xref: /linux/drivers/dma/dmaengine.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 
18 /*
19  * This code implements the DMA subsystem. It provides a HW-neutral interface
20  * for other kernel code to use asynchronous memory copy capabilities,
21  * if present, and allows different HW DMA drivers to register as providing
22  * this capability.
23  *
24  * Due to the fact we are accelerating what is already a relatively fast
25  * operation, the code goes to great lengths to avoid additional overhead,
26  * such as locking.
27  *
28  * LOCKING:
29  *
30  * The subsystem keeps a global list of dma_device structs it is protected by a
31  * mutex, dma_list_mutex.
32  *
33  * A subsystem can get access to a channel by calling dmaengine_get() followed
34  * by dma_find_channel(), or if it has need for an exclusive channel it can call
35  * dma_request_channel().  Once a channel is allocated a reference is taken
36  * against its corresponding driver to disable removal.
37  *
38  * Each device has a channels list, which runs unlocked but is never modified
39  * once the device is registered, it's just setup by the driver.
40  *
41  * See Documentation/dmaengine.txt for more details
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/dma-mapping.h>
47 #include <linux/init.h>
48 #include <linux/module.h>
49 #include <linux/mm.h>
50 #include <linux/device.h>
51 #include <linux/dmaengine.h>
52 #include <linux/hardirq.h>
53 #include <linux/spinlock.h>
54 #include <linux/percpu.h>
55 #include <linux/rcupdate.h>
56 #include <linux/mutex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rculist.h>
59 #include <linux/idr.h>
60 #include <linux/slab.h>
61 #include <linux/acpi.h>
62 #include <linux/acpi_dma.h>
63 #include <linux/of_dma.h>
64 #include <linux/mempool.h>
65 
66 static DEFINE_MUTEX(dma_list_mutex);
67 static DEFINE_IDR(dma_idr);
68 static LIST_HEAD(dma_device_list);
69 static long dmaengine_ref_count;
70 
71 /* --- sysfs implementation --- */
72 
73 /**
74  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
75  * @dev - device node
76  *
77  * Must be called under dma_list_mutex
78  */
79 static struct dma_chan *dev_to_dma_chan(struct device *dev)
80 {
81 	struct dma_chan_dev *chan_dev;
82 
83 	chan_dev = container_of(dev, typeof(*chan_dev), device);
84 	return chan_dev->chan;
85 }
86 
87 static ssize_t memcpy_count_show(struct device *dev,
88 				 struct device_attribute *attr, char *buf)
89 {
90 	struct dma_chan *chan;
91 	unsigned long count = 0;
92 	int i;
93 	int err;
94 
95 	mutex_lock(&dma_list_mutex);
96 	chan = dev_to_dma_chan(dev);
97 	if (chan) {
98 		for_each_possible_cpu(i)
99 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
100 		err = sprintf(buf, "%lu\n", count);
101 	} else
102 		err = -ENODEV;
103 	mutex_unlock(&dma_list_mutex);
104 
105 	return err;
106 }
107 static DEVICE_ATTR_RO(memcpy_count);
108 
109 static ssize_t bytes_transferred_show(struct device *dev,
110 				      struct device_attribute *attr, char *buf)
111 {
112 	struct dma_chan *chan;
113 	unsigned long count = 0;
114 	int i;
115 	int err;
116 
117 	mutex_lock(&dma_list_mutex);
118 	chan = dev_to_dma_chan(dev);
119 	if (chan) {
120 		for_each_possible_cpu(i)
121 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
122 		err = sprintf(buf, "%lu\n", count);
123 	} else
124 		err = -ENODEV;
125 	mutex_unlock(&dma_list_mutex);
126 
127 	return err;
128 }
129 static DEVICE_ATTR_RO(bytes_transferred);
130 
131 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
132 			   char *buf)
133 {
134 	struct dma_chan *chan;
135 	int err;
136 
137 	mutex_lock(&dma_list_mutex);
138 	chan = dev_to_dma_chan(dev);
139 	if (chan)
140 		err = sprintf(buf, "%d\n", chan->client_count);
141 	else
142 		err = -ENODEV;
143 	mutex_unlock(&dma_list_mutex);
144 
145 	return err;
146 }
147 static DEVICE_ATTR_RO(in_use);
148 
149 static struct attribute *dma_dev_attrs[] = {
150 	&dev_attr_memcpy_count.attr,
151 	&dev_attr_bytes_transferred.attr,
152 	&dev_attr_in_use.attr,
153 	NULL,
154 };
155 ATTRIBUTE_GROUPS(dma_dev);
156 
157 static void chan_dev_release(struct device *dev)
158 {
159 	struct dma_chan_dev *chan_dev;
160 
161 	chan_dev = container_of(dev, typeof(*chan_dev), device);
162 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
163 		mutex_lock(&dma_list_mutex);
164 		idr_remove(&dma_idr, chan_dev->dev_id);
165 		mutex_unlock(&dma_list_mutex);
166 		kfree(chan_dev->idr_ref);
167 	}
168 	kfree(chan_dev);
169 }
170 
171 static struct class dma_devclass = {
172 	.name		= "dma",
173 	.dev_groups	= dma_dev_groups,
174 	.dev_release	= chan_dev_release,
175 };
176 
177 /* --- client and device registration --- */
178 
179 #define dma_device_satisfies_mask(device, mask) \
180 	__dma_device_satisfies_mask((device), &(mask))
181 static int
182 __dma_device_satisfies_mask(struct dma_device *device,
183 			    const dma_cap_mask_t *want)
184 {
185 	dma_cap_mask_t has;
186 
187 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
188 		DMA_TX_TYPE_END);
189 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
190 }
191 
192 static struct module *dma_chan_to_owner(struct dma_chan *chan)
193 {
194 	return chan->device->dev->driver->owner;
195 }
196 
197 /**
198  * balance_ref_count - catch up the channel reference count
199  * @chan - channel to balance ->client_count versus dmaengine_ref_count
200  *
201  * balance_ref_count must be called under dma_list_mutex
202  */
203 static void balance_ref_count(struct dma_chan *chan)
204 {
205 	struct module *owner = dma_chan_to_owner(chan);
206 
207 	while (chan->client_count < dmaengine_ref_count) {
208 		__module_get(owner);
209 		chan->client_count++;
210 	}
211 }
212 
213 /**
214  * dma_chan_get - try to grab a dma channel's parent driver module
215  * @chan - channel to grab
216  *
217  * Must be called under dma_list_mutex
218  */
219 static int dma_chan_get(struct dma_chan *chan)
220 {
221 	struct module *owner = dma_chan_to_owner(chan);
222 	int ret;
223 
224 	/* The channel is already in use, update client count */
225 	if (chan->client_count) {
226 		__module_get(owner);
227 		goto out;
228 	}
229 
230 	if (!try_module_get(owner))
231 		return -ENODEV;
232 
233 	/* allocate upon first client reference */
234 	if (chan->device->device_alloc_chan_resources) {
235 		ret = chan->device->device_alloc_chan_resources(chan);
236 		if (ret < 0)
237 			goto err_out;
238 	}
239 
240 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
241 		balance_ref_count(chan);
242 
243 out:
244 	chan->client_count++;
245 	return 0;
246 
247 err_out:
248 	module_put(owner);
249 	return ret;
250 }
251 
252 /**
253  * dma_chan_put - drop a reference to a dma channel's parent driver module
254  * @chan - channel to release
255  *
256  * Must be called under dma_list_mutex
257  */
258 static void dma_chan_put(struct dma_chan *chan)
259 {
260 	/* This channel is not in use, bail out */
261 	if (!chan->client_count)
262 		return;
263 
264 	chan->client_count--;
265 	module_put(dma_chan_to_owner(chan));
266 
267 	/* This channel is not in use anymore, free it */
268 	if (!chan->client_count && chan->device->device_free_chan_resources)
269 		chan->device->device_free_chan_resources(chan);
270 }
271 
272 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
273 {
274 	enum dma_status status;
275 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
276 
277 	dma_async_issue_pending(chan);
278 	do {
279 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
280 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
281 			pr_err("%s: timeout!\n", __func__);
282 			return DMA_ERROR;
283 		}
284 		if (status != DMA_IN_PROGRESS)
285 			break;
286 		cpu_relax();
287 	} while (1);
288 
289 	return status;
290 }
291 EXPORT_SYMBOL(dma_sync_wait);
292 
293 /**
294  * dma_cap_mask_all - enable iteration over all operation types
295  */
296 static dma_cap_mask_t dma_cap_mask_all;
297 
298 /**
299  * dma_chan_tbl_ent - tracks channel allocations per core/operation
300  * @chan - associated channel for this entry
301  */
302 struct dma_chan_tbl_ent {
303 	struct dma_chan *chan;
304 };
305 
306 /**
307  * channel_table - percpu lookup table for memory-to-memory offload providers
308  */
309 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
310 
311 static int __init dma_channel_table_init(void)
312 {
313 	enum dma_transaction_type cap;
314 	int err = 0;
315 
316 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
317 
318 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
319 	 * but are not associated with an operation so they do not need
320 	 * an entry in the channel_table
321 	 */
322 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
323 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
324 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
325 
326 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
327 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
328 		if (!channel_table[cap]) {
329 			err = -ENOMEM;
330 			break;
331 		}
332 	}
333 
334 	if (err) {
335 		pr_err("initialization failure\n");
336 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
337 			free_percpu(channel_table[cap]);
338 	}
339 
340 	return err;
341 }
342 arch_initcall(dma_channel_table_init);
343 
344 /**
345  * dma_find_channel - find a channel to carry out the operation
346  * @tx_type: transaction type
347  */
348 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
349 {
350 	return this_cpu_read(channel_table[tx_type]->chan);
351 }
352 EXPORT_SYMBOL(dma_find_channel);
353 
354 /**
355  * dma_issue_pending_all - flush all pending operations across all channels
356  */
357 void dma_issue_pending_all(void)
358 {
359 	struct dma_device *device;
360 	struct dma_chan *chan;
361 
362 	rcu_read_lock();
363 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
364 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
365 			continue;
366 		list_for_each_entry(chan, &device->channels, device_node)
367 			if (chan->client_count)
368 				device->device_issue_pending(chan);
369 	}
370 	rcu_read_unlock();
371 }
372 EXPORT_SYMBOL(dma_issue_pending_all);
373 
374 /**
375  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
376  */
377 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
378 {
379 	int node = dev_to_node(chan->device->dev);
380 	return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
381 }
382 
383 /**
384  * min_chan - returns the channel with min count and in the same numa-node as the cpu
385  * @cap: capability to match
386  * @cpu: cpu index which the channel should be close to
387  *
388  * If some channels are close to the given cpu, the one with the lowest
389  * reference count is returned. Otherwise, cpu is ignored and only the
390  * reference count is taken into account.
391  * Must be called under dma_list_mutex.
392  */
393 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
394 {
395 	struct dma_device *device;
396 	struct dma_chan *chan;
397 	struct dma_chan *min = NULL;
398 	struct dma_chan *localmin = NULL;
399 
400 	list_for_each_entry(device, &dma_device_list, global_node) {
401 		if (!dma_has_cap(cap, device->cap_mask) ||
402 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
403 			continue;
404 		list_for_each_entry(chan, &device->channels, device_node) {
405 			if (!chan->client_count)
406 				continue;
407 			if (!min || chan->table_count < min->table_count)
408 				min = chan;
409 
410 			if (dma_chan_is_local(chan, cpu))
411 				if (!localmin ||
412 				    chan->table_count < localmin->table_count)
413 					localmin = chan;
414 		}
415 	}
416 
417 	chan = localmin ? localmin : min;
418 
419 	if (chan)
420 		chan->table_count++;
421 
422 	return chan;
423 }
424 
425 /**
426  * dma_channel_rebalance - redistribute the available channels
427  *
428  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
429  * operation type) in the SMP case,  and operation isolation (avoid
430  * multi-tasking channels) in the non-SMP case.  Must be called under
431  * dma_list_mutex.
432  */
433 static void dma_channel_rebalance(void)
434 {
435 	struct dma_chan *chan;
436 	struct dma_device *device;
437 	int cpu;
438 	int cap;
439 
440 	/* undo the last distribution */
441 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
442 		for_each_possible_cpu(cpu)
443 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
444 
445 	list_for_each_entry(device, &dma_device_list, global_node) {
446 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
447 			continue;
448 		list_for_each_entry(chan, &device->channels, device_node)
449 			chan->table_count = 0;
450 	}
451 
452 	/* don't populate the channel_table if no clients are available */
453 	if (!dmaengine_ref_count)
454 		return;
455 
456 	/* redistribute available channels */
457 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
458 		for_each_online_cpu(cpu) {
459 			chan = min_chan(cap, cpu);
460 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
461 		}
462 }
463 
464 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
465 {
466 	struct dma_device *device;
467 
468 	if (!chan || !caps)
469 		return -EINVAL;
470 
471 	device = chan->device;
472 
473 	/* check if the channel supports slave transactions */
474 	if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
475 		return -ENXIO;
476 
477 	/*
478 	 * Check whether it reports it uses the generic slave
479 	 * capabilities, if not, that means it doesn't support any
480 	 * kind of slave capabilities reporting.
481 	 */
482 	if (!device->directions)
483 		return -ENXIO;
484 
485 	caps->src_addr_widths = device->src_addr_widths;
486 	caps->dst_addr_widths = device->dst_addr_widths;
487 	caps->directions = device->directions;
488 	caps->residue_granularity = device->residue_granularity;
489 
490 	/*
491 	 * Some devices implement only pause (e.g. to get residuum) but no
492 	 * resume. However cmd_pause is advertised as pause AND resume.
493 	 */
494 	caps->cmd_pause = !!(device->device_pause && device->device_resume);
495 	caps->cmd_terminate = !!device->device_terminate_all;
496 
497 	return 0;
498 }
499 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
500 
501 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
502 					  struct dma_device *dev,
503 					  dma_filter_fn fn, void *fn_param)
504 {
505 	struct dma_chan *chan;
506 
507 	if (!__dma_device_satisfies_mask(dev, mask)) {
508 		pr_debug("%s: wrong capabilities\n", __func__);
509 		return NULL;
510 	}
511 	/* devices with multiple channels need special handling as we need to
512 	 * ensure that all channels are either private or public.
513 	 */
514 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
515 		list_for_each_entry(chan, &dev->channels, device_node) {
516 			/* some channels are already publicly allocated */
517 			if (chan->client_count)
518 				return NULL;
519 		}
520 
521 	list_for_each_entry(chan, &dev->channels, device_node) {
522 		if (chan->client_count) {
523 			pr_debug("%s: %s busy\n",
524 				 __func__, dma_chan_name(chan));
525 			continue;
526 		}
527 		if (fn && !fn(chan, fn_param)) {
528 			pr_debug("%s: %s filter said false\n",
529 				 __func__, dma_chan_name(chan));
530 			continue;
531 		}
532 		return chan;
533 	}
534 
535 	return NULL;
536 }
537 
538 /**
539  * dma_request_slave_channel - try to get specific channel exclusively
540  * @chan: target channel
541  */
542 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
543 {
544 	int err = -EBUSY;
545 
546 	/* lock against __dma_request_channel */
547 	mutex_lock(&dma_list_mutex);
548 
549 	if (chan->client_count == 0) {
550 		err = dma_chan_get(chan);
551 		if (err)
552 			pr_debug("%s: failed to get %s: (%d)\n",
553 				__func__, dma_chan_name(chan), err);
554 	} else
555 		chan = NULL;
556 
557 	mutex_unlock(&dma_list_mutex);
558 
559 
560 	return chan;
561 }
562 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
563 
564 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
565 {
566 	dma_cap_mask_t mask;
567 	struct dma_chan *chan;
568 	int err;
569 
570 	dma_cap_zero(mask);
571 	dma_cap_set(DMA_SLAVE, mask);
572 
573 	/* lock against __dma_request_channel */
574 	mutex_lock(&dma_list_mutex);
575 
576 	chan = private_candidate(&mask, device, NULL, NULL);
577 	if (chan) {
578 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
579 		device->privatecnt++;
580 		err = dma_chan_get(chan);
581 		if (err) {
582 			pr_debug("%s: failed to get %s: (%d)\n",
583 				__func__, dma_chan_name(chan), err);
584 			chan = NULL;
585 			if (--device->privatecnt == 0)
586 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
587 		}
588 	}
589 
590 	mutex_unlock(&dma_list_mutex);
591 
592 	return chan;
593 }
594 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
595 
596 /**
597  * __dma_request_channel - try to allocate an exclusive channel
598  * @mask: capabilities that the channel must satisfy
599  * @fn: optional callback to disposition available channels
600  * @fn_param: opaque parameter to pass to dma_filter_fn
601  *
602  * Returns pointer to appropriate DMA channel on success or NULL.
603  */
604 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
605 				       dma_filter_fn fn, void *fn_param)
606 {
607 	struct dma_device *device, *_d;
608 	struct dma_chan *chan = NULL;
609 	int err;
610 
611 	/* Find a channel */
612 	mutex_lock(&dma_list_mutex);
613 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
614 		chan = private_candidate(mask, device, fn, fn_param);
615 		if (chan) {
616 			/* Found a suitable channel, try to grab, prep, and
617 			 * return it.  We first set DMA_PRIVATE to disable
618 			 * balance_ref_count as this channel will not be
619 			 * published in the general-purpose allocator
620 			 */
621 			dma_cap_set(DMA_PRIVATE, device->cap_mask);
622 			device->privatecnt++;
623 			err = dma_chan_get(chan);
624 
625 			if (err == -ENODEV) {
626 				pr_debug("%s: %s module removed\n",
627 					 __func__, dma_chan_name(chan));
628 				list_del_rcu(&device->global_node);
629 			} else if (err)
630 				pr_debug("%s: failed to get %s: (%d)\n",
631 					 __func__, dma_chan_name(chan), err);
632 			else
633 				break;
634 			if (--device->privatecnt == 0)
635 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
636 			chan = NULL;
637 		}
638 	}
639 	mutex_unlock(&dma_list_mutex);
640 
641 	pr_debug("%s: %s (%s)\n",
642 		 __func__,
643 		 chan ? "success" : "fail",
644 		 chan ? dma_chan_name(chan) : NULL);
645 
646 	return chan;
647 }
648 EXPORT_SYMBOL_GPL(__dma_request_channel);
649 
650 /**
651  * dma_request_slave_channel - try to allocate an exclusive slave channel
652  * @dev:	pointer to client device structure
653  * @name:	slave channel name
654  *
655  * Returns pointer to appropriate DMA channel on success or an error pointer.
656  */
657 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
658 						  const char *name)
659 {
660 	/* If device-tree is present get slave info from here */
661 	if (dev->of_node)
662 		return of_dma_request_slave_channel(dev->of_node, name);
663 
664 	/* If device was enumerated by ACPI get slave info from here */
665 	if (ACPI_HANDLE(dev))
666 		return acpi_dma_request_slave_chan_by_name(dev, name);
667 
668 	return ERR_PTR(-ENODEV);
669 }
670 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
671 
672 /**
673  * dma_request_slave_channel - try to allocate an exclusive slave channel
674  * @dev:	pointer to client device structure
675  * @name:	slave channel name
676  *
677  * Returns pointer to appropriate DMA channel on success or NULL.
678  */
679 struct dma_chan *dma_request_slave_channel(struct device *dev,
680 					   const char *name)
681 {
682 	struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
683 	if (IS_ERR(ch))
684 		return NULL;
685 	return ch;
686 }
687 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
688 
689 void dma_release_channel(struct dma_chan *chan)
690 {
691 	mutex_lock(&dma_list_mutex);
692 	WARN_ONCE(chan->client_count != 1,
693 		  "chan reference count %d != 1\n", chan->client_count);
694 	dma_chan_put(chan);
695 	/* drop PRIVATE cap enabled by __dma_request_channel() */
696 	if (--chan->device->privatecnt == 0)
697 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
698 	mutex_unlock(&dma_list_mutex);
699 }
700 EXPORT_SYMBOL_GPL(dma_release_channel);
701 
702 /**
703  * dmaengine_get - register interest in dma_channels
704  */
705 void dmaengine_get(void)
706 {
707 	struct dma_device *device, *_d;
708 	struct dma_chan *chan;
709 	int err;
710 
711 	mutex_lock(&dma_list_mutex);
712 	dmaengine_ref_count++;
713 
714 	/* try to grab channels */
715 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
716 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
717 			continue;
718 		list_for_each_entry(chan, &device->channels, device_node) {
719 			err = dma_chan_get(chan);
720 			if (err == -ENODEV) {
721 				/* module removed before we could use it */
722 				list_del_rcu(&device->global_node);
723 				break;
724 			} else if (err)
725 				pr_debug("%s: failed to get %s: (%d)\n",
726 				       __func__, dma_chan_name(chan), err);
727 		}
728 	}
729 
730 	/* if this is the first reference and there were channels
731 	 * waiting we need to rebalance to get those channels
732 	 * incorporated into the channel table
733 	 */
734 	if (dmaengine_ref_count == 1)
735 		dma_channel_rebalance();
736 	mutex_unlock(&dma_list_mutex);
737 }
738 EXPORT_SYMBOL(dmaengine_get);
739 
740 /**
741  * dmaengine_put - let dma drivers be removed when ref_count == 0
742  */
743 void dmaengine_put(void)
744 {
745 	struct dma_device *device;
746 	struct dma_chan *chan;
747 
748 	mutex_lock(&dma_list_mutex);
749 	dmaengine_ref_count--;
750 	BUG_ON(dmaengine_ref_count < 0);
751 	/* drop channel references */
752 	list_for_each_entry(device, &dma_device_list, global_node) {
753 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
754 			continue;
755 		list_for_each_entry(chan, &device->channels, device_node)
756 			dma_chan_put(chan);
757 	}
758 	mutex_unlock(&dma_list_mutex);
759 }
760 EXPORT_SYMBOL(dmaengine_put);
761 
762 static bool device_has_all_tx_types(struct dma_device *device)
763 {
764 	/* A device that satisfies this test has channels that will never cause
765 	 * an async_tx channel switch event as all possible operation types can
766 	 * be handled.
767 	 */
768 	#ifdef CONFIG_ASYNC_TX_DMA
769 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
770 		return false;
771 	#endif
772 
773 	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
774 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
775 		return false;
776 	#endif
777 
778 	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
779 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
780 		return false;
781 
782 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
783 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
784 		return false;
785 	#endif
786 	#endif
787 
788 	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
789 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
790 		return false;
791 
792 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
793 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
794 		return false;
795 	#endif
796 	#endif
797 
798 	return true;
799 }
800 
801 static int get_dma_id(struct dma_device *device)
802 {
803 	int rc;
804 
805 	mutex_lock(&dma_list_mutex);
806 
807 	rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
808 	if (rc >= 0)
809 		device->dev_id = rc;
810 
811 	mutex_unlock(&dma_list_mutex);
812 	return rc < 0 ? rc : 0;
813 }
814 
815 /**
816  * dma_async_device_register - registers DMA devices found
817  * @device: &dma_device
818  */
819 int dma_async_device_register(struct dma_device *device)
820 {
821 	int chancnt = 0, rc;
822 	struct dma_chan* chan;
823 	atomic_t *idr_ref;
824 
825 	if (!device)
826 		return -ENODEV;
827 
828 	/* validate device routines */
829 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
830 		!device->device_prep_dma_memcpy);
831 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
832 		!device->device_prep_dma_xor);
833 	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
834 		!device->device_prep_dma_xor_val);
835 	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
836 		!device->device_prep_dma_pq);
837 	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
838 		!device->device_prep_dma_pq_val);
839 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
840 		!device->device_prep_dma_interrupt);
841 	BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
842 		!device->device_prep_dma_sg);
843 	BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
844 		!device->device_prep_dma_cyclic);
845 	BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
846 		!device->device_prep_interleaved_dma);
847 
848 	BUG_ON(!device->device_tx_status);
849 	BUG_ON(!device->device_issue_pending);
850 	BUG_ON(!device->dev);
851 
852 	/* note: this only matters in the
853 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
854 	 */
855 	if (device_has_all_tx_types(device))
856 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
857 
858 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
859 	if (!idr_ref)
860 		return -ENOMEM;
861 	rc = get_dma_id(device);
862 	if (rc != 0) {
863 		kfree(idr_ref);
864 		return rc;
865 	}
866 
867 	atomic_set(idr_ref, 0);
868 
869 	/* represent channels in sysfs. Probably want devs too */
870 	list_for_each_entry(chan, &device->channels, device_node) {
871 		rc = -ENOMEM;
872 		chan->local = alloc_percpu(typeof(*chan->local));
873 		if (chan->local == NULL)
874 			goto err_out;
875 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
876 		if (chan->dev == NULL) {
877 			free_percpu(chan->local);
878 			chan->local = NULL;
879 			goto err_out;
880 		}
881 
882 		chan->chan_id = chancnt++;
883 		chan->dev->device.class = &dma_devclass;
884 		chan->dev->device.parent = device->dev;
885 		chan->dev->chan = chan;
886 		chan->dev->idr_ref = idr_ref;
887 		chan->dev->dev_id = device->dev_id;
888 		atomic_inc(idr_ref);
889 		dev_set_name(&chan->dev->device, "dma%dchan%d",
890 			     device->dev_id, chan->chan_id);
891 
892 		rc = device_register(&chan->dev->device);
893 		if (rc) {
894 			free_percpu(chan->local);
895 			chan->local = NULL;
896 			kfree(chan->dev);
897 			atomic_dec(idr_ref);
898 			goto err_out;
899 		}
900 		chan->client_count = 0;
901 	}
902 	device->chancnt = chancnt;
903 
904 	mutex_lock(&dma_list_mutex);
905 	/* take references on public channels */
906 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
907 		list_for_each_entry(chan, &device->channels, device_node) {
908 			/* if clients are already waiting for channels we need
909 			 * to take references on their behalf
910 			 */
911 			if (dma_chan_get(chan) == -ENODEV) {
912 				/* note we can only get here for the first
913 				 * channel as the remaining channels are
914 				 * guaranteed to get a reference
915 				 */
916 				rc = -ENODEV;
917 				mutex_unlock(&dma_list_mutex);
918 				goto err_out;
919 			}
920 		}
921 	list_add_tail_rcu(&device->global_node, &dma_device_list);
922 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
923 		device->privatecnt++;	/* Always private */
924 	dma_channel_rebalance();
925 	mutex_unlock(&dma_list_mutex);
926 
927 	return 0;
928 
929 err_out:
930 	/* if we never registered a channel just release the idr */
931 	if (atomic_read(idr_ref) == 0) {
932 		mutex_lock(&dma_list_mutex);
933 		idr_remove(&dma_idr, device->dev_id);
934 		mutex_unlock(&dma_list_mutex);
935 		kfree(idr_ref);
936 		return rc;
937 	}
938 
939 	list_for_each_entry(chan, &device->channels, device_node) {
940 		if (chan->local == NULL)
941 			continue;
942 		mutex_lock(&dma_list_mutex);
943 		chan->dev->chan = NULL;
944 		mutex_unlock(&dma_list_mutex);
945 		device_unregister(&chan->dev->device);
946 		free_percpu(chan->local);
947 	}
948 	return rc;
949 }
950 EXPORT_SYMBOL(dma_async_device_register);
951 
952 /**
953  * dma_async_device_unregister - unregister a DMA device
954  * @device: &dma_device
955  *
956  * This routine is called by dma driver exit routines, dmaengine holds module
957  * references to prevent it being called while channels are in use.
958  */
959 void dma_async_device_unregister(struct dma_device *device)
960 {
961 	struct dma_chan *chan;
962 
963 	mutex_lock(&dma_list_mutex);
964 	list_del_rcu(&device->global_node);
965 	dma_channel_rebalance();
966 	mutex_unlock(&dma_list_mutex);
967 
968 	list_for_each_entry(chan, &device->channels, device_node) {
969 		WARN_ONCE(chan->client_count,
970 			  "%s called while %d clients hold a reference\n",
971 			  __func__, chan->client_count);
972 		mutex_lock(&dma_list_mutex);
973 		chan->dev->chan = NULL;
974 		mutex_unlock(&dma_list_mutex);
975 		device_unregister(&chan->dev->device);
976 		free_percpu(chan->local);
977 	}
978 }
979 EXPORT_SYMBOL(dma_async_device_unregister);
980 
981 struct dmaengine_unmap_pool {
982 	struct kmem_cache *cache;
983 	const char *name;
984 	mempool_t *pool;
985 	size_t size;
986 };
987 
988 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
989 static struct dmaengine_unmap_pool unmap_pool[] = {
990 	__UNMAP_POOL(2),
991 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
992 	__UNMAP_POOL(16),
993 	__UNMAP_POOL(128),
994 	__UNMAP_POOL(256),
995 	#endif
996 };
997 
998 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
999 {
1000 	int order = get_count_order(nr);
1001 
1002 	switch (order) {
1003 	case 0 ... 1:
1004 		return &unmap_pool[0];
1005 	case 2 ... 4:
1006 		return &unmap_pool[1];
1007 	case 5 ... 7:
1008 		return &unmap_pool[2];
1009 	case 8:
1010 		return &unmap_pool[3];
1011 	default:
1012 		BUG();
1013 		return NULL;
1014 	}
1015 }
1016 
1017 static void dmaengine_unmap(struct kref *kref)
1018 {
1019 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1020 	struct device *dev = unmap->dev;
1021 	int cnt, i;
1022 
1023 	cnt = unmap->to_cnt;
1024 	for (i = 0; i < cnt; i++)
1025 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1026 			       DMA_TO_DEVICE);
1027 	cnt += unmap->from_cnt;
1028 	for (; i < cnt; i++)
1029 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1030 			       DMA_FROM_DEVICE);
1031 	cnt += unmap->bidi_cnt;
1032 	for (; i < cnt; i++) {
1033 		if (unmap->addr[i] == 0)
1034 			continue;
1035 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1036 			       DMA_BIDIRECTIONAL);
1037 	}
1038 	cnt = unmap->map_cnt;
1039 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1040 }
1041 
1042 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1043 {
1044 	if (unmap)
1045 		kref_put(&unmap->kref, dmaengine_unmap);
1046 }
1047 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1048 
1049 static void dmaengine_destroy_unmap_pool(void)
1050 {
1051 	int i;
1052 
1053 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1054 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1055 
1056 		if (p->pool)
1057 			mempool_destroy(p->pool);
1058 		p->pool = NULL;
1059 		if (p->cache)
1060 			kmem_cache_destroy(p->cache);
1061 		p->cache = NULL;
1062 	}
1063 }
1064 
1065 static int __init dmaengine_init_unmap_pool(void)
1066 {
1067 	int i;
1068 
1069 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1070 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1071 		size_t size;
1072 
1073 		size = sizeof(struct dmaengine_unmap_data) +
1074 		       sizeof(dma_addr_t) * p->size;
1075 
1076 		p->cache = kmem_cache_create(p->name, size, 0,
1077 					     SLAB_HWCACHE_ALIGN, NULL);
1078 		if (!p->cache)
1079 			break;
1080 		p->pool = mempool_create_slab_pool(1, p->cache);
1081 		if (!p->pool)
1082 			break;
1083 	}
1084 
1085 	if (i == ARRAY_SIZE(unmap_pool))
1086 		return 0;
1087 
1088 	dmaengine_destroy_unmap_pool();
1089 	return -ENOMEM;
1090 }
1091 
1092 struct dmaengine_unmap_data *
1093 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1094 {
1095 	struct dmaengine_unmap_data *unmap;
1096 
1097 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1098 	if (!unmap)
1099 		return NULL;
1100 
1101 	memset(unmap, 0, sizeof(*unmap));
1102 	kref_init(&unmap->kref);
1103 	unmap->dev = dev;
1104 	unmap->map_cnt = nr;
1105 
1106 	return unmap;
1107 }
1108 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1109 
1110 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1111 	struct dma_chan *chan)
1112 {
1113 	tx->chan = chan;
1114 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1115 	spin_lock_init(&tx->lock);
1116 	#endif
1117 }
1118 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1119 
1120 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1121  * @tx: in-flight transaction to wait on
1122  */
1123 enum dma_status
1124 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1125 {
1126 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1127 
1128 	if (!tx)
1129 		return DMA_COMPLETE;
1130 
1131 	while (tx->cookie == -EBUSY) {
1132 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1133 			pr_err("%s timeout waiting for descriptor submission\n",
1134 			       __func__);
1135 			return DMA_ERROR;
1136 		}
1137 		cpu_relax();
1138 	}
1139 	return dma_sync_wait(tx->chan, tx->cookie);
1140 }
1141 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1142 
1143 /* dma_run_dependencies - helper routine for dma drivers to process
1144  *	(start) dependent operations on their target channel
1145  * @tx: transaction with dependencies
1146  */
1147 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1148 {
1149 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1150 	struct dma_async_tx_descriptor *dep_next;
1151 	struct dma_chan *chan;
1152 
1153 	if (!dep)
1154 		return;
1155 
1156 	/* we'll submit tx->next now, so clear the link */
1157 	txd_clear_next(tx);
1158 	chan = dep->chan;
1159 
1160 	/* keep submitting up until a channel switch is detected
1161 	 * in that case we will be called again as a result of
1162 	 * processing the interrupt from async_tx_channel_switch
1163 	 */
1164 	for (; dep; dep = dep_next) {
1165 		txd_lock(dep);
1166 		txd_clear_parent(dep);
1167 		dep_next = txd_next(dep);
1168 		if (dep_next && dep_next->chan == chan)
1169 			txd_clear_next(dep); /* ->next will be submitted */
1170 		else
1171 			dep_next = NULL; /* submit current dep and terminate */
1172 		txd_unlock(dep);
1173 
1174 		dep->tx_submit(dep);
1175 	}
1176 
1177 	chan->device->device_issue_pending(chan);
1178 }
1179 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1180 
1181 static int __init dma_bus_init(void)
1182 {
1183 	int err = dmaengine_init_unmap_pool();
1184 
1185 	if (err)
1186 		return err;
1187 	return class_register(&dma_devclass);
1188 }
1189 arch_initcall(dma_bus_init);
1190 
1191 
1192