xref: /linux/drivers/dma/dmaengine.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps two global lists, dma_device_list and dma_client_list.
35  * Both of these are protected by a mutex, dma_list_mutex.
36  *
37  * Each device has a channels list, which runs unlocked but is never modified
38  * once the device is registered, it's just setup by the driver.
39  *
40  * Each client has a channels list, it's only modified under the client->lock
41  * and in an RCU callback, so it's safe to read under rcu_read_lock().
42  *
43  * Each device has a kref, which is initialized to 1 when the device is
44  * registered. A kref_put is done for each class_device registered.  When the
45  * class_device is released, the coresponding kref_put is done in the release
46  * method. Every time one of the device's channels is allocated to a client,
47  * a kref_get occurs.  When the channel is freed, the coresponding kref_put
48  * happens. The device's release function does a completion, so
49  * unregister_device does a remove event, class_device_unregister, a kref_put
50  * for the first reference, then waits on the completion for all other
51  * references to finish.
52  *
53  * Each channel has an open-coded implementation of Rusty Russell's "bigref,"
54  * with a kref and a per_cpu local_t.  A single reference is set when on an
55  * ADDED event, and removed with a REMOVE event.  Net DMA client takes an
56  * extra reference per outstanding transaction.  The relase function does a
57  * kref_put on the device. -ChrisL
58  */
59 
60 #include <linux/init.h>
61 #include <linux/module.h>
62 #include <linux/device.h>
63 #include <linux/dmaengine.h>
64 #include <linux/hardirq.h>
65 #include <linux/spinlock.h>
66 #include <linux/percpu.h>
67 #include <linux/rcupdate.h>
68 #include <linux/mutex.h>
69 
70 static DEFINE_MUTEX(dma_list_mutex);
71 static LIST_HEAD(dma_device_list);
72 static LIST_HEAD(dma_client_list);
73 
74 /* --- sysfs implementation --- */
75 
76 static ssize_t show_memcpy_count(struct class_device *cd, char *buf)
77 {
78 	struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
79 	unsigned long count = 0;
80 	int i;
81 
82 	for_each_possible_cpu(i)
83 		count += per_cpu_ptr(chan->local, i)->memcpy_count;
84 
85 	return sprintf(buf, "%lu\n", count);
86 }
87 
88 static ssize_t show_bytes_transferred(struct class_device *cd, char *buf)
89 {
90 	struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
91 	unsigned long count = 0;
92 	int i;
93 
94 	for_each_possible_cpu(i)
95 		count += per_cpu_ptr(chan->local, i)->bytes_transferred;
96 
97 	return sprintf(buf, "%lu\n", count);
98 }
99 
100 static ssize_t show_in_use(struct class_device *cd, char *buf)
101 {
102 	struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
103 
104 	return sprintf(buf, "%d\n", (chan->client ? 1 : 0));
105 }
106 
107 static struct class_device_attribute dma_class_attrs[] = {
108 	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
109 	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
110 	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
111 	__ATTR_NULL
112 };
113 
114 static void dma_async_device_cleanup(struct kref *kref);
115 
116 static void dma_class_dev_release(struct class_device *cd)
117 {
118 	struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
119 	kref_put(&chan->device->refcount, dma_async_device_cleanup);
120 }
121 
122 static struct class dma_devclass = {
123 	.name            = "dma",
124 	.class_dev_attrs = dma_class_attrs,
125 	.release = dma_class_dev_release,
126 };
127 
128 /* --- client and device registration --- */
129 
130 /**
131  * dma_client_chan_alloc - try to allocate a channel to a client
132  * @client: &dma_client
133  *
134  * Called with dma_list_mutex held.
135  */
136 static struct dma_chan *dma_client_chan_alloc(struct dma_client *client)
137 {
138 	struct dma_device *device;
139 	struct dma_chan *chan;
140 	unsigned long flags;
141 	int desc;	/* allocated descriptor count */
142 
143 	/* Find a channel, any DMA engine will do */
144 	list_for_each_entry(device, &dma_device_list, global_node) {
145 		list_for_each_entry(chan, &device->channels, device_node) {
146 			if (chan->client)
147 				continue;
148 
149 			desc = chan->device->device_alloc_chan_resources(chan);
150 			if (desc >= 0) {
151 				kref_get(&device->refcount);
152 				kref_init(&chan->refcount);
153 				chan->slow_ref = 0;
154 				INIT_RCU_HEAD(&chan->rcu);
155 				chan->client = client;
156 				spin_lock_irqsave(&client->lock, flags);
157 				list_add_tail_rcu(&chan->client_node,
158 				                  &client->channels);
159 				spin_unlock_irqrestore(&client->lock, flags);
160 				return chan;
161 			}
162 		}
163 	}
164 
165 	return NULL;
166 }
167 
168 /**
169  * dma_chan_cleanup - release a DMA channel's resources
170  * @kref: kernel reference structure that contains the DMA channel device
171  */
172 void dma_chan_cleanup(struct kref *kref)
173 {
174 	struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
175 	chan->device->device_free_chan_resources(chan);
176 	chan->client = NULL;
177 	kref_put(&chan->device->refcount, dma_async_device_cleanup);
178 }
179 
180 static void dma_chan_free_rcu(struct rcu_head *rcu)
181 {
182 	struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
183 	int bias = 0x7FFFFFFF;
184 	int i;
185 	for_each_possible_cpu(i)
186 		bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount);
187 	atomic_sub(bias, &chan->refcount.refcount);
188 	kref_put(&chan->refcount, dma_chan_cleanup);
189 }
190 
191 static void dma_client_chan_free(struct dma_chan *chan)
192 {
193 	atomic_add(0x7FFFFFFF, &chan->refcount.refcount);
194 	chan->slow_ref = 1;
195 	call_rcu(&chan->rcu, dma_chan_free_rcu);
196 }
197 
198 /**
199  * dma_chans_rebalance - reallocate channels to clients
200  *
201  * When the number of DMA channel in the system changes,
202  * channels need to be rebalanced among clients.
203  */
204 static void dma_chans_rebalance(void)
205 {
206 	struct dma_client *client;
207 	struct dma_chan *chan;
208 	unsigned long flags;
209 
210 	mutex_lock(&dma_list_mutex);
211 
212 	list_for_each_entry(client, &dma_client_list, global_node) {
213 		while (client->chans_desired > client->chan_count) {
214 			chan = dma_client_chan_alloc(client);
215 			if (!chan)
216 				break;
217 			client->chan_count++;
218 			client->event_callback(client,
219 	                                       chan,
220 	                                       DMA_RESOURCE_ADDED);
221 		}
222 		while (client->chans_desired < client->chan_count) {
223 			spin_lock_irqsave(&client->lock, flags);
224 			chan = list_entry(client->channels.next,
225 			                  struct dma_chan,
226 			                  client_node);
227 			list_del_rcu(&chan->client_node);
228 			spin_unlock_irqrestore(&client->lock, flags);
229 			client->chan_count--;
230 			client->event_callback(client,
231 			                       chan,
232 			                       DMA_RESOURCE_REMOVED);
233 			dma_client_chan_free(chan);
234 		}
235 	}
236 
237 	mutex_unlock(&dma_list_mutex);
238 }
239 
240 /**
241  * dma_async_client_register - allocate and register a &dma_client
242  * @event_callback: callback for notification of channel addition/removal
243  */
244 struct dma_client *dma_async_client_register(dma_event_callback event_callback)
245 {
246 	struct dma_client *client;
247 
248 	client = kzalloc(sizeof(*client), GFP_KERNEL);
249 	if (!client)
250 		return NULL;
251 
252 	INIT_LIST_HEAD(&client->channels);
253 	spin_lock_init(&client->lock);
254 	client->chans_desired = 0;
255 	client->chan_count = 0;
256 	client->event_callback = event_callback;
257 
258 	mutex_lock(&dma_list_mutex);
259 	list_add_tail(&client->global_node, &dma_client_list);
260 	mutex_unlock(&dma_list_mutex);
261 
262 	return client;
263 }
264 
265 /**
266  * dma_async_client_unregister - unregister a client and free the &dma_client
267  * @client: &dma_client to free
268  *
269  * Force frees any allocated DMA channels, frees the &dma_client memory
270  */
271 void dma_async_client_unregister(struct dma_client *client)
272 {
273 	struct dma_chan *chan;
274 
275 	if (!client)
276 		return;
277 
278 	rcu_read_lock();
279 	list_for_each_entry_rcu(chan, &client->channels, client_node)
280 		dma_client_chan_free(chan);
281 	rcu_read_unlock();
282 
283 	mutex_lock(&dma_list_mutex);
284 	list_del(&client->global_node);
285 	mutex_unlock(&dma_list_mutex);
286 
287 	kfree(client);
288 	dma_chans_rebalance();
289 }
290 
291 /**
292  * dma_async_client_chan_request - request DMA channels
293  * @client: &dma_client
294  * @number: count of DMA channels requested
295  *
296  * Clients call dma_async_client_chan_request() to specify how many
297  * DMA channels they need, 0 to free all currently allocated.
298  * The resulting allocations/frees are indicated to the client via the
299  * event callback.
300  */
301 void dma_async_client_chan_request(struct dma_client *client,
302 			unsigned int number)
303 {
304 	client->chans_desired = number;
305 	dma_chans_rebalance();
306 }
307 
308 /**
309  * dma_async_device_register - registers DMA devices found
310  * @device: &dma_device
311  */
312 int dma_async_device_register(struct dma_device *device)
313 {
314 	static int id;
315 	int chancnt = 0;
316 	struct dma_chan* chan;
317 
318 	if (!device)
319 		return -ENODEV;
320 
321 	init_completion(&device->done);
322 	kref_init(&device->refcount);
323 	device->dev_id = id++;
324 
325 	/* represent channels in sysfs. Probably want devs too */
326 	list_for_each_entry(chan, &device->channels, device_node) {
327 		chan->local = alloc_percpu(typeof(*chan->local));
328 		if (chan->local == NULL)
329 			continue;
330 
331 		chan->chan_id = chancnt++;
332 		chan->class_dev.class = &dma_devclass;
333 		chan->class_dev.dev = NULL;
334 		snprintf(chan->class_dev.class_id, BUS_ID_SIZE, "dma%dchan%d",
335 		         device->dev_id, chan->chan_id);
336 
337 		kref_get(&device->refcount);
338 		class_device_register(&chan->class_dev);
339 	}
340 
341 	mutex_lock(&dma_list_mutex);
342 	list_add_tail(&device->global_node, &dma_device_list);
343 	mutex_unlock(&dma_list_mutex);
344 
345 	dma_chans_rebalance();
346 
347 	return 0;
348 }
349 
350 /**
351  * dma_async_device_cleanup - function called when all references are released
352  * @kref: kernel reference object
353  */
354 static void dma_async_device_cleanup(struct kref *kref)
355 {
356 	struct dma_device *device;
357 
358 	device = container_of(kref, struct dma_device, refcount);
359 	complete(&device->done);
360 }
361 
362 /**
363  * dma_async_device_unregister - unregisters DMA devices
364  * @device: &dma_device
365  */
366 void dma_async_device_unregister(struct dma_device *device)
367 {
368 	struct dma_chan *chan;
369 	unsigned long flags;
370 
371 	mutex_lock(&dma_list_mutex);
372 	list_del(&device->global_node);
373 	mutex_unlock(&dma_list_mutex);
374 
375 	list_for_each_entry(chan, &device->channels, device_node) {
376 		if (chan->client) {
377 			spin_lock_irqsave(&chan->client->lock, flags);
378 			list_del(&chan->client_node);
379 			chan->client->chan_count--;
380 			spin_unlock_irqrestore(&chan->client->lock, flags);
381 			chan->client->event_callback(chan->client,
382 			                             chan,
383 			                             DMA_RESOURCE_REMOVED);
384 			dma_client_chan_free(chan);
385 		}
386 		class_device_unregister(&chan->class_dev);
387 	}
388 	dma_chans_rebalance();
389 
390 	kref_put(&device->refcount, dma_async_device_cleanup);
391 	wait_for_completion(&device->done);
392 }
393 
394 static int __init dma_bus_init(void)
395 {
396 	mutex_init(&dma_list_mutex);
397 	return class_register(&dma_devclass);
398 }
399 
400 subsys_initcall(dma_bus_init);
401 
402 EXPORT_SYMBOL(dma_async_client_register);
403 EXPORT_SYMBOL(dma_async_client_unregister);
404 EXPORT_SYMBOL(dma_async_client_chan_request);
405 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
406 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
407 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
408 EXPORT_SYMBOL(dma_async_memcpy_complete);
409 EXPORT_SYMBOL(dma_async_memcpy_issue_pending);
410 EXPORT_SYMBOL(dma_async_device_register);
411 EXPORT_SYMBOL(dma_async_device_unregister);
412 EXPORT_SYMBOL(dma_chan_cleanup);
413