ENOMEM;
959 
960 	snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%d", chip->id);
961 
962 	/* Disable eDMA, only to establish the ideal initial conditions */
963 	dw_edma_v0_core_off(dw);
964 
965 	/* Request IRQs */
966 	err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
967 	if (err)
968 		return err;
969 
970 	/* Setup write channels */
971 	err = dw_edma_channel_setup(dw, true, wr_alloc, rd_alloc);
972 	if (err)
973 		goto err_irq_free;
974 
975 	/* Setup read channels */
976 	err = dw_edma_channel_setup(dw, false, wr_alloc, rd_alloc);
977 	if (err)
978 		goto err_irq_free;
979 
980 	/* Power management */
981 	pm_runtime_enable(dev);
982 
983 	/* Turn debugfs on */
984 	dw_edma_v0_core_debugfs_on(dw);
985 
986 	chip->dw = dw;
987 
988 	return 0;
989 
990 err_irq_free:
991 	for (i = (dw->nr_irqs - 1); i >= 0; i--)
992 		free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
993 
994 	return err;
995 }
996 EXPORT_SYMBOL_GPL(dw_edma_probe);
997 
998 int dw_edma_remove(struct dw_edma_chip *chip)
999 {
1000 	struct dw_edma_chan *chan, *_chan;
1001 	struct device *dev = chip->dev;
1002 	struct dw_edma *dw = chip->dw;
1003 	int i;
1004 
1005 	/* Disable eDMA */
1006 	dw_edma_v0_core_off(dw);
1007 
1008 	/* Free irqs */
1009 	for (i = (dw->nr_irqs - 1); i >= 0; i--)
1010 		free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
1011 
1012 	/* Power management */
1013 	pm_runtime_disable(dev);
1014 
1015 	/* Deregister eDMA device */
1016 	dma_async_device_unregister(&dw->wr_edma);
1017 	list_for_each_entry_safe(chan, _chan, &dw->wr_edma.channels,
1018 				 vc.chan.device_node) {
1019 		tasklet_kill(&chan->vc.task);
1020 		list_del(&chan->vc.chan.device_node);
1021 	}
1022 
1023 	dma_async_device_unregister(&dw->rd_edma);
1024 	list_for_each_entry_safe(chan, _chan, &dw->rd_edma.channels,
1025 				 vc.chan.device_node) {
1026 		tasklet_kill(&chan->vc.task);
1027 		list_del(&chan->vc.chan.device_node);
1028 	}
1029 
1030 	/* Turn debugfs off */
1031 	dw_edma_v0_core_debugfs_off(dw);
1032 
1033 	return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(dw_edma_remove);
1036 
1037 MODULE_LICENSE("GPL v2");
1038 MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
1039 MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");
1040