xref: /linux/drivers/dma/dmaengine.c (revision 288440de9e5fdb4a3ff73864850f080c1250fc81)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 
6 /*
7  * This code implements the DMA subsystem. It provides a HW-neutral interface
8  * for other kernel code to use asynchronous memory copy capabilities,
9  * if present, and allows different HW DMA drivers to register as providing
10  * this capability.
11  *
12  * Due to the fact we are accelerating what is already a relatively fast
13  * operation, the code goes to great lengths to avoid additional overhead,
14  * such as locking.
15  *
16  * LOCKING:
17  *
18  * The subsystem keeps a global list of dma_device structs it is protected by a
19  * mutex, dma_list_mutex.
20  *
21  * A subsystem can get access to a channel by calling dmaengine_get() followed
22  * by dma_find_channel(), or if it has need for an exclusive channel it can call
23  * dma_request_channel().  Once a channel is allocated a reference is taken
24  * against its corresponding driver to disable removal.
25  *
26  * Each device has a channels list, which runs unlocked but is never modified
27  * once the device is registered, it's just setup by the driver.
28  *
29  * See Documentation/driver-api/dmaengine for more details
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55 
56 #include "dmaengine.h"
57 
58 static DEFINE_MUTEX(dma_list_mutex);
59 static DEFINE_IDA(dma_ida);
60 static LIST_HEAD(dma_device_list);
61 static long dmaengine_ref_count;
62 
63 /* --- debugfs implementation --- */
64 #ifdef CONFIG_DEBUG_FS
65 #include <linux/debugfs.h>
66 
67 static struct dentry *rootdir;
68 
69 static void dmaengine_debug_register(struct dma_device *dma_dev)
70 {
71 	dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
72 						   rootdir);
73 	if (IS_ERR(dma_dev->dbg_dev_root))
74 		dma_dev->dbg_dev_root = NULL;
75 }
76 
77 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
78 {
79 	debugfs_remove_recursive(dma_dev->dbg_dev_root);
80 	dma_dev->dbg_dev_root = NULL;
81 }
82 
83 static void dmaengine_dbg_summary_show(struct seq_file *s,
84 				       struct dma_device *dma_dev)
85 {
86 	struct dma_chan *chan;
87 
88 	list_for_each_entry(chan, &dma_dev->channels, device_node) {
89 		if (chan->client_count) {
90 			seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91 				   chan->dbg_client_name ?: "in-use");
92 
93 			if (chan->router)
94 				seq_printf(s, " (via router: %s)\n",
95 					dev_name(chan->router->dev));
96 			else
97 				seq_puts(s, "\n");
98 		}
99 	}
100 }
101 
102 static int dmaengine_summary_show(struct seq_file *s, void *data)
103 {
104 	struct dma_device *dma_dev = NULL;
105 
106 	mutex_lock(&dma_list_mutex);
107 	list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108 		seq_printf(s, "dma%d (%s): number of channels: %u\n",
109 			   dma_dev->dev_id, dev_name(dma_dev->dev),
110 			   dma_dev->chancnt);
111 
112 		if (dma_dev->dbg_summary_show)
113 			dma_dev->dbg_summary_show(s, dma_dev);
114 		else
115 			dmaengine_dbg_summary_show(s, dma_dev);
116 
117 		if (!list_is_last(&dma_dev->global_node, &dma_device_list))
118 			seq_puts(s, "\n");
119 	}
120 	mutex_unlock(&dma_list_mutex);
121 
122 	return 0;
123 }
124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
125 
126 static void __init dmaengine_debugfs_init(void)
127 {
128 	rootdir = debugfs_create_dir("dmaengine", NULL);
129 
130 	/* /sys/kernel/debug/dmaengine/summary */
131 	debugfs_create_file("summary", 0444, rootdir, NULL,
132 			    &dmaengine_summary_fops);
133 }
134 #else
135 static inline void dmaengine_debugfs_init(void) { }
136 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
137 {
138 	return 0;
139 }
140 
141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142 #endif	/* DEBUG_FS */
143 
144 /* --- sysfs implementation --- */
145 
146 #define DMA_SLAVE_NAME	"slave"
147 
148 /**
149  * dev_to_dma_chan - convert a device pointer to its sysfs container object
150  * @dev:	device node
151  *
152  * Must be called under dma_list_mutex.
153  */
154 static struct dma_chan *dev_to_dma_chan(struct device *dev)
155 {
156 	struct dma_chan_dev *chan_dev;
157 
158 	chan_dev = container_of(dev, typeof(*chan_dev), device);
159 	return chan_dev->chan;
160 }
161 
162 static ssize_t memcpy_count_show(struct device *dev,
163 				 struct device_attribute *attr, char *buf)
164 {
165 	struct dma_chan *chan;
166 	unsigned long count = 0;
167 	int i;
168 	int err;
169 
170 	mutex_lock(&dma_list_mutex);
171 	chan = dev_to_dma_chan(dev);
172 	if (chan) {
173 		for_each_possible_cpu(i)
174 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
175 		err = sprintf(buf, "%lu\n", count);
176 	} else
177 		err = -ENODEV;
178 	mutex_unlock(&dma_list_mutex);
179 
180 	return err;
181 }
182 static DEVICE_ATTR_RO(memcpy_count);
183 
184 static ssize_t bytes_transferred_show(struct device *dev,
185 				      struct device_attribute *attr, char *buf)
186 {
187 	struct dma_chan *chan;
188 	unsigned long count = 0;
189 	int i;
190 	int err;
191 
192 	mutex_lock(&dma_list_mutex);
193 	chan = dev_to_dma_chan(dev);
194 	if (chan) {
195 		for_each_possible_cpu(i)
196 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197 		err = sprintf(buf, "%lu\n", count);
198 	} else
199 		err = -ENODEV;
200 	mutex_unlock(&dma_list_mutex);
201 
202 	return err;
203 }
204 static DEVICE_ATTR_RO(bytes_transferred);
205 
206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
207 			   char *buf)
208 {
209 	struct dma_chan *chan;
210 	int err;
211 
212 	mutex_lock(&dma_list_mutex);
213 	chan = dev_to_dma_chan(dev);
214 	if (chan)
215 		err = sprintf(buf, "%d\n", chan->client_count);
216 	else
217 		err = -ENODEV;
218 	mutex_unlock(&dma_list_mutex);
219 
220 	return err;
221 }
222 static DEVICE_ATTR_RO(in_use);
223 
224 static struct attribute *dma_dev_attrs[] = {
225 	&dev_attr_memcpy_count.attr,
226 	&dev_attr_bytes_transferred.attr,
227 	&dev_attr_in_use.attr,
228 	NULL,
229 };
230 ATTRIBUTE_GROUPS(dma_dev);
231 
232 static void chan_dev_release(struct device *dev)
233 {
234 	struct dma_chan_dev *chan_dev;
235 
236 	chan_dev = container_of(dev, typeof(*chan_dev), device);
237 	kfree(chan_dev);
238 }
239 
240 static struct class dma_devclass = {
241 	.name		= "dma",
242 	.dev_groups	= dma_dev_groups,
243 	.dev_release	= chan_dev_release,
244 };
245 
246 /* --- client and device registration --- */
247 
248 /* enable iteration over all operation types */
249 static dma_cap_mask_t dma_cap_mask_all;
250 
251 /**
252  * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253  * @chan:	associated channel for this entry
254  */
255 struct dma_chan_tbl_ent {
256 	struct dma_chan *chan;
257 };
258 
259 /* percpu lookup table for memory-to-memory offload providers */
260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
261 
262 static int __init dma_channel_table_init(void)
263 {
264 	enum dma_transaction_type cap;
265 	int err = 0;
266 
267 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
268 
269 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
270 	 * but are not associated with an operation so they do not need
271 	 * an entry in the channel_table
272 	 */
273 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
276 
277 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279 		if (!channel_table[cap]) {
280 			err = -ENOMEM;
281 			break;
282 		}
283 	}
284 
285 	if (err) {
286 		pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
288 			free_percpu(channel_table[cap]);
289 	}
290 
291 	return err;
292 }
293 arch_initcall(dma_channel_table_init);
294 
295 /**
296  * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297  * @chan:	DMA channel to test
298  * @cpu:	CPU index which the channel should be close to
299  *
300  * Returns true if the channel is in the same NUMA-node as the CPU.
301  */
302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
303 {
304 	int node = dev_to_node(chan->device->dev);
305 	return node == NUMA_NO_NODE ||
306 		cpumask_test_cpu(cpu, cpumask_of_node(node));
307 }
308 
309 /**
310  * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311  * @cap:	capability to match
312  * @cpu:	CPU index which the channel should be close to
313  *
314  * If some channels are close to the given CPU, the one with the lowest
315  * reference count is returned. Otherwise, CPU is ignored and only the
316  * reference count is taken into account.
317  *
318  * Must be called under dma_list_mutex.
319  */
320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
321 {
322 	struct dma_device *device;
323 	struct dma_chan *chan;
324 	struct dma_chan *min = NULL;
325 	struct dma_chan *localmin = NULL;
326 
327 	list_for_each_entry(device, &dma_device_list, global_node) {
328 		if (!dma_has_cap(cap, device->cap_mask) ||
329 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
330 			continue;
331 		list_for_each_entry(chan, &device->channels, device_node) {
332 			if (!chan->client_count)
333 				continue;
334 			if (!min || chan->table_count < min->table_count)
335 				min = chan;
336 
337 			if (dma_chan_is_local(chan, cpu))
338 				if (!localmin ||
339 				    chan->table_count < localmin->table_count)
340 					localmin = chan;
341 		}
342 	}
343 
344 	chan = localmin ? localmin : min;
345 
346 	if (chan)
347 		chan->table_count++;
348 
349 	return chan;
350 }
351 
352 /**
353  * dma_channel_rebalance - redistribute the available channels
354  *
355  * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356  * operation type) in the SMP case, and operation isolation (avoid
357  * multi-tasking channels) in the non-SMP case.
358  *
359  * Must be called under dma_list_mutex.
360  */
361 static void dma_channel_rebalance(void)
362 {
363 	struct dma_chan *chan;
364 	struct dma_device *device;
365 	int cpu;
366 	int cap;
367 
368 	/* undo the last distribution */
369 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
370 		for_each_possible_cpu(cpu)
371 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
372 
373 	list_for_each_entry(device, &dma_device_list, global_node) {
374 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 			continue;
376 		list_for_each_entry(chan, &device->channels, device_node)
377 			chan->table_count = 0;
378 	}
379 
380 	/* don't populate the channel_table if no clients are available */
381 	if (!dmaengine_ref_count)
382 		return;
383 
384 	/* redistribute available channels */
385 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
386 		for_each_online_cpu(cpu) {
387 			chan = min_chan(cap, cpu);
388 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
389 		}
390 }
391 
392 static int dma_device_satisfies_mask(struct dma_device *device,
393 				     const dma_cap_mask_t *want)
394 {
395 	dma_cap_mask_t has;
396 
397 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
398 		DMA_TX_TYPE_END);
399 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
400 }
401 
402 static struct module *dma_chan_to_owner(struct dma_chan *chan)
403 {
404 	return chan->device->owner;
405 }
406 
407 /**
408  * balance_ref_count - catch up the channel reference count
409  * @chan:	channel to balance ->client_count versus dmaengine_ref_count
410  *
411  * Must be called under dma_list_mutex.
412  */
413 static void balance_ref_count(struct dma_chan *chan)
414 {
415 	struct module *owner = dma_chan_to_owner(chan);
416 
417 	while (chan->client_count < dmaengine_ref_count) {
418 		__module_get(owner);
419 		chan->client_count++;
420 	}
421 }
422 
423 static void dma_device_release(struct kref *ref)
424 {
425 	struct dma_device *device = container_of(ref, struct dma_device, ref);
426 
427 	list_del_rcu(&device->global_node);
428 	dma_channel_rebalance();
429 
430 	if (device->device_release)
431 		device->device_release(device);
432 }
433 
434 static void dma_device_put(struct dma_device *device)
435 {
436 	lockdep_assert_held(&dma_list_mutex);
437 	kref_put(&device->ref, dma_device_release);
438 }
439 
440 /**
441  * dma_chan_get - try to grab a DMA channel's parent driver module
442  * @chan:	channel to grab
443  *
444  * Must be called under dma_list_mutex.
445  */
446 static int dma_chan_get(struct dma_chan *chan)
447 {
448 	struct module *owner = dma_chan_to_owner(chan);
449 	int ret;
450 
451 	/* The channel is already in use, update client count */
452 	if (chan->client_count) {
453 		__module_get(owner);
454 		goto out;
455 	}
456 
457 	if (!try_module_get(owner))
458 		return -ENODEV;
459 
460 	ret = kref_get_unless_zero(&chan->device->ref);
461 	if (!ret) {
462 		ret = -ENODEV;
463 		goto module_put_out;
464 	}
465 
466 	/* allocate upon first client reference */
467 	if (chan->device->device_alloc_chan_resources) {
468 		ret = chan->device->device_alloc_chan_resources(chan);
469 		if (ret < 0)
470 			goto err_out;
471 	}
472 
473 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
474 		balance_ref_count(chan);
475 
476 out:
477 	chan->client_count++;
478 	return 0;
479 
480 err_out:
481 	dma_device_put(chan->device);
482 module_put_out:
483 	module_put(owner);
484 	return ret;
485 }
486 
487 /**
488  * dma_chan_put - drop a reference to a DMA channel's parent driver module
489  * @chan:	channel to release
490  *
491  * Must be called under dma_list_mutex.
492  */
493 static void dma_chan_put(struct dma_chan *chan)
494 {
495 	/* This channel is not in use, bail out */
496 	if (!chan->client_count)
497 		return;
498 
499 	chan->client_count--;
500 
501 	/* This channel is not in use anymore, free it */
502 	if (!chan->client_count && chan->device->device_free_chan_resources) {
503 		/* Make sure all operations have completed */
504 		dmaengine_synchronize(chan);
505 		chan->device->device_free_chan_resources(chan);
506 	}
507 
508 	/* If the channel is used via a DMA request router, free the mapping */
509 	if (chan->router && chan->router->route_free) {
510 		chan->router->route_free(chan->router->dev, chan->route_data);
511 		chan->router = NULL;
512 		chan->route_data = NULL;
513 	}
514 
515 	dma_device_put(chan->device);
516 	module_put(dma_chan_to_owner(chan));
517 }
518 
519 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
520 {
521 	enum dma_status status;
522 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
523 
524 	dma_async_issue_pending(chan);
525 	do {
526 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
527 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
528 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
529 			return DMA_ERROR;
530 		}
531 		if (status != DMA_IN_PROGRESS)
532 			break;
533 		cpu_relax();
534 	} while (1);
535 
536 	return status;
537 }
538 EXPORT_SYMBOL(dma_sync_wait);
539 
540 /**
541  * dma_find_channel - find a channel to carry out the operation
542  * @tx_type:	transaction type
543  */
544 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
545 {
546 	return this_cpu_read(channel_table[tx_type]->chan);
547 }
548 EXPORT_SYMBOL(dma_find_channel);
549 
550 /**
551  * dma_issue_pending_all - flush all pending operations across all channels
552  */
553 void dma_issue_pending_all(void)
554 {
555 	struct dma_device *device;
556 	struct dma_chan *chan;
557 
558 	rcu_read_lock();
559 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
560 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
561 			continue;
562 		list_for_each_entry(chan, &device->channels, device_node)
563 			if (chan->client_count)
564 				device->device_issue_pending(chan);
565 	}
566 	rcu_read_unlock();
567 }
568 EXPORT_SYMBOL(dma_issue_pending_all);
569 
570 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
571 {
572 	struct dma_device *device;
573 
574 	if (!chan || !caps)
575 		return -EINVAL;
576 
577 	device = chan->device;
578 
579 	/* check if the channel supports slave transactions */
580 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
581 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
582 		return -ENXIO;
583 
584 	/*
585 	 * Check whether it reports it uses the generic slave
586 	 * capabilities, if not, that means it doesn't support any
587 	 * kind of slave capabilities reporting.
588 	 */
589 	if (!device->directions)
590 		return -ENXIO;
591 
592 	caps->src_addr_widths = device->src_addr_widths;
593 	caps->dst_addr_widths = device->dst_addr_widths;
594 	caps->directions = device->directions;
595 	caps->min_burst = device->min_burst;
596 	caps->max_burst = device->max_burst;
597 	caps->max_sg_burst = device->max_sg_burst;
598 	caps->residue_granularity = device->residue_granularity;
599 	caps->descriptor_reuse = device->descriptor_reuse;
600 	caps->cmd_pause = !!device->device_pause;
601 	caps->cmd_resume = !!device->device_resume;
602 	caps->cmd_terminate = !!device->device_terminate_all;
603 
604 	/*
605 	 * DMA engine device might be configured with non-uniformly
606 	 * distributed slave capabilities per device channels. In this
607 	 * case the corresponding driver may provide the device_caps
608 	 * callback to override the generic capabilities with
609 	 * channel-specific ones.
610 	 */
611 	if (device->device_caps)
612 		device->device_caps(chan, caps);
613 
614 	return 0;
615 }
616 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
617 
618 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
619 					  struct dma_device *dev,
620 					  dma_filter_fn fn, void *fn_param)
621 {
622 	struct dma_chan *chan;
623 
624 	if (mask && !dma_device_satisfies_mask(dev, mask)) {
625 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
626 		return NULL;
627 	}
628 	/* devices with multiple channels need special handling as we need to
629 	 * ensure that all channels are either private or public.
630 	 */
631 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
632 		list_for_each_entry(chan, &dev->channels, device_node) {
633 			/* some channels are already publicly allocated */
634 			if (chan->client_count)
635 				return NULL;
636 		}
637 
638 	list_for_each_entry(chan, &dev->channels, device_node) {
639 		if (chan->client_count) {
640 			dev_dbg(dev->dev, "%s: %s busy\n",
641 				 __func__, dma_chan_name(chan));
642 			continue;
643 		}
644 		if (fn && !fn(chan, fn_param)) {
645 			dev_dbg(dev->dev, "%s: %s filter said false\n",
646 				 __func__, dma_chan_name(chan));
647 			continue;
648 		}
649 		return chan;
650 	}
651 
652 	return NULL;
653 }
654 
655 static struct dma_chan *find_candidate(struct dma_device *device,
656 				       const dma_cap_mask_t *mask,
657 				       dma_filter_fn fn, void *fn_param)
658 {
659 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
660 	int err;
661 
662 	if (chan) {
663 		/* Found a suitable channel, try to grab, prep, and return it.
664 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
665 		 * channel will not be published in the general-purpose
666 		 * allocator
667 		 */
668 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
669 		device->privatecnt++;
670 		err = dma_chan_get(chan);
671 
672 		if (err) {
673 			if (err == -ENODEV) {
674 				dev_dbg(device->dev, "%s: %s module removed\n",
675 					__func__, dma_chan_name(chan));
676 				list_del_rcu(&device->global_node);
677 			} else
678 				dev_dbg(device->dev,
679 					"%s: failed to get %s: (%d)\n",
680 					 __func__, dma_chan_name(chan), err);
681 
682 			if (--device->privatecnt == 0)
683 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
684 
685 			chan = ERR_PTR(err);
686 		}
687 	}
688 
689 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
690 }
691 
692 /**
693  * dma_get_slave_channel - try to get specific channel exclusively
694  * @chan:	target channel
695  */
696 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
697 {
698 	/* lock against __dma_request_channel */
699 	mutex_lock(&dma_list_mutex);
700 
701 	if (chan->client_count == 0) {
702 		struct dma_device *device = chan->device;
703 		int err;
704 
705 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
706 		device->privatecnt++;
707 		err = dma_chan_get(chan);
708 		if (err) {
709 			dev_dbg(chan->device->dev,
710 				"%s: failed to get %s: (%d)\n",
711 				__func__, dma_chan_name(chan), err);
712 			chan = NULL;
713 			if (--device->privatecnt == 0)
714 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
715 		}
716 	} else
717 		chan = NULL;
718 
719 	mutex_unlock(&dma_list_mutex);
720 
721 
722 	return chan;
723 }
724 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
725 
726 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
727 {
728 	dma_cap_mask_t mask;
729 	struct dma_chan *chan;
730 
731 	dma_cap_zero(mask);
732 	dma_cap_set(DMA_SLAVE, mask);
733 
734 	/* lock against __dma_request_channel */
735 	mutex_lock(&dma_list_mutex);
736 
737 	chan = find_candidate(device, &mask, NULL, NULL);
738 
739 	mutex_unlock(&dma_list_mutex);
740 
741 	return IS_ERR(chan) ? NULL : chan;
742 }
743 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
744 
745 /**
746  * __dma_request_channel - try to allocate an exclusive channel
747  * @mask:	capabilities that the channel must satisfy
748  * @fn:		optional callback to disposition available channels
749  * @fn_param:	opaque parameter to pass to dma_filter_fn()
750  * @np:		device node to look for DMA channels
751  *
752  * Returns pointer to appropriate DMA channel on success or NULL.
753  */
754 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
755 				       dma_filter_fn fn, void *fn_param,
756 				       struct device_node *np)
757 {
758 	struct dma_device *device, *_d;
759 	struct dma_chan *chan = NULL;
760 
761 	/* Find a channel */
762 	mutex_lock(&dma_list_mutex);
763 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
764 		/* Finds a DMA controller with matching device node */
765 		if (np && device->dev->of_node && np != device->dev->of_node)
766 			continue;
767 
768 		chan = find_candidate(device, mask, fn, fn_param);
769 		if (!IS_ERR(chan))
770 			break;
771 
772 		chan = NULL;
773 	}
774 	mutex_unlock(&dma_list_mutex);
775 
776 	pr_debug("%s: %s (%s)\n",
777 		 __func__,
778 		 chan ? "success" : "fail",
779 		 chan ? dma_chan_name(chan) : NULL);
780 
781 	return chan;
782 }
783 EXPORT_SYMBOL_GPL(__dma_request_channel);
784 
785 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
786 						    const char *name,
787 						    struct device *dev)
788 {
789 	int i;
790 
791 	if (!device->filter.mapcnt)
792 		return NULL;
793 
794 	for (i = 0; i < device->filter.mapcnt; i++) {
795 		const struct dma_slave_map *map = &device->filter.map[i];
796 
797 		if (!strcmp(map->devname, dev_name(dev)) &&
798 		    !strcmp(map->slave, name))
799 			return map;
800 	}
801 
802 	return NULL;
803 }
804 
805 /**
806  * dma_request_chan - try to allocate an exclusive slave channel
807  * @dev:	pointer to client device structure
808  * @name:	slave channel name
809  *
810  * Returns pointer to appropriate DMA channel on success or an error pointer.
811  */
812 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
813 {
814 	struct dma_device *d, *_d;
815 	struct dma_chan *chan = NULL;
816 
817 	/* If device-tree is present get slave info from here */
818 	if (dev->of_node)
819 		chan = of_dma_request_slave_channel(dev->of_node, name);
820 
821 	/* If device was enumerated by ACPI get slave info from here */
822 	if (has_acpi_companion(dev) && !chan)
823 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
824 
825 	if (PTR_ERR(chan) == -EPROBE_DEFER)
826 		return chan;
827 
828 	if (!IS_ERR_OR_NULL(chan))
829 		goto found;
830 
831 	/* Try to find the channel via the DMA filter map(s) */
832 	mutex_lock(&dma_list_mutex);
833 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
834 		dma_cap_mask_t mask;
835 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
836 
837 		if (!map)
838 			continue;
839 
840 		dma_cap_zero(mask);
841 		dma_cap_set(DMA_SLAVE, mask);
842 
843 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
844 		if (!IS_ERR(chan))
845 			break;
846 	}
847 	mutex_unlock(&dma_list_mutex);
848 
849 	if (IS_ERR(chan))
850 		return chan;
851 	if (!chan)
852 		return ERR_PTR(-EPROBE_DEFER);
853 
854 found:
855 #ifdef CONFIG_DEBUG_FS
856 	chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
857 					  name);
858 #endif
859 
860 	chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
861 	if (!chan->name)
862 		return chan;
863 	chan->slave = dev;
864 
865 	if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
866 			      DMA_SLAVE_NAME))
867 		dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
868 	if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
869 		dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
870 
871 	return chan;
872 }
873 EXPORT_SYMBOL_GPL(dma_request_chan);
874 
875 /**
876  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
877  * @mask:	capabilities that the channel must satisfy
878  *
879  * Returns pointer to appropriate DMA channel on success or an error pointer.
880  */
881 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
882 {
883 	struct dma_chan *chan;
884 
885 	if (!mask)
886 		return ERR_PTR(-ENODEV);
887 
888 	chan = __dma_request_channel(mask, NULL, NULL, NULL);
889 	if (!chan) {
890 		mutex_lock(&dma_list_mutex);
891 		if (list_empty(&dma_device_list))
892 			chan = ERR_PTR(-EPROBE_DEFER);
893 		else
894 			chan = ERR_PTR(-ENODEV);
895 		mutex_unlock(&dma_list_mutex);
896 	}
897 
898 	return chan;
899 }
900 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
901 
902 void dma_release_channel(struct dma_chan *chan)
903 {
904 	mutex_lock(&dma_list_mutex);
905 	WARN_ONCE(chan->client_count != 1,
906 		  "chan reference count %d != 1\n", chan->client_count);
907 	dma_chan_put(chan);
908 	/* drop PRIVATE cap enabled by __dma_request_channel() */
909 	if (--chan->device->privatecnt == 0)
910 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
911 
912 	if (chan->slave) {
913 		sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
914 		sysfs_remove_link(&chan->slave->kobj, chan->name);
915 		kfree(chan->name);
916 		chan->name = NULL;
917 		chan->slave = NULL;
918 	}
919 
920 #ifdef CONFIG_DEBUG_FS
921 	kfree(chan->dbg_client_name);
922 	chan->dbg_client_name = NULL;
923 #endif
924 	mutex_unlock(&dma_list_mutex);
925 }
926 EXPORT_SYMBOL_GPL(dma_release_channel);
927 
928 /**
929  * dmaengine_get - register interest in dma_channels
930  */
931 void dmaengine_get(void)
932 {
933 	struct dma_device *device, *_d;
934 	struct dma_chan *chan;
935 	int err;
936 
937 	mutex_lock(&dma_list_mutex);
938 	dmaengine_ref_count++;
939 
940 	/* try to grab channels */
941 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
942 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
943 			continue;
944 		list_for_each_entry(chan, &device->channels, device_node) {
945 			err = dma_chan_get(chan);
946 			if (err == -ENODEV) {
947 				/* module removed before we could use it */
948 				list_del_rcu(&device->global_node);
949 				break;
950 			} else if (err)
951 				dev_dbg(chan->device->dev,
952 					"%s: failed to get %s: (%d)\n",
953 					__func__, dma_chan_name(chan), err);
954 		}
955 	}
956 
957 	/* if this is the first reference and there were channels
958 	 * waiting we need to rebalance to get those channels
959 	 * incorporated into the channel table
960 	 */
961 	if (dmaengine_ref_count == 1)
962 		dma_channel_rebalance();
963 	mutex_unlock(&dma_list_mutex);
964 }
965 EXPORT_SYMBOL(dmaengine_get);
966 
967 /**
968  * dmaengine_put - let DMA drivers be removed when ref_count == 0
969  */
970 void dmaengine_put(void)
971 {
972 	struct dma_device *device, *_d;
973 	struct dma_chan *chan;
974 
975 	mutex_lock(&dma_list_mutex);
976 	dmaengine_ref_count--;
977 	BUG_ON(dmaengine_ref_count < 0);
978 	/* drop channel references */
979 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
980 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
981 			continue;
982 		list_for_each_entry(chan, &device->channels, device_node)
983 			dma_chan_put(chan);
984 	}
985 	mutex_unlock(&dma_list_mutex);
986 }
987 EXPORT_SYMBOL(dmaengine_put);
988 
989 static bool device_has_all_tx_types(struct dma_device *device)
990 {
991 	/* A device that satisfies this test has channels that will never cause
992 	 * an async_tx channel switch event as all possible operation types can
993 	 * be handled.
994 	 */
995 	#ifdef CONFIG_ASYNC_TX_DMA
996 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
997 		return false;
998 	#endif
999 
1000 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1001 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1002 		return false;
1003 	#endif
1004 
1005 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
1006 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
1007 		return false;
1008 
1009 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1010 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1011 		return false;
1012 	#endif
1013 	#endif
1014 
1015 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
1016 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
1017 		return false;
1018 
1019 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1020 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1021 		return false;
1022 	#endif
1023 	#endif
1024 
1025 	return true;
1026 }
1027 
1028 static int get_dma_id(struct dma_device *device)
1029 {
1030 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1031 
1032 	if (rc < 0)
1033 		return rc;
1034 	device->dev_id = rc;
1035 	return 0;
1036 }
1037 
1038 static int __dma_async_device_channel_register(struct dma_device *device,
1039 					       struct dma_chan *chan)
1040 {
1041 	int rc;
1042 
1043 	chan->local = alloc_percpu(typeof(*chan->local));
1044 	if (!chan->local)
1045 		return -ENOMEM;
1046 	chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1047 	if (!chan->dev) {
1048 		rc = -ENOMEM;
1049 		goto err_free_local;
1050 	}
1051 
1052 	/*
1053 	 * When the chan_id is a negative value, we are dynamically adding
1054 	 * the channel. Otherwise we are static enumerating.
1055 	 */
1056 	chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1057 	if (chan->chan_id < 0) {
1058 		pr_err("%s: unable to alloc ida for chan: %d\n",
1059 		       __func__, chan->chan_id);
1060 		rc = chan->chan_id;
1061 		goto err_free_dev;
1062 	}
1063 
1064 	chan->dev->device.class = &dma_devclass;
1065 	chan->dev->device.parent = device->dev;
1066 	chan->dev->chan = chan;
1067 	chan->dev->dev_id = device->dev_id;
1068 	dev_set_name(&chan->dev->device, "dma%dchan%d",
1069 		     device->dev_id, chan->chan_id);
1070 	rc = device_register(&chan->dev->device);
1071 	if (rc)
1072 		goto err_out_ida;
1073 	chan->client_count = 0;
1074 	device->chancnt++;
1075 
1076 	return 0;
1077 
1078  err_out_ida:
1079 	ida_free(&device->chan_ida, chan->chan_id);
1080  err_free_dev:
1081 	kfree(chan->dev);
1082  err_free_local:
1083 	free_percpu(chan->local);
1084 	chan->local = NULL;
1085 	return rc;
1086 }
1087 
1088 int dma_async_device_channel_register(struct dma_device *device,
1089 				      struct dma_chan *chan)
1090 {
1091 	int rc;
1092 
1093 	rc = __dma_async_device_channel_register(device, chan);
1094 	if (rc < 0)
1095 		return rc;
1096 
1097 	dma_channel_rebalance();
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1101 
1102 static void __dma_async_device_channel_unregister(struct dma_device *device,
1103 						  struct dma_chan *chan)
1104 {
1105 	WARN_ONCE(!device->device_release && chan->client_count,
1106 		  "%s called while %d clients hold a reference\n",
1107 		  __func__, chan->client_count);
1108 	mutex_lock(&dma_list_mutex);
1109 	device->chancnt--;
1110 	chan->dev->chan = NULL;
1111 	mutex_unlock(&dma_list_mutex);
1112 	ida_free(&device->chan_ida, chan->chan_id);
1113 	device_unregister(&chan->dev->device);
1114 	free_percpu(chan->local);
1115 }
1116 
1117 void dma_async_device_channel_unregister(struct dma_device *device,
1118 					 struct dma_chan *chan)
1119 {
1120 	__dma_async_device_channel_unregister(device, chan);
1121 	dma_channel_rebalance();
1122 }
1123 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1124 
1125 /**
1126  * dma_async_device_register - registers DMA devices found
1127  * @device:	pointer to &struct dma_device
1128  *
1129  * After calling this routine the structure should not be freed except in the
1130  * device_release() callback which will be called after
1131  * dma_async_device_unregister() is called and no further references are taken.
1132  */
1133 int dma_async_device_register(struct dma_device *device)
1134 {
1135 	int rc;
1136 	struct dma_chan* chan;
1137 
1138 	if (!device)
1139 		return -ENODEV;
1140 
1141 	/* validate device routines */
1142 	if (!device->dev) {
1143 		pr_err("DMAdevice must have dev\n");
1144 		return -EIO;
1145 	}
1146 
1147 	device->owner = device->dev->driver->owner;
1148 
1149 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1150 		dev_err(device->dev,
1151 			"Device claims capability %s, but op is not defined\n",
1152 			"DMA_MEMCPY");
1153 		return -EIO;
1154 	}
1155 
1156 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1157 		dev_err(device->dev,
1158 			"Device claims capability %s, but op is not defined\n",
1159 			"DMA_XOR");
1160 		return -EIO;
1161 	}
1162 
1163 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1164 		dev_err(device->dev,
1165 			"Device claims capability %s, but op is not defined\n",
1166 			"DMA_XOR_VAL");
1167 		return -EIO;
1168 	}
1169 
1170 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1171 		dev_err(device->dev,
1172 			"Device claims capability %s, but op is not defined\n",
1173 			"DMA_PQ");
1174 		return -EIO;
1175 	}
1176 
1177 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1178 		dev_err(device->dev,
1179 			"Device claims capability %s, but op is not defined\n",
1180 			"DMA_PQ_VAL");
1181 		return -EIO;
1182 	}
1183 
1184 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1185 		dev_err(device->dev,
1186 			"Device claims capability %s, but op is not defined\n",
1187 			"DMA_MEMSET");
1188 		return -EIO;
1189 	}
1190 
1191 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1192 		dev_err(device->dev,
1193 			"Device claims capability %s, but op is not defined\n",
1194 			"DMA_INTERRUPT");
1195 		return -EIO;
1196 	}
1197 
1198 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1199 		dev_err(device->dev,
1200 			"Device claims capability %s, but op is not defined\n",
1201 			"DMA_CYCLIC");
1202 		return -EIO;
1203 	}
1204 
1205 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1206 		dev_err(device->dev,
1207 			"Device claims capability %s, but op is not defined\n",
1208 			"DMA_INTERLEAVE");
1209 		return -EIO;
1210 	}
1211 
1212 
1213 	if (!device->device_tx_status) {
1214 		dev_err(device->dev, "Device tx_status is not defined\n");
1215 		return -EIO;
1216 	}
1217 
1218 
1219 	if (!device->device_issue_pending) {
1220 		dev_err(device->dev, "Device issue_pending is not defined\n");
1221 		return -EIO;
1222 	}
1223 
1224 	if (!device->device_release)
1225 		dev_dbg(device->dev,
1226 			 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1227 
1228 	kref_init(&device->ref);
1229 
1230 	/* note: this only matters in the
1231 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1232 	 */
1233 	if (device_has_all_tx_types(device))
1234 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1235 
1236 	rc = get_dma_id(device);
1237 	if (rc != 0)
1238 		return rc;
1239 
1240 	ida_init(&device->chan_ida);
1241 
1242 	/* represent channels in sysfs. Probably want devs too */
1243 	list_for_each_entry(chan, &device->channels, device_node) {
1244 		rc = __dma_async_device_channel_register(device, chan);
1245 		if (rc < 0)
1246 			goto err_out;
1247 	}
1248 
1249 	mutex_lock(&dma_list_mutex);
1250 	/* take references on public channels */
1251 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1252 		list_for_each_entry(chan, &device->channels, device_node) {
1253 			/* if clients are already waiting for channels we need
1254 			 * to take references on their behalf
1255 			 */
1256 			if (dma_chan_get(chan) == -ENODEV) {
1257 				/* note we can only get here for the first
1258 				 * channel as the remaining channels are
1259 				 * guaranteed to get a reference
1260 				 */
1261 				rc = -ENODEV;
1262 				mutex_unlock(&dma_list_mutex);
1263 				goto err_out;
1264 			}
1265 		}
1266 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1267 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1268 		device->privatecnt++;	/* Always private */
1269 	dma_channel_rebalance();
1270 	mutex_unlock(&dma_list_mutex);
1271 
1272 	dmaengine_debug_register(device);
1273 
1274 	return 0;
1275 
1276 err_out:
1277 	/* if we never registered a channel just release the idr */
1278 	if (!device->chancnt) {
1279 		ida_free(&dma_ida, device->dev_id);
1280 		return rc;
1281 	}
1282 
1283 	list_for_each_entry(chan, &device->channels, device_node) {
1284 		if (chan->local == NULL)
1285 			continue;
1286 		mutex_lock(&dma_list_mutex);
1287 		chan->dev->chan = NULL;
1288 		mutex_unlock(&dma_list_mutex);
1289 		device_unregister(&chan->dev->device);
1290 		free_percpu(chan->local);
1291 	}
1292 	return rc;
1293 }
1294 EXPORT_SYMBOL(dma_async_device_register);
1295 
1296 /**
1297  * dma_async_device_unregister - unregister a DMA device
1298  * @device:	pointer to &struct dma_device
1299  *
1300  * This routine is called by dma driver exit routines, dmaengine holds module
1301  * references to prevent it being called while channels are in use.
1302  */
1303 void dma_async_device_unregister(struct dma_device *device)
1304 {
1305 	struct dma_chan *chan, *n;
1306 
1307 	dmaengine_debug_unregister(device);
1308 
1309 	list_for_each_entry_safe(chan, n, &device->channels, device_node)
1310 		__dma_async_device_channel_unregister(device, chan);
1311 
1312 	mutex_lock(&dma_list_mutex);
1313 	/*
1314 	 * setting DMA_PRIVATE ensures the device being torn down will not
1315 	 * be used in the channel_table
1316 	 */
1317 	dma_cap_set(DMA_PRIVATE, device->cap_mask);
1318 	dma_channel_rebalance();
1319 	ida_free(&dma_ida, device->dev_id);
1320 	dma_device_put(device);
1321 	mutex_unlock(&dma_list_mutex);
1322 }
1323 EXPORT_SYMBOL(dma_async_device_unregister);
1324 
1325 static void dmam_device_release(struct device *dev, void *res)
1326 {
1327 	struct dma_device *device;
1328 
1329 	device = *(struct dma_device **)res;
1330 	dma_async_device_unregister(device);
1331 }
1332 
1333 /**
1334  * dmaenginem_async_device_register - registers DMA devices found
1335  * @device:	pointer to &struct dma_device
1336  *
1337  * The operation is managed and will be undone on driver detach.
1338  */
1339 int dmaenginem_async_device_register(struct dma_device *device)
1340 {
1341 	void *p;
1342 	int ret;
1343 
1344 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1345 	if (!p)
1346 		return -ENOMEM;
1347 
1348 	ret = dma_async_device_register(device);
1349 	if (!ret) {
1350 		*(struct dma_device **)p = device;
1351 		devres_add(device->dev, p);
1352 	} else {
1353 		devres_free(p);
1354 	}
1355 
1356 	return ret;
1357 }
1358 EXPORT_SYMBOL(dmaenginem_async_device_register);
1359 
1360 struct dmaengine_unmap_pool {
1361 	struct kmem_cache *cache;
1362 	const char *name;
1363 	mempool_t *pool;
1364 	size_t size;
1365 };
1366 
1367 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1368 static struct dmaengine_unmap_pool unmap_pool[] = {
1369 	__UNMAP_POOL(2),
1370 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1371 	__UNMAP_POOL(16),
1372 	__UNMAP_POOL(128),
1373 	__UNMAP_POOL(256),
1374 	#endif
1375 };
1376 
1377 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1378 {
1379 	int order = get_count_order(nr);
1380 
1381 	switch (order) {
1382 	case 0 ... 1:
1383 		return &unmap_pool[0];
1384 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1385 	case 2 ... 4:
1386 		return &unmap_pool[1];
1387 	case 5 ... 7:
1388 		return &unmap_pool[2];
1389 	case 8:
1390 		return &unmap_pool[3];
1391 #endif
1392 	default:
1393 		BUG();
1394 		return NULL;
1395 	}
1396 }
1397 
1398 static void dmaengine_unmap(struct kref *kref)
1399 {
1400 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1401 	struct device *dev = unmap->dev;
1402 	int cnt, i;
1403 
1404 	cnt = unmap->to_cnt;
1405 	for (i = 0; i < cnt; i++)
1406 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1407 			       DMA_TO_DEVICE);
1408 	cnt += unmap->from_cnt;
1409 	for (; i < cnt; i++)
1410 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1411 			       DMA_FROM_DEVICE);
1412 	cnt += unmap->bidi_cnt;
1413 	for (; i < cnt; i++) {
1414 		if (unmap->addr[i] == 0)
1415 			continue;
1416 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1417 			       DMA_BIDIRECTIONAL);
1418 	}
1419 	cnt = unmap->map_cnt;
1420 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1421 }
1422 
1423 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1424 {
1425 	if (unmap)
1426 		kref_put(&unmap->kref, dmaengine_unmap);
1427 }
1428 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1429 
1430 static void dmaengine_destroy_unmap_pool(void)
1431 {
1432 	int i;
1433 
1434 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1435 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1436 
1437 		mempool_destroy(p->pool);
1438 		p->pool = NULL;
1439 		kmem_cache_destroy(p->cache);
1440 		p->cache = NULL;
1441 	}
1442 }
1443 
1444 static int __init dmaengine_init_unmap_pool(void)
1445 {
1446 	int i;
1447 
1448 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1449 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1450 		size_t size;
1451 
1452 		size = sizeof(struct dmaengine_unmap_data) +
1453 		       sizeof(dma_addr_t) * p->size;
1454 
1455 		p->cache = kmem_cache_create(p->name, size, 0,
1456 					     SLAB_HWCACHE_ALIGN, NULL);
1457 		if (!p->cache)
1458 			break;
1459 		p->pool = mempool_create_slab_pool(1, p->cache);
1460 		if (!p->pool)
1461 			break;
1462 	}
1463 
1464 	if (i == ARRAY_SIZE(unmap_pool))
1465 		return 0;
1466 
1467 	dmaengine_destroy_unmap_pool();
1468 	return -ENOMEM;
1469 }
1470 
1471 struct dmaengine_unmap_data *
1472 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1473 {
1474 	struct dmaengine_unmap_data *unmap;
1475 
1476 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1477 	if (!unmap)
1478 		return NULL;
1479 
1480 	memset(unmap, 0, sizeof(*unmap));
1481 	kref_init(&unmap->kref);
1482 	unmap->dev = dev;
1483 	unmap->map_cnt = nr;
1484 
1485 	return unmap;
1486 }
1487 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1488 
1489 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1490 	struct dma_chan *chan)
1491 {
1492 	tx->chan = chan;
1493 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1494 	spin_lock_init(&tx->lock);
1495 	#endif
1496 }
1497 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1498 
1499 static inline int desc_check_and_set_metadata_mode(
1500 	struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1501 {
1502 	/* Make sure that the metadata mode is not mixed */
1503 	if (!desc->desc_metadata_mode) {
1504 		if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1505 			desc->desc_metadata_mode = mode;
1506 		else
1507 			return -ENOTSUPP;
1508 	} else if (desc->desc_metadata_mode != mode) {
1509 		return -EINVAL;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1516 				   void *data, size_t len)
1517 {
1518 	int ret;
1519 
1520 	if (!desc)
1521 		return -EINVAL;
1522 
1523 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1524 	if (ret)
1525 		return ret;
1526 
1527 	if (!desc->metadata_ops || !desc->metadata_ops->attach)
1528 		return -ENOTSUPP;
1529 
1530 	return desc->metadata_ops->attach(desc, data, len);
1531 }
1532 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1533 
1534 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1535 				      size_t *payload_len, size_t *max_len)
1536 {
1537 	int ret;
1538 
1539 	if (!desc)
1540 		return ERR_PTR(-EINVAL);
1541 
1542 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1543 	if (ret)
1544 		return ERR_PTR(ret);
1545 
1546 	if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1547 		return ERR_PTR(-ENOTSUPP);
1548 
1549 	return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1550 }
1551 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1552 
1553 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1554 				    size_t payload_len)
1555 {
1556 	int ret;
1557 
1558 	if (!desc)
1559 		return -EINVAL;
1560 
1561 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1562 	if (ret)
1563 		return ret;
1564 
1565 	if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1566 		return -ENOTSUPP;
1567 
1568 	return desc->metadata_ops->set_len(desc, payload_len);
1569 }
1570 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1571 
1572 /**
1573  * dma_wait_for_async_tx - spin wait for a transaction to complete
1574  * @tx:		in-flight transaction to wait on
1575  */
1576 enum dma_status
1577 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1578 {
1579 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1580 
1581 	if (!tx)
1582 		return DMA_COMPLETE;
1583 
1584 	while (tx->cookie == -EBUSY) {
1585 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1586 			dev_err(tx->chan->device->dev,
1587 				"%s timeout waiting for descriptor submission\n",
1588 				__func__);
1589 			return DMA_ERROR;
1590 		}
1591 		cpu_relax();
1592 	}
1593 	return dma_sync_wait(tx->chan, tx->cookie);
1594 }
1595 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1596 
1597 /**
1598  * dma_run_dependencies - process dependent operations on the target channel
1599  * @tx:		transaction with dependencies
1600  *
1601  * Helper routine for DMA drivers to process (start) dependent operations
1602  * on their target channel.
1603  */
1604 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1605 {
1606 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1607 	struct dma_async_tx_descriptor *dep_next;
1608 	struct dma_chan *chan;
1609 
1610 	if (!dep)
1611 		return;
1612 
1613 	/* we'll submit tx->next now, so clear the link */
1614 	txd_clear_next(tx);
1615 	chan = dep->chan;
1616 
1617 	/* keep submitting up until a channel switch is detected
1618 	 * in that case we will be called again as a result of
1619 	 * processing the interrupt from async_tx_channel_switch
1620 	 */
1621 	for (; dep; dep = dep_next) {
1622 		txd_lock(dep);
1623 		txd_clear_parent(dep);
1624 		dep_next = txd_next(dep);
1625 		if (dep_next && dep_next->chan == chan)
1626 			txd_clear_next(dep); /* ->next will be submitted */
1627 		else
1628 			dep_next = NULL; /* submit current dep and terminate */
1629 		txd_unlock(dep);
1630 
1631 		dep->tx_submit(dep);
1632 	}
1633 
1634 	chan->device->device_issue_pending(chan);
1635 }
1636 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1637 
1638 static int __init dma_bus_init(void)
1639 {
1640 	int err = dmaengine_init_unmap_pool();
1641 
1642 	if (err)
1643 		return err;
1644 
1645 	err = class_register(&dma_devclass);
1646 	if (!err)
1647 		dmaengine_debugfs_init();
1648 
1649 	return err;
1650 }
1651 arch_initcall(dma_bus_init);
1652