1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5 6 /* 7 * This code implements the DMA subsystem. It provides a HW-neutral interface 8 * for other kernel code to use asynchronous memory copy capabilities, 9 * if present, and allows different HW DMA drivers to register as providing 10 * this capability. 11 * 12 * Due to the fact we are accelerating what is already a relatively fast 13 * operation, the code goes to great lengths to avoid additional overhead, 14 * such as locking. 15 * 16 * LOCKING: 17 * 18 * The subsystem keeps a global list of dma_device structs it is protected by a 19 * mutex, dma_list_mutex. 20 * 21 * A subsystem can get access to a channel by calling dmaengine_get() followed 22 * by dma_find_channel(), or if it has need for an exclusive channel it can call 23 * dma_request_channel(). Once a channel is allocated a reference is taken 24 * against its corresponding driver to disable removal. 25 * 26 * Each device has a channels list, which runs unlocked but is never modified 27 * once the device is registered, it's just setup by the driver. 28 * 29 * See Documentation/driver-api/dmaengine for more details 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/platform_device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/init.h> 37 #include <linux/module.h> 38 #include <linux/mm.h> 39 #include <linux/device.h> 40 #include <linux/dmaengine.h> 41 #include <linux/hardirq.h> 42 #include <linux/spinlock.h> 43 #include <linux/of.h> 44 #include <linux/property.h> 45 #include <linux/percpu.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/jiffies.h> 49 #include <linux/rculist.h> 50 #include <linux/idr.h> 51 #include <linux/slab.h> 52 #include <linux/acpi.h> 53 #include <linux/acpi_dma.h> 54 #include <linux/of_dma.h> 55 #include <linux/mempool.h> 56 #include <linux/numa.h> 57 58 #include "dmaengine.h" 59 60 static DEFINE_MUTEX(dma_list_mutex); 61 static DEFINE_IDA(dma_ida); 62 static LIST_HEAD(dma_device_list); 63 static long dmaengine_ref_count; 64 65 /* --- debugfs implementation --- */ 66 #ifdef CONFIG_DEBUG_FS 67 #include <linux/debugfs.h> 68 69 static struct dentry *rootdir; 70 71 static void dmaengine_debug_register(struct dma_device *dma_dev) 72 { 73 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev), 74 rootdir); 75 if (IS_ERR(dma_dev->dbg_dev_root)) 76 dma_dev->dbg_dev_root = NULL; 77 } 78 79 static void dmaengine_debug_unregister(struct dma_device *dma_dev) 80 { 81 debugfs_remove_recursive(dma_dev->dbg_dev_root); 82 dma_dev->dbg_dev_root = NULL; 83 } 84 85 static void dmaengine_dbg_summary_show(struct seq_file *s, 86 struct dma_device *dma_dev) 87 { 88 struct dma_chan *chan; 89 90 list_for_each_entry(chan, &dma_dev->channels, device_node) { 91 if (chan->client_count) { 92 seq_printf(s, " %-13s| %s", dma_chan_name(chan), 93 chan->dbg_client_name ?: "in-use"); 94 95 if (chan->router) 96 seq_printf(s, " (via router: %s)\n", 97 dev_name(chan->router->dev)); 98 else 99 seq_puts(s, "\n"); 100 } 101 } 102 } 103 104 static int dmaengine_summary_show(struct seq_file *s, void *data) 105 { 106 struct dma_device *dma_dev = NULL; 107 108 mutex_lock(&dma_list_mutex); 109 list_for_each_entry(dma_dev, &dma_device_list, global_node) { 110 seq_printf(s, "dma%d (%s): number of channels: %u\n", 111 dma_dev->dev_id, dev_name(dma_dev->dev), 112 dma_dev->chancnt); 113 114 if (dma_dev->dbg_summary_show) 115 dma_dev->dbg_summary_show(s, dma_dev); 116 else 117 dmaengine_dbg_summary_show(s, dma_dev); 118 119 if (!list_is_last(&dma_dev->global_node, &dma_device_list)) 120 seq_puts(s, "\n"); 121 } 122 mutex_unlock(&dma_list_mutex); 123 124 return 0; 125 } 126 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary); 127 128 static void __init dmaengine_debugfs_init(void) 129 { 130 rootdir = debugfs_create_dir("dmaengine", NULL); 131 132 /* /sys/kernel/debug/dmaengine/summary */ 133 debugfs_create_file("summary", 0444, rootdir, NULL, 134 &dmaengine_summary_fops); 135 } 136 #else 137 static inline void dmaengine_debugfs_init(void) { } 138 static inline int dmaengine_debug_register(struct dma_device *dma_dev) 139 { 140 return 0; 141 } 142 143 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { } 144 #endif /* DEBUG_FS */ 145 146 /* --- sysfs implementation --- */ 147 148 #define DMA_SLAVE_NAME "slave" 149 150 /** 151 * dev_to_dma_chan - convert a device pointer to its sysfs container object 152 * @dev: device node 153 * 154 * Must be called under dma_list_mutex. 155 */ 156 static struct dma_chan *dev_to_dma_chan(struct device *dev) 157 { 158 struct dma_chan_dev *chan_dev; 159 160 chan_dev = container_of(dev, typeof(*chan_dev), device); 161 return chan_dev->chan; 162 } 163 164 static ssize_t memcpy_count_show(struct device *dev, 165 struct device_attribute *attr, char *buf) 166 { 167 struct dma_chan *chan; 168 unsigned long count = 0; 169 int i; 170 int err; 171 172 mutex_lock(&dma_list_mutex); 173 chan = dev_to_dma_chan(dev); 174 if (chan) { 175 for_each_possible_cpu(i) 176 count += per_cpu_ptr(chan->local, i)->memcpy_count; 177 err = sysfs_emit(buf, "%lu\n", count); 178 } else 179 err = -ENODEV; 180 mutex_unlock(&dma_list_mutex); 181 182 return err; 183 } 184 static DEVICE_ATTR_RO(memcpy_count); 185 186 static ssize_t bytes_transferred_show(struct device *dev, 187 struct device_attribute *attr, char *buf) 188 { 189 struct dma_chan *chan; 190 unsigned long count = 0; 191 int i; 192 int err; 193 194 mutex_lock(&dma_list_mutex); 195 chan = dev_to_dma_chan(dev); 196 if (chan) { 197 for_each_possible_cpu(i) 198 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 199 err = sysfs_emit(buf, "%lu\n", count); 200 } else 201 err = -ENODEV; 202 mutex_unlock(&dma_list_mutex); 203 204 return err; 205 } 206 static DEVICE_ATTR_RO(bytes_transferred); 207 208 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 209 char *buf) 210 { 211 struct dma_chan *chan; 212 int err; 213 214 mutex_lock(&dma_list_mutex); 215 chan = dev_to_dma_chan(dev); 216 if (chan) 217 err = sysfs_emit(buf, "%d\n", chan->client_count); 218 else 219 err = -ENODEV; 220 mutex_unlock(&dma_list_mutex); 221 222 return err; 223 } 224 static DEVICE_ATTR_RO(in_use); 225 226 static struct attribute *dma_dev_attrs[] = { 227 &dev_attr_memcpy_count.attr, 228 &dev_attr_bytes_transferred.attr, 229 &dev_attr_in_use.attr, 230 NULL, 231 }; 232 ATTRIBUTE_GROUPS(dma_dev); 233 234 static void chan_dev_release(struct device *dev) 235 { 236 struct dma_chan_dev *chan_dev; 237 238 chan_dev = container_of(dev, typeof(*chan_dev), device); 239 kfree(chan_dev); 240 } 241 242 static struct class dma_devclass = { 243 .name = "dma", 244 .dev_groups = dma_dev_groups, 245 .dev_release = chan_dev_release, 246 }; 247 248 /* --- client and device registration --- */ 249 250 /* enable iteration over all operation types */ 251 static dma_cap_mask_t dma_cap_mask_all; 252 253 /** 254 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation 255 * @chan: associated channel for this entry 256 */ 257 struct dma_chan_tbl_ent { 258 struct dma_chan *chan; 259 }; 260 261 /* percpu lookup table for memory-to-memory offload providers */ 262 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 263 264 static int __init dma_channel_table_init(void) 265 { 266 enum dma_transaction_type cap; 267 int err = 0; 268 269 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 270 271 /* 'interrupt', 'private', and 'slave' are channel capabilities, 272 * but are not associated with an operation so they do not need 273 * an entry in the channel_table 274 */ 275 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 276 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 277 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 278 279 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 280 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 281 if (!channel_table[cap]) { 282 err = -ENOMEM; 283 break; 284 } 285 } 286 287 if (err) { 288 pr_err("dmaengine dma_channel_table_init failure: %d\n", err); 289 for_each_dma_cap_mask(cap, dma_cap_mask_all) 290 free_percpu(channel_table[cap]); 291 } 292 293 return err; 294 } 295 arch_initcall(dma_channel_table_init); 296 297 /** 298 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU 299 * @chan: DMA channel to test 300 * @cpu: CPU index which the channel should be close to 301 * 302 * Returns true if the channel is in the same NUMA-node as the CPU. 303 */ 304 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 305 { 306 int node = dev_to_node(chan->device->dev); 307 return node == NUMA_NO_NODE || 308 cpumask_test_cpu(cpu, cpumask_of_node(node)); 309 } 310 311 /** 312 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU 313 * @cap: capability to match 314 * @cpu: CPU index which the channel should be close to 315 * 316 * If some channels are close to the given CPU, the one with the lowest 317 * reference count is returned. Otherwise, CPU is ignored and only the 318 * reference count is taken into account. 319 * 320 * Must be called under dma_list_mutex. 321 */ 322 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 323 { 324 struct dma_device *device; 325 struct dma_chan *chan; 326 struct dma_chan *min = NULL; 327 struct dma_chan *localmin = NULL; 328 329 list_for_each_entry(device, &dma_device_list, global_node) { 330 if (!dma_has_cap(cap, device->cap_mask) || 331 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 332 continue; 333 list_for_each_entry(chan, &device->channels, device_node) { 334 if (!chan->client_count) 335 continue; 336 if (!min || chan->table_count < min->table_count) 337 min = chan; 338 339 if (dma_chan_is_local(chan, cpu)) 340 if (!localmin || 341 chan->table_count < localmin->table_count) 342 localmin = chan; 343 } 344 } 345 346 chan = localmin ? localmin : min; 347 348 if (chan) 349 chan->table_count++; 350 351 return chan; 352 } 353 354 /** 355 * dma_channel_rebalance - redistribute the available channels 356 * 357 * Optimize for CPU isolation (each CPU gets a dedicated channel for an 358 * operation type) in the SMP case, and operation isolation (avoid 359 * multi-tasking channels) in the non-SMP case. 360 * 361 * Must be called under dma_list_mutex. 362 */ 363 static void dma_channel_rebalance(void) 364 { 365 struct dma_chan *chan; 366 struct dma_device *device; 367 int cpu; 368 int cap; 369 370 /* undo the last distribution */ 371 for_each_dma_cap_mask(cap, dma_cap_mask_all) 372 for_each_possible_cpu(cpu) 373 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 374 375 list_for_each_entry(device, &dma_device_list, global_node) { 376 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 377 continue; 378 list_for_each_entry(chan, &device->channels, device_node) 379 chan->table_count = 0; 380 } 381 382 /* don't populate the channel_table if no clients are available */ 383 if (!dmaengine_ref_count) 384 return; 385 386 /* redistribute available channels */ 387 for_each_dma_cap_mask(cap, dma_cap_mask_all) 388 for_each_online_cpu(cpu) { 389 chan = min_chan(cap, cpu); 390 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 391 } 392 } 393 394 static int dma_device_satisfies_mask(struct dma_device *device, 395 const dma_cap_mask_t *want) 396 { 397 dma_cap_mask_t has; 398 399 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 400 DMA_TX_TYPE_END); 401 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 402 } 403 404 static struct module *dma_chan_to_owner(struct dma_chan *chan) 405 { 406 return chan->device->owner; 407 } 408 409 /** 410 * balance_ref_count - catch up the channel reference count 411 * @chan: channel to balance ->client_count versus dmaengine_ref_count 412 * 413 * Must be called under dma_list_mutex. 414 */ 415 static void balance_ref_count(struct dma_chan *chan) 416 { 417 struct module *owner = dma_chan_to_owner(chan); 418 419 while (chan->client_count < dmaengine_ref_count) { 420 __module_get(owner); 421 chan->client_count++; 422 } 423 } 424 425 static void dma_device_release(struct kref *ref) 426 { 427 struct dma_device *device = container_of(ref, struct dma_device, ref); 428 429 list_del_rcu(&device->global_node); 430 dma_channel_rebalance(); 431 432 if (device->device_release) 433 device->device_release(device); 434 } 435 436 static void dma_device_put(struct dma_device *device) 437 { 438 lockdep_assert_held(&dma_list_mutex); 439 kref_put(&device->ref, dma_device_release); 440 } 441 442 /** 443 * dma_chan_get - try to grab a DMA channel's parent driver module 444 * @chan: channel to grab 445 * 446 * Must be called under dma_list_mutex. 447 */ 448 static int dma_chan_get(struct dma_chan *chan) 449 { 450 struct module *owner = dma_chan_to_owner(chan); 451 int ret; 452 453 /* The channel is already in use, update client count */ 454 if (chan->client_count) { 455 __module_get(owner); 456 chan->client_count++; 457 return 0; 458 } 459 460 if (!try_module_get(owner)) 461 return -ENODEV; 462 463 ret = kref_get_unless_zero(&chan->device->ref); 464 if (!ret) { 465 ret = -ENODEV; 466 goto module_put_out; 467 } 468 469 /* allocate upon first client reference */ 470 if (chan->device->device_alloc_chan_resources) { 471 ret = chan->device->device_alloc_chan_resources(chan); 472 if (ret < 0) 473 goto err_out; 474 } 475 476 chan->client_count++; 477 478 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 479 balance_ref_count(chan); 480 481 return 0; 482 483 err_out: 484 dma_device_put(chan->device); 485 module_put_out: 486 module_put(owner); 487 return ret; 488 } 489 490 /** 491 * dma_chan_put - drop a reference to a DMA channel's parent driver module 492 * @chan: channel to release 493 * 494 * Must be called under dma_list_mutex. 495 */ 496 static void dma_chan_put(struct dma_chan *chan) 497 { 498 /* This channel is not in use, bail out */ 499 if (!chan->client_count) 500 return; 501 502 chan->client_count--; 503 504 /* This channel is not in use anymore, free it */ 505 if (!chan->client_count && chan->device->device_free_chan_resources) { 506 /* Make sure all operations have completed */ 507 dmaengine_synchronize(chan); 508 chan->device->device_free_chan_resources(chan); 509 } 510 511 /* If the channel is used via a DMA request router, free the mapping */ 512 if (chan->router && chan->router->route_free) { 513 chan->router->route_free(chan->router->dev, chan->route_data); 514 chan->router = NULL; 515 chan->route_data = NULL; 516 } 517 518 dma_device_put(chan->device); 519 module_put(dma_chan_to_owner(chan)); 520 } 521 522 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 523 { 524 enum dma_status status; 525 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 526 527 dma_async_issue_pending(chan); 528 do { 529 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 530 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 531 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 532 return DMA_ERROR; 533 } 534 if (status != DMA_IN_PROGRESS) 535 break; 536 cpu_relax(); 537 } while (1); 538 539 return status; 540 } 541 EXPORT_SYMBOL(dma_sync_wait); 542 543 /** 544 * dma_find_channel - find a channel to carry out the operation 545 * @tx_type: transaction type 546 */ 547 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 548 { 549 return this_cpu_read(channel_table[tx_type]->chan); 550 } 551 EXPORT_SYMBOL(dma_find_channel); 552 553 /** 554 * dma_issue_pending_all - flush all pending operations across all channels 555 */ 556 void dma_issue_pending_all(void) 557 { 558 struct dma_device *device; 559 struct dma_chan *chan; 560 561 rcu_read_lock(); 562 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 563 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 564 continue; 565 list_for_each_entry(chan, &device->channels, device_node) 566 if (chan->client_count) 567 device->device_issue_pending(chan); 568 } 569 rcu_read_unlock(); 570 } 571 EXPORT_SYMBOL(dma_issue_pending_all); 572 573 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 574 { 575 struct dma_device *device; 576 577 if (!chan || !caps) 578 return -EINVAL; 579 580 device = chan->device; 581 582 /* check if the channel supports slave transactions */ 583 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 584 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 585 return -ENXIO; 586 587 /* 588 * Check whether it reports it uses the generic slave 589 * capabilities, if not, that means it doesn't support any 590 * kind of slave capabilities reporting. 591 */ 592 if (!device->directions) 593 return -ENXIO; 594 595 caps->src_addr_widths = device->src_addr_widths; 596 caps->dst_addr_widths = device->dst_addr_widths; 597 caps->directions = device->directions; 598 caps->min_burst = device->min_burst; 599 caps->max_burst = device->max_burst; 600 caps->max_sg_burst = device->max_sg_burst; 601 caps->residue_granularity = device->residue_granularity; 602 caps->descriptor_reuse = device->descriptor_reuse; 603 caps->cmd_pause = !!device->device_pause; 604 caps->cmd_resume = !!device->device_resume; 605 caps->cmd_terminate = !!device->device_terminate_all; 606 607 /* 608 * DMA engine device might be configured with non-uniformly 609 * distributed slave capabilities per device channels. In this 610 * case the corresponding driver may provide the device_caps 611 * callback to override the generic capabilities with 612 * channel-specific ones. 613 */ 614 if (device->device_caps) 615 device->device_caps(chan, caps); 616 617 return 0; 618 } 619 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 620 621 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 622 struct dma_device *dev, 623 dma_filter_fn fn, void *fn_param) 624 { 625 struct dma_chan *chan; 626 627 if (mask && !dma_device_satisfies_mask(dev, mask)) { 628 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 629 return NULL; 630 } 631 /* devices with multiple channels need special handling as we need to 632 * ensure that all channels are either private or public. 633 */ 634 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 635 list_for_each_entry(chan, &dev->channels, device_node) { 636 /* some channels are already publicly allocated */ 637 if (chan->client_count) 638 return NULL; 639 } 640 641 list_for_each_entry(chan, &dev->channels, device_node) { 642 if (chan->client_count) { 643 dev_dbg(dev->dev, "%s: %s busy\n", 644 __func__, dma_chan_name(chan)); 645 continue; 646 } 647 if (fn && !fn(chan, fn_param)) { 648 dev_dbg(dev->dev, "%s: %s filter said false\n", 649 __func__, dma_chan_name(chan)); 650 continue; 651 } 652 return chan; 653 } 654 655 return NULL; 656 } 657 658 static struct dma_chan *find_candidate(struct dma_device *device, 659 const dma_cap_mask_t *mask, 660 dma_filter_fn fn, void *fn_param) 661 { 662 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 663 int err; 664 665 if (chan) { 666 /* Found a suitable channel, try to grab, prep, and return it. 667 * We first set DMA_PRIVATE to disable balance_ref_count as this 668 * channel will not be published in the general-purpose 669 * allocator 670 */ 671 dma_cap_set(DMA_PRIVATE, device->cap_mask); 672 device->privatecnt++; 673 err = dma_chan_get(chan); 674 675 if (err) { 676 if (err == -ENODEV) { 677 dev_dbg(device->dev, "%s: %s module removed\n", 678 __func__, dma_chan_name(chan)); 679 list_del_rcu(&device->global_node); 680 } else 681 dev_dbg(device->dev, 682 "%s: failed to get %s: (%d)\n", 683 __func__, dma_chan_name(chan), err); 684 685 if (--device->privatecnt == 0) 686 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 687 688 chan = ERR_PTR(err); 689 } 690 } 691 692 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 693 } 694 695 /** 696 * dma_get_slave_channel - try to get specific channel exclusively 697 * @chan: target channel 698 */ 699 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 700 { 701 /* lock against __dma_request_channel */ 702 mutex_lock(&dma_list_mutex); 703 704 if (chan->client_count == 0) { 705 struct dma_device *device = chan->device; 706 int err; 707 708 dma_cap_set(DMA_PRIVATE, device->cap_mask); 709 device->privatecnt++; 710 err = dma_chan_get(chan); 711 if (err) { 712 dev_dbg(chan->device->dev, 713 "%s: failed to get %s: (%d)\n", 714 __func__, dma_chan_name(chan), err); 715 chan = NULL; 716 if (--device->privatecnt == 0) 717 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 718 } 719 } else 720 chan = NULL; 721 722 mutex_unlock(&dma_list_mutex); 723 724 725 return chan; 726 } 727 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 728 729 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 730 { 731 dma_cap_mask_t mask; 732 struct dma_chan *chan; 733 734 dma_cap_zero(mask); 735 dma_cap_set(DMA_SLAVE, mask); 736 737 /* lock against __dma_request_channel */ 738 mutex_lock(&dma_list_mutex); 739 740 chan = find_candidate(device, &mask, NULL, NULL); 741 742 mutex_unlock(&dma_list_mutex); 743 744 return IS_ERR(chan) ? NULL : chan; 745 } 746 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 747 748 /** 749 * __dma_request_channel - try to allocate an exclusive channel 750 * @mask: capabilities that the channel must satisfy 751 * @fn: optional callback to disposition available channels 752 * @fn_param: opaque parameter to pass to dma_filter_fn() 753 * @np: device node to look for DMA channels 754 * 755 * Returns pointer to appropriate DMA channel on success or NULL. 756 */ 757 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 758 dma_filter_fn fn, void *fn_param, 759 struct device_node *np) 760 { 761 struct dma_device *device, *_d; 762 struct dma_chan *chan = NULL; 763 764 /* Find a channel */ 765 mutex_lock(&dma_list_mutex); 766 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 767 /* Finds a DMA controller with matching device node */ 768 if (np && device->dev->of_node && np != device->dev->of_node) 769 continue; 770 771 chan = find_candidate(device, mask, fn, fn_param); 772 if (!IS_ERR(chan)) 773 break; 774 775 chan = NULL; 776 } 777 mutex_unlock(&dma_list_mutex); 778 779 pr_debug("%s: %s (%s)\n", 780 __func__, 781 chan ? "success" : "fail", 782 chan ? dma_chan_name(chan) : NULL); 783 784 return chan; 785 } 786 EXPORT_SYMBOL_GPL(__dma_request_channel); 787 788 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 789 const char *name, 790 struct device *dev) 791 { 792 int i; 793 794 if (!device->filter.mapcnt) 795 return NULL; 796 797 for (i = 0; i < device->filter.mapcnt; i++) { 798 const struct dma_slave_map *map = &device->filter.map[i]; 799 800 if (!strcmp(map->devname, dev_name(dev)) && 801 !strcmp(map->slave, name)) 802 return map; 803 } 804 805 return NULL; 806 } 807 808 /** 809 * dma_request_chan - try to allocate an exclusive slave channel 810 * @dev: pointer to client device structure 811 * @name: slave channel name 812 * 813 * Returns pointer to appropriate DMA channel on success or an error pointer. 814 */ 815 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 816 { 817 struct fwnode_handle *fwnode = dev_fwnode(dev); 818 struct dma_device *d, *_d; 819 struct dma_chan *chan = NULL; 820 821 if (is_of_node(fwnode)) 822 chan = of_dma_request_slave_channel(to_of_node(fwnode), name); 823 else if (is_acpi_device_node(fwnode)) 824 chan = acpi_dma_request_slave_chan_by_name(dev, name); 825 826 if (PTR_ERR(chan) == -EPROBE_DEFER) 827 return chan; 828 829 if (!IS_ERR_OR_NULL(chan)) 830 goto found; 831 832 /* Try to find the channel via the DMA filter map(s) */ 833 mutex_lock(&dma_list_mutex); 834 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 835 dma_cap_mask_t mask; 836 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 837 838 if (!map) 839 continue; 840 841 dma_cap_zero(mask); 842 dma_cap_set(DMA_SLAVE, mask); 843 844 chan = find_candidate(d, &mask, d->filter.fn, map->param); 845 if (!IS_ERR(chan)) 846 break; 847 } 848 mutex_unlock(&dma_list_mutex); 849 850 if (IS_ERR(chan)) 851 return chan; 852 if (!chan) 853 return ERR_PTR(-EPROBE_DEFER); 854 855 found: 856 #ifdef CONFIG_DEBUG_FS 857 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev), name); 858 /* No functional issue if it fails, users are supposed to test before use */ 859 #endif 860 861 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name); 862 if (!chan->name) 863 return chan; 864 chan->slave = dev; 865 866 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj, 867 DMA_SLAVE_NAME)) 868 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME); 869 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name)) 870 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name); 871 872 return chan; 873 } 874 EXPORT_SYMBOL_GPL(dma_request_chan); 875 876 /** 877 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 878 * @mask: capabilities that the channel must satisfy 879 * 880 * Returns pointer to appropriate DMA channel on success or an error pointer. 881 */ 882 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 883 { 884 struct dma_chan *chan; 885 886 if (!mask) 887 return ERR_PTR(-ENODEV); 888 889 chan = __dma_request_channel(mask, NULL, NULL, NULL); 890 if (!chan) { 891 mutex_lock(&dma_list_mutex); 892 if (list_empty(&dma_device_list)) 893 chan = ERR_PTR(-EPROBE_DEFER); 894 else 895 chan = ERR_PTR(-ENODEV); 896 mutex_unlock(&dma_list_mutex); 897 } 898 899 return chan; 900 } 901 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 902 903 void dma_release_channel(struct dma_chan *chan) 904 { 905 mutex_lock(&dma_list_mutex); 906 WARN_ONCE(chan->client_count != 1, 907 "chan reference count %d != 1\n", chan->client_count); 908 dma_chan_put(chan); 909 /* drop PRIVATE cap enabled by __dma_request_channel() */ 910 if (--chan->device->privatecnt == 0) 911 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 912 913 if (chan->slave) { 914 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME); 915 sysfs_remove_link(&chan->slave->kobj, chan->name); 916 kfree(chan->name); 917 chan->name = NULL; 918 chan->slave = NULL; 919 } 920 921 #ifdef CONFIG_DEBUG_FS 922 kfree(chan->dbg_client_name); 923 chan->dbg_client_name = NULL; 924 #endif 925 mutex_unlock(&dma_list_mutex); 926 } 927 EXPORT_SYMBOL_GPL(dma_release_channel); 928 929 static void dmaenginem_release_channel(void *chan) 930 { 931 dma_release_channel(chan); 932 } 933 934 /** 935 * devm_dma_request_chan - try to allocate an exclusive slave channel 936 * @dev: pointer to client device structure 937 * @name: slave channel name 938 * 939 * Returns pointer to appropriate DMA channel on success or an error pointer. 940 * 941 * The operation is managed and will be undone on driver detach. 942 */ 943 944 struct dma_chan *devm_dma_request_chan(struct device *dev, const char *name) 945 { 946 struct dma_chan *chan = dma_request_chan(dev, name); 947 int ret = 0; 948 949 if (!IS_ERR(chan)) 950 ret = devm_add_action_or_reset(dev, dmaenginem_release_channel, chan); 951 952 if (ret) 953 return ERR_PTR(ret); 954 955 return chan; 956 } 957 EXPORT_SYMBOL_GPL(devm_dma_request_chan); 958 959 /** 960 * dmaengine_get - register interest in dma_channels 961 */ 962 void dmaengine_get(void) 963 { 964 struct dma_device *device, *_d; 965 struct dma_chan *chan; 966 int err; 967 968 mutex_lock(&dma_list_mutex); 969 dmaengine_ref_count++; 970 971 /* try to grab channels */ 972 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 973 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 974 continue; 975 list_for_each_entry(chan, &device->channels, device_node) { 976 err = dma_chan_get(chan); 977 if (err == -ENODEV) { 978 /* module removed before we could use it */ 979 list_del_rcu(&device->global_node); 980 break; 981 } else if (err) 982 dev_dbg(chan->device->dev, 983 "%s: failed to get %s: (%d)\n", 984 __func__, dma_chan_name(chan), err); 985 } 986 } 987 988 /* if this is the first reference and there were channels 989 * waiting we need to rebalance to get those channels 990 * incorporated into the channel table 991 */ 992 if (dmaengine_ref_count == 1) 993 dma_channel_rebalance(); 994 mutex_unlock(&dma_list_mutex); 995 } 996 EXPORT_SYMBOL(dmaengine_get); 997 998 /** 999 * dmaengine_put - let DMA drivers be removed when ref_count == 0 1000 */ 1001 void dmaengine_put(void) 1002 { 1003 struct dma_device *device, *_d; 1004 struct dma_chan *chan; 1005 1006 mutex_lock(&dma_list_mutex); 1007 dmaengine_ref_count--; 1008 BUG_ON(dmaengine_ref_count < 0); 1009 /* drop channel references */ 1010 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 1011 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1012 continue; 1013 list_for_each_entry(chan, &device->channels, device_node) 1014 dma_chan_put(chan); 1015 } 1016 mutex_unlock(&dma_list_mutex); 1017 } 1018 EXPORT_SYMBOL(dmaengine_put); 1019 1020 static bool device_has_all_tx_types(struct dma_device *device) 1021 { 1022 /* A device that satisfies this test has channels that will never cause 1023 * an async_tx channel switch event as all possible operation types can 1024 * be handled. 1025 */ 1026 #ifdef CONFIG_ASYNC_TX_DMA 1027 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 1028 return false; 1029 #endif 1030 1031 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 1032 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 1033 return false; 1034 #endif 1035 1036 #if IS_ENABLED(CONFIG_ASYNC_XOR) 1037 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 1038 return false; 1039 1040 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 1041 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 1042 return false; 1043 #endif 1044 #endif 1045 1046 #if IS_ENABLED(CONFIG_ASYNC_PQ) 1047 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 1048 return false; 1049 1050 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 1051 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 1052 return false; 1053 #endif 1054 #endif 1055 1056 return true; 1057 } 1058 1059 static int get_dma_id(struct dma_device *device) 1060 { 1061 int rc = ida_alloc(&dma_ida, GFP_KERNEL); 1062 1063 if (rc < 0) 1064 return rc; 1065 device->dev_id = rc; 1066 return 0; 1067 } 1068 1069 static int __dma_async_device_channel_register(struct dma_device *device, 1070 struct dma_chan *chan, 1071 const char *name) 1072 { 1073 int rc; 1074 1075 chan->local = alloc_percpu(typeof(*chan->local)); 1076 if (!chan->local) 1077 return -ENOMEM; 1078 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 1079 if (!chan->dev) { 1080 rc = -ENOMEM; 1081 goto err_free_local; 1082 } 1083 1084 /* 1085 * When the chan_id is a negative value, we are dynamically adding 1086 * the channel. Otherwise we are static enumerating. 1087 */ 1088 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL); 1089 if (chan->chan_id < 0) { 1090 pr_err("%s: unable to alloc ida for chan: %d\n", 1091 __func__, chan->chan_id); 1092 rc = chan->chan_id; 1093 goto err_free_dev; 1094 } 1095 1096 chan->dev->device.class = &dma_devclass; 1097 chan->dev->device.parent = device->dev; 1098 chan->dev->chan = chan; 1099 chan->dev->dev_id = device->dev_id; 1100 if (!name) 1101 dev_set_name(&chan->dev->device, "dma%dchan%d", device->dev_id, chan->chan_id); 1102 else 1103 dev_set_name(&chan->dev->device, "%s", name); 1104 rc = device_register(&chan->dev->device); 1105 if (rc) 1106 goto err_out_ida; 1107 chan->client_count = 0; 1108 device->chancnt++; 1109 1110 return 0; 1111 1112 err_out_ida: 1113 ida_free(&device->chan_ida, chan->chan_id); 1114 err_free_dev: 1115 kfree(chan->dev); 1116 err_free_local: 1117 free_percpu(chan->local); 1118 chan->local = NULL; 1119 return rc; 1120 } 1121 1122 int dma_async_device_channel_register(struct dma_device *device, 1123 struct dma_chan *chan, 1124 const char *name) 1125 { 1126 int rc; 1127 1128 rc = __dma_async_device_channel_register(device, chan, name); 1129 if (rc < 0) 1130 return rc; 1131 1132 dma_channel_rebalance(); 1133 return 0; 1134 } 1135 EXPORT_SYMBOL_GPL(dma_async_device_channel_register); 1136 1137 static void __dma_async_device_channel_unregister(struct dma_device *device, 1138 struct dma_chan *chan) 1139 { 1140 if (chan->local == NULL) 1141 return; 1142 1143 WARN_ONCE(!device->device_release && chan->client_count, 1144 "%s called while %d clients hold a reference\n", 1145 __func__, chan->client_count); 1146 mutex_lock(&dma_list_mutex); 1147 device->chancnt--; 1148 chan->dev->chan = NULL; 1149 mutex_unlock(&dma_list_mutex); 1150 ida_free(&device->chan_ida, chan->chan_id); 1151 device_unregister(&chan->dev->device); 1152 free_percpu(chan->local); 1153 } 1154 1155 void dma_async_device_channel_unregister(struct dma_device *device, 1156 struct dma_chan *chan) 1157 { 1158 __dma_async_device_channel_unregister(device, chan); 1159 dma_channel_rebalance(); 1160 } 1161 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister); 1162 1163 /** 1164 * dma_async_device_register - registers DMA devices found 1165 * @device: pointer to &struct dma_device 1166 * 1167 * After calling this routine the structure should not be freed except in the 1168 * device_release() callback which will be called after 1169 * dma_async_device_unregister() is called and no further references are taken. 1170 */ 1171 int dma_async_device_register(struct dma_device *device) 1172 { 1173 int rc; 1174 struct dma_chan* chan; 1175 1176 if (!device) 1177 return -ENODEV; 1178 1179 /* validate device routines */ 1180 if (!device->dev) { 1181 pr_err("DMAdevice must have dev\n"); 1182 return -EIO; 1183 } 1184 1185 device->owner = device->dev->driver->owner; 1186 1187 #define CHECK_CAP(_name, _type) \ 1188 { \ 1189 if (dma_has_cap(_type, device->cap_mask) && !device->device_prep_##_name) { \ 1190 dev_err(device->dev, \ 1191 "Device claims capability %s, but op is not defined\n", \ 1192 __stringify(_type)); \ 1193 return -EIO; \ 1194 } \ 1195 } 1196 1197 CHECK_CAP(dma_memcpy, DMA_MEMCPY); 1198 CHECK_CAP(dma_xor, DMA_XOR); 1199 CHECK_CAP(dma_xor_val, DMA_XOR_VAL); 1200 CHECK_CAP(dma_pq, DMA_PQ); 1201 CHECK_CAP(dma_pq_val, DMA_PQ_VAL); 1202 CHECK_CAP(dma_memset, DMA_MEMSET); 1203 CHECK_CAP(dma_interrupt, DMA_INTERRUPT); 1204 CHECK_CAP(dma_cyclic, DMA_CYCLIC); 1205 CHECK_CAP(interleaved_dma, DMA_INTERLEAVE); 1206 1207 #undef CHECK_CAP 1208 1209 if (!device->device_tx_status) { 1210 dev_err(device->dev, "Device tx_status is not defined\n"); 1211 return -EIO; 1212 } 1213 1214 1215 if (!device->device_issue_pending) { 1216 dev_err(device->dev, "Device issue_pending is not defined\n"); 1217 return -EIO; 1218 } 1219 1220 if (!device->device_release) 1221 dev_dbg(device->dev, 1222 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n"); 1223 1224 kref_init(&device->ref); 1225 1226 /* note: this only matters in the 1227 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 1228 */ 1229 if (device_has_all_tx_types(device)) 1230 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 1231 1232 rc = get_dma_id(device); 1233 if (rc != 0) 1234 return rc; 1235 1236 ida_init(&device->chan_ida); 1237 1238 /* represent channels in sysfs. Probably want devs too */ 1239 list_for_each_entry(chan, &device->channels, device_node) { 1240 rc = __dma_async_device_channel_register(device, chan, NULL); 1241 if (rc < 0) 1242 goto err_out; 1243 } 1244 1245 mutex_lock(&dma_list_mutex); 1246 /* take references on public channels */ 1247 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1248 list_for_each_entry(chan, &device->channels, device_node) { 1249 /* if clients are already waiting for channels we need 1250 * to take references on their behalf 1251 */ 1252 if (dma_chan_get(chan) == -ENODEV) { 1253 /* note we can only get here for the first 1254 * channel as the remaining channels are 1255 * guaranteed to get a reference 1256 */ 1257 rc = -ENODEV; 1258 mutex_unlock(&dma_list_mutex); 1259 goto err_out; 1260 } 1261 } 1262 list_add_tail_rcu(&device->global_node, &dma_device_list); 1263 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1264 device->privatecnt++; /* Always private */ 1265 dma_channel_rebalance(); 1266 mutex_unlock(&dma_list_mutex); 1267 1268 dmaengine_debug_register(device); 1269 1270 return 0; 1271 1272 err_out: 1273 /* if we never registered a channel just release the idr */ 1274 if (!device->chancnt) { 1275 ida_free(&dma_ida, device->dev_id); 1276 return rc; 1277 } 1278 1279 list_for_each_entry(chan, &device->channels, device_node) { 1280 if (chan->local == NULL) 1281 continue; 1282 mutex_lock(&dma_list_mutex); 1283 chan->dev->chan = NULL; 1284 mutex_unlock(&dma_list_mutex); 1285 device_unregister(&chan->dev->device); 1286 free_percpu(chan->local); 1287 } 1288 return rc; 1289 } 1290 EXPORT_SYMBOL(dma_async_device_register); 1291 1292 /** 1293 * dma_async_device_unregister - unregister a DMA device 1294 * @device: pointer to &struct dma_device 1295 * 1296 * This routine is called by dma driver exit routines, dmaengine holds module 1297 * references to prevent it being called while channels are in use. 1298 */ 1299 void dma_async_device_unregister(struct dma_device *device) 1300 { 1301 struct dma_chan *chan, *n; 1302 1303 dmaengine_debug_unregister(device); 1304 1305 list_for_each_entry_safe(chan, n, &device->channels, device_node) 1306 __dma_async_device_channel_unregister(device, chan); 1307 1308 mutex_lock(&dma_list_mutex); 1309 /* 1310 * setting DMA_PRIVATE ensures the device being torn down will not 1311 * be used in the channel_table 1312 */ 1313 dma_cap_set(DMA_PRIVATE, device->cap_mask); 1314 dma_channel_rebalance(); 1315 ida_free(&dma_ida, device->dev_id); 1316 dma_device_put(device); 1317 mutex_unlock(&dma_list_mutex); 1318 } 1319 EXPORT_SYMBOL(dma_async_device_unregister); 1320 1321 static void dmaenginem_async_device_unregister(void *device) 1322 { 1323 dma_async_device_unregister(device); 1324 } 1325 1326 /** 1327 * dmaenginem_async_device_register - registers DMA devices found 1328 * @device: pointer to &struct dma_device 1329 * 1330 * The operation is managed and will be undone on driver detach. 1331 */ 1332 int dmaenginem_async_device_register(struct dma_device *device) 1333 { 1334 int ret; 1335 1336 ret = dma_async_device_register(device); 1337 if (ret) 1338 return ret; 1339 1340 return devm_add_action_or_reset(device->dev, dmaenginem_async_device_unregister, device); 1341 } 1342 EXPORT_SYMBOL(dmaenginem_async_device_register); 1343 1344 struct dmaengine_unmap_pool { 1345 struct kmem_cache *cache; 1346 const char *name; 1347 mempool_t *pool; 1348 size_t size; 1349 }; 1350 1351 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1352 static struct dmaengine_unmap_pool unmap_pool[] = { 1353 __UNMAP_POOL(2), 1354 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1355 __UNMAP_POOL(16), 1356 __UNMAP_POOL(128), 1357 __UNMAP_POOL(256), 1358 #endif 1359 }; 1360 1361 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1362 { 1363 int order = get_count_order(nr); 1364 1365 switch (order) { 1366 case 0 ... 1: 1367 return &unmap_pool[0]; 1368 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1369 case 2 ... 4: 1370 return &unmap_pool[1]; 1371 case 5 ... 7: 1372 return &unmap_pool[2]; 1373 case 8: 1374 return &unmap_pool[3]; 1375 #endif 1376 default: 1377 BUG(); 1378 return NULL; 1379 } 1380 } 1381 1382 static void dmaengine_unmap(struct kref *kref) 1383 { 1384 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1385 struct device *dev = unmap->dev; 1386 int cnt, i; 1387 1388 cnt = unmap->to_cnt; 1389 for (i = 0; i < cnt; i++) 1390 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1391 DMA_TO_DEVICE); 1392 cnt += unmap->from_cnt; 1393 for (; i < cnt; i++) 1394 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1395 DMA_FROM_DEVICE); 1396 cnt += unmap->bidi_cnt; 1397 for (; i < cnt; i++) { 1398 if (unmap->addr[i] == 0) 1399 continue; 1400 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1401 DMA_BIDIRECTIONAL); 1402 } 1403 cnt = unmap->map_cnt; 1404 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1405 } 1406 1407 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1408 { 1409 if (unmap) 1410 kref_put(&unmap->kref, dmaengine_unmap); 1411 } 1412 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1413 1414 static void dmaengine_destroy_unmap_pool(void) 1415 { 1416 int i; 1417 1418 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1419 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1420 1421 mempool_destroy(p->pool); 1422 p->pool = NULL; 1423 kmem_cache_destroy(p->cache); 1424 p->cache = NULL; 1425 } 1426 } 1427 1428 static int __init dmaengine_init_unmap_pool(void) 1429 { 1430 int i; 1431 1432 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1433 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1434 size_t size; 1435 1436 size = sizeof(struct dmaengine_unmap_data) + 1437 sizeof(dma_addr_t) * p->size; 1438 1439 p->cache = kmem_cache_create(p->name, size, 0, 1440 SLAB_HWCACHE_ALIGN, NULL); 1441 if (!p->cache) 1442 break; 1443 p->pool = mempool_create_slab_pool(1, p->cache); 1444 if (!p->pool) 1445 break; 1446 } 1447 1448 if (i == ARRAY_SIZE(unmap_pool)) 1449 return 0; 1450 1451 dmaengine_destroy_unmap_pool(); 1452 return -ENOMEM; 1453 } 1454 1455 struct dmaengine_unmap_data * 1456 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1457 { 1458 struct dmaengine_unmap_data *unmap; 1459 1460 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1461 if (!unmap) 1462 return NULL; 1463 1464 memset(unmap, 0, sizeof(*unmap)); 1465 kref_init(&unmap->kref); 1466 unmap->dev = dev; 1467 unmap->map_cnt = nr; 1468 1469 return unmap; 1470 } 1471 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1472 1473 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1474 struct dma_chan *chan) 1475 { 1476 tx->chan = chan; 1477 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1478 spin_lock_init(&tx->lock); 1479 #endif 1480 } 1481 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1482 1483 static inline int desc_check_and_set_metadata_mode( 1484 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode) 1485 { 1486 /* Make sure that the metadata mode is not mixed */ 1487 if (!desc->desc_metadata_mode) { 1488 if (dmaengine_is_metadata_mode_supported(desc->chan, mode)) 1489 desc->desc_metadata_mode = mode; 1490 else 1491 return -ENOTSUPP; 1492 } else if (desc->desc_metadata_mode != mode) { 1493 return -EINVAL; 1494 } 1495 1496 return 0; 1497 } 1498 1499 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1500 void *data, size_t len) 1501 { 1502 int ret; 1503 1504 if (!desc) 1505 return -EINVAL; 1506 1507 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT); 1508 if (ret) 1509 return ret; 1510 1511 if (!desc->metadata_ops || !desc->metadata_ops->attach) 1512 return -ENOTSUPP; 1513 1514 return desc->metadata_ops->attach(desc, data, len); 1515 } 1516 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata); 1517 1518 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1519 size_t *payload_len, size_t *max_len) 1520 { 1521 int ret; 1522 1523 if (!desc) 1524 return ERR_PTR(-EINVAL); 1525 1526 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1527 if (ret) 1528 return ERR_PTR(ret); 1529 1530 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr) 1531 return ERR_PTR(-ENOTSUPP); 1532 1533 return desc->metadata_ops->get_ptr(desc, payload_len, max_len); 1534 } 1535 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr); 1536 1537 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1538 size_t payload_len) 1539 { 1540 int ret; 1541 1542 if (!desc) 1543 return -EINVAL; 1544 1545 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1546 if (ret) 1547 return ret; 1548 1549 if (!desc->metadata_ops || !desc->metadata_ops->set_len) 1550 return -ENOTSUPP; 1551 1552 return desc->metadata_ops->set_len(desc, payload_len); 1553 } 1554 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len); 1555 1556 /** 1557 * dma_wait_for_async_tx - spin wait for a transaction to complete 1558 * @tx: in-flight transaction to wait on 1559 */ 1560 enum dma_status 1561 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1562 { 1563 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1564 1565 if (!tx) 1566 return DMA_COMPLETE; 1567 1568 while (tx->cookie == -EBUSY) { 1569 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1570 dev_err(tx->chan->device->dev, 1571 "%s timeout waiting for descriptor submission\n", 1572 __func__); 1573 return DMA_ERROR; 1574 } 1575 cpu_relax(); 1576 } 1577 return dma_sync_wait(tx->chan, tx->cookie); 1578 } 1579 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1580 1581 /** 1582 * dma_run_dependencies - process dependent operations on the target channel 1583 * @tx: transaction with dependencies 1584 * 1585 * Helper routine for DMA drivers to process (start) dependent operations 1586 * on their target channel. 1587 */ 1588 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1589 { 1590 struct dma_async_tx_descriptor *dep = txd_next(tx); 1591 struct dma_async_tx_descriptor *dep_next; 1592 struct dma_chan *chan; 1593 1594 if (!dep) 1595 return; 1596 1597 /* we'll submit tx->next now, so clear the link */ 1598 txd_clear_next(tx); 1599 chan = dep->chan; 1600 1601 /* keep submitting up until a channel switch is detected 1602 * in that case we will be called again as a result of 1603 * processing the interrupt from async_tx_channel_switch 1604 */ 1605 for (; dep; dep = dep_next) { 1606 txd_lock(dep); 1607 txd_clear_parent(dep); 1608 dep_next = txd_next(dep); 1609 if (dep_next && dep_next->chan == chan) 1610 txd_clear_next(dep); /* ->next will be submitted */ 1611 else 1612 dep_next = NULL; /* submit current dep and terminate */ 1613 txd_unlock(dep); 1614 1615 dep->tx_submit(dep); 1616 } 1617 1618 chan->device->device_issue_pending(chan); 1619 } 1620 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1621 1622 static int __init dma_bus_init(void) 1623 { 1624 int err = dmaengine_init_unmap_pool(); 1625 1626 if (err) 1627 return err; 1628 1629 err = class_register(&dma_devclass); 1630 if (!err) 1631 dmaengine_debugfs_init(); 1632 1633 return err; 1634 } 1635 arch_initcall(dma_bus_init); 1636