xref: /linux/drivers/dma/dmaengine.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 
6 /*
7  * This code implements the DMA subsystem. It provides a HW-neutral interface
8  * for other kernel code to use asynchronous memory copy capabilities,
9  * if present, and allows different HW DMA drivers to register as providing
10  * this capability.
11  *
12  * Due to the fact we are accelerating what is already a relatively fast
13  * operation, the code goes to great lengths to avoid additional overhead,
14  * such as locking.
15  *
16  * LOCKING:
17  *
18  * The subsystem keeps a global list of dma_device structs it is protected by a
19  * mutex, dma_list_mutex.
20  *
21  * A subsystem can get access to a channel by calling dmaengine_get() followed
22  * by dma_find_channel(), or if it has need for an exclusive channel it can call
23  * dma_request_channel().  Once a channel is allocated a reference is taken
24  * against its corresponding driver to disable removal.
25  *
26  * Each device has a channels list, which runs unlocked but is never modified
27  * once the device is registered, it's just setup by the driver.
28  *
29  * See Documentation/driver-api/dmaengine for more details
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55 
56 static DEFINE_MUTEX(dma_list_mutex);
57 static DEFINE_IDA(dma_ida);
58 static LIST_HEAD(dma_device_list);
59 static long dmaengine_ref_count;
60 
61 /* --- sysfs implementation --- */
62 
63 /**
64  * dev_to_dma_chan - convert a device pointer to its sysfs container object
65  * @dev - device node
66  *
67  * Must be called under dma_list_mutex
68  */
69 static struct dma_chan *dev_to_dma_chan(struct device *dev)
70 {
71 	struct dma_chan_dev *chan_dev;
72 
73 	chan_dev = container_of(dev, typeof(*chan_dev), device);
74 	return chan_dev->chan;
75 }
76 
77 static ssize_t memcpy_count_show(struct device *dev,
78 				 struct device_attribute *attr, char *buf)
79 {
80 	struct dma_chan *chan;
81 	unsigned long count = 0;
82 	int i;
83 	int err;
84 
85 	mutex_lock(&dma_list_mutex);
86 	chan = dev_to_dma_chan(dev);
87 	if (chan) {
88 		for_each_possible_cpu(i)
89 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
90 		err = sprintf(buf, "%lu\n", count);
91 	} else
92 		err = -ENODEV;
93 	mutex_unlock(&dma_list_mutex);
94 
95 	return err;
96 }
97 static DEVICE_ATTR_RO(memcpy_count);
98 
99 static ssize_t bytes_transferred_show(struct device *dev,
100 				      struct device_attribute *attr, char *buf)
101 {
102 	struct dma_chan *chan;
103 	unsigned long count = 0;
104 	int i;
105 	int err;
106 
107 	mutex_lock(&dma_list_mutex);
108 	chan = dev_to_dma_chan(dev);
109 	if (chan) {
110 		for_each_possible_cpu(i)
111 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
112 		err = sprintf(buf, "%lu\n", count);
113 	} else
114 		err = -ENODEV;
115 	mutex_unlock(&dma_list_mutex);
116 
117 	return err;
118 }
119 static DEVICE_ATTR_RO(bytes_transferred);
120 
121 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
122 			   char *buf)
123 {
124 	struct dma_chan *chan;
125 	int err;
126 
127 	mutex_lock(&dma_list_mutex);
128 	chan = dev_to_dma_chan(dev);
129 	if (chan)
130 		err = sprintf(buf, "%d\n", chan->client_count);
131 	else
132 		err = -ENODEV;
133 	mutex_unlock(&dma_list_mutex);
134 
135 	return err;
136 }
137 static DEVICE_ATTR_RO(in_use);
138 
139 static struct attribute *dma_dev_attrs[] = {
140 	&dev_attr_memcpy_count.attr,
141 	&dev_attr_bytes_transferred.attr,
142 	&dev_attr_in_use.attr,
143 	NULL,
144 };
145 ATTRIBUTE_GROUPS(dma_dev);
146 
147 static void chan_dev_release(struct device *dev)
148 {
149 	struct dma_chan_dev *chan_dev;
150 
151 	chan_dev = container_of(dev, typeof(*chan_dev), device);
152 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
153 		ida_free(&dma_ida, chan_dev->dev_id);
154 		kfree(chan_dev->idr_ref);
155 	}
156 	kfree(chan_dev);
157 }
158 
159 static struct class dma_devclass = {
160 	.name		= "dma",
161 	.dev_groups	= dma_dev_groups,
162 	.dev_release	= chan_dev_release,
163 };
164 
165 /* --- client and device registration --- */
166 
167 #define dma_device_satisfies_mask(device, mask) \
168 	__dma_device_satisfies_mask((device), &(mask))
169 static int
170 __dma_device_satisfies_mask(struct dma_device *device,
171 			    const dma_cap_mask_t *want)
172 {
173 	dma_cap_mask_t has;
174 
175 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
176 		DMA_TX_TYPE_END);
177 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
178 }
179 
180 static struct module *dma_chan_to_owner(struct dma_chan *chan)
181 {
182 	return chan->device->dev->driver->owner;
183 }
184 
185 /**
186  * balance_ref_count - catch up the channel reference count
187  * @chan - channel to balance ->client_count versus dmaengine_ref_count
188  *
189  * balance_ref_count must be called under dma_list_mutex
190  */
191 static void balance_ref_count(struct dma_chan *chan)
192 {
193 	struct module *owner = dma_chan_to_owner(chan);
194 
195 	while (chan->client_count < dmaengine_ref_count) {
196 		__module_get(owner);
197 		chan->client_count++;
198 	}
199 }
200 
201 /**
202  * dma_chan_get - try to grab a dma channel's parent driver module
203  * @chan - channel to grab
204  *
205  * Must be called under dma_list_mutex
206  */
207 static int dma_chan_get(struct dma_chan *chan)
208 {
209 	struct module *owner = dma_chan_to_owner(chan);
210 	int ret;
211 
212 	/* The channel is already in use, update client count */
213 	if (chan->client_count) {
214 		__module_get(owner);
215 		goto out;
216 	}
217 
218 	if (!try_module_get(owner))
219 		return -ENODEV;
220 
221 	/* allocate upon first client reference */
222 	if (chan->device->device_alloc_chan_resources) {
223 		ret = chan->device->device_alloc_chan_resources(chan);
224 		if (ret < 0)
225 			goto err_out;
226 	}
227 
228 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
229 		balance_ref_count(chan);
230 
231 out:
232 	chan->client_count++;
233 	return 0;
234 
235 err_out:
236 	module_put(owner);
237 	return ret;
238 }
239 
240 /**
241  * dma_chan_put - drop a reference to a dma channel's parent driver module
242  * @chan - channel to release
243  *
244  * Must be called under dma_list_mutex
245  */
246 static void dma_chan_put(struct dma_chan *chan)
247 {
248 	/* This channel is not in use, bail out */
249 	if (!chan->client_count)
250 		return;
251 
252 	chan->client_count--;
253 	module_put(dma_chan_to_owner(chan));
254 
255 	/* This channel is not in use anymore, free it */
256 	if (!chan->client_count && chan->device->device_free_chan_resources) {
257 		/* Make sure all operations have completed */
258 		dmaengine_synchronize(chan);
259 		chan->device->device_free_chan_resources(chan);
260 	}
261 
262 	/* If the channel is used via a DMA request router, free the mapping */
263 	if (chan->router && chan->router->route_free) {
264 		chan->router->route_free(chan->router->dev, chan->route_data);
265 		chan->router = NULL;
266 		chan->route_data = NULL;
267 	}
268 }
269 
270 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
271 {
272 	enum dma_status status;
273 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
274 
275 	dma_async_issue_pending(chan);
276 	do {
277 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
278 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
279 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
280 			return DMA_ERROR;
281 		}
282 		if (status != DMA_IN_PROGRESS)
283 			break;
284 		cpu_relax();
285 	} while (1);
286 
287 	return status;
288 }
289 EXPORT_SYMBOL(dma_sync_wait);
290 
291 /**
292  * dma_cap_mask_all - enable iteration over all operation types
293  */
294 static dma_cap_mask_t dma_cap_mask_all;
295 
296 /**
297  * dma_chan_tbl_ent - tracks channel allocations per core/operation
298  * @chan - associated channel for this entry
299  */
300 struct dma_chan_tbl_ent {
301 	struct dma_chan *chan;
302 };
303 
304 /**
305  * channel_table - percpu lookup table for memory-to-memory offload providers
306  */
307 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
308 
309 static int __init dma_channel_table_init(void)
310 {
311 	enum dma_transaction_type cap;
312 	int err = 0;
313 
314 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
315 
316 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
317 	 * but are not associated with an operation so they do not need
318 	 * an entry in the channel_table
319 	 */
320 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
321 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
322 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
323 
324 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
325 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
326 		if (!channel_table[cap]) {
327 			err = -ENOMEM;
328 			break;
329 		}
330 	}
331 
332 	if (err) {
333 		pr_err("initialization failure\n");
334 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
335 			free_percpu(channel_table[cap]);
336 	}
337 
338 	return err;
339 }
340 arch_initcall(dma_channel_table_init);
341 
342 /**
343  * dma_find_channel - find a channel to carry out the operation
344  * @tx_type: transaction type
345  */
346 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
347 {
348 	return this_cpu_read(channel_table[tx_type]->chan);
349 }
350 EXPORT_SYMBOL(dma_find_channel);
351 
352 /**
353  * dma_issue_pending_all - flush all pending operations across all channels
354  */
355 void dma_issue_pending_all(void)
356 {
357 	struct dma_device *device;
358 	struct dma_chan *chan;
359 
360 	rcu_read_lock();
361 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
362 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
363 			continue;
364 		list_for_each_entry(chan, &device->channels, device_node)
365 			if (chan->client_count)
366 				device->device_issue_pending(chan);
367 	}
368 	rcu_read_unlock();
369 }
370 EXPORT_SYMBOL(dma_issue_pending_all);
371 
372 /**
373  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
374  */
375 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
376 {
377 	int node = dev_to_node(chan->device->dev);
378 	return node == NUMA_NO_NODE ||
379 		cpumask_test_cpu(cpu, cpumask_of_node(node));
380 }
381 
382 /**
383  * min_chan - returns the channel with min count and in the same numa-node as the cpu
384  * @cap: capability to match
385  * @cpu: cpu index which the channel should be close to
386  *
387  * If some channels are close to the given cpu, the one with the lowest
388  * reference count is returned. Otherwise, cpu is ignored and only the
389  * reference count is taken into account.
390  * Must be called under dma_list_mutex.
391  */
392 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
393 {
394 	struct dma_device *device;
395 	struct dma_chan *chan;
396 	struct dma_chan *min = NULL;
397 	struct dma_chan *localmin = NULL;
398 
399 	list_for_each_entry(device, &dma_device_list, global_node) {
400 		if (!dma_has_cap(cap, device->cap_mask) ||
401 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
402 			continue;
403 		list_for_each_entry(chan, &device->channels, device_node) {
404 			if (!chan->client_count)
405 				continue;
406 			if (!min || chan->table_count < min->table_count)
407 				min = chan;
408 
409 			if (dma_chan_is_local(chan, cpu))
410 				if (!localmin ||
411 				    chan->table_count < localmin->table_count)
412 					localmin = chan;
413 		}
414 	}
415 
416 	chan = localmin ? localmin : min;
417 
418 	if (chan)
419 		chan->table_count++;
420 
421 	return chan;
422 }
423 
424 /**
425  * dma_channel_rebalance - redistribute the available channels
426  *
427  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
428  * operation type) in the SMP case,  and operation isolation (avoid
429  * multi-tasking channels) in the non-SMP case.  Must be called under
430  * dma_list_mutex.
431  */
432 static void dma_channel_rebalance(void)
433 {
434 	struct dma_chan *chan;
435 	struct dma_device *device;
436 	int cpu;
437 	int cap;
438 
439 	/* undo the last distribution */
440 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
441 		for_each_possible_cpu(cpu)
442 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
443 
444 	list_for_each_entry(device, &dma_device_list, global_node) {
445 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
446 			continue;
447 		list_for_each_entry(chan, &device->channels, device_node)
448 			chan->table_count = 0;
449 	}
450 
451 	/* don't populate the channel_table if no clients are available */
452 	if (!dmaengine_ref_count)
453 		return;
454 
455 	/* redistribute available channels */
456 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
457 		for_each_online_cpu(cpu) {
458 			chan = min_chan(cap, cpu);
459 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
460 		}
461 }
462 
463 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
464 {
465 	struct dma_device *device;
466 
467 	if (!chan || !caps)
468 		return -EINVAL;
469 
470 	device = chan->device;
471 
472 	/* check if the channel supports slave transactions */
473 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
474 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
475 		return -ENXIO;
476 
477 	/*
478 	 * Check whether it reports it uses the generic slave
479 	 * capabilities, if not, that means it doesn't support any
480 	 * kind of slave capabilities reporting.
481 	 */
482 	if (!device->directions)
483 		return -ENXIO;
484 
485 	caps->src_addr_widths = device->src_addr_widths;
486 	caps->dst_addr_widths = device->dst_addr_widths;
487 	caps->directions = device->directions;
488 	caps->max_burst = device->max_burst;
489 	caps->residue_granularity = device->residue_granularity;
490 	caps->descriptor_reuse = device->descriptor_reuse;
491 	caps->cmd_pause = !!device->device_pause;
492 	caps->cmd_resume = !!device->device_resume;
493 	caps->cmd_terminate = !!device->device_terminate_all;
494 
495 	return 0;
496 }
497 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
498 
499 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
500 					  struct dma_device *dev,
501 					  dma_filter_fn fn, void *fn_param)
502 {
503 	struct dma_chan *chan;
504 
505 	if (mask && !__dma_device_satisfies_mask(dev, mask)) {
506 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
507 		return NULL;
508 	}
509 	/* devices with multiple channels need special handling as we need to
510 	 * ensure that all channels are either private or public.
511 	 */
512 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
513 		list_for_each_entry(chan, &dev->channels, device_node) {
514 			/* some channels are already publicly allocated */
515 			if (chan->client_count)
516 				return NULL;
517 		}
518 
519 	list_for_each_entry(chan, &dev->channels, device_node) {
520 		if (chan->client_count) {
521 			dev_dbg(dev->dev, "%s: %s busy\n",
522 				 __func__, dma_chan_name(chan));
523 			continue;
524 		}
525 		if (fn && !fn(chan, fn_param)) {
526 			dev_dbg(dev->dev, "%s: %s filter said false\n",
527 				 __func__, dma_chan_name(chan));
528 			continue;
529 		}
530 		return chan;
531 	}
532 
533 	return NULL;
534 }
535 
536 static struct dma_chan *find_candidate(struct dma_device *device,
537 				       const dma_cap_mask_t *mask,
538 				       dma_filter_fn fn, void *fn_param)
539 {
540 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
541 	int err;
542 
543 	if (chan) {
544 		/* Found a suitable channel, try to grab, prep, and return it.
545 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
546 		 * channel will not be published in the general-purpose
547 		 * allocator
548 		 */
549 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
550 		device->privatecnt++;
551 		err = dma_chan_get(chan);
552 
553 		if (err) {
554 			if (err == -ENODEV) {
555 				dev_dbg(device->dev, "%s: %s module removed\n",
556 					__func__, dma_chan_name(chan));
557 				list_del_rcu(&device->global_node);
558 			} else
559 				dev_dbg(device->dev,
560 					"%s: failed to get %s: (%d)\n",
561 					 __func__, dma_chan_name(chan), err);
562 
563 			if (--device->privatecnt == 0)
564 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
565 
566 			chan = ERR_PTR(err);
567 		}
568 	}
569 
570 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
571 }
572 
573 /**
574  * dma_get_slave_channel - try to get specific channel exclusively
575  * @chan: target channel
576  */
577 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
578 {
579 	int err = -EBUSY;
580 
581 	/* lock against __dma_request_channel */
582 	mutex_lock(&dma_list_mutex);
583 
584 	if (chan->client_count == 0) {
585 		struct dma_device *device = chan->device;
586 
587 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
588 		device->privatecnt++;
589 		err = dma_chan_get(chan);
590 		if (err) {
591 			dev_dbg(chan->device->dev,
592 				"%s: failed to get %s: (%d)\n",
593 				__func__, dma_chan_name(chan), err);
594 			chan = NULL;
595 			if (--device->privatecnt == 0)
596 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
597 		}
598 	} else
599 		chan = NULL;
600 
601 	mutex_unlock(&dma_list_mutex);
602 
603 
604 	return chan;
605 }
606 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
607 
608 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
609 {
610 	dma_cap_mask_t mask;
611 	struct dma_chan *chan;
612 
613 	dma_cap_zero(mask);
614 	dma_cap_set(DMA_SLAVE, mask);
615 
616 	/* lock against __dma_request_channel */
617 	mutex_lock(&dma_list_mutex);
618 
619 	chan = find_candidate(device, &mask, NULL, NULL);
620 
621 	mutex_unlock(&dma_list_mutex);
622 
623 	return IS_ERR(chan) ? NULL : chan;
624 }
625 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
626 
627 /**
628  * __dma_request_channel - try to allocate an exclusive channel
629  * @mask: capabilities that the channel must satisfy
630  * @fn: optional callback to disposition available channels
631  * @fn_param: opaque parameter to pass to dma_filter_fn
632  * @np: device node to look for DMA channels
633  *
634  * Returns pointer to appropriate DMA channel on success or NULL.
635  */
636 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
637 				       dma_filter_fn fn, void *fn_param,
638 				       struct device_node *np)
639 {
640 	struct dma_device *device, *_d;
641 	struct dma_chan *chan = NULL;
642 
643 	/* Find a channel */
644 	mutex_lock(&dma_list_mutex);
645 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
646 		/* Finds a DMA controller with matching device node */
647 		if (np && device->dev->of_node && np != device->dev->of_node)
648 			continue;
649 
650 		chan = find_candidate(device, mask, fn, fn_param);
651 		if (!IS_ERR(chan))
652 			break;
653 
654 		chan = NULL;
655 	}
656 	mutex_unlock(&dma_list_mutex);
657 
658 	pr_debug("%s: %s (%s)\n",
659 		 __func__,
660 		 chan ? "success" : "fail",
661 		 chan ? dma_chan_name(chan) : NULL);
662 
663 	return chan;
664 }
665 EXPORT_SYMBOL_GPL(__dma_request_channel);
666 
667 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
668 						    const char *name,
669 						    struct device *dev)
670 {
671 	int i;
672 
673 	if (!device->filter.mapcnt)
674 		return NULL;
675 
676 	for (i = 0; i < device->filter.mapcnt; i++) {
677 		const struct dma_slave_map *map = &device->filter.map[i];
678 
679 		if (!strcmp(map->devname, dev_name(dev)) &&
680 		    !strcmp(map->slave, name))
681 			return map;
682 	}
683 
684 	return NULL;
685 }
686 
687 /**
688  * dma_request_chan - try to allocate an exclusive slave channel
689  * @dev:	pointer to client device structure
690  * @name:	slave channel name
691  *
692  * Returns pointer to appropriate DMA channel on success or an error pointer.
693  */
694 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
695 {
696 	struct dma_device *d, *_d;
697 	struct dma_chan *chan = NULL;
698 
699 	/* If device-tree is present get slave info from here */
700 	if (dev->of_node)
701 		chan = of_dma_request_slave_channel(dev->of_node, name);
702 
703 	/* If device was enumerated by ACPI get slave info from here */
704 	if (has_acpi_companion(dev) && !chan)
705 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
706 
707 	if (chan) {
708 		/* Valid channel found or requester needs to be deferred */
709 		if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
710 			return chan;
711 	}
712 
713 	/* Try to find the channel via the DMA filter map(s) */
714 	mutex_lock(&dma_list_mutex);
715 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
716 		dma_cap_mask_t mask;
717 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
718 
719 		if (!map)
720 			continue;
721 
722 		dma_cap_zero(mask);
723 		dma_cap_set(DMA_SLAVE, mask);
724 
725 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
726 		if (!IS_ERR(chan))
727 			break;
728 	}
729 	mutex_unlock(&dma_list_mutex);
730 
731 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
732 }
733 EXPORT_SYMBOL_GPL(dma_request_chan);
734 
735 /**
736  * dma_request_slave_channel - try to allocate an exclusive slave channel
737  * @dev:	pointer to client device structure
738  * @name:	slave channel name
739  *
740  * Returns pointer to appropriate DMA channel on success or NULL.
741  */
742 struct dma_chan *dma_request_slave_channel(struct device *dev,
743 					   const char *name)
744 {
745 	struct dma_chan *ch = dma_request_chan(dev, name);
746 	if (IS_ERR(ch))
747 		return NULL;
748 
749 	return ch;
750 }
751 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
752 
753 /**
754  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
755  * @mask: capabilities that the channel must satisfy
756  *
757  * Returns pointer to appropriate DMA channel on success or an error pointer.
758  */
759 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
760 {
761 	struct dma_chan *chan;
762 
763 	if (!mask)
764 		return ERR_PTR(-ENODEV);
765 
766 	chan = __dma_request_channel(mask, NULL, NULL, NULL);
767 	if (!chan) {
768 		mutex_lock(&dma_list_mutex);
769 		if (list_empty(&dma_device_list))
770 			chan = ERR_PTR(-EPROBE_DEFER);
771 		else
772 			chan = ERR_PTR(-ENODEV);
773 		mutex_unlock(&dma_list_mutex);
774 	}
775 
776 	return chan;
777 }
778 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
779 
780 void dma_release_channel(struct dma_chan *chan)
781 {
782 	mutex_lock(&dma_list_mutex);
783 	WARN_ONCE(chan->client_count != 1,
784 		  "chan reference count %d != 1\n", chan->client_count);
785 	dma_chan_put(chan);
786 	/* drop PRIVATE cap enabled by __dma_request_channel() */
787 	if (--chan->device->privatecnt == 0)
788 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
789 	mutex_unlock(&dma_list_mutex);
790 }
791 EXPORT_SYMBOL_GPL(dma_release_channel);
792 
793 /**
794  * dmaengine_get - register interest in dma_channels
795  */
796 void dmaengine_get(void)
797 {
798 	struct dma_device *device, *_d;
799 	struct dma_chan *chan;
800 	int err;
801 
802 	mutex_lock(&dma_list_mutex);
803 	dmaengine_ref_count++;
804 
805 	/* try to grab channels */
806 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
807 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
808 			continue;
809 		list_for_each_entry(chan, &device->channels, device_node) {
810 			err = dma_chan_get(chan);
811 			if (err == -ENODEV) {
812 				/* module removed before we could use it */
813 				list_del_rcu(&device->global_node);
814 				break;
815 			} else if (err)
816 				dev_dbg(chan->device->dev,
817 					"%s: failed to get %s: (%d)\n",
818 					__func__, dma_chan_name(chan), err);
819 		}
820 	}
821 
822 	/* if this is the first reference and there were channels
823 	 * waiting we need to rebalance to get those channels
824 	 * incorporated into the channel table
825 	 */
826 	if (dmaengine_ref_count == 1)
827 		dma_channel_rebalance();
828 	mutex_unlock(&dma_list_mutex);
829 }
830 EXPORT_SYMBOL(dmaengine_get);
831 
832 /**
833  * dmaengine_put - let dma drivers be removed when ref_count == 0
834  */
835 void dmaengine_put(void)
836 {
837 	struct dma_device *device;
838 	struct dma_chan *chan;
839 
840 	mutex_lock(&dma_list_mutex);
841 	dmaengine_ref_count--;
842 	BUG_ON(dmaengine_ref_count < 0);
843 	/* drop channel references */
844 	list_for_each_entry(device, &dma_device_list, global_node) {
845 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
846 			continue;
847 		list_for_each_entry(chan, &device->channels, device_node)
848 			dma_chan_put(chan);
849 	}
850 	mutex_unlock(&dma_list_mutex);
851 }
852 EXPORT_SYMBOL(dmaengine_put);
853 
854 static bool device_has_all_tx_types(struct dma_device *device)
855 {
856 	/* A device that satisfies this test has channels that will never cause
857 	 * an async_tx channel switch event as all possible operation types can
858 	 * be handled.
859 	 */
860 	#ifdef CONFIG_ASYNC_TX_DMA
861 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
862 		return false;
863 	#endif
864 
865 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
866 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
867 		return false;
868 	#endif
869 
870 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
871 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
872 		return false;
873 
874 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
875 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
876 		return false;
877 	#endif
878 	#endif
879 
880 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
881 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
882 		return false;
883 
884 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
885 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
886 		return false;
887 	#endif
888 	#endif
889 
890 	return true;
891 }
892 
893 static int get_dma_id(struct dma_device *device)
894 {
895 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
896 
897 	if (rc < 0)
898 		return rc;
899 	device->dev_id = rc;
900 	return 0;
901 }
902 
903 /**
904  * dma_async_device_register - registers DMA devices found
905  * @device: &dma_device
906  */
907 int dma_async_device_register(struct dma_device *device)
908 {
909 	int chancnt = 0, rc;
910 	struct dma_chan* chan;
911 	atomic_t *idr_ref;
912 
913 	if (!device)
914 		return -ENODEV;
915 
916 	/* validate device routines */
917 	if (!device->dev) {
918 		pr_err("DMAdevice must have dev\n");
919 		return -EIO;
920 	}
921 
922 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
923 		dev_err(device->dev,
924 			"Device claims capability %s, but op is not defined\n",
925 			"DMA_MEMCPY");
926 		return -EIO;
927 	}
928 
929 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
930 		dev_err(device->dev,
931 			"Device claims capability %s, but op is not defined\n",
932 			"DMA_XOR");
933 		return -EIO;
934 	}
935 
936 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
937 		dev_err(device->dev,
938 			"Device claims capability %s, but op is not defined\n",
939 			"DMA_XOR_VAL");
940 		return -EIO;
941 	}
942 
943 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
944 		dev_err(device->dev,
945 			"Device claims capability %s, but op is not defined\n",
946 			"DMA_PQ");
947 		return -EIO;
948 	}
949 
950 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
951 		dev_err(device->dev,
952 			"Device claims capability %s, but op is not defined\n",
953 			"DMA_PQ_VAL");
954 		return -EIO;
955 	}
956 
957 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
958 		dev_err(device->dev,
959 			"Device claims capability %s, but op is not defined\n",
960 			"DMA_MEMSET");
961 		return -EIO;
962 	}
963 
964 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
965 		dev_err(device->dev,
966 			"Device claims capability %s, but op is not defined\n",
967 			"DMA_INTERRUPT");
968 		return -EIO;
969 	}
970 
971 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
972 		dev_err(device->dev,
973 			"Device claims capability %s, but op is not defined\n",
974 			"DMA_CYCLIC");
975 		return -EIO;
976 	}
977 
978 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
979 		dev_err(device->dev,
980 			"Device claims capability %s, but op is not defined\n",
981 			"DMA_INTERLEAVE");
982 		return -EIO;
983 	}
984 
985 
986 	if (!device->device_tx_status) {
987 		dev_err(device->dev, "Device tx_status is not defined\n");
988 		return -EIO;
989 	}
990 
991 
992 	if (!device->device_issue_pending) {
993 		dev_err(device->dev, "Device issue_pending is not defined\n");
994 		return -EIO;
995 	}
996 
997 	/* note: this only matters in the
998 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
999 	 */
1000 	if (device_has_all_tx_types(device))
1001 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1002 
1003 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1004 	if (!idr_ref)
1005 		return -ENOMEM;
1006 	rc = get_dma_id(device);
1007 	if (rc != 0) {
1008 		kfree(idr_ref);
1009 		return rc;
1010 	}
1011 
1012 	atomic_set(idr_ref, 0);
1013 
1014 	/* represent channels in sysfs. Probably want devs too */
1015 	list_for_each_entry(chan, &device->channels, device_node) {
1016 		rc = -ENOMEM;
1017 		chan->local = alloc_percpu(typeof(*chan->local));
1018 		if (chan->local == NULL)
1019 			goto err_out;
1020 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1021 		if (chan->dev == NULL) {
1022 			free_percpu(chan->local);
1023 			chan->local = NULL;
1024 			goto err_out;
1025 		}
1026 
1027 		chan->chan_id = chancnt++;
1028 		chan->dev->device.class = &dma_devclass;
1029 		chan->dev->device.parent = device->dev;
1030 		chan->dev->chan = chan;
1031 		chan->dev->idr_ref = idr_ref;
1032 		chan->dev->dev_id = device->dev_id;
1033 		atomic_inc(idr_ref);
1034 		dev_set_name(&chan->dev->device, "dma%dchan%d",
1035 			     device->dev_id, chan->chan_id);
1036 
1037 		rc = device_register(&chan->dev->device);
1038 		if (rc) {
1039 			free_percpu(chan->local);
1040 			chan->local = NULL;
1041 			kfree(chan->dev);
1042 			atomic_dec(idr_ref);
1043 			goto err_out;
1044 		}
1045 		chan->client_count = 0;
1046 	}
1047 
1048 	if (!chancnt) {
1049 		dev_err(device->dev, "%s: device has no channels!\n", __func__);
1050 		rc = -ENODEV;
1051 		goto err_out;
1052 	}
1053 
1054 	device->chancnt = chancnt;
1055 
1056 	mutex_lock(&dma_list_mutex);
1057 	/* take references on public channels */
1058 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1059 		list_for_each_entry(chan, &device->channels, device_node) {
1060 			/* if clients are already waiting for channels we need
1061 			 * to take references on their behalf
1062 			 */
1063 			if (dma_chan_get(chan) == -ENODEV) {
1064 				/* note we can only get here for the first
1065 				 * channel as the remaining channels are
1066 				 * guaranteed to get a reference
1067 				 */
1068 				rc = -ENODEV;
1069 				mutex_unlock(&dma_list_mutex);
1070 				goto err_out;
1071 			}
1072 		}
1073 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1074 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1075 		device->privatecnt++;	/* Always private */
1076 	dma_channel_rebalance();
1077 	mutex_unlock(&dma_list_mutex);
1078 
1079 	return 0;
1080 
1081 err_out:
1082 	/* if we never registered a channel just release the idr */
1083 	if (atomic_read(idr_ref) == 0) {
1084 		ida_free(&dma_ida, device->dev_id);
1085 		kfree(idr_ref);
1086 		return rc;
1087 	}
1088 
1089 	list_for_each_entry(chan, &device->channels, device_node) {
1090 		if (chan->local == NULL)
1091 			continue;
1092 		mutex_lock(&dma_list_mutex);
1093 		chan->dev->chan = NULL;
1094 		mutex_unlock(&dma_list_mutex);
1095 		device_unregister(&chan->dev->device);
1096 		free_percpu(chan->local);
1097 	}
1098 	return rc;
1099 }
1100 EXPORT_SYMBOL(dma_async_device_register);
1101 
1102 /**
1103  * dma_async_device_unregister - unregister a DMA device
1104  * @device: &dma_device
1105  *
1106  * This routine is called by dma driver exit routines, dmaengine holds module
1107  * references to prevent it being called while channels are in use.
1108  */
1109 void dma_async_device_unregister(struct dma_device *device)
1110 {
1111 	struct dma_chan *chan;
1112 
1113 	mutex_lock(&dma_list_mutex);
1114 	list_del_rcu(&device->global_node);
1115 	dma_channel_rebalance();
1116 	mutex_unlock(&dma_list_mutex);
1117 
1118 	list_for_each_entry(chan, &device->channels, device_node) {
1119 		WARN_ONCE(chan->client_count,
1120 			  "%s called while %d clients hold a reference\n",
1121 			  __func__, chan->client_count);
1122 		mutex_lock(&dma_list_mutex);
1123 		chan->dev->chan = NULL;
1124 		mutex_unlock(&dma_list_mutex);
1125 		device_unregister(&chan->dev->device);
1126 		free_percpu(chan->local);
1127 	}
1128 }
1129 EXPORT_SYMBOL(dma_async_device_unregister);
1130 
1131 static void dmam_device_release(struct device *dev, void *res)
1132 {
1133 	struct dma_device *device;
1134 
1135 	device = *(struct dma_device **)res;
1136 	dma_async_device_unregister(device);
1137 }
1138 
1139 /**
1140  * dmaenginem_async_device_register - registers DMA devices found
1141  * @device: &dma_device
1142  *
1143  * The operation is managed and will be undone on driver detach.
1144  */
1145 int dmaenginem_async_device_register(struct dma_device *device)
1146 {
1147 	void *p;
1148 	int ret;
1149 
1150 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1151 	if (!p)
1152 		return -ENOMEM;
1153 
1154 	ret = dma_async_device_register(device);
1155 	if (!ret) {
1156 		*(struct dma_device **)p = device;
1157 		devres_add(device->dev, p);
1158 	} else {
1159 		devres_free(p);
1160 	}
1161 
1162 	return ret;
1163 }
1164 EXPORT_SYMBOL(dmaenginem_async_device_register);
1165 
1166 struct dmaengine_unmap_pool {
1167 	struct kmem_cache *cache;
1168 	const char *name;
1169 	mempool_t *pool;
1170 	size_t size;
1171 };
1172 
1173 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1174 static struct dmaengine_unmap_pool unmap_pool[] = {
1175 	__UNMAP_POOL(2),
1176 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1177 	__UNMAP_POOL(16),
1178 	__UNMAP_POOL(128),
1179 	__UNMAP_POOL(256),
1180 	#endif
1181 };
1182 
1183 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1184 {
1185 	int order = get_count_order(nr);
1186 
1187 	switch (order) {
1188 	case 0 ... 1:
1189 		return &unmap_pool[0];
1190 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1191 	case 2 ... 4:
1192 		return &unmap_pool[1];
1193 	case 5 ... 7:
1194 		return &unmap_pool[2];
1195 	case 8:
1196 		return &unmap_pool[3];
1197 #endif
1198 	default:
1199 		BUG();
1200 		return NULL;
1201 	}
1202 }
1203 
1204 static void dmaengine_unmap(struct kref *kref)
1205 {
1206 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1207 	struct device *dev = unmap->dev;
1208 	int cnt, i;
1209 
1210 	cnt = unmap->to_cnt;
1211 	for (i = 0; i < cnt; i++)
1212 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1213 			       DMA_TO_DEVICE);
1214 	cnt += unmap->from_cnt;
1215 	for (; i < cnt; i++)
1216 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1217 			       DMA_FROM_DEVICE);
1218 	cnt += unmap->bidi_cnt;
1219 	for (; i < cnt; i++) {
1220 		if (unmap->addr[i] == 0)
1221 			continue;
1222 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1223 			       DMA_BIDIRECTIONAL);
1224 	}
1225 	cnt = unmap->map_cnt;
1226 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1227 }
1228 
1229 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1230 {
1231 	if (unmap)
1232 		kref_put(&unmap->kref, dmaengine_unmap);
1233 }
1234 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1235 
1236 static void dmaengine_destroy_unmap_pool(void)
1237 {
1238 	int i;
1239 
1240 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1241 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1242 
1243 		mempool_destroy(p->pool);
1244 		p->pool = NULL;
1245 		kmem_cache_destroy(p->cache);
1246 		p->cache = NULL;
1247 	}
1248 }
1249 
1250 static int __init dmaengine_init_unmap_pool(void)
1251 {
1252 	int i;
1253 
1254 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1255 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1256 		size_t size;
1257 
1258 		size = sizeof(struct dmaengine_unmap_data) +
1259 		       sizeof(dma_addr_t) * p->size;
1260 
1261 		p->cache = kmem_cache_create(p->name, size, 0,
1262 					     SLAB_HWCACHE_ALIGN, NULL);
1263 		if (!p->cache)
1264 			break;
1265 		p->pool = mempool_create_slab_pool(1, p->cache);
1266 		if (!p->pool)
1267 			break;
1268 	}
1269 
1270 	if (i == ARRAY_SIZE(unmap_pool))
1271 		return 0;
1272 
1273 	dmaengine_destroy_unmap_pool();
1274 	return -ENOMEM;
1275 }
1276 
1277 struct dmaengine_unmap_data *
1278 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1279 {
1280 	struct dmaengine_unmap_data *unmap;
1281 
1282 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1283 	if (!unmap)
1284 		return NULL;
1285 
1286 	memset(unmap, 0, sizeof(*unmap));
1287 	kref_init(&unmap->kref);
1288 	unmap->dev = dev;
1289 	unmap->map_cnt = nr;
1290 
1291 	return unmap;
1292 }
1293 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1294 
1295 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1296 	struct dma_chan *chan)
1297 {
1298 	tx->chan = chan;
1299 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1300 	spin_lock_init(&tx->lock);
1301 	#endif
1302 }
1303 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1304 
1305 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1306  * @tx: in-flight transaction to wait on
1307  */
1308 enum dma_status
1309 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1310 {
1311 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1312 
1313 	if (!tx)
1314 		return DMA_COMPLETE;
1315 
1316 	while (tx->cookie == -EBUSY) {
1317 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1318 			dev_err(tx->chan->device->dev,
1319 				"%s timeout waiting for descriptor submission\n",
1320 				__func__);
1321 			return DMA_ERROR;
1322 		}
1323 		cpu_relax();
1324 	}
1325 	return dma_sync_wait(tx->chan, tx->cookie);
1326 }
1327 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1328 
1329 /* dma_run_dependencies - helper routine for dma drivers to process
1330  *	(start) dependent operations on their target channel
1331  * @tx: transaction with dependencies
1332  */
1333 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1334 {
1335 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1336 	struct dma_async_tx_descriptor *dep_next;
1337 	struct dma_chan *chan;
1338 
1339 	if (!dep)
1340 		return;
1341 
1342 	/* we'll submit tx->next now, so clear the link */
1343 	txd_clear_next(tx);
1344 	chan = dep->chan;
1345 
1346 	/* keep submitting up until a channel switch is detected
1347 	 * in that case we will be called again as a result of
1348 	 * processing the interrupt from async_tx_channel_switch
1349 	 */
1350 	for (; dep; dep = dep_next) {
1351 		txd_lock(dep);
1352 		txd_clear_parent(dep);
1353 		dep_next = txd_next(dep);
1354 		if (dep_next && dep_next->chan == chan)
1355 			txd_clear_next(dep); /* ->next will be submitted */
1356 		else
1357 			dep_next = NULL; /* submit current dep and terminate */
1358 		txd_unlock(dep);
1359 
1360 		dep->tx_submit(dep);
1361 	}
1362 
1363 	chan->device->device_issue_pending(chan);
1364 }
1365 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1366 
1367 static int __init dma_bus_init(void)
1368 {
1369 	int err = dmaengine_init_unmap_pool();
1370 
1371 	if (err)
1372 		return err;
1373 	return class_register(&dma_devclass);
1374 }
1375 arch_initcall(dma_bus_init);
1376 
1377 
1378