1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 22 /* 23 * This code implements the DMA subsystem. It provides a HW-neutral interface 24 * for other kernel code to use asynchronous memory copy capabilities, 25 * if present, and allows different HW DMA drivers to register as providing 26 * this capability. 27 * 28 * Due to the fact we are accelerating what is already a relatively fast 29 * operation, the code goes to great lengths to avoid additional overhead, 30 * such as locking. 31 * 32 * LOCKING: 33 * 34 * The subsystem keeps a global list of dma_device structs it is protected by a 35 * mutex, dma_list_mutex. 36 * 37 * A subsystem can get access to a channel by calling dmaengine_get() followed 38 * by dma_find_channel(), or if it has need for an exclusive channel it can call 39 * dma_request_channel(). Once a channel is allocated a reference is taken 40 * against its corresponding driver to disable removal. 41 * 42 * Each device has a channels list, which runs unlocked but is never modified 43 * once the device is registered, it's just setup by the driver. 44 * 45 * See Documentation/dmaengine.txt for more details 46 */ 47 48 #include <linux/init.h> 49 #include <linux/module.h> 50 #include <linux/mm.h> 51 #include <linux/device.h> 52 #include <linux/dmaengine.h> 53 #include <linux/hardirq.h> 54 #include <linux/spinlock.h> 55 #include <linux/percpu.h> 56 #include <linux/rcupdate.h> 57 #include <linux/mutex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rculist.h> 60 #include <linux/idr.h> 61 62 static DEFINE_MUTEX(dma_list_mutex); 63 static LIST_HEAD(dma_device_list); 64 static long dmaengine_ref_count; 65 static struct idr dma_idr; 66 67 /* --- sysfs implementation --- */ 68 69 /** 70 * dev_to_dma_chan - convert a device pointer to the its sysfs container object 71 * @dev - device node 72 * 73 * Must be called under dma_list_mutex 74 */ 75 static struct dma_chan *dev_to_dma_chan(struct device *dev) 76 { 77 struct dma_chan_dev *chan_dev; 78 79 chan_dev = container_of(dev, typeof(*chan_dev), device); 80 return chan_dev->chan; 81 } 82 83 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf) 84 { 85 struct dma_chan *chan; 86 unsigned long count = 0; 87 int i; 88 int err; 89 90 mutex_lock(&dma_list_mutex); 91 chan = dev_to_dma_chan(dev); 92 if (chan) { 93 for_each_possible_cpu(i) 94 count += per_cpu_ptr(chan->local, i)->memcpy_count; 95 err = sprintf(buf, "%lu\n", count); 96 } else 97 err = -ENODEV; 98 mutex_unlock(&dma_list_mutex); 99 100 return err; 101 } 102 103 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr, 104 char *buf) 105 { 106 struct dma_chan *chan; 107 unsigned long count = 0; 108 int i; 109 int err; 110 111 mutex_lock(&dma_list_mutex); 112 chan = dev_to_dma_chan(dev); 113 if (chan) { 114 for_each_possible_cpu(i) 115 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 116 err = sprintf(buf, "%lu\n", count); 117 } else 118 err = -ENODEV; 119 mutex_unlock(&dma_list_mutex); 120 121 return err; 122 } 123 124 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf) 125 { 126 struct dma_chan *chan; 127 int err; 128 129 mutex_lock(&dma_list_mutex); 130 chan = dev_to_dma_chan(dev); 131 if (chan) 132 err = sprintf(buf, "%d\n", chan->client_count); 133 else 134 err = -ENODEV; 135 mutex_unlock(&dma_list_mutex); 136 137 return err; 138 } 139 140 static struct device_attribute dma_attrs[] = { 141 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL), 142 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL), 143 __ATTR(in_use, S_IRUGO, show_in_use, NULL), 144 __ATTR_NULL 145 }; 146 147 static void chan_dev_release(struct device *dev) 148 { 149 struct dma_chan_dev *chan_dev; 150 151 chan_dev = container_of(dev, typeof(*chan_dev), device); 152 if (atomic_dec_and_test(chan_dev->idr_ref)) { 153 mutex_lock(&dma_list_mutex); 154 idr_remove(&dma_idr, chan_dev->dev_id); 155 mutex_unlock(&dma_list_mutex); 156 kfree(chan_dev->idr_ref); 157 } 158 kfree(chan_dev); 159 } 160 161 static struct class dma_devclass = { 162 .name = "dma", 163 .dev_attrs = dma_attrs, 164 .dev_release = chan_dev_release, 165 }; 166 167 /* --- client and device registration --- */ 168 169 #define dma_device_satisfies_mask(device, mask) \ 170 __dma_device_satisfies_mask((device), &(mask)) 171 static int 172 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want) 173 { 174 dma_cap_mask_t has; 175 176 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 177 DMA_TX_TYPE_END); 178 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 179 } 180 181 static struct module *dma_chan_to_owner(struct dma_chan *chan) 182 { 183 return chan->device->dev->driver->owner; 184 } 185 186 /** 187 * balance_ref_count - catch up the channel reference count 188 * @chan - channel to balance ->client_count versus dmaengine_ref_count 189 * 190 * balance_ref_count must be called under dma_list_mutex 191 */ 192 static void balance_ref_count(struct dma_chan *chan) 193 { 194 struct module *owner = dma_chan_to_owner(chan); 195 196 while (chan->client_count < dmaengine_ref_count) { 197 __module_get(owner); 198 chan->client_count++; 199 } 200 } 201 202 /** 203 * dma_chan_get - try to grab a dma channel's parent driver module 204 * @chan - channel to grab 205 * 206 * Must be called under dma_list_mutex 207 */ 208 static int dma_chan_get(struct dma_chan *chan) 209 { 210 int err = -ENODEV; 211 struct module *owner = dma_chan_to_owner(chan); 212 213 if (chan->client_count) { 214 __module_get(owner); 215 err = 0; 216 } else if (try_module_get(owner)) 217 err = 0; 218 219 if (err == 0) 220 chan->client_count++; 221 222 /* allocate upon first client reference */ 223 if (chan->client_count == 1 && err == 0) { 224 int desc_cnt = chan->device->device_alloc_chan_resources(chan); 225 226 if (desc_cnt < 0) { 227 err = desc_cnt; 228 chan->client_count = 0; 229 module_put(owner); 230 } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 231 balance_ref_count(chan); 232 } 233 234 return err; 235 } 236 237 /** 238 * dma_chan_put - drop a reference to a dma channel's parent driver module 239 * @chan - channel to release 240 * 241 * Must be called under dma_list_mutex 242 */ 243 static void dma_chan_put(struct dma_chan *chan) 244 { 245 if (!chan->client_count) 246 return; /* this channel failed alloc_chan_resources */ 247 chan->client_count--; 248 module_put(dma_chan_to_owner(chan)); 249 if (chan->client_count == 0) 250 chan->device->device_free_chan_resources(chan); 251 } 252 253 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 254 { 255 enum dma_status status; 256 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 257 258 dma_async_issue_pending(chan); 259 do { 260 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 261 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 262 printk(KERN_ERR "dma_sync_wait_timeout!\n"); 263 return DMA_ERROR; 264 } 265 } while (status == DMA_IN_PROGRESS); 266 267 return status; 268 } 269 EXPORT_SYMBOL(dma_sync_wait); 270 271 /** 272 * dma_cap_mask_all - enable iteration over all operation types 273 */ 274 static dma_cap_mask_t dma_cap_mask_all; 275 276 /** 277 * dma_chan_tbl_ent - tracks channel allocations per core/operation 278 * @chan - associated channel for this entry 279 */ 280 struct dma_chan_tbl_ent { 281 struct dma_chan *chan; 282 }; 283 284 /** 285 * channel_table - percpu lookup table for memory-to-memory offload providers 286 */ 287 static struct dma_chan_tbl_ent *channel_table[DMA_TX_TYPE_END]; 288 289 static int __init dma_channel_table_init(void) 290 { 291 enum dma_transaction_type cap; 292 int err = 0; 293 294 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 295 296 /* 'interrupt', 'private', and 'slave' are channel capabilities, 297 * but are not associated with an operation so they do not need 298 * an entry in the channel_table 299 */ 300 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 301 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 302 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 303 304 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 305 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 306 if (!channel_table[cap]) { 307 err = -ENOMEM; 308 break; 309 } 310 } 311 312 if (err) { 313 pr_err("dmaengine: initialization failure\n"); 314 for_each_dma_cap_mask(cap, dma_cap_mask_all) 315 if (channel_table[cap]) 316 free_percpu(channel_table[cap]); 317 } 318 319 return err; 320 } 321 arch_initcall(dma_channel_table_init); 322 323 /** 324 * dma_find_channel - find a channel to carry out the operation 325 * @tx_type: transaction type 326 */ 327 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 328 { 329 struct dma_chan *chan; 330 int cpu; 331 332 cpu = get_cpu(); 333 chan = per_cpu_ptr(channel_table[tx_type], cpu)->chan; 334 put_cpu(); 335 336 return chan; 337 } 338 EXPORT_SYMBOL(dma_find_channel); 339 340 /** 341 * dma_issue_pending_all - flush all pending operations across all channels 342 */ 343 void dma_issue_pending_all(void) 344 { 345 struct dma_device *device; 346 struct dma_chan *chan; 347 348 rcu_read_lock(); 349 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 350 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 351 continue; 352 list_for_each_entry(chan, &device->channels, device_node) 353 if (chan->client_count) 354 device->device_issue_pending(chan); 355 } 356 rcu_read_unlock(); 357 } 358 EXPORT_SYMBOL(dma_issue_pending_all); 359 360 /** 361 * nth_chan - returns the nth channel of the given capability 362 * @cap: capability to match 363 * @n: nth channel desired 364 * 365 * Defaults to returning the channel with the desired capability and the 366 * lowest reference count when 'n' cannot be satisfied. Must be called 367 * under dma_list_mutex. 368 */ 369 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n) 370 { 371 struct dma_device *device; 372 struct dma_chan *chan; 373 struct dma_chan *ret = NULL; 374 struct dma_chan *min = NULL; 375 376 list_for_each_entry(device, &dma_device_list, global_node) { 377 if (!dma_has_cap(cap, device->cap_mask) || 378 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 379 continue; 380 list_for_each_entry(chan, &device->channels, device_node) { 381 if (!chan->client_count) 382 continue; 383 if (!min) 384 min = chan; 385 else if (chan->table_count < min->table_count) 386 min = chan; 387 388 if (n-- == 0) { 389 ret = chan; 390 break; /* done */ 391 } 392 } 393 if (ret) 394 break; /* done */ 395 } 396 397 if (!ret) 398 ret = min; 399 400 if (ret) 401 ret->table_count++; 402 403 return ret; 404 } 405 406 /** 407 * dma_channel_rebalance - redistribute the available channels 408 * 409 * Optimize for cpu isolation (each cpu gets a dedicated channel for an 410 * operation type) in the SMP case, and operation isolation (avoid 411 * multi-tasking channels) in the non-SMP case. Must be called under 412 * dma_list_mutex. 413 */ 414 static void dma_channel_rebalance(void) 415 { 416 struct dma_chan *chan; 417 struct dma_device *device; 418 int cpu; 419 int cap; 420 int n; 421 422 /* undo the last distribution */ 423 for_each_dma_cap_mask(cap, dma_cap_mask_all) 424 for_each_possible_cpu(cpu) 425 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 426 427 list_for_each_entry(device, &dma_device_list, global_node) { 428 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 429 continue; 430 list_for_each_entry(chan, &device->channels, device_node) 431 chan->table_count = 0; 432 } 433 434 /* don't populate the channel_table if no clients are available */ 435 if (!dmaengine_ref_count) 436 return; 437 438 /* redistribute available channels */ 439 n = 0; 440 for_each_dma_cap_mask(cap, dma_cap_mask_all) 441 for_each_online_cpu(cpu) { 442 if (num_possible_cpus() > 1) 443 chan = nth_chan(cap, n++); 444 else 445 chan = nth_chan(cap, -1); 446 447 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 448 } 449 } 450 451 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev, 452 dma_filter_fn fn, void *fn_param) 453 { 454 struct dma_chan *chan; 455 456 if (!__dma_device_satisfies_mask(dev, mask)) { 457 pr_debug("%s: wrong capabilities\n", __func__); 458 return NULL; 459 } 460 /* devices with multiple channels need special handling as we need to 461 * ensure that all channels are either private or public. 462 */ 463 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 464 list_for_each_entry(chan, &dev->channels, device_node) { 465 /* some channels are already publicly allocated */ 466 if (chan->client_count) 467 return NULL; 468 } 469 470 list_for_each_entry(chan, &dev->channels, device_node) { 471 if (chan->client_count) { 472 pr_debug("%s: %s busy\n", 473 __func__, dma_chan_name(chan)); 474 continue; 475 } 476 if (fn && !fn(chan, fn_param)) { 477 pr_debug("%s: %s filter said false\n", 478 __func__, dma_chan_name(chan)); 479 continue; 480 } 481 return chan; 482 } 483 484 return NULL; 485 } 486 487 /** 488 * dma_request_channel - try to allocate an exclusive channel 489 * @mask: capabilities that the channel must satisfy 490 * @fn: optional callback to disposition available channels 491 * @fn_param: opaque parameter to pass to dma_filter_fn 492 */ 493 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param) 494 { 495 struct dma_device *device, *_d; 496 struct dma_chan *chan = NULL; 497 int err; 498 499 /* Find a channel */ 500 mutex_lock(&dma_list_mutex); 501 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 502 chan = private_candidate(mask, device, fn, fn_param); 503 if (chan) { 504 /* Found a suitable channel, try to grab, prep, and 505 * return it. We first set DMA_PRIVATE to disable 506 * balance_ref_count as this channel will not be 507 * published in the general-purpose allocator 508 */ 509 dma_cap_set(DMA_PRIVATE, device->cap_mask); 510 err = dma_chan_get(chan); 511 512 if (err == -ENODEV) { 513 pr_debug("%s: %s module removed\n", __func__, 514 dma_chan_name(chan)); 515 list_del_rcu(&device->global_node); 516 } else if (err) 517 pr_err("dmaengine: failed to get %s: (%d)\n", 518 dma_chan_name(chan), err); 519 else 520 break; 521 chan = NULL; 522 } 523 } 524 mutex_unlock(&dma_list_mutex); 525 526 pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail", 527 chan ? dma_chan_name(chan) : NULL); 528 529 return chan; 530 } 531 EXPORT_SYMBOL_GPL(__dma_request_channel); 532 533 void dma_release_channel(struct dma_chan *chan) 534 { 535 mutex_lock(&dma_list_mutex); 536 WARN_ONCE(chan->client_count != 1, 537 "chan reference count %d != 1\n", chan->client_count); 538 dma_chan_put(chan); 539 mutex_unlock(&dma_list_mutex); 540 } 541 EXPORT_SYMBOL_GPL(dma_release_channel); 542 543 /** 544 * dmaengine_get - register interest in dma_channels 545 */ 546 void dmaengine_get(void) 547 { 548 struct dma_device *device, *_d; 549 struct dma_chan *chan; 550 int err; 551 552 mutex_lock(&dma_list_mutex); 553 dmaengine_ref_count++; 554 555 /* try to grab channels */ 556 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 557 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 558 continue; 559 list_for_each_entry(chan, &device->channels, device_node) { 560 err = dma_chan_get(chan); 561 if (err == -ENODEV) { 562 /* module removed before we could use it */ 563 list_del_rcu(&device->global_node); 564 break; 565 } else if (err) 566 pr_err("dmaengine: failed to get %s: (%d)\n", 567 dma_chan_name(chan), err); 568 } 569 } 570 571 /* if this is the first reference and there were channels 572 * waiting we need to rebalance to get those channels 573 * incorporated into the channel table 574 */ 575 if (dmaengine_ref_count == 1) 576 dma_channel_rebalance(); 577 mutex_unlock(&dma_list_mutex); 578 } 579 EXPORT_SYMBOL(dmaengine_get); 580 581 /** 582 * dmaengine_put - let dma drivers be removed when ref_count == 0 583 */ 584 void dmaengine_put(void) 585 { 586 struct dma_device *device; 587 struct dma_chan *chan; 588 589 mutex_lock(&dma_list_mutex); 590 dmaengine_ref_count--; 591 BUG_ON(dmaengine_ref_count < 0); 592 /* drop channel references */ 593 list_for_each_entry(device, &dma_device_list, global_node) { 594 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 595 continue; 596 list_for_each_entry(chan, &device->channels, device_node) 597 dma_chan_put(chan); 598 } 599 mutex_unlock(&dma_list_mutex); 600 } 601 EXPORT_SYMBOL(dmaengine_put); 602 603 /** 604 * dma_async_device_register - registers DMA devices found 605 * @device: &dma_device 606 */ 607 int dma_async_device_register(struct dma_device *device) 608 { 609 int chancnt = 0, rc; 610 struct dma_chan* chan; 611 atomic_t *idr_ref; 612 613 if (!device) 614 return -ENODEV; 615 616 /* validate device routines */ 617 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && 618 !device->device_prep_dma_memcpy); 619 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && 620 !device->device_prep_dma_xor); 621 BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) && 622 !device->device_prep_dma_zero_sum); 623 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) && 624 !device->device_prep_dma_memset); 625 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && 626 !device->device_prep_dma_interrupt); 627 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && 628 !device->device_prep_slave_sg); 629 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && 630 !device->device_terminate_all); 631 632 BUG_ON(!device->device_alloc_chan_resources); 633 BUG_ON(!device->device_free_chan_resources); 634 BUG_ON(!device->device_is_tx_complete); 635 BUG_ON(!device->device_issue_pending); 636 BUG_ON(!device->dev); 637 638 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); 639 if (!idr_ref) 640 return -ENOMEM; 641 atomic_set(idr_ref, 0); 642 idr_retry: 643 if (!idr_pre_get(&dma_idr, GFP_KERNEL)) 644 return -ENOMEM; 645 mutex_lock(&dma_list_mutex); 646 rc = idr_get_new(&dma_idr, NULL, &device->dev_id); 647 mutex_unlock(&dma_list_mutex); 648 if (rc == -EAGAIN) 649 goto idr_retry; 650 else if (rc != 0) 651 return rc; 652 653 /* represent channels in sysfs. Probably want devs too */ 654 list_for_each_entry(chan, &device->channels, device_node) { 655 chan->local = alloc_percpu(typeof(*chan->local)); 656 if (chan->local == NULL) 657 continue; 658 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 659 if (chan->dev == NULL) { 660 free_percpu(chan->local); 661 continue; 662 } 663 664 chan->chan_id = chancnt++; 665 chan->dev->device.class = &dma_devclass; 666 chan->dev->device.parent = device->dev; 667 chan->dev->chan = chan; 668 chan->dev->idr_ref = idr_ref; 669 chan->dev->dev_id = device->dev_id; 670 atomic_inc(idr_ref); 671 dev_set_name(&chan->dev->device, "dma%dchan%d", 672 device->dev_id, chan->chan_id); 673 674 rc = device_register(&chan->dev->device); 675 if (rc) { 676 free_percpu(chan->local); 677 chan->local = NULL; 678 goto err_out; 679 } 680 chan->client_count = 0; 681 } 682 device->chancnt = chancnt; 683 684 mutex_lock(&dma_list_mutex); 685 /* take references on public channels */ 686 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 687 list_for_each_entry(chan, &device->channels, device_node) { 688 /* if clients are already waiting for channels we need 689 * to take references on their behalf 690 */ 691 if (dma_chan_get(chan) == -ENODEV) { 692 /* note we can only get here for the first 693 * channel as the remaining channels are 694 * guaranteed to get a reference 695 */ 696 rc = -ENODEV; 697 mutex_unlock(&dma_list_mutex); 698 goto err_out; 699 } 700 } 701 list_add_tail_rcu(&device->global_node, &dma_device_list); 702 dma_channel_rebalance(); 703 mutex_unlock(&dma_list_mutex); 704 705 return 0; 706 707 err_out: 708 list_for_each_entry(chan, &device->channels, device_node) { 709 if (chan->local == NULL) 710 continue; 711 mutex_lock(&dma_list_mutex); 712 chan->dev->chan = NULL; 713 mutex_unlock(&dma_list_mutex); 714 device_unregister(&chan->dev->device); 715 free_percpu(chan->local); 716 } 717 return rc; 718 } 719 EXPORT_SYMBOL(dma_async_device_register); 720 721 /** 722 * dma_async_device_unregister - unregister a DMA device 723 * @device: &dma_device 724 * 725 * This routine is called by dma driver exit routines, dmaengine holds module 726 * references to prevent it being called while channels are in use. 727 */ 728 void dma_async_device_unregister(struct dma_device *device) 729 { 730 struct dma_chan *chan; 731 732 mutex_lock(&dma_list_mutex); 733 list_del_rcu(&device->global_node); 734 dma_channel_rebalance(); 735 mutex_unlock(&dma_list_mutex); 736 737 list_for_each_entry(chan, &device->channels, device_node) { 738 WARN_ONCE(chan->client_count, 739 "%s called while %d clients hold a reference\n", 740 __func__, chan->client_count); 741 mutex_lock(&dma_list_mutex); 742 chan->dev->chan = NULL; 743 mutex_unlock(&dma_list_mutex); 744 device_unregister(&chan->dev->device); 745 } 746 } 747 EXPORT_SYMBOL(dma_async_device_unregister); 748 749 /** 750 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses 751 * @chan: DMA channel to offload copy to 752 * @dest: destination address (virtual) 753 * @src: source address (virtual) 754 * @len: length 755 * 756 * Both @dest and @src must be mappable to a bus address according to the 757 * DMA mapping API rules for streaming mappings. 758 * Both @dest and @src must stay memory resident (kernel memory or locked 759 * user space pages). 760 */ 761 dma_cookie_t 762 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, 763 void *src, size_t len) 764 { 765 struct dma_device *dev = chan->device; 766 struct dma_async_tx_descriptor *tx; 767 dma_addr_t dma_dest, dma_src; 768 dma_cookie_t cookie; 769 int cpu; 770 771 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); 772 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE); 773 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, 774 DMA_CTRL_ACK); 775 776 if (!tx) { 777 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); 778 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE); 779 return -ENOMEM; 780 } 781 782 tx->callback = NULL; 783 cookie = tx->tx_submit(tx); 784 785 cpu = get_cpu(); 786 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 787 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 788 put_cpu(); 789 790 return cookie; 791 } 792 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf); 793 794 /** 795 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page 796 * @chan: DMA channel to offload copy to 797 * @page: destination page 798 * @offset: offset in page to copy to 799 * @kdata: source address (virtual) 800 * @len: length 801 * 802 * Both @page/@offset and @kdata must be mappable to a bus address according 803 * to the DMA mapping API rules for streaming mappings. 804 * Both @page/@offset and @kdata must stay memory resident (kernel memory or 805 * locked user space pages) 806 */ 807 dma_cookie_t 808 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, 809 unsigned int offset, void *kdata, size_t len) 810 { 811 struct dma_device *dev = chan->device; 812 struct dma_async_tx_descriptor *tx; 813 dma_addr_t dma_dest, dma_src; 814 dma_cookie_t cookie; 815 int cpu; 816 817 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); 818 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE); 819 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, 820 DMA_CTRL_ACK); 821 822 if (!tx) { 823 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); 824 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); 825 return -ENOMEM; 826 } 827 828 tx->callback = NULL; 829 cookie = tx->tx_submit(tx); 830 831 cpu = get_cpu(); 832 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 833 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 834 put_cpu(); 835 836 return cookie; 837 } 838 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg); 839 840 /** 841 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page 842 * @chan: DMA channel to offload copy to 843 * @dest_pg: destination page 844 * @dest_off: offset in page to copy to 845 * @src_pg: source page 846 * @src_off: offset in page to copy from 847 * @len: length 848 * 849 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus 850 * address according to the DMA mapping API rules for streaming mappings. 851 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident 852 * (kernel memory or locked user space pages). 853 */ 854 dma_cookie_t 855 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg, 856 unsigned int dest_off, struct page *src_pg, unsigned int src_off, 857 size_t len) 858 { 859 struct dma_device *dev = chan->device; 860 struct dma_async_tx_descriptor *tx; 861 dma_addr_t dma_dest, dma_src; 862 dma_cookie_t cookie; 863 int cpu; 864 865 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE); 866 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len, 867 DMA_FROM_DEVICE); 868 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, 869 DMA_CTRL_ACK); 870 871 if (!tx) { 872 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE); 873 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); 874 return -ENOMEM; 875 } 876 877 tx->callback = NULL; 878 cookie = tx->tx_submit(tx); 879 880 cpu = get_cpu(); 881 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 882 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 883 put_cpu(); 884 885 return cookie; 886 } 887 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg); 888 889 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 890 struct dma_chan *chan) 891 { 892 tx->chan = chan; 893 spin_lock_init(&tx->lock); 894 } 895 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 896 897 /* dma_wait_for_async_tx - spin wait for a transaction to complete 898 * @tx: in-flight transaction to wait on 899 * 900 * This routine assumes that tx was obtained from a call to async_memcpy, 901 * async_xor, async_memset, etc which ensures that tx is "in-flight" (prepped 902 * and submitted). Walking the parent chain is only meant to cover for DMA 903 * drivers that do not implement the DMA_INTERRUPT capability and may race with 904 * the driver's descriptor cleanup routine. 905 */ 906 enum dma_status 907 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 908 { 909 enum dma_status status; 910 struct dma_async_tx_descriptor *iter; 911 struct dma_async_tx_descriptor *parent; 912 913 if (!tx) 914 return DMA_SUCCESS; 915 916 WARN_ONCE(tx->parent, "%s: speculatively walking dependency chain for" 917 " %s\n", __func__, dma_chan_name(tx->chan)); 918 919 /* poll through the dependency chain, return when tx is complete */ 920 do { 921 iter = tx; 922 923 /* find the root of the unsubmitted dependency chain */ 924 do { 925 parent = iter->parent; 926 if (!parent) 927 break; 928 else 929 iter = parent; 930 } while (parent); 931 932 /* there is a small window for ->parent == NULL and 933 * ->cookie == -EBUSY 934 */ 935 while (iter->cookie == -EBUSY) 936 cpu_relax(); 937 938 status = dma_sync_wait(iter->chan, iter->cookie); 939 } while (status == DMA_IN_PROGRESS || (iter != tx)); 940 941 return status; 942 } 943 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 944 945 /* dma_run_dependencies - helper routine for dma drivers to process 946 * (start) dependent operations on their target channel 947 * @tx: transaction with dependencies 948 */ 949 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 950 { 951 struct dma_async_tx_descriptor *dep = tx->next; 952 struct dma_async_tx_descriptor *dep_next; 953 struct dma_chan *chan; 954 955 if (!dep) 956 return; 957 958 /* we'll submit tx->next now, so clear the link */ 959 tx->next = NULL; 960 chan = dep->chan; 961 962 /* keep submitting up until a channel switch is detected 963 * in that case we will be called again as a result of 964 * processing the interrupt from async_tx_channel_switch 965 */ 966 for (; dep; dep = dep_next) { 967 spin_lock_bh(&dep->lock); 968 dep->parent = NULL; 969 dep_next = dep->next; 970 if (dep_next && dep_next->chan == chan) 971 dep->next = NULL; /* ->next will be submitted */ 972 else 973 dep_next = NULL; /* submit current dep and terminate */ 974 spin_unlock_bh(&dep->lock); 975 976 dep->tx_submit(dep); 977 } 978 979 chan->device->device_issue_pending(chan); 980 } 981 EXPORT_SYMBOL_GPL(dma_run_dependencies); 982 983 static int __init dma_bus_init(void) 984 { 985 idr_init(&dma_idr); 986 mutex_init(&dma_list_mutex); 987 return class_register(&dma_devclass); 988 } 989 arch_initcall(dma_bus_init); 990 991 992