1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in the 15 * file called COPYING. 16 */ 17 18 /* 19 * This code implements the DMA subsystem. It provides a HW-neutral interface 20 * for other kernel code to use asynchronous memory copy capabilities, 21 * if present, and allows different HW DMA drivers to register as providing 22 * this capability. 23 * 24 * Due to the fact we are accelerating what is already a relatively fast 25 * operation, the code goes to great lengths to avoid additional overhead, 26 * such as locking. 27 * 28 * LOCKING: 29 * 30 * The subsystem keeps a global list of dma_device structs it is protected by a 31 * mutex, dma_list_mutex. 32 * 33 * A subsystem can get access to a channel by calling dmaengine_get() followed 34 * by dma_find_channel(), or if it has need for an exclusive channel it can call 35 * dma_request_channel(). Once a channel is allocated a reference is taken 36 * against its corresponding driver to disable removal. 37 * 38 * Each device has a channels list, which runs unlocked but is never modified 39 * once the device is registered, it's just setup by the driver. 40 * 41 * See Documentation/dmaengine.txt for more details 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/platform_device.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/init.h> 49 #include <linux/module.h> 50 #include <linux/mm.h> 51 #include <linux/device.h> 52 #include <linux/dmaengine.h> 53 #include <linux/hardirq.h> 54 #include <linux/spinlock.h> 55 #include <linux/percpu.h> 56 #include <linux/rcupdate.h> 57 #include <linux/mutex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rculist.h> 60 #include <linux/idr.h> 61 #include <linux/slab.h> 62 #include <linux/acpi.h> 63 #include <linux/acpi_dma.h> 64 #include <linux/of_dma.h> 65 #include <linux/mempool.h> 66 67 static DEFINE_MUTEX(dma_list_mutex); 68 static DEFINE_IDR(dma_idr); 69 static LIST_HEAD(dma_device_list); 70 static long dmaengine_ref_count; 71 72 /* --- sysfs implementation --- */ 73 74 /** 75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object 76 * @dev - device node 77 * 78 * Must be called under dma_list_mutex 79 */ 80 static struct dma_chan *dev_to_dma_chan(struct device *dev) 81 { 82 struct dma_chan_dev *chan_dev; 83 84 chan_dev = container_of(dev, typeof(*chan_dev), device); 85 return chan_dev->chan; 86 } 87 88 static ssize_t memcpy_count_show(struct device *dev, 89 struct device_attribute *attr, char *buf) 90 { 91 struct dma_chan *chan; 92 unsigned long count = 0; 93 int i; 94 int err; 95 96 mutex_lock(&dma_list_mutex); 97 chan = dev_to_dma_chan(dev); 98 if (chan) { 99 for_each_possible_cpu(i) 100 count += per_cpu_ptr(chan->local, i)->memcpy_count; 101 err = sprintf(buf, "%lu\n", count); 102 } else 103 err = -ENODEV; 104 mutex_unlock(&dma_list_mutex); 105 106 return err; 107 } 108 static DEVICE_ATTR_RO(memcpy_count); 109 110 static ssize_t bytes_transferred_show(struct device *dev, 111 struct device_attribute *attr, char *buf) 112 { 113 struct dma_chan *chan; 114 unsigned long count = 0; 115 int i; 116 int err; 117 118 mutex_lock(&dma_list_mutex); 119 chan = dev_to_dma_chan(dev); 120 if (chan) { 121 for_each_possible_cpu(i) 122 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 123 err = sprintf(buf, "%lu\n", count); 124 } else 125 err = -ENODEV; 126 mutex_unlock(&dma_list_mutex); 127 128 return err; 129 } 130 static DEVICE_ATTR_RO(bytes_transferred); 131 132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 133 char *buf) 134 { 135 struct dma_chan *chan; 136 int err; 137 138 mutex_lock(&dma_list_mutex); 139 chan = dev_to_dma_chan(dev); 140 if (chan) 141 err = sprintf(buf, "%d\n", chan->client_count); 142 else 143 err = -ENODEV; 144 mutex_unlock(&dma_list_mutex); 145 146 return err; 147 } 148 static DEVICE_ATTR_RO(in_use); 149 150 static struct attribute *dma_dev_attrs[] = { 151 &dev_attr_memcpy_count.attr, 152 &dev_attr_bytes_transferred.attr, 153 &dev_attr_in_use.attr, 154 NULL, 155 }; 156 ATTRIBUTE_GROUPS(dma_dev); 157 158 static void chan_dev_release(struct device *dev) 159 { 160 struct dma_chan_dev *chan_dev; 161 162 chan_dev = container_of(dev, typeof(*chan_dev), device); 163 if (atomic_dec_and_test(chan_dev->idr_ref)) { 164 mutex_lock(&dma_list_mutex); 165 idr_remove(&dma_idr, chan_dev->dev_id); 166 mutex_unlock(&dma_list_mutex); 167 kfree(chan_dev->idr_ref); 168 } 169 kfree(chan_dev); 170 } 171 172 static struct class dma_devclass = { 173 .name = "dma", 174 .dev_groups = dma_dev_groups, 175 .dev_release = chan_dev_release, 176 }; 177 178 /* --- client and device registration --- */ 179 180 #define dma_device_satisfies_mask(device, mask) \ 181 __dma_device_satisfies_mask((device), &(mask)) 182 static int 183 __dma_device_satisfies_mask(struct dma_device *device, 184 const dma_cap_mask_t *want) 185 { 186 dma_cap_mask_t has; 187 188 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 189 DMA_TX_TYPE_END); 190 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 191 } 192 193 static struct module *dma_chan_to_owner(struct dma_chan *chan) 194 { 195 return chan->device->dev->driver->owner; 196 } 197 198 /** 199 * balance_ref_count - catch up the channel reference count 200 * @chan - channel to balance ->client_count versus dmaengine_ref_count 201 * 202 * balance_ref_count must be called under dma_list_mutex 203 */ 204 static void balance_ref_count(struct dma_chan *chan) 205 { 206 struct module *owner = dma_chan_to_owner(chan); 207 208 while (chan->client_count < dmaengine_ref_count) { 209 __module_get(owner); 210 chan->client_count++; 211 } 212 } 213 214 /** 215 * dma_chan_get - try to grab a dma channel's parent driver module 216 * @chan - channel to grab 217 * 218 * Must be called under dma_list_mutex 219 */ 220 static int dma_chan_get(struct dma_chan *chan) 221 { 222 struct module *owner = dma_chan_to_owner(chan); 223 int ret; 224 225 /* The channel is already in use, update client count */ 226 if (chan->client_count) { 227 __module_get(owner); 228 goto out; 229 } 230 231 if (!try_module_get(owner)) 232 return -ENODEV; 233 234 /* allocate upon first client reference */ 235 if (chan->device->device_alloc_chan_resources) { 236 ret = chan->device->device_alloc_chan_resources(chan); 237 if (ret < 0) 238 goto err_out; 239 } 240 241 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 242 balance_ref_count(chan); 243 244 out: 245 chan->client_count++; 246 return 0; 247 248 err_out: 249 module_put(owner); 250 return ret; 251 } 252 253 /** 254 * dma_chan_put - drop a reference to a dma channel's parent driver module 255 * @chan - channel to release 256 * 257 * Must be called under dma_list_mutex 258 */ 259 static void dma_chan_put(struct dma_chan *chan) 260 { 261 /* This channel is not in use, bail out */ 262 if (!chan->client_count) 263 return; 264 265 chan->client_count--; 266 module_put(dma_chan_to_owner(chan)); 267 268 /* This channel is not in use anymore, free it */ 269 if (!chan->client_count && chan->device->device_free_chan_resources) { 270 /* Make sure all operations have completed */ 271 dmaengine_synchronize(chan); 272 chan->device->device_free_chan_resources(chan); 273 } 274 275 /* If the channel is used via a DMA request router, free the mapping */ 276 if (chan->router && chan->router->route_free) { 277 chan->router->route_free(chan->router->dev, chan->route_data); 278 chan->router = NULL; 279 chan->route_data = NULL; 280 } 281 } 282 283 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 284 { 285 enum dma_status status; 286 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 287 288 dma_async_issue_pending(chan); 289 do { 290 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 291 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 292 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 293 return DMA_ERROR; 294 } 295 if (status != DMA_IN_PROGRESS) 296 break; 297 cpu_relax(); 298 } while (1); 299 300 return status; 301 } 302 EXPORT_SYMBOL(dma_sync_wait); 303 304 /** 305 * dma_cap_mask_all - enable iteration over all operation types 306 */ 307 static dma_cap_mask_t dma_cap_mask_all; 308 309 /** 310 * dma_chan_tbl_ent - tracks channel allocations per core/operation 311 * @chan - associated channel for this entry 312 */ 313 struct dma_chan_tbl_ent { 314 struct dma_chan *chan; 315 }; 316 317 /** 318 * channel_table - percpu lookup table for memory-to-memory offload providers 319 */ 320 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 321 322 static int __init dma_channel_table_init(void) 323 { 324 enum dma_transaction_type cap; 325 int err = 0; 326 327 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 328 329 /* 'interrupt', 'private', and 'slave' are channel capabilities, 330 * but are not associated with an operation so they do not need 331 * an entry in the channel_table 332 */ 333 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 334 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 335 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 336 337 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 338 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 339 if (!channel_table[cap]) { 340 err = -ENOMEM; 341 break; 342 } 343 } 344 345 if (err) { 346 pr_err("initialization failure\n"); 347 for_each_dma_cap_mask(cap, dma_cap_mask_all) 348 free_percpu(channel_table[cap]); 349 } 350 351 return err; 352 } 353 arch_initcall(dma_channel_table_init); 354 355 /** 356 * dma_find_channel - find a channel to carry out the operation 357 * @tx_type: transaction type 358 */ 359 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 360 { 361 return this_cpu_read(channel_table[tx_type]->chan); 362 } 363 EXPORT_SYMBOL(dma_find_channel); 364 365 /** 366 * dma_issue_pending_all - flush all pending operations across all channels 367 */ 368 void dma_issue_pending_all(void) 369 { 370 struct dma_device *device; 371 struct dma_chan *chan; 372 373 rcu_read_lock(); 374 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 375 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 376 continue; 377 list_for_each_entry(chan, &device->channels, device_node) 378 if (chan->client_count) 379 device->device_issue_pending(chan); 380 } 381 rcu_read_unlock(); 382 } 383 EXPORT_SYMBOL(dma_issue_pending_all); 384 385 /** 386 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu 387 */ 388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 389 { 390 int node = dev_to_node(chan->device->dev); 391 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node)); 392 } 393 394 /** 395 * min_chan - returns the channel with min count and in the same numa-node as the cpu 396 * @cap: capability to match 397 * @cpu: cpu index which the channel should be close to 398 * 399 * If some channels are close to the given cpu, the one with the lowest 400 * reference count is returned. Otherwise, cpu is ignored and only the 401 * reference count is taken into account. 402 * Must be called under dma_list_mutex. 403 */ 404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 405 { 406 struct dma_device *device; 407 struct dma_chan *chan; 408 struct dma_chan *min = NULL; 409 struct dma_chan *localmin = NULL; 410 411 list_for_each_entry(device, &dma_device_list, global_node) { 412 if (!dma_has_cap(cap, device->cap_mask) || 413 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 414 continue; 415 list_for_each_entry(chan, &device->channels, device_node) { 416 if (!chan->client_count) 417 continue; 418 if (!min || chan->table_count < min->table_count) 419 min = chan; 420 421 if (dma_chan_is_local(chan, cpu)) 422 if (!localmin || 423 chan->table_count < localmin->table_count) 424 localmin = chan; 425 } 426 } 427 428 chan = localmin ? localmin : min; 429 430 if (chan) 431 chan->table_count++; 432 433 return chan; 434 } 435 436 /** 437 * dma_channel_rebalance - redistribute the available channels 438 * 439 * Optimize for cpu isolation (each cpu gets a dedicated channel for an 440 * operation type) in the SMP case, and operation isolation (avoid 441 * multi-tasking channels) in the non-SMP case. Must be called under 442 * dma_list_mutex. 443 */ 444 static void dma_channel_rebalance(void) 445 { 446 struct dma_chan *chan; 447 struct dma_device *device; 448 int cpu; 449 int cap; 450 451 /* undo the last distribution */ 452 for_each_dma_cap_mask(cap, dma_cap_mask_all) 453 for_each_possible_cpu(cpu) 454 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 455 456 list_for_each_entry(device, &dma_device_list, global_node) { 457 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 458 continue; 459 list_for_each_entry(chan, &device->channels, device_node) 460 chan->table_count = 0; 461 } 462 463 /* don't populate the channel_table if no clients are available */ 464 if (!dmaengine_ref_count) 465 return; 466 467 /* redistribute available channels */ 468 for_each_dma_cap_mask(cap, dma_cap_mask_all) 469 for_each_online_cpu(cpu) { 470 chan = min_chan(cap, cpu); 471 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 472 } 473 } 474 475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 476 { 477 struct dma_device *device; 478 479 if (!chan || !caps) 480 return -EINVAL; 481 482 device = chan->device; 483 484 /* check if the channel supports slave transactions */ 485 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 486 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 487 return -ENXIO; 488 489 /* 490 * Check whether it reports it uses the generic slave 491 * capabilities, if not, that means it doesn't support any 492 * kind of slave capabilities reporting. 493 */ 494 if (!device->directions) 495 return -ENXIO; 496 497 caps->src_addr_widths = device->src_addr_widths; 498 caps->dst_addr_widths = device->dst_addr_widths; 499 caps->directions = device->directions; 500 caps->max_burst = device->max_burst; 501 caps->residue_granularity = device->residue_granularity; 502 caps->descriptor_reuse = device->descriptor_reuse; 503 504 /* 505 * Some devices implement only pause (e.g. to get residuum) but no 506 * resume. However cmd_pause is advertised as pause AND resume. 507 */ 508 caps->cmd_pause = !!(device->device_pause && device->device_resume); 509 caps->cmd_terminate = !!device->device_terminate_all; 510 511 return 0; 512 } 513 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 514 515 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 516 struct dma_device *dev, 517 dma_filter_fn fn, void *fn_param) 518 { 519 struct dma_chan *chan; 520 521 if (mask && !__dma_device_satisfies_mask(dev, mask)) { 522 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 523 return NULL; 524 } 525 /* devices with multiple channels need special handling as we need to 526 * ensure that all channels are either private or public. 527 */ 528 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 529 list_for_each_entry(chan, &dev->channels, device_node) { 530 /* some channels are already publicly allocated */ 531 if (chan->client_count) 532 return NULL; 533 } 534 535 list_for_each_entry(chan, &dev->channels, device_node) { 536 if (chan->client_count) { 537 dev_dbg(dev->dev, "%s: %s busy\n", 538 __func__, dma_chan_name(chan)); 539 continue; 540 } 541 if (fn && !fn(chan, fn_param)) { 542 dev_dbg(dev->dev, "%s: %s filter said false\n", 543 __func__, dma_chan_name(chan)); 544 continue; 545 } 546 return chan; 547 } 548 549 return NULL; 550 } 551 552 static struct dma_chan *find_candidate(struct dma_device *device, 553 const dma_cap_mask_t *mask, 554 dma_filter_fn fn, void *fn_param) 555 { 556 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 557 int err; 558 559 if (chan) { 560 /* Found a suitable channel, try to grab, prep, and return it. 561 * We first set DMA_PRIVATE to disable balance_ref_count as this 562 * channel will not be published in the general-purpose 563 * allocator 564 */ 565 dma_cap_set(DMA_PRIVATE, device->cap_mask); 566 device->privatecnt++; 567 err = dma_chan_get(chan); 568 569 if (err) { 570 if (err == -ENODEV) { 571 dev_dbg(device->dev, "%s: %s module removed\n", 572 __func__, dma_chan_name(chan)); 573 list_del_rcu(&device->global_node); 574 } else 575 dev_dbg(device->dev, 576 "%s: failed to get %s: (%d)\n", 577 __func__, dma_chan_name(chan), err); 578 579 if (--device->privatecnt == 0) 580 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 581 582 chan = ERR_PTR(err); 583 } 584 } 585 586 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 587 } 588 589 /** 590 * dma_get_slave_channel - try to get specific channel exclusively 591 * @chan: target channel 592 */ 593 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 594 { 595 int err = -EBUSY; 596 597 /* lock against __dma_request_channel */ 598 mutex_lock(&dma_list_mutex); 599 600 if (chan->client_count == 0) { 601 struct dma_device *device = chan->device; 602 603 dma_cap_set(DMA_PRIVATE, device->cap_mask); 604 device->privatecnt++; 605 err = dma_chan_get(chan); 606 if (err) { 607 dev_dbg(chan->device->dev, 608 "%s: failed to get %s: (%d)\n", 609 __func__, dma_chan_name(chan), err); 610 chan = NULL; 611 if (--device->privatecnt == 0) 612 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 613 } 614 } else 615 chan = NULL; 616 617 mutex_unlock(&dma_list_mutex); 618 619 620 return chan; 621 } 622 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 623 624 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 625 { 626 dma_cap_mask_t mask; 627 struct dma_chan *chan; 628 629 dma_cap_zero(mask); 630 dma_cap_set(DMA_SLAVE, mask); 631 632 /* lock against __dma_request_channel */ 633 mutex_lock(&dma_list_mutex); 634 635 chan = find_candidate(device, &mask, NULL, NULL); 636 637 mutex_unlock(&dma_list_mutex); 638 639 return IS_ERR(chan) ? NULL : chan; 640 } 641 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 642 643 /** 644 * __dma_request_channel - try to allocate an exclusive channel 645 * @mask: capabilities that the channel must satisfy 646 * @fn: optional callback to disposition available channels 647 * @fn_param: opaque parameter to pass to dma_filter_fn 648 * 649 * Returns pointer to appropriate DMA channel on success or NULL. 650 */ 651 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 652 dma_filter_fn fn, void *fn_param) 653 { 654 struct dma_device *device, *_d; 655 struct dma_chan *chan = NULL; 656 657 /* Find a channel */ 658 mutex_lock(&dma_list_mutex); 659 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 660 chan = find_candidate(device, mask, fn, fn_param); 661 if (!IS_ERR(chan)) 662 break; 663 664 chan = NULL; 665 } 666 mutex_unlock(&dma_list_mutex); 667 668 pr_debug("%s: %s (%s)\n", 669 __func__, 670 chan ? "success" : "fail", 671 chan ? dma_chan_name(chan) : NULL); 672 673 return chan; 674 } 675 EXPORT_SYMBOL_GPL(__dma_request_channel); 676 677 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 678 const char *name, 679 struct device *dev) 680 { 681 int i; 682 683 if (!device->filter.mapcnt) 684 return NULL; 685 686 for (i = 0; i < device->filter.mapcnt; i++) { 687 const struct dma_slave_map *map = &device->filter.map[i]; 688 689 if (!strcmp(map->devname, dev_name(dev)) && 690 !strcmp(map->slave, name)) 691 return map; 692 } 693 694 return NULL; 695 } 696 697 /** 698 * dma_request_chan - try to allocate an exclusive slave channel 699 * @dev: pointer to client device structure 700 * @name: slave channel name 701 * 702 * Returns pointer to appropriate DMA channel on success or an error pointer. 703 */ 704 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 705 { 706 struct dma_device *d, *_d; 707 struct dma_chan *chan = NULL; 708 709 /* If device-tree is present get slave info from here */ 710 if (dev->of_node) 711 chan = of_dma_request_slave_channel(dev->of_node, name); 712 713 /* If device was enumerated by ACPI get slave info from here */ 714 if (has_acpi_companion(dev) && !chan) 715 chan = acpi_dma_request_slave_chan_by_name(dev, name); 716 717 if (chan) { 718 /* Valid channel found or requester need to be deferred */ 719 if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER) 720 return chan; 721 } 722 723 /* Try to find the channel via the DMA filter map(s) */ 724 mutex_lock(&dma_list_mutex); 725 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 726 dma_cap_mask_t mask; 727 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 728 729 if (!map) 730 continue; 731 732 dma_cap_zero(mask); 733 dma_cap_set(DMA_SLAVE, mask); 734 735 chan = find_candidate(d, &mask, d->filter.fn, map->param); 736 if (!IS_ERR(chan)) 737 break; 738 } 739 mutex_unlock(&dma_list_mutex); 740 741 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 742 } 743 EXPORT_SYMBOL_GPL(dma_request_chan); 744 745 /** 746 * dma_request_slave_channel - try to allocate an exclusive slave channel 747 * @dev: pointer to client device structure 748 * @name: slave channel name 749 * 750 * Returns pointer to appropriate DMA channel on success or NULL. 751 */ 752 struct dma_chan *dma_request_slave_channel(struct device *dev, 753 const char *name) 754 { 755 struct dma_chan *ch = dma_request_chan(dev, name); 756 if (IS_ERR(ch)) 757 return NULL; 758 759 return ch; 760 } 761 EXPORT_SYMBOL_GPL(dma_request_slave_channel); 762 763 /** 764 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 765 * @mask: capabilities that the channel must satisfy 766 * 767 * Returns pointer to appropriate DMA channel on success or an error pointer. 768 */ 769 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 770 { 771 struct dma_chan *chan; 772 773 if (!mask) 774 return ERR_PTR(-ENODEV); 775 776 chan = __dma_request_channel(mask, NULL, NULL); 777 if (!chan) 778 chan = ERR_PTR(-ENODEV); 779 780 return chan; 781 } 782 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 783 784 void dma_release_channel(struct dma_chan *chan) 785 { 786 mutex_lock(&dma_list_mutex); 787 WARN_ONCE(chan->client_count != 1, 788 "chan reference count %d != 1\n", chan->client_count); 789 dma_chan_put(chan); 790 /* drop PRIVATE cap enabled by __dma_request_channel() */ 791 if (--chan->device->privatecnt == 0) 792 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 793 mutex_unlock(&dma_list_mutex); 794 } 795 EXPORT_SYMBOL_GPL(dma_release_channel); 796 797 /** 798 * dmaengine_get - register interest in dma_channels 799 */ 800 void dmaengine_get(void) 801 { 802 struct dma_device *device, *_d; 803 struct dma_chan *chan; 804 int err; 805 806 mutex_lock(&dma_list_mutex); 807 dmaengine_ref_count++; 808 809 /* try to grab channels */ 810 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 811 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 812 continue; 813 list_for_each_entry(chan, &device->channels, device_node) { 814 err = dma_chan_get(chan); 815 if (err == -ENODEV) { 816 /* module removed before we could use it */ 817 list_del_rcu(&device->global_node); 818 break; 819 } else if (err) 820 dev_dbg(chan->device->dev, 821 "%s: failed to get %s: (%d)\n", 822 __func__, dma_chan_name(chan), err); 823 } 824 } 825 826 /* if this is the first reference and there were channels 827 * waiting we need to rebalance to get those channels 828 * incorporated into the channel table 829 */ 830 if (dmaengine_ref_count == 1) 831 dma_channel_rebalance(); 832 mutex_unlock(&dma_list_mutex); 833 } 834 EXPORT_SYMBOL(dmaengine_get); 835 836 /** 837 * dmaengine_put - let dma drivers be removed when ref_count == 0 838 */ 839 void dmaengine_put(void) 840 { 841 struct dma_device *device; 842 struct dma_chan *chan; 843 844 mutex_lock(&dma_list_mutex); 845 dmaengine_ref_count--; 846 BUG_ON(dmaengine_ref_count < 0); 847 /* drop channel references */ 848 list_for_each_entry(device, &dma_device_list, global_node) { 849 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 850 continue; 851 list_for_each_entry(chan, &device->channels, device_node) 852 dma_chan_put(chan); 853 } 854 mutex_unlock(&dma_list_mutex); 855 } 856 EXPORT_SYMBOL(dmaengine_put); 857 858 static bool device_has_all_tx_types(struct dma_device *device) 859 { 860 /* A device that satisfies this test has channels that will never cause 861 * an async_tx channel switch event as all possible operation types can 862 * be handled. 863 */ 864 #ifdef CONFIG_ASYNC_TX_DMA 865 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 866 return false; 867 #endif 868 869 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 870 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 871 return false; 872 #endif 873 874 #if IS_ENABLED(CONFIG_ASYNC_XOR) 875 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 876 return false; 877 878 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 879 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 880 return false; 881 #endif 882 #endif 883 884 #if IS_ENABLED(CONFIG_ASYNC_PQ) 885 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 886 return false; 887 888 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 889 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 890 return false; 891 #endif 892 #endif 893 894 return true; 895 } 896 897 static int get_dma_id(struct dma_device *device) 898 { 899 int rc; 900 901 mutex_lock(&dma_list_mutex); 902 903 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL); 904 if (rc >= 0) 905 device->dev_id = rc; 906 907 mutex_unlock(&dma_list_mutex); 908 return rc < 0 ? rc : 0; 909 } 910 911 /** 912 * dma_async_device_register - registers DMA devices found 913 * @device: &dma_device 914 */ 915 int dma_async_device_register(struct dma_device *device) 916 { 917 int chancnt = 0, rc; 918 struct dma_chan* chan; 919 atomic_t *idr_ref; 920 921 if (!device) 922 return -ENODEV; 923 924 /* validate device routines */ 925 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && 926 !device->device_prep_dma_memcpy); 927 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && 928 !device->device_prep_dma_xor); 929 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) && 930 !device->device_prep_dma_xor_val); 931 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) && 932 !device->device_prep_dma_pq); 933 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) && 934 !device->device_prep_dma_pq_val); 935 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) && 936 !device->device_prep_dma_memset); 937 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && 938 !device->device_prep_dma_interrupt); 939 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) && 940 !device->device_prep_dma_sg); 941 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) && 942 !device->device_prep_dma_cyclic); 943 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && 944 !device->device_prep_interleaved_dma); 945 946 BUG_ON(!device->device_tx_status); 947 BUG_ON(!device->device_issue_pending); 948 BUG_ON(!device->dev); 949 950 /* note: this only matters in the 951 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 952 */ 953 if (device_has_all_tx_types(device)) 954 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 955 956 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); 957 if (!idr_ref) 958 return -ENOMEM; 959 rc = get_dma_id(device); 960 if (rc != 0) { 961 kfree(idr_ref); 962 return rc; 963 } 964 965 atomic_set(idr_ref, 0); 966 967 /* represent channels in sysfs. Probably want devs too */ 968 list_for_each_entry(chan, &device->channels, device_node) { 969 rc = -ENOMEM; 970 chan->local = alloc_percpu(typeof(*chan->local)); 971 if (chan->local == NULL) 972 goto err_out; 973 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 974 if (chan->dev == NULL) { 975 free_percpu(chan->local); 976 chan->local = NULL; 977 goto err_out; 978 } 979 980 chan->chan_id = chancnt++; 981 chan->dev->device.class = &dma_devclass; 982 chan->dev->device.parent = device->dev; 983 chan->dev->chan = chan; 984 chan->dev->idr_ref = idr_ref; 985 chan->dev->dev_id = device->dev_id; 986 atomic_inc(idr_ref); 987 dev_set_name(&chan->dev->device, "dma%dchan%d", 988 device->dev_id, chan->chan_id); 989 990 rc = device_register(&chan->dev->device); 991 if (rc) { 992 free_percpu(chan->local); 993 chan->local = NULL; 994 kfree(chan->dev); 995 atomic_dec(idr_ref); 996 goto err_out; 997 } 998 chan->client_count = 0; 999 } 1000 device->chancnt = chancnt; 1001 1002 mutex_lock(&dma_list_mutex); 1003 /* take references on public channels */ 1004 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1005 list_for_each_entry(chan, &device->channels, device_node) { 1006 /* if clients are already waiting for channels we need 1007 * to take references on their behalf 1008 */ 1009 if (dma_chan_get(chan) == -ENODEV) { 1010 /* note we can only get here for the first 1011 * channel as the remaining channels are 1012 * guaranteed to get a reference 1013 */ 1014 rc = -ENODEV; 1015 mutex_unlock(&dma_list_mutex); 1016 goto err_out; 1017 } 1018 } 1019 list_add_tail_rcu(&device->global_node, &dma_device_list); 1020 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1021 device->privatecnt++; /* Always private */ 1022 dma_channel_rebalance(); 1023 mutex_unlock(&dma_list_mutex); 1024 1025 return 0; 1026 1027 err_out: 1028 /* if we never registered a channel just release the idr */ 1029 if (atomic_read(idr_ref) == 0) { 1030 mutex_lock(&dma_list_mutex); 1031 idr_remove(&dma_idr, device->dev_id); 1032 mutex_unlock(&dma_list_mutex); 1033 kfree(idr_ref); 1034 return rc; 1035 } 1036 1037 list_for_each_entry(chan, &device->channels, device_node) { 1038 if (chan->local == NULL) 1039 continue; 1040 mutex_lock(&dma_list_mutex); 1041 chan->dev->chan = NULL; 1042 mutex_unlock(&dma_list_mutex); 1043 device_unregister(&chan->dev->device); 1044 free_percpu(chan->local); 1045 } 1046 return rc; 1047 } 1048 EXPORT_SYMBOL(dma_async_device_register); 1049 1050 /** 1051 * dma_async_device_unregister - unregister a DMA device 1052 * @device: &dma_device 1053 * 1054 * This routine is called by dma driver exit routines, dmaengine holds module 1055 * references to prevent it being called while channels are in use. 1056 */ 1057 void dma_async_device_unregister(struct dma_device *device) 1058 { 1059 struct dma_chan *chan; 1060 1061 mutex_lock(&dma_list_mutex); 1062 list_del_rcu(&device->global_node); 1063 dma_channel_rebalance(); 1064 mutex_unlock(&dma_list_mutex); 1065 1066 list_for_each_entry(chan, &device->channels, device_node) { 1067 WARN_ONCE(chan->client_count, 1068 "%s called while %d clients hold a reference\n", 1069 __func__, chan->client_count); 1070 mutex_lock(&dma_list_mutex); 1071 chan->dev->chan = NULL; 1072 mutex_unlock(&dma_list_mutex); 1073 device_unregister(&chan->dev->device); 1074 free_percpu(chan->local); 1075 } 1076 } 1077 EXPORT_SYMBOL(dma_async_device_unregister); 1078 1079 struct dmaengine_unmap_pool { 1080 struct kmem_cache *cache; 1081 const char *name; 1082 mempool_t *pool; 1083 size_t size; 1084 }; 1085 1086 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1087 static struct dmaengine_unmap_pool unmap_pool[] = { 1088 __UNMAP_POOL(2), 1089 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1090 __UNMAP_POOL(16), 1091 __UNMAP_POOL(128), 1092 __UNMAP_POOL(256), 1093 #endif 1094 }; 1095 1096 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1097 { 1098 int order = get_count_order(nr); 1099 1100 switch (order) { 1101 case 0 ... 1: 1102 return &unmap_pool[0]; 1103 case 2 ... 4: 1104 return &unmap_pool[1]; 1105 case 5 ... 7: 1106 return &unmap_pool[2]; 1107 case 8: 1108 return &unmap_pool[3]; 1109 default: 1110 BUG(); 1111 return NULL; 1112 } 1113 } 1114 1115 static void dmaengine_unmap(struct kref *kref) 1116 { 1117 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1118 struct device *dev = unmap->dev; 1119 int cnt, i; 1120 1121 cnt = unmap->to_cnt; 1122 for (i = 0; i < cnt; i++) 1123 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1124 DMA_TO_DEVICE); 1125 cnt += unmap->from_cnt; 1126 for (; i < cnt; i++) 1127 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1128 DMA_FROM_DEVICE); 1129 cnt += unmap->bidi_cnt; 1130 for (; i < cnt; i++) { 1131 if (unmap->addr[i] == 0) 1132 continue; 1133 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1134 DMA_BIDIRECTIONAL); 1135 } 1136 cnt = unmap->map_cnt; 1137 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1138 } 1139 1140 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1141 { 1142 if (unmap) 1143 kref_put(&unmap->kref, dmaengine_unmap); 1144 } 1145 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1146 1147 static void dmaengine_destroy_unmap_pool(void) 1148 { 1149 int i; 1150 1151 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1152 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1153 1154 mempool_destroy(p->pool); 1155 p->pool = NULL; 1156 kmem_cache_destroy(p->cache); 1157 p->cache = NULL; 1158 } 1159 } 1160 1161 static int __init dmaengine_init_unmap_pool(void) 1162 { 1163 int i; 1164 1165 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1166 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1167 size_t size; 1168 1169 size = sizeof(struct dmaengine_unmap_data) + 1170 sizeof(dma_addr_t) * p->size; 1171 1172 p->cache = kmem_cache_create(p->name, size, 0, 1173 SLAB_HWCACHE_ALIGN, NULL); 1174 if (!p->cache) 1175 break; 1176 p->pool = mempool_create_slab_pool(1, p->cache); 1177 if (!p->pool) 1178 break; 1179 } 1180 1181 if (i == ARRAY_SIZE(unmap_pool)) 1182 return 0; 1183 1184 dmaengine_destroy_unmap_pool(); 1185 return -ENOMEM; 1186 } 1187 1188 struct dmaengine_unmap_data * 1189 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1190 { 1191 struct dmaengine_unmap_data *unmap; 1192 1193 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1194 if (!unmap) 1195 return NULL; 1196 1197 memset(unmap, 0, sizeof(*unmap)); 1198 kref_init(&unmap->kref); 1199 unmap->dev = dev; 1200 unmap->map_cnt = nr; 1201 1202 return unmap; 1203 } 1204 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1205 1206 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1207 struct dma_chan *chan) 1208 { 1209 tx->chan = chan; 1210 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1211 spin_lock_init(&tx->lock); 1212 #endif 1213 } 1214 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1215 1216 /* dma_wait_for_async_tx - spin wait for a transaction to complete 1217 * @tx: in-flight transaction to wait on 1218 */ 1219 enum dma_status 1220 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1221 { 1222 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1223 1224 if (!tx) 1225 return DMA_COMPLETE; 1226 1227 while (tx->cookie == -EBUSY) { 1228 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1229 dev_err(tx->chan->device->dev, 1230 "%s timeout waiting for descriptor submission\n", 1231 __func__); 1232 return DMA_ERROR; 1233 } 1234 cpu_relax(); 1235 } 1236 return dma_sync_wait(tx->chan, tx->cookie); 1237 } 1238 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1239 1240 /* dma_run_dependencies - helper routine for dma drivers to process 1241 * (start) dependent operations on their target channel 1242 * @tx: transaction with dependencies 1243 */ 1244 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1245 { 1246 struct dma_async_tx_descriptor *dep = txd_next(tx); 1247 struct dma_async_tx_descriptor *dep_next; 1248 struct dma_chan *chan; 1249 1250 if (!dep) 1251 return; 1252 1253 /* we'll submit tx->next now, so clear the link */ 1254 txd_clear_next(tx); 1255 chan = dep->chan; 1256 1257 /* keep submitting up until a channel switch is detected 1258 * in that case we will be called again as a result of 1259 * processing the interrupt from async_tx_channel_switch 1260 */ 1261 for (; dep; dep = dep_next) { 1262 txd_lock(dep); 1263 txd_clear_parent(dep); 1264 dep_next = txd_next(dep); 1265 if (dep_next && dep_next->chan == chan) 1266 txd_clear_next(dep); /* ->next will be submitted */ 1267 else 1268 dep_next = NULL; /* submit current dep and terminate */ 1269 txd_unlock(dep); 1270 1271 dep->tx_submit(dep); 1272 } 1273 1274 chan->device->device_issue_pending(chan); 1275 } 1276 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1277 1278 static int __init dma_bus_init(void) 1279 { 1280 int err = dmaengine_init_unmap_pool(); 1281 1282 if (err) 1283 return err; 1284 return class_register(&dma_devclass); 1285 } 1286 arch_initcall(dma_bus_init); 1287 1288 1289