xref: /linux/drivers/dma/dmaengine.c (revision c24a5c735f87d0549060de31367c095e8810b895)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 
18 /*
19  * This code implements the DMA subsystem. It provides a HW-neutral interface
20  * for other kernel code to use asynchronous memory copy capabilities,
21  * if present, and allows different HW DMA drivers to register as providing
22  * this capability.
23  *
24  * Due to the fact we are accelerating what is already a relatively fast
25  * operation, the code goes to great lengths to avoid additional overhead,
26  * such as locking.
27  *
28  * LOCKING:
29  *
30  * The subsystem keeps a global list of dma_device structs it is protected by a
31  * mutex, dma_list_mutex.
32  *
33  * A subsystem can get access to a channel by calling dmaengine_get() followed
34  * by dma_find_channel(), or if it has need for an exclusive channel it can call
35  * dma_request_channel().  Once a channel is allocated a reference is taken
36  * against its corresponding driver to disable removal.
37  *
38  * Each device has a channels list, which runs unlocked but is never modified
39  * once the device is registered, it's just setup by the driver.
40  *
41  * See Documentation/driver-api/dmaengine for more details
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66 #include <linux/numa.h>
67 
68 static DEFINE_MUTEX(dma_list_mutex);
69 static DEFINE_IDA(dma_ida);
70 static LIST_HEAD(dma_device_list);
71 static long dmaengine_ref_count;
72 
73 /* --- sysfs implementation --- */
74 
75 /**
76  * dev_to_dma_chan - convert a device pointer to its sysfs container object
77  * @dev - device node
78  *
79  * Must be called under dma_list_mutex
80  */
81 static struct dma_chan *dev_to_dma_chan(struct device *dev)
82 {
83 	struct dma_chan_dev *chan_dev;
84 
85 	chan_dev = container_of(dev, typeof(*chan_dev), device);
86 	return chan_dev->chan;
87 }
88 
89 static ssize_t memcpy_count_show(struct device *dev,
90 				 struct device_attribute *attr, char *buf)
91 {
92 	struct dma_chan *chan;
93 	unsigned long count = 0;
94 	int i;
95 	int err;
96 
97 	mutex_lock(&dma_list_mutex);
98 	chan = dev_to_dma_chan(dev);
99 	if (chan) {
100 		for_each_possible_cpu(i)
101 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
102 		err = sprintf(buf, "%lu\n", count);
103 	} else
104 		err = -ENODEV;
105 	mutex_unlock(&dma_list_mutex);
106 
107 	return err;
108 }
109 static DEVICE_ATTR_RO(memcpy_count);
110 
111 static ssize_t bytes_transferred_show(struct device *dev,
112 				      struct device_attribute *attr, char *buf)
113 {
114 	struct dma_chan *chan;
115 	unsigned long count = 0;
116 	int i;
117 	int err;
118 
119 	mutex_lock(&dma_list_mutex);
120 	chan = dev_to_dma_chan(dev);
121 	if (chan) {
122 		for_each_possible_cpu(i)
123 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
124 		err = sprintf(buf, "%lu\n", count);
125 	} else
126 		err = -ENODEV;
127 	mutex_unlock(&dma_list_mutex);
128 
129 	return err;
130 }
131 static DEVICE_ATTR_RO(bytes_transferred);
132 
133 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
134 			   char *buf)
135 {
136 	struct dma_chan *chan;
137 	int err;
138 
139 	mutex_lock(&dma_list_mutex);
140 	chan = dev_to_dma_chan(dev);
141 	if (chan)
142 		err = sprintf(buf, "%d\n", chan->client_count);
143 	else
144 		err = -ENODEV;
145 	mutex_unlock(&dma_list_mutex);
146 
147 	return err;
148 }
149 static DEVICE_ATTR_RO(in_use);
150 
151 static struct attribute *dma_dev_attrs[] = {
152 	&dev_attr_memcpy_count.attr,
153 	&dev_attr_bytes_transferred.attr,
154 	&dev_attr_in_use.attr,
155 	NULL,
156 };
157 ATTRIBUTE_GROUPS(dma_dev);
158 
159 static void chan_dev_release(struct device *dev)
160 {
161 	struct dma_chan_dev *chan_dev;
162 
163 	chan_dev = container_of(dev, typeof(*chan_dev), device);
164 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
165 		ida_free(&dma_ida, chan_dev->dev_id);
166 		kfree(chan_dev->idr_ref);
167 	}
168 	kfree(chan_dev);
169 }
170 
171 static struct class dma_devclass = {
172 	.name		= "dma",
173 	.dev_groups	= dma_dev_groups,
174 	.dev_release	= chan_dev_release,
175 };
176 
177 /* --- client and device registration --- */
178 
179 #define dma_device_satisfies_mask(device, mask) \
180 	__dma_device_satisfies_mask((device), &(mask))
181 static int
182 __dma_device_satisfies_mask(struct dma_device *device,
183 			    const dma_cap_mask_t *want)
184 {
185 	dma_cap_mask_t has;
186 
187 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
188 		DMA_TX_TYPE_END);
189 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
190 }
191 
192 static struct module *dma_chan_to_owner(struct dma_chan *chan)
193 {
194 	return chan->device->dev->driver->owner;
195 }
196 
197 /**
198  * balance_ref_count - catch up the channel reference count
199  * @chan - channel to balance ->client_count versus dmaengine_ref_count
200  *
201  * balance_ref_count must be called under dma_list_mutex
202  */
203 static void balance_ref_count(struct dma_chan *chan)
204 {
205 	struct module *owner = dma_chan_to_owner(chan);
206 
207 	while (chan->client_count < dmaengine_ref_count) {
208 		__module_get(owner);
209 		chan->client_count++;
210 	}
211 }
212 
213 /**
214  * dma_chan_get - try to grab a dma channel's parent driver module
215  * @chan - channel to grab
216  *
217  * Must be called under dma_list_mutex
218  */
219 static int dma_chan_get(struct dma_chan *chan)
220 {
221 	struct module *owner = dma_chan_to_owner(chan);
222 	int ret;
223 
224 	/* The channel is already in use, update client count */
225 	if (chan->client_count) {
226 		__module_get(owner);
227 		goto out;
228 	}
229 
230 	if (!try_module_get(owner))
231 		return -ENODEV;
232 
233 	/* allocate upon first client reference */
234 	if (chan->device->device_alloc_chan_resources) {
235 		ret = chan->device->device_alloc_chan_resources(chan);
236 		if (ret < 0)
237 			goto err_out;
238 	}
239 
240 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
241 		balance_ref_count(chan);
242 
243 out:
244 	chan->client_count++;
245 	return 0;
246 
247 err_out:
248 	module_put(owner);
249 	return ret;
250 }
251 
252 /**
253  * dma_chan_put - drop a reference to a dma channel's parent driver module
254  * @chan - channel to release
255  *
256  * Must be called under dma_list_mutex
257  */
258 static void dma_chan_put(struct dma_chan *chan)
259 {
260 	/* This channel is not in use, bail out */
261 	if (!chan->client_count)
262 		return;
263 
264 	chan->client_count--;
265 	module_put(dma_chan_to_owner(chan));
266 
267 	/* This channel is not in use anymore, free it */
268 	if (!chan->client_count && chan->device->device_free_chan_resources) {
269 		/* Make sure all operations have completed */
270 		dmaengine_synchronize(chan);
271 		chan->device->device_free_chan_resources(chan);
272 	}
273 
274 	/* If the channel is used via a DMA request router, free the mapping */
275 	if (chan->router && chan->router->route_free) {
276 		chan->router->route_free(chan->router->dev, chan->route_data);
277 		chan->router = NULL;
278 		chan->route_data = NULL;
279 	}
280 }
281 
282 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
283 {
284 	enum dma_status status;
285 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
286 
287 	dma_async_issue_pending(chan);
288 	do {
289 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
290 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
291 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
292 			return DMA_ERROR;
293 		}
294 		if (status != DMA_IN_PROGRESS)
295 			break;
296 		cpu_relax();
297 	} while (1);
298 
299 	return status;
300 }
301 EXPORT_SYMBOL(dma_sync_wait);
302 
303 /**
304  * dma_cap_mask_all - enable iteration over all operation types
305  */
306 static dma_cap_mask_t dma_cap_mask_all;
307 
308 /**
309  * dma_chan_tbl_ent - tracks channel allocations per core/operation
310  * @chan - associated channel for this entry
311  */
312 struct dma_chan_tbl_ent {
313 	struct dma_chan *chan;
314 };
315 
316 /**
317  * channel_table - percpu lookup table for memory-to-memory offload providers
318  */
319 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
320 
321 static int __init dma_channel_table_init(void)
322 {
323 	enum dma_transaction_type cap;
324 	int err = 0;
325 
326 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
327 
328 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
329 	 * but are not associated with an operation so they do not need
330 	 * an entry in the channel_table
331 	 */
332 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
333 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
334 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
335 
336 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
337 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
338 		if (!channel_table[cap]) {
339 			err = -ENOMEM;
340 			break;
341 		}
342 	}
343 
344 	if (err) {
345 		pr_err("initialization failure\n");
346 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
347 			free_percpu(channel_table[cap]);
348 	}
349 
350 	return err;
351 }
352 arch_initcall(dma_channel_table_init);
353 
354 /**
355  * dma_find_channel - find a channel to carry out the operation
356  * @tx_type: transaction type
357  */
358 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
359 {
360 	return this_cpu_read(channel_table[tx_type]->chan);
361 }
362 EXPORT_SYMBOL(dma_find_channel);
363 
364 /**
365  * dma_issue_pending_all - flush all pending operations across all channels
366  */
367 void dma_issue_pending_all(void)
368 {
369 	struct dma_device *device;
370 	struct dma_chan *chan;
371 
372 	rcu_read_lock();
373 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
374 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 			continue;
376 		list_for_each_entry(chan, &device->channels, device_node)
377 			if (chan->client_count)
378 				device->device_issue_pending(chan);
379 	}
380 	rcu_read_unlock();
381 }
382 EXPORT_SYMBOL(dma_issue_pending_all);
383 
384 /**
385  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
386  */
387 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
388 {
389 	int node = dev_to_node(chan->device->dev);
390 	return node == NUMA_NO_NODE ||
391 		cpumask_test_cpu(cpu, cpumask_of_node(node));
392 }
393 
394 /**
395  * min_chan - returns the channel with min count and in the same numa-node as the cpu
396  * @cap: capability to match
397  * @cpu: cpu index which the channel should be close to
398  *
399  * If some channels are close to the given cpu, the one with the lowest
400  * reference count is returned. Otherwise, cpu is ignored and only the
401  * reference count is taken into account.
402  * Must be called under dma_list_mutex.
403  */
404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
405 {
406 	struct dma_device *device;
407 	struct dma_chan *chan;
408 	struct dma_chan *min = NULL;
409 	struct dma_chan *localmin = NULL;
410 
411 	list_for_each_entry(device, &dma_device_list, global_node) {
412 		if (!dma_has_cap(cap, device->cap_mask) ||
413 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
414 			continue;
415 		list_for_each_entry(chan, &device->channels, device_node) {
416 			if (!chan->client_count)
417 				continue;
418 			if (!min || chan->table_count < min->table_count)
419 				min = chan;
420 
421 			if (dma_chan_is_local(chan, cpu))
422 				if (!localmin ||
423 				    chan->table_count < localmin->table_count)
424 					localmin = chan;
425 		}
426 	}
427 
428 	chan = localmin ? localmin : min;
429 
430 	if (chan)
431 		chan->table_count++;
432 
433 	return chan;
434 }
435 
436 /**
437  * dma_channel_rebalance - redistribute the available channels
438  *
439  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
440  * operation type) in the SMP case,  and operation isolation (avoid
441  * multi-tasking channels) in the non-SMP case.  Must be called under
442  * dma_list_mutex.
443  */
444 static void dma_channel_rebalance(void)
445 {
446 	struct dma_chan *chan;
447 	struct dma_device *device;
448 	int cpu;
449 	int cap;
450 
451 	/* undo the last distribution */
452 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
453 		for_each_possible_cpu(cpu)
454 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
455 
456 	list_for_each_entry(device, &dma_device_list, global_node) {
457 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
458 			continue;
459 		list_for_each_entry(chan, &device->channels, device_node)
460 			chan->table_count = 0;
461 	}
462 
463 	/* don't populate the channel_table if no clients are available */
464 	if (!dmaengine_ref_count)
465 		return;
466 
467 	/* redistribute available channels */
468 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
469 		for_each_online_cpu(cpu) {
470 			chan = min_chan(cap, cpu);
471 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
472 		}
473 }
474 
475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
476 {
477 	struct dma_device *device;
478 
479 	if (!chan || !caps)
480 		return -EINVAL;
481 
482 	device = chan->device;
483 
484 	/* check if the channel supports slave transactions */
485 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
486 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
487 		return -ENXIO;
488 
489 	/*
490 	 * Check whether it reports it uses the generic slave
491 	 * capabilities, if not, that means it doesn't support any
492 	 * kind of slave capabilities reporting.
493 	 */
494 	if (!device->directions)
495 		return -ENXIO;
496 
497 	caps->src_addr_widths = device->src_addr_widths;
498 	caps->dst_addr_widths = device->dst_addr_widths;
499 	caps->directions = device->directions;
500 	caps->max_burst = device->max_burst;
501 	caps->residue_granularity = device->residue_granularity;
502 	caps->descriptor_reuse = device->descriptor_reuse;
503 	caps->cmd_pause = !!device->device_pause;
504 	caps->cmd_resume = !!device->device_resume;
505 	caps->cmd_terminate = !!device->device_terminate_all;
506 
507 	return 0;
508 }
509 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
510 
511 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
512 					  struct dma_device *dev,
513 					  dma_filter_fn fn, void *fn_param)
514 {
515 	struct dma_chan *chan;
516 
517 	if (mask && !__dma_device_satisfies_mask(dev, mask)) {
518 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
519 		return NULL;
520 	}
521 	/* devices with multiple channels need special handling as we need to
522 	 * ensure that all channels are either private or public.
523 	 */
524 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
525 		list_for_each_entry(chan, &dev->channels, device_node) {
526 			/* some channels are already publicly allocated */
527 			if (chan->client_count)
528 				return NULL;
529 		}
530 
531 	list_for_each_entry(chan, &dev->channels, device_node) {
532 		if (chan->client_count) {
533 			dev_dbg(dev->dev, "%s: %s busy\n",
534 				 __func__, dma_chan_name(chan));
535 			continue;
536 		}
537 		if (fn && !fn(chan, fn_param)) {
538 			dev_dbg(dev->dev, "%s: %s filter said false\n",
539 				 __func__, dma_chan_name(chan));
540 			continue;
541 		}
542 		return chan;
543 	}
544 
545 	return NULL;
546 }
547 
548 static struct dma_chan *find_candidate(struct dma_device *device,
549 				       const dma_cap_mask_t *mask,
550 				       dma_filter_fn fn, void *fn_param)
551 {
552 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
553 	int err;
554 
555 	if (chan) {
556 		/* Found a suitable channel, try to grab, prep, and return it.
557 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
558 		 * channel will not be published in the general-purpose
559 		 * allocator
560 		 */
561 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
562 		device->privatecnt++;
563 		err = dma_chan_get(chan);
564 
565 		if (err) {
566 			if (err == -ENODEV) {
567 				dev_dbg(device->dev, "%s: %s module removed\n",
568 					__func__, dma_chan_name(chan));
569 				list_del_rcu(&device->global_node);
570 			} else
571 				dev_dbg(device->dev,
572 					"%s: failed to get %s: (%d)\n",
573 					 __func__, dma_chan_name(chan), err);
574 
575 			if (--device->privatecnt == 0)
576 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
577 
578 			chan = ERR_PTR(err);
579 		}
580 	}
581 
582 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
583 }
584 
585 /**
586  * dma_get_slave_channel - try to get specific channel exclusively
587  * @chan: target channel
588  */
589 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
590 {
591 	int err = -EBUSY;
592 
593 	/* lock against __dma_request_channel */
594 	mutex_lock(&dma_list_mutex);
595 
596 	if (chan->client_count == 0) {
597 		struct dma_device *device = chan->device;
598 
599 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
600 		device->privatecnt++;
601 		err = dma_chan_get(chan);
602 		if (err) {
603 			dev_dbg(chan->device->dev,
604 				"%s: failed to get %s: (%d)\n",
605 				__func__, dma_chan_name(chan), err);
606 			chan = NULL;
607 			if (--device->privatecnt == 0)
608 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
609 		}
610 	} else
611 		chan = NULL;
612 
613 	mutex_unlock(&dma_list_mutex);
614 
615 
616 	return chan;
617 }
618 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
619 
620 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
621 {
622 	dma_cap_mask_t mask;
623 	struct dma_chan *chan;
624 
625 	dma_cap_zero(mask);
626 	dma_cap_set(DMA_SLAVE, mask);
627 
628 	/* lock against __dma_request_channel */
629 	mutex_lock(&dma_list_mutex);
630 
631 	chan = find_candidate(device, &mask, NULL, NULL);
632 
633 	mutex_unlock(&dma_list_mutex);
634 
635 	return IS_ERR(chan) ? NULL : chan;
636 }
637 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
638 
639 /**
640  * __dma_request_channel - try to allocate an exclusive channel
641  * @mask: capabilities that the channel must satisfy
642  * @fn: optional callback to disposition available channels
643  * @fn_param: opaque parameter to pass to dma_filter_fn
644  * @np: device node to look for DMA channels
645  *
646  * Returns pointer to appropriate DMA channel on success or NULL.
647  */
648 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
649 				       dma_filter_fn fn, void *fn_param,
650 				       struct device_node *np)
651 {
652 	struct dma_device *device, *_d;
653 	struct dma_chan *chan = NULL;
654 
655 	/* Find a channel */
656 	mutex_lock(&dma_list_mutex);
657 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
658 		/* Finds a DMA controller with matching device node */
659 		if (np && device->dev->of_node && np != device->dev->of_node)
660 			continue;
661 
662 		chan = find_candidate(device, mask, fn, fn_param);
663 		if (!IS_ERR(chan))
664 			break;
665 
666 		chan = NULL;
667 	}
668 	mutex_unlock(&dma_list_mutex);
669 
670 	pr_debug("%s: %s (%s)\n",
671 		 __func__,
672 		 chan ? "success" : "fail",
673 		 chan ? dma_chan_name(chan) : NULL);
674 
675 	return chan;
676 }
677 EXPORT_SYMBOL_GPL(__dma_request_channel);
678 
679 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
680 						    const char *name,
681 						    struct device *dev)
682 {
683 	int i;
684 
685 	if (!device->filter.mapcnt)
686 		return NULL;
687 
688 	for (i = 0; i < device->filter.mapcnt; i++) {
689 		const struct dma_slave_map *map = &device->filter.map[i];
690 
691 		if (!strcmp(map->devname, dev_name(dev)) &&
692 		    !strcmp(map->slave, name))
693 			return map;
694 	}
695 
696 	return NULL;
697 }
698 
699 /**
700  * dma_request_chan - try to allocate an exclusive slave channel
701  * @dev:	pointer to client device structure
702  * @name:	slave channel name
703  *
704  * Returns pointer to appropriate DMA channel on success or an error pointer.
705  */
706 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
707 {
708 	struct dma_device *d, *_d;
709 	struct dma_chan *chan = NULL;
710 
711 	/* If device-tree is present get slave info from here */
712 	if (dev->of_node)
713 		chan = of_dma_request_slave_channel(dev->of_node, name);
714 
715 	/* If device was enumerated by ACPI get slave info from here */
716 	if (has_acpi_companion(dev) && !chan)
717 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
718 
719 	if (chan) {
720 		/* Valid channel found or requester needs to be deferred */
721 		if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
722 			return chan;
723 	}
724 
725 	/* Try to find the channel via the DMA filter map(s) */
726 	mutex_lock(&dma_list_mutex);
727 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
728 		dma_cap_mask_t mask;
729 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
730 
731 		if (!map)
732 			continue;
733 
734 		dma_cap_zero(mask);
735 		dma_cap_set(DMA_SLAVE, mask);
736 
737 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
738 		if (!IS_ERR(chan))
739 			break;
740 	}
741 	mutex_unlock(&dma_list_mutex);
742 
743 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
744 }
745 EXPORT_SYMBOL_GPL(dma_request_chan);
746 
747 /**
748  * dma_request_slave_channel - try to allocate an exclusive slave channel
749  * @dev:	pointer to client device structure
750  * @name:	slave channel name
751  *
752  * Returns pointer to appropriate DMA channel on success or NULL.
753  */
754 struct dma_chan *dma_request_slave_channel(struct device *dev,
755 					   const char *name)
756 {
757 	struct dma_chan *ch = dma_request_chan(dev, name);
758 	if (IS_ERR(ch))
759 		return NULL;
760 
761 	return ch;
762 }
763 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
764 
765 /**
766  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
767  * @mask: capabilities that the channel must satisfy
768  *
769  * Returns pointer to appropriate DMA channel on success or an error pointer.
770  */
771 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
772 {
773 	struct dma_chan *chan;
774 
775 	if (!mask)
776 		return ERR_PTR(-ENODEV);
777 
778 	chan = __dma_request_channel(mask, NULL, NULL, NULL);
779 	if (!chan) {
780 		mutex_lock(&dma_list_mutex);
781 		if (list_empty(&dma_device_list))
782 			chan = ERR_PTR(-EPROBE_DEFER);
783 		else
784 			chan = ERR_PTR(-ENODEV);
785 		mutex_unlock(&dma_list_mutex);
786 	}
787 
788 	return chan;
789 }
790 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
791 
792 void dma_release_channel(struct dma_chan *chan)
793 {
794 	mutex_lock(&dma_list_mutex);
795 	WARN_ONCE(chan->client_count != 1,
796 		  "chan reference count %d != 1\n", chan->client_count);
797 	dma_chan_put(chan);
798 	/* drop PRIVATE cap enabled by __dma_request_channel() */
799 	if (--chan->device->privatecnt == 0)
800 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
801 	mutex_unlock(&dma_list_mutex);
802 }
803 EXPORT_SYMBOL_GPL(dma_release_channel);
804 
805 /**
806  * dmaengine_get - register interest in dma_channels
807  */
808 void dmaengine_get(void)
809 {
810 	struct dma_device *device, *_d;
811 	struct dma_chan *chan;
812 	int err;
813 
814 	mutex_lock(&dma_list_mutex);
815 	dmaengine_ref_count++;
816 
817 	/* try to grab channels */
818 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
819 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
820 			continue;
821 		list_for_each_entry(chan, &device->channels, device_node) {
822 			err = dma_chan_get(chan);
823 			if (err == -ENODEV) {
824 				/* module removed before we could use it */
825 				list_del_rcu(&device->global_node);
826 				break;
827 			} else if (err)
828 				dev_dbg(chan->device->dev,
829 					"%s: failed to get %s: (%d)\n",
830 					__func__, dma_chan_name(chan), err);
831 		}
832 	}
833 
834 	/* if this is the first reference and there were channels
835 	 * waiting we need to rebalance to get those channels
836 	 * incorporated into the channel table
837 	 */
838 	if (dmaengine_ref_count == 1)
839 		dma_channel_rebalance();
840 	mutex_unlock(&dma_list_mutex);
841 }
842 EXPORT_SYMBOL(dmaengine_get);
843 
844 /**
845  * dmaengine_put - let dma drivers be removed when ref_count == 0
846  */
847 void dmaengine_put(void)
848 {
849 	struct dma_device *device;
850 	struct dma_chan *chan;
851 
852 	mutex_lock(&dma_list_mutex);
853 	dmaengine_ref_count--;
854 	BUG_ON(dmaengine_ref_count < 0);
855 	/* drop channel references */
856 	list_for_each_entry(device, &dma_device_list, global_node) {
857 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
858 			continue;
859 		list_for_each_entry(chan, &device->channels, device_node)
860 			dma_chan_put(chan);
861 	}
862 	mutex_unlock(&dma_list_mutex);
863 }
864 EXPORT_SYMBOL(dmaengine_put);
865 
866 static bool device_has_all_tx_types(struct dma_device *device)
867 {
868 	/* A device that satisfies this test has channels that will never cause
869 	 * an async_tx channel switch event as all possible operation types can
870 	 * be handled.
871 	 */
872 	#ifdef CONFIG_ASYNC_TX_DMA
873 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
874 		return false;
875 	#endif
876 
877 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
878 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
879 		return false;
880 	#endif
881 
882 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
883 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
884 		return false;
885 
886 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
887 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
888 		return false;
889 	#endif
890 	#endif
891 
892 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
893 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
894 		return false;
895 
896 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
897 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
898 		return false;
899 	#endif
900 	#endif
901 
902 	return true;
903 }
904 
905 static int get_dma_id(struct dma_device *device)
906 {
907 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
908 
909 	if (rc < 0)
910 		return rc;
911 	device->dev_id = rc;
912 	return 0;
913 }
914 
915 /**
916  * dma_async_device_register - registers DMA devices found
917  * @device: &dma_device
918  */
919 int dma_async_device_register(struct dma_device *device)
920 {
921 	int chancnt = 0, rc;
922 	struct dma_chan* chan;
923 	atomic_t *idr_ref;
924 
925 	if (!device)
926 		return -ENODEV;
927 
928 	/* validate device routines */
929 	if (!device->dev) {
930 		pr_err("DMAdevice must have dev\n");
931 		return -EIO;
932 	}
933 
934 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
935 		dev_err(device->dev,
936 			"Device claims capability %s, but op is not defined\n",
937 			"DMA_MEMCPY");
938 		return -EIO;
939 	}
940 
941 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
942 		dev_err(device->dev,
943 			"Device claims capability %s, but op is not defined\n",
944 			"DMA_XOR");
945 		return -EIO;
946 	}
947 
948 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
949 		dev_err(device->dev,
950 			"Device claims capability %s, but op is not defined\n",
951 			"DMA_XOR_VAL");
952 		return -EIO;
953 	}
954 
955 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
956 		dev_err(device->dev,
957 			"Device claims capability %s, but op is not defined\n",
958 			"DMA_PQ");
959 		return -EIO;
960 	}
961 
962 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
963 		dev_err(device->dev,
964 			"Device claims capability %s, but op is not defined\n",
965 			"DMA_PQ_VAL");
966 		return -EIO;
967 	}
968 
969 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
970 		dev_err(device->dev,
971 			"Device claims capability %s, but op is not defined\n",
972 			"DMA_MEMSET");
973 		return -EIO;
974 	}
975 
976 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
977 		dev_err(device->dev,
978 			"Device claims capability %s, but op is not defined\n",
979 			"DMA_INTERRUPT");
980 		return -EIO;
981 	}
982 
983 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
984 		dev_err(device->dev,
985 			"Device claims capability %s, but op is not defined\n",
986 			"DMA_CYCLIC");
987 		return -EIO;
988 	}
989 
990 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
991 		dev_err(device->dev,
992 			"Device claims capability %s, but op is not defined\n",
993 			"DMA_INTERLEAVE");
994 		return -EIO;
995 	}
996 
997 
998 	if (!device->device_tx_status) {
999 		dev_err(device->dev, "Device tx_status is not defined\n");
1000 		return -EIO;
1001 	}
1002 
1003 
1004 	if (!device->device_issue_pending) {
1005 		dev_err(device->dev, "Device issue_pending is not defined\n");
1006 		return -EIO;
1007 	}
1008 
1009 	/* note: this only matters in the
1010 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1011 	 */
1012 	if (device_has_all_tx_types(device))
1013 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1014 
1015 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1016 	if (!idr_ref)
1017 		return -ENOMEM;
1018 	rc = get_dma_id(device);
1019 	if (rc != 0) {
1020 		kfree(idr_ref);
1021 		return rc;
1022 	}
1023 
1024 	atomic_set(idr_ref, 0);
1025 
1026 	/* represent channels in sysfs. Probably want devs too */
1027 	list_for_each_entry(chan, &device->channels, device_node) {
1028 		rc = -ENOMEM;
1029 		chan->local = alloc_percpu(typeof(*chan->local));
1030 		if (chan->local == NULL)
1031 			goto err_out;
1032 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1033 		if (chan->dev == NULL) {
1034 			free_percpu(chan->local);
1035 			chan->local = NULL;
1036 			goto err_out;
1037 		}
1038 
1039 		chan->chan_id = chancnt++;
1040 		chan->dev->device.class = &dma_devclass;
1041 		chan->dev->device.parent = device->dev;
1042 		chan->dev->chan = chan;
1043 		chan->dev->idr_ref = idr_ref;
1044 		chan->dev->dev_id = device->dev_id;
1045 		atomic_inc(idr_ref);
1046 		dev_set_name(&chan->dev->device, "dma%dchan%d",
1047 			     device->dev_id, chan->chan_id);
1048 
1049 		rc = device_register(&chan->dev->device);
1050 		if (rc) {
1051 			free_percpu(chan->local);
1052 			chan->local = NULL;
1053 			kfree(chan->dev);
1054 			atomic_dec(idr_ref);
1055 			goto err_out;
1056 		}
1057 		chan->client_count = 0;
1058 	}
1059 
1060 	if (!chancnt) {
1061 		dev_err(device->dev, "%s: device has no channels!\n", __func__);
1062 		rc = -ENODEV;
1063 		goto err_out;
1064 	}
1065 
1066 	device->chancnt = chancnt;
1067 
1068 	mutex_lock(&dma_list_mutex);
1069 	/* take references on public channels */
1070 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1071 		list_for_each_entry(chan, &device->channels, device_node) {
1072 			/* if clients are already waiting for channels we need
1073 			 * to take references on their behalf
1074 			 */
1075 			if (dma_chan_get(chan) == -ENODEV) {
1076 				/* note we can only get here for the first
1077 				 * channel as the remaining channels are
1078 				 * guaranteed to get a reference
1079 				 */
1080 				rc = -ENODEV;
1081 				mutex_unlock(&dma_list_mutex);
1082 				goto err_out;
1083 			}
1084 		}
1085 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1086 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1087 		device->privatecnt++;	/* Always private */
1088 	dma_channel_rebalance();
1089 	mutex_unlock(&dma_list_mutex);
1090 
1091 	return 0;
1092 
1093 err_out:
1094 	/* if we never registered a channel just release the idr */
1095 	if (atomic_read(idr_ref) == 0) {
1096 		ida_free(&dma_ida, device->dev_id);
1097 		kfree(idr_ref);
1098 		return rc;
1099 	}
1100 
1101 	list_for_each_entry(chan, &device->channels, device_node) {
1102 		if (chan->local == NULL)
1103 			continue;
1104 		mutex_lock(&dma_list_mutex);
1105 		chan->dev->chan = NULL;
1106 		mutex_unlock(&dma_list_mutex);
1107 		device_unregister(&chan->dev->device);
1108 		free_percpu(chan->local);
1109 	}
1110 	return rc;
1111 }
1112 EXPORT_SYMBOL(dma_async_device_register);
1113 
1114 /**
1115  * dma_async_device_unregister - unregister a DMA device
1116  * @device: &dma_device
1117  *
1118  * This routine is called by dma driver exit routines, dmaengine holds module
1119  * references to prevent it being called while channels are in use.
1120  */
1121 void dma_async_device_unregister(struct dma_device *device)
1122 {
1123 	struct dma_chan *chan;
1124 
1125 	mutex_lock(&dma_list_mutex);
1126 	list_del_rcu(&device->global_node);
1127 	dma_channel_rebalance();
1128 	mutex_unlock(&dma_list_mutex);
1129 
1130 	list_for_each_entry(chan, &device->channels, device_node) {
1131 		WARN_ONCE(chan->client_count,
1132 			  "%s called while %d clients hold a reference\n",
1133 			  __func__, chan->client_count);
1134 		mutex_lock(&dma_list_mutex);
1135 		chan->dev->chan = NULL;
1136 		mutex_unlock(&dma_list_mutex);
1137 		device_unregister(&chan->dev->device);
1138 		free_percpu(chan->local);
1139 	}
1140 }
1141 EXPORT_SYMBOL(dma_async_device_unregister);
1142 
1143 static void dmam_device_release(struct device *dev, void *res)
1144 {
1145 	struct dma_device *device;
1146 
1147 	device = *(struct dma_device **)res;
1148 	dma_async_device_unregister(device);
1149 }
1150 
1151 /**
1152  * dmaenginem_async_device_register - registers DMA devices found
1153  * @device: &dma_device
1154  *
1155  * The operation is managed and will be undone on driver detach.
1156  */
1157 int dmaenginem_async_device_register(struct dma_device *device)
1158 {
1159 	void *p;
1160 	int ret;
1161 
1162 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1163 	if (!p)
1164 		return -ENOMEM;
1165 
1166 	ret = dma_async_device_register(device);
1167 	if (!ret) {
1168 		*(struct dma_device **)p = device;
1169 		devres_add(device->dev, p);
1170 	} else {
1171 		devres_free(p);
1172 	}
1173 
1174 	return ret;
1175 }
1176 EXPORT_SYMBOL(dmaenginem_async_device_register);
1177 
1178 struct dmaengine_unmap_pool {
1179 	struct kmem_cache *cache;
1180 	const char *name;
1181 	mempool_t *pool;
1182 	size_t size;
1183 };
1184 
1185 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1186 static struct dmaengine_unmap_pool unmap_pool[] = {
1187 	__UNMAP_POOL(2),
1188 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1189 	__UNMAP_POOL(16),
1190 	__UNMAP_POOL(128),
1191 	__UNMAP_POOL(256),
1192 	#endif
1193 };
1194 
1195 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1196 {
1197 	int order = get_count_order(nr);
1198 
1199 	switch (order) {
1200 	case 0 ... 1:
1201 		return &unmap_pool[0];
1202 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1203 	case 2 ... 4:
1204 		return &unmap_pool[1];
1205 	case 5 ... 7:
1206 		return &unmap_pool[2];
1207 	case 8:
1208 		return &unmap_pool[3];
1209 #endif
1210 	default:
1211 		BUG();
1212 		return NULL;
1213 	}
1214 }
1215 
1216 static void dmaengine_unmap(struct kref *kref)
1217 {
1218 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1219 	struct device *dev = unmap->dev;
1220 	int cnt, i;
1221 
1222 	cnt = unmap->to_cnt;
1223 	for (i = 0; i < cnt; i++)
1224 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1225 			       DMA_TO_DEVICE);
1226 	cnt += unmap->from_cnt;
1227 	for (; i < cnt; i++)
1228 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1229 			       DMA_FROM_DEVICE);
1230 	cnt += unmap->bidi_cnt;
1231 	for (; i < cnt; i++) {
1232 		if (unmap->addr[i] == 0)
1233 			continue;
1234 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1235 			       DMA_BIDIRECTIONAL);
1236 	}
1237 	cnt = unmap->map_cnt;
1238 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1239 }
1240 
1241 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1242 {
1243 	if (unmap)
1244 		kref_put(&unmap->kref, dmaengine_unmap);
1245 }
1246 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1247 
1248 static void dmaengine_destroy_unmap_pool(void)
1249 {
1250 	int i;
1251 
1252 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1253 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1254 
1255 		mempool_destroy(p->pool);
1256 		p->pool = NULL;
1257 		kmem_cache_destroy(p->cache);
1258 		p->cache = NULL;
1259 	}
1260 }
1261 
1262 static int __init dmaengine_init_unmap_pool(void)
1263 {
1264 	int i;
1265 
1266 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1267 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1268 		size_t size;
1269 
1270 		size = sizeof(struct dmaengine_unmap_data) +
1271 		       sizeof(dma_addr_t) * p->size;
1272 
1273 		p->cache = kmem_cache_create(p->name, size, 0,
1274 					     SLAB_HWCACHE_ALIGN, NULL);
1275 		if (!p->cache)
1276 			break;
1277 		p->pool = mempool_create_slab_pool(1, p->cache);
1278 		if (!p->pool)
1279 			break;
1280 	}
1281 
1282 	if (i == ARRAY_SIZE(unmap_pool))
1283 		return 0;
1284 
1285 	dmaengine_destroy_unmap_pool();
1286 	return -ENOMEM;
1287 }
1288 
1289 struct dmaengine_unmap_data *
1290 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1291 {
1292 	struct dmaengine_unmap_data *unmap;
1293 
1294 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1295 	if (!unmap)
1296 		return NULL;
1297 
1298 	memset(unmap, 0, sizeof(*unmap));
1299 	kref_init(&unmap->kref);
1300 	unmap->dev = dev;
1301 	unmap->map_cnt = nr;
1302 
1303 	return unmap;
1304 }
1305 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1306 
1307 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1308 	struct dma_chan *chan)
1309 {
1310 	tx->chan = chan;
1311 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1312 	spin_lock_init(&tx->lock);
1313 	#endif
1314 }
1315 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1316 
1317 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1318  * @tx: in-flight transaction to wait on
1319  */
1320 enum dma_status
1321 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1322 {
1323 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1324 
1325 	if (!tx)
1326 		return DMA_COMPLETE;
1327 
1328 	while (tx->cookie == -EBUSY) {
1329 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1330 			dev_err(tx->chan->device->dev,
1331 				"%s timeout waiting for descriptor submission\n",
1332 				__func__);
1333 			return DMA_ERROR;
1334 		}
1335 		cpu_relax();
1336 	}
1337 	return dma_sync_wait(tx->chan, tx->cookie);
1338 }
1339 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1340 
1341 /* dma_run_dependencies - helper routine for dma drivers to process
1342  *	(start) dependent operations on their target channel
1343  * @tx: transaction with dependencies
1344  */
1345 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1346 {
1347 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1348 	struct dma_async_tx_descriptor *dep_next;
1349 	struct dma_chan *chan;
1350 
1351 	if (!dep)
1352 		return;
1353 
1354 	/* we'll submit tx->next now, so clear the link */
1355 	txd_clear_next(tx);
1356 	chan = dep->chan;
1357 
1358 	/* keep submitting up until a channel switch is detected
1359 	 * in that case we will be called again as a result of
1360 	 * processing the interrupt from async_tx_channel_switch
1361 	 */
1362 	for (; dep; dep = dep_next) {
1363 		txd_lock(dep);
1364 		txd_clear_parent(dep);
1365 		dep_next = txd_next(dep);
1366 		if (dep_next && dep_next->chan == chan)
1367 			txd_clear_next(dep); /* ->next will be submitted */
1368 		else
1369 			dep_next = NULL; /* submit current dep and terminate */
1370 		txd_unlock(dep);
1371 
1372 		dep->tx_submit(dep);
1373 	}
1374 
1375 	chan->device->device_issue_pending(chan);
1376 }
1377 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1378 
1379 static int __init dma_bus_init(void)
1380 {
1381 	int err = dmaengine_init_unmap_pool();
1382 
1383 	if (err)
1384 		return err;
1385 	return class_register(&dma_devclass);
1386 }
1387 arch_initcall(dma_bus_init);
1388 
1389 
1390