xref: /linux/drivers/dma/dmaengine.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 
6 /*
7  * This code implements the DMA subsystem. It provides a HW-neutral interface
8  * for other kernel code to use asynchronous memory copy capabilities,
9  * if present, and allows different HW DMA drivers to register as providing
10  * this capability.
11  *
12  * Due to the fact we are accelerating what is already a relatively fast
13  * operation, the code goes to great lengths to avoid additional overhead,
14  * such as locking.
15  *
16  * LOCKING:
17  *
18  * The subsystem keeps a global list of dma_device structs it is protected by a
19  * mutex, dma_list_mutex.
20  *
21  * A subsystem can get access to a channel by calling dmaengine_get() followed
22  * by dma_find_channel(), or if it has need for an exclusive channel it can call
23  * dma_request_channel().  Once a channel is allocated a reference is taken
24  * against its corresponding driver to disable removal.
25  *
26  * Each device has a channels list, which runs unlocked but is never modified
27  * once the device is registered, it's just setup by the driver.
28  *
29  * See Documentation/driver-api/dmaengine for more details
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55 
56 static DEFINE_MUTEX(dma_list_mutex);
57 static DEFINE_IDA(dma_ida);
58 static LIST_HEAD(dma_device_list);
59 static long dmaengine_ref_count;
60 
61 /* --- sysfs implementation --- */
62 
63 #define DMA_SLAVE_NAME	"slave"
64 
65 /**
66  * dev_to_dma_chan - convert a device pointer to its sysfs container object
67  * @dev - device node
68  *
69  * Must be called under dma_list_mutex
70  */
71 static struct dma_chan *dev_to_dma_chan(struct device *dev)
72 {
73 	struct dma_chan_dev *chan_dev;
74 
75 	chan_dev = container_of(dev, typeof(*chan_dev), device);
76 	return chan_dev->chan;
77 }
78 
79 static ssize_t memcpy_count_show(struct device *dev,
80 				 struct device_attribute *attr, char *buf)
81 {
82 	struct dma_chan *chan;
83 	unsigned long count = 0;
84 	int i;
85 	int err;
86 
87 	mutex_lock(&dma_list_mutex);
88 	chan = dev_to_dma_chan(dev);
89 	if (chan) {
90 		for_each_possible_cpu(i)
91 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
92 		err = sprintf(buf, "%lu\n", count);
93 	} else
94 		err = -ENODEV;
95 	mutex_unlock(&dma_list_mutex);
96 
97 	return err;
98 }
99 static DEVICE_ATTR_RO(memcpy_count);
100 
101 static ssize_t bytes_transferred_show(struct device *dev,
102 				      struct device_attribute *attr, char *buf)
103 {
104 	struct dma_chan *chan;
105 	unsigned long count = 0;
106 	int i;
107 	int err;
108 
109 	mutex_lock(&dma_list_mutex);
110 	chan = dev_to_dma_chan(dev);
111 	if (chan) {
112 		for_each_possible_cpu(i)
113 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
114 		err = sprintf(buf, "%lu\n", count);
115 	} else
116 		err = -ENODEV;
117 	mutex_unlock(&dma_list_mutex);
118 
119 	return err;
120 }
121 static DEVICE_ATTR_RO(bytes_transferred);
122 
123 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
124 			   char *buf)
125 {
126 	struct dma_chan *chan;
127 	int err;
128 
129 	mutex_lock(&dma_list_mutex);
130 	chan = dev_to_dma_chan(dev);
131 	if (chan)
132 		err = sprintf(buf, "%d\n", chan->client_count);
133 	else
134 		err = -ENODEV;
135 	mutex_unlock(&dma_list_mutex);
136 
137 	return err;
138 }
139 static DEVICE_ATTR_RO(in_use);
140 
141 static struct attribute *dma_dev_attrs[] = {
142 	&dev_attr_memcpy_count.attr,
143 	&dev_attr_bytes_transferred.attr,
144 	&dev_attr_in_use.attr,
145 	NULL,
146 };
147 ATTRIBUTE_GROUPS(dma_dev);
148 
149 static void chan_dev_release(struct device *dev)
150 {
151 	struct dma_chan_dev *chan_dev;
152 
153 	chan_dev = container_of(dev, typeof(*chan_dev), device);
154 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
155 		ida_free(&dma_ida, chan_dev->dev_id);
156 		kfree(chan_dev->idr_ref);
157 	}
158 	kfree(chan_dev);
159 }
160 
161 static struct class dma_devclass = {
162 	.name		= "dma",
163 	.dev_groups	= dma_dev_groups,
164 	.dev_release	= chan_dev_release,
165 };
166 
167 /* --- client and device registration --- */
168 
169 /**
170  * dma_cap_mask_all - enable iteration over all operation types
171  */
172 static dma_cap_mask_t dma_cap_mask_all;
173 
174 /**
175  * dma_chan_tbl_ent - tracks channel allocations per core/operation
176  * @chan - associated channel for this entry
177  */
178 struct dma_chan_tbl_ent {
179 	struct dma_chan *chan;
180 };
181 
182 /**
183  * channel_table - percpu lookup table for memory-to-memory offload providers
184  */
185 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
186 
187 static int __init dma_channel_table_init(void)
188 {
189 	enum dma_transaction_type cap;
190 	int err = 0;
191 
192 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
193 
194 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
195 	 * but are not associated with an operation so they do not need
196 	 * an entry in the channel_table
197 	 */
198 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
199 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
200 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
201 
202 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
203 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
204 		if (!channel_table[cap]) {
205 			err = -ENOMEM;
206 			break;
207 		}
208 	}
209 
210 	if (err) {
211 		pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
212 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
213 			free_percpu(channel_table[cap]);
214 	}
215 
216 	return err;
217 }
218 arch_initcall(dma_channel_table_init);
219 
220 /**
221  * dma_chan_is_local - returns true if the channel is in the same numa-node as
222  *	the cpu
223  */
224 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
225 {
226 	int node = dev_to_node(chan->device->dev);
227 	return node == NUMA_NO_NODE ||
228 		cpumask_test_cpu(cpu, cpumask_of_node(node));
229 }
230 
231 /**
232  * min_chan - returns the channel with min count and in the same numa-node as
233  *	the cpu
234  * @cap: capability to match
235  * @cpu: cpu index which the channel should be close to
236  *
237  * If some channels are close to the given cpu, the one with the lowest
238  * reference count is returned. Otherwise, cpu is ignored and only the
239  * reference count is taken into account.
240  * Must be called under dma_list_mutex.
241  */
242 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
243 {
244 	struct dma_device *device;
245 	struct dma_chan *chan;
246 	struct dma_chan *min = NULL;
247 	struct dma_chan *localmin = NULL;
248 
249 	list_for_each_entry(device, &dma_device_list, global_node) {
250 		if (!dma_has_cap(cap, device->cap_mask) ||
251 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
252 			continue;
253 		list_for_each_entry(chan, &device->channels, device_node) {
254 			if (!chan->client_count)
255 				continue;
256 			if (!min || chan->table_count < min->table_count)
257 				min = chan;
258 
259 			if (dma_chan_is_local(chan, cpu))
260 				if (!localmin ||
261 				    chan->table_count < localmin->table_count)
262 					localmin = chan;
263 		}
264 	}
265 
266 	chan = localmin ? localmin : min;
267 
268 	if (chan)
269 		chan->table_count++;
270 
271 	return chan;
272 }
273 
274 /**
275  * dma_channel_rebalance - redistribute the available channels
276  *
277  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
278  * operation type) in the SMP case,  and operation isolation (avoid
279  * multi-tasking channels) in the non-SMP case.  Must be called under
280  * dma_list_mutex.
281  */
282 static void dma_channel_rebalance(void)
283 {
284 	struct dma_chan *chan;
285 	struct dma_device *device;
286 	int cpu;
287 	int cap;
288 
289 	/* undo the last distribution */
290 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
291 		for_each_possible_cpu(cpu)
292 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
293 
294 	list_for_each_entry(device, &dma_device_list, global_node) {
295 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
296 			continue;
297 		list_for_each_entry(chan, &device->channels, device_node)
298 			chan->table_count = 0;
299 	}
300 
301 	/* don't populate the channel_table if no clients are available */
302 	if (!dmaengine_ref_count)
303 		return;
304 
305 	/* redistribute available channels */
306 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
307 		for_each_online_cpu(cpu) {
308 			chan = min_chan(cap, cpu);
309 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
310 		}
311 }
312 
313 static int dma_device_satisfies_mask(struct dma_device *device,
314 				     const dma_cap_mask_t *want)
315 {
316 	dma_cap_mask_t has;
317 
318 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
319 		DMA_TX_TYPE_END);
320 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
321 }
322 
323 static struct module *dma_chan_to_owner(struct dma_chan *chan)
324 {
325 	return chan->device->owner;
326 }
327 
328 /**
329  * balance_ref_count - catch up the channel reference count
330  * @chan - channel to balance ->client_count versus dmaengine_ref_count
331  *
332  * balance_ref_count must be called under dma_list_mutex
333  */
334 static void balance_ref_count(struct dma_chan *chan)
335 {
336 	struct module *owner = dma_chan_to_owner(chan);
337 
338 	while (chan->client_count < dmaengine_ref_count) {
339 		__module_get(owner);
340 		chan->client_count++;
341 	}
342 }
343 
344 static void dma_device_release(struct kref *ref)
345 {
346 	struct dma_device *device = container_of(ref, struct dma_device, ref);
347 
348 	list_del_rcu(&device->global_node);
349 	dma_channel_rebalance();
350 
351 	if (device->device_release)
352 		device->device_release(device);
353 }
354 
355 static void dma_device_put(struct dma_device *device)
356 {
357 	lockdep_assert_held(&dma_list_mutex);
358 	kref_put(&device->ref, dma_device_release);
359 }
360 
361 /**
362  * dma_chan_get - try to grab a dma channel's parent driver module
363  * @chan - channel to grab
364  *
365  * Must be called under dma_list_mutex
366  */
367 static int dma_chan_get(struct dma_chan *chan)
368 {
369 	struct module *owner = dma_chan_to_owner(chan);
370 	int ret;
371 
372 	/* The channel is already in use, update client count */
373 	if (chan->client_count) {
374 		__module_get(owner);
375 		goto out;
376 	}
377 
378 	if (!try_module_get(owner))
379 		return -ENODEV;
380 
381 	ret = kref_get_unless_zero(&chan->device->ref);
382 	if (!ret) {
383 		ret = -ENODEV;
384 		goto module_put_out;
385 	}
386 
387 	/* allocate upon first client reference */
388 	if (chan->device->device_alloc_chan_resources) {
389 		ret = chan->device->device_alloc_chan_resources(chan);
390 		if (ret < 0)
391 			goto err_out;
392 	}
393 
394 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
395 		balance_ref_count(chan);
396 
397 out:
398 	chan->client_count++;
399 	return 0;
400 
401 err_out:
402 	dma_device_put(chan->device);
403 module_put_out:
404 	module_put(owner);
405 	return ret;
406 }
407 
408 /**
409  * dma_chan_put - drop a reference to a dma channel's parent driver module
410  * @chan - channel to release
411  *
412  * Must be called under dma_list_mutex
413  */
414 static void dma_chan_put(struct dma_chan *chan)
415 {
416 	/* This channel is not in use, bail out */
417 	if (!chan->client_count)
418 		return;
419 
420 	chan->client_count--;
421 
422 	/* This channel is not in use anymore, free it */
423 	if (!chan->client_count && chan->device->device_free_chan_resources) {
424 		/* Make sure all operations have completed */
425 		dmaengine_synchronize(chan);
426 		chan->device->device_free_chan_resources(chan);
427 	}
428 
429 	/* If the channel is used via a DMA request router, free the mapping */
430 	if (chan->router && chan->router->route_free) {
431 		chan->router->route_free(chan->router->dev, chan->route_data);
432 		chan->router = NULL;
433 		chan->route_data = NULL;
434 	}
435 
436 	dma_device_put(chan->device);
437 	module_put(dma_chan_to_owner(chan));
438 }
439 
440 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
441 {
442 	enum dma_status status;
443 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
444 
445 	dma_async_issue_pending(chan);
446 	do {
447 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
448 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
449 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
450 			return DMA_ERROR;
451 		}
452 		if (status != DMA_IN_PROGRESS)
453 			break;
454 		cpu_relax();
455 	} while (1);
456 
457 	return status;
458 }
459 EXPORT_SYMBOL(dma_sync_wait);
460 
461 /**
462  * dma_find_channel - find a channel to carry out the operation
463  * @tx_type: transaction type
464  */
465 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
466 {
467 	return this_cpu_read(channel_table[tx_type]->chan);
468 }
469 EXPORT_SYMBOL(dma_find_channel);
470 
471 /**
472  * dma_issue_pending_all - flush all pending operations across all channels
473  */
474 void dma_issue_pending_all(void)
475 {
476 	struct dma_device *device;
477 	struct dma_chan *chan;
478 
479 	rcu_read_lock();
480 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
481 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
482 			continue;
483 		list_for_each_entry(chan, &device->channels, device_node)
484 			if (chan->client_count)
485 				device->device_issue_pending(chan);
486 	}
487 	rcu_read_unlock();
488 }
489 EXPORT_SYMBOL(dma_issue_pending_all);
490 
491 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
492 {
493 	struct dma_device *device;
494 
495 	if (!chan || !caps)
496 		return -EINVAL;
497 
498 	device = chan->device;
499 
500 	/* check if the channel supports slave transactions */
501 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
502 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
503 		return -ENXIO;
504 
505 	/*
506 	 * Check whether it reports it uses the generic slave
507 	 * capabilities, if not, that means it doesn't support any
508 	 * kind of slave capabilities reporting.
509 	 */
510 	if (!device->directions)
511 		return -ENXIO;
512 
513 	caps->src_addr_widths = device->src_addr_widths;
514 	caps->dst_addr_widths = device->dst_addr_widths;
515 	caps->directions = device->directions;
516 	caps->max_burst = device->max_burst;
517 	caps->residue_granularity = device->residue_granularity;
518 	caps->descriptor_reuse = device->descriptor_reuse;
519 	caps->cmd_pause = !!device->device_pause;
520 	caps->cmd_resume = !!device->device_resume;
521 	caps->cmd_terminate = !!device->device_terminate_all;
522 
523 	return 0;
524 }
525 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
526 
527 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
528 					  struct dma_device *dev,
529 					  dma_filter_fn fn, void *fn_param)
530 {
531 	struct dma_chan *chan;
532 
533 	if (mask && !dma_device_satisfies_mask(dev, mask)) {
534 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
535 		return NULL;
536 	}
537 	/* devices with multiple channels need special handling as we need to
538 	 * ensure that all channels are either private or public.
539 	 */
540 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
541 		list_for_each_entry(chan, &dev->channels, device_node) {
542 			/* some channels are already publicly allocated */
543 			if (chan->client_count)
544 				return NULL;
545 		}
546 
547 	list_for_each_entry(chan, &dev->channels, device_node) {
548 		if (chan->client_count) {
549 			dev_dbg(dev->dev, "%s: %s busy\n",
550 				 __func__, dma_chan_name(chan));
551 			continue;
552 		}
553 		if (fn && !fn(chan, fn_param)) {
554 			dev_dbg(dev->dev, "%s: %s filter said false\n",
555 				 __func__, dma_chan_name(chan));
556 			continue;
557 		}
558 		return chan;
559 	}
560 
561 	return NULL;
562 }
563 
564 static struct dma_chan *find_candidate(struct dma_device *device,
565 				       const dma_cap_mask_t *mask,
566 				       dma_filter_fn fn, void *fn_param)
567 {
568 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
569 	int err;
570 
571 	if (chan) {
572 		/* Found a suitable channel, try to grab, prep, and return it.
573 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
574 		 * channel will not be published in the general-purpose
575 		 * allocator
576 		 */
577 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
578 		device->privatecnt++;
579 		err = dma_chan_get(chan);
580 
581 		if (err) {
582 			if (err == -ENODEV) {
583 				dev_dbg(device->dev, "%s: %s module removed\n",
584 					__func__, dma_chan_name(chan));
585 				list_del_rcu(&device->global_node);
586 			} else
587 				dev_dbg(device->dev,
588 					"%s: failed to get %s: (%d)\n",
589 					 __func__, dma_chan_name(chan), err);
590 
591 			if (--device->privatecnt == 0)
592 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
593 
594 			chan = ERR_PTR(err);
595 		}
596 	}
597 
598 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
599 }
600 
601 /**
602  * dma_get_slave_channel - try to get specific channel exclusively
603  * @chan: target channel
604  */
605 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
606 {
607 	int err = -EBUSY;
608 
609 	/* lock against __dma_request_channel */
610 	mutex_lock(&dma_list_mutex);
611 
612 	if (chan->client_count == 0) {
613 		struct dma_device *device = chan->device;
614 
615 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
616 		device->privatecnt++;
617 		err = dma_chan_get(chan);
618 		if (err) {
619 			dev_dbg(chan->device->dev,
620 				"%s: failed to get %s: (%d)\n",
621 				__func__, dma_chan_name(chan), err);
622 			chan = NULL;
623 			if (--device->privatecnt == 0)
624 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
625 		}
626 	} else
627 		chan = NULL;
628 
629 	mutex_unlock(&dma_list_mutex);
630 
631 
632 	return chan;
633 }
634 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
635 
636 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
637 {
638 	dma_cap_mask_t mask;
639 	struct dma_chan *chan;
640 
641 	dma_cap_zero(mask);
642 	dma_cap_set(DMA_SLAVE, mask);
643 
644 	/* lock against __dma_request_channel */
645 	mutex_lock(&dma_list_mutex);
646 
647 	chan = find_candidate(device, &mask, NULL, NULL);
648 
649 	mutex_unlock(&dma_list_mutex);
650 
651 	return IS_ERR(chan) ? NULL : chan;
652 }
653 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
654 
655 /**
656  * __dma_request_channel - try to allocate an exclusive channel
657  * @mask: capabilities that the channel must satisfy
658  * @fn: optional callback to disposition available channels
659  * @fn_param: opaque parameter to pass to dma_filter_fn
660  * @np: device node to look for DMA channels
661  *
662  * Returns pointer to appropriate DMA channel on success or NULL.
663  */
664 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
665 				       dma_filter_fn fn, void *fn_param,
666 				       struct device_node *np)
667 {
668 	struct dma_device *device, *_d;
669 	struct dma_chan *chan = NULL;
670 
671 	/* Find a channel */
672 	mutex_lock(&dma_list_mutex);
673 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
674 		/* Finds a DMA controller with matching device node */
675 		if (np && device->dev->of_node && np != device->dev->of_node)
676 			continue;
677 
678 		chan = find_candidate(device, mask, fn, fn_param);
679 		if (!IS_ERR(chan))
680 			break;
681 
682 		chan = NULL;
683 	}
684 	mutex_unlock(&dma_list_mutex);
685 
686 	pr_debug("%s: %s (%s)\n",
687 		 __func__,
688 		 chan ? "success" : "fail",
689 		 chan ? dma_chan_name(chan) : NULL);
690 
691 	return chan;
692 }
693 EXPORT_SYMBOL_GPL(__dma_request_channel);
694 
695 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
696 						    const char *name,
697 						    struct device *dev)
698 {
699 	int i;
700 
701 	if (!device->filter.mapcnt)
702 		return NULL;
703 
704 	for (i = 0; i < device->filter.mapcnt; i++) {
705 		const struct dma_slave_map *map = &device->filter.map[i];
706 
707 		if (!strcmp(map->devname, dev_name(dev)) &&
708 		    !strcmp(map->slave, name))
709 			return map;
710 	}
711 
712 	return NULL;
713 }
714 
715 /**
716  * dma_request_chan - try to allocate an exclusive slave channel
717  * @dev:	pointer to client device structure
718  * @name:	slave channel name
719  *
720  * Returns pointer to appropriate DMA channel on success or an error pointer.
721  */
722 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
723 {
724 	struct dma_device *d, *_d;
725 	struct dma_chan *chan = NULL;
726 
727 	/* If device-tree is present get slave info from here */
728 	if (dev->of_node)
729 		chan = of_dma_request_slave_channel(dev->of_node, name);
730 
731 	/* If device was enumerated by ACPI get slave info from here */
732 	if (has_acpi_companion(dev) && !chan)
733 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
734 
735 	if (PTR_ERR(chan) == -EPROBE_DEFER)
736 		return chan;
737 
738 	if (!IS_ERR_OR_NULL(chan))
739 		goto found;
740 
741 	/* Try to find the channel via the DMA filter map(s) */
742 	mutex_lock(&dma_list_mutex);
743 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
744 		dma_cap_mask_t mask;
745 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
746 
747 		if (!map)
748 			continue;
749 
750 		dma_cap_zero(mask);
751 		dma_cap_set(DMA_SLAVE, mask);
752 
753 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
754 		if (!IS_ERR(chan))
755 			break;
756 	}
757 	mutex_unlock(&dma_list_mutex);
758 
759 	if (IS_ERR_OR_NULL(chan))
760 		return chan ? chan : ERR_PTR(-EPROBE_DEFER);
761 
762 found:
763 	chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
764 	if (!chan->name)
765 		return chan;
766 	chan->slave = dev;
767 
768 	if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
769 			      DMA_SLAVE_NAME))
770 		dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
771 	if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
772 		dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
773 
774 	return chan;
775 }
776 EXPORT_SYMBOL_GPL(dma_request_chan);
777 
778 /**
779  * dma_request_slave_channel - try to allocate an exclusive slave channel
780  * @dev:	pointer to client device structure
781  * @name:	slave channel name
782  *
783  * Returns pointer to appropriate DMA channel on success or NULL.
784  */
785 struct dma_chan *dma_request_slave_channel(struct device *dev,
786 					   const char *name)
787 {
788 	struct dma_chan *ch = dma_request_chan(dev, name);
789 	if (IS_ERR(ch))
790 		return NULL;
791 
792 	return ch;
793 }
794 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
795 
796 /**
797  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
798  * @mask: capabilities that the channel must satisfy
799  *
800  * Returns pointer to appropriate DMA channel on success or an error pointer.
801  */
802 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
803 {
804 	struct dma_chan *chan;
805 
806 	if (!mask)
807 		return ERR_PTR(-ENODEV);
808 
809 	chan = __dma_request_channel(mask, NULL, NULL, NULL);
810 	if (!chan) {
811 		mutex_lock(&dma_list_mutex);
812 		if (list_empty(&dma_device_list))
813 			chan = ERR_PTR(-EPROBE_DEFER);
814 		else
815 			chan = ERR_PTR(-ENODEV);
816 		mutex_unlock(&dma_list_mutex);
817 	}
818 
819 	return chan;
820 }
821 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
822 
823 void dma_release_channel(struct dma_chan *chan)
824 {
825 	mutex_lock(&dma_list_mutex);
826 	WARN_ONCE(chan->client_count != 1,
827 		  "chan reference count %d != 1\n", chan->client_count);
828 	dma_chan_put(chan);
829 	/* drop PRIVATE cap enabled by __dma_request_channel() */
830 	if (--chan->device->privatecnt == 0)
831 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
832 
833 	if (chan->slave) {
834 		sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
835 		sysfs_remove_link(&chan->slave->kobj, chan->name);
836 		kfree(chan->name);
837 		chan->name = NULL;
838 		chan->slave = NULL;
839 	}
840 	mutex_unlock(&dma_list_mutex);
841 }
842 EXPORT_SYMBOL_GPL(dma_release_channel);
843 
844 /**
845  * dmaengine_get - register interest in dma_channels
846  */
847 void dmaengine_get(void)
848 {
849 	struct dma_device *device, *_d;
850 	struct dma_chan *chan;
851 	int err;
852 
853 	mutex_lock(&dma_list_mutex);
854 	dmaengine_ref_count++;
855 
856 	/* try to grab channels */
857 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
858 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
859 			continue;
860 		list_for_each_entry(chan, &device->channels, device_node) {
861 			err = dma_chan_get(chan);
862 			if (err == -ENODEV) {
863 				/* module removed before we could use it */
864 				list_del_rcu(&device->global_node);
865 				break;
866 			} else if (err)
867 				dev_dbg(chan->device->dev,
868 					"%s: failed to get %s: (%d)\n",
869 					__func__, dma_chan_name(chan), err);
870 		}
871 	}
872 
873 	/* if this is the first reference and there were channels
874 	 * waiting we need to rebalance to get those channels
875 	 * incorporated into the channel table
876 	 */
877 	if (dmaengine_ref_count == 1)
878 		dma_channel_rebalance();
879 	mutex_unlock(&dma_list_mutex);
880 }
881 EXPORT_SYMBOL(dmaengine_get);
882 
883 /**
884  * dmaengine_put - let dma drivers be removed when ref_count == 0
885  */
886 void dmaengine_put(void)
887 {
888 	struct dma_device *device, *_d;
889 	struct dma_chan *chan;
890 
891 	mutex_lock(&dma_list_mutex);
892 	dmaengine_ref_count--;
893 	BUG_ON(dmaengine_ref_count < 0);
894 	/* drop channel references */
895 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
896 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
897 			continue;
898 		list_for_each_entry(chan, &device->channels, device_node)
899 			dma_chan_put(chan);
900 	}
901 	mutex_unlock(&dma_list_mutex);
902 }
903 EXPORT_SYMBOL(dmaengine_put);
904 
905 static bool device_has_all_tx_types(struct dma_device *device)
906 {
907 	/* A device that satisfies this test has channels that will never cause
908 	 * an async_tx channel switch event as all possible operation types can
909 	 * be handled.
910 	 */
911 	#ifdef CONFIG_ASYNC_TX_DMA
912 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
913 		return false;
914 	#endif
915 
916 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
917 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
918 		return false;
919 	#endif
920 
921 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
922 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
923 		return false;
924 
925 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
926 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
927 		return false;
928 	#endif
929 	#endif
930 
931 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
932 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
933 		return false;
934 
935 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
936 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
937 		return false;
938 	#endif
939 	#endif
940 
941 	return true;
942 }
943 
944 static int get_dma_id(struct dma_device *device)
945 {
946 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
947 
948 	if (rc < 0)
949 		return rc;
950 	device->dev_id = rc;
951 	return 0;
952 }
953 
954 static int __dma_async_device_channel_register(struct dma_device *device,
955 					       struct dma_chan *chan,
956 					       int chan_id)
957 {
958 	int rc = 0;
959 	int chancnt = device->chancnt;
960 	atomic_t *idr_ref;
961 	struct dma_chan *tchan;
962 
963 	tchan = list_first_entry_or_null(&device->channels,
964 					 struct dma_chan, device_node);
965 	if (!tchan)
966 		return -ENODEV;
967 
968 	if (tchan->dev) {
969 		idr_ref = tchan->dev->idr_ref;
970 	} else {
971 		idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
972 		if (!idr_ref)
973 			return -ENOMEM;
974 		atomic_set(idr_ref, 0);
975 	}
976 
977 	chan->local = alloc_percpu(typeof(*chan->local));
978 	if (!chan->local)
979 		goto err_out;
980 	chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
981 	if (!chan->dev) {
982 		free_percpu(chan->local);
983 		chan->local = NULL;
984 		goto err_out;
985 	}
986 
987 	/*
988 	 * When the chan_id is a negative value, we are dynamically adding
989 	 * the channel. Otherwise we are static enumerating.
990 	 */
991 	chan->chan_id = chan_id < 0 ? chancnt : chan_id;
992 	chan->dev->device.class = &dma_devclass;
993 	chan->dev->device.parent = device->dev;
994 	chan->dev->chan = chan;
995 	chan->dev->idr_ref = idr_ref;
996 	chan->dev->dev_id = device->dev_id;
997 	atomic_inc(idr_ref);
998 	dev_set_name(&chan->dev->device, "dma%dchan%d",
999 		     device->dev_id, chan->chan_id);
1000 
1001 	rc = device_register(&chan->dev->device);
1002 	if (rc)
1003 		goto err_out;
1004 	chan->client_count = 0;
1005 	device->chancnt = chan->chan_id + 1;
1006 
1007 	return 0;
1008 
1009  err_out:
1010 	free_percpu(chan->local);
1011 	kfree(chan->dev);
1012 	if (atomic_dec_return(idr_ref) == 0)
1013 		kfree(idr_ref);
1014 	return rc;
1015 }
1016 
1017 int dma_async_device_channel_register(struct dma_device *device,
1018 				      struct dma_chan *chan)
1019 {
1020 	int rc;
1021 
1022 	rc = __dma_async_device_channel_register(device, chan, -1);
1023 	if (rc < 0)
1024 		return rc;
1025 
1026 	dma_channel_rebalance();
1027 	return 0;
1028 }
1029 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1030 
1031 static void __dma_async_device_channel_unregister(struct dma_device *device,
1032 						  struct dma_chan *chan)
1033 {
1034 	WARN_ONCE(!device->device_release && chan->client_count,
1035 		  "%s called while %d clients hold a reference\n",
1036 		  __func__, chan->client_count);
1037 	mutex_lock(&dma_list_mutex);
1038 	list_del(&chan->device_node);
1039 	device->chancnt--;
1040 	chan->dev->chan = NULL;
1041 	mutex_unlock(&dma_list_mutex);
1042 	device_unregister(&chan->dev->device);
1043 	free_percpu(chan->local);
1044 }
1045 
1046 void dma_async_device_channel_unregister(struct dma_device *device,
1047 					 struct dma_chan *chan)
1048 {
1049 	__dma_async_device_channel_unregister(device, chan);
1050 	dma_channel_rebalance();
1051 }
1052 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1053 
1054 /**
1055  * dma_async_device_register - registers DMA devices found
1056  * @device: &dma_device
1057  *
1058  * After calling this routine the structure should not be freed except in the
1059  * device_release() callback which will be called after
1060  * dma_async_device_unregister() is called and no further references are taken.
1061  */
1062 int dma_async_device_register(struct dma_device *device)
1063 {
1064 	int rc, i = 0;
1065 	struct dma_chan* chan;
1066 
1067 	if (!device)
1068 		return -ENODEV;
1069 
1070 	/* validate device routines */
1071 	if (!device->dev) {
1072 		pr_err("DMAdevice must have dev\n");
1073 		return -EIO;
1074 	}
1075 
1076 	device->owner = device->dev->driver->owner;
1077 
1078 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1079 		dev_err(device->dev,
1080 			"Device claims capability %s, but op is not defined\n",
1081 			"DMA_MEMCPY");
1082 		return -EIO;
1083 	}
1084 
1085 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1086 		dev_err(device->dev,
1087 			"Device claims capability %s, but op is not defined\n",
1088 			"DMA_XOR");
1089 		return -EIO;
1090 	}
1091 
1092 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1093 		dev_err(device->dev,
1094 			"Device claims capability %s, but op is not defined\n",
1095 			"DMA_XOR_VAL");
1096 		return -EIO;
1097 	}
1098 
1099 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1100 		dev_err(device->dev,
1101 			"Device claims capability %s, but op is not defined\n",
1102 			"DMA_PQ");
1103 		return -EIO;
1104 	}
1105 
1106 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1107 		dev_err(device->dev,
1108 			"Device claims capability %s, but op is not defined\n",
1109 			"DMA_PQ_VAL");
1110 		return -EIO;
1111 	}
1112 
1113 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1114 		dev_err(device->dev,
1115 			"Device claims capability %s, but op is not defined\n",
1116 			"DMA_MEMSET");
1117 		return -EIO;
1118 	}
1119 
1120 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1121 		dev_err(device->dev,
1122 			"Device claims capability %s, but op is not defined\n",
1123 			"DMA_INTERRUPT");
1124 		return -EIO;
1125 	}
1126 
1127 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1128 		dev_err(device->dev,
1129 			"Device claims capability %s, but op is not defined\n",
1130 			"DMA_CYCLIC");
1131 		return -EIO;
1132 	}
1133 
1134 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1135 		dev_err(device->dev,
1136 			"Device claims capability %s, but op is not defined\n",
1137 			"DMA_INTERLEAVE");
1138 		return -EIO;
1139 	}
1140 
1141 
1142 	if (!device->device_tx_status) {
1143 		dev_err(device->dev, "Device tx_status is not defined\n");
1144 		return -EIO;
1145 	}
1146 
1147 
1148 	if (!device->device_issue_pending) {
1149 		dev_err(device->dev, "Device issue_pending is not defined\n");
1150 		return -EIO;
1151 	}
1152 
1153 	if (!device->device_release)
1154 		dev_warn(device->dev,
1155 			 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1156 
1157 	kref_init(&device->ref);
1158 
1159 	/* note: this only matters in the
1160 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1161 	 */
1162 	if (device_has_all_tx_types(device))
1163 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1164 
1165 	rc = get_dma_id(device);
1166 	if (rc != 0)
1167 		return rc;
1168 
1169 	/* represent channels in sysfs. Probably want devs too */
1170 	list_for_each_entry(chan, &device->channels, device_node) {
1171 		rc = __dma_async_device_channel_register(device, chan, i++);
1172 		if (rc < 0)
1173 			goto err_out;
1174 	}
1175 
1176 	mutex_lock(&dma_list_mutex);
1177 	/* take references on public channels */
1178 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1179 		list_for_each_entry(chan, &device->channels, device_node) {
1180 			/* if clients are already waiting for channels we need
1181 			 * to take references on their behalf
1182 			 */
1183 			if (dma_chan_get(chan) == -ENODEV) {
1184 				/* note we can only get here for the first
1185 				 * channel as the remaining channels are
1186 				 * guaranteed to get a reference
1187 				 */
1188 				rc = -ENODEV;
1189 				mutex_unlock(&dma_list_mutex);
1190 				goto err_out;
1191 			}
1192 		}
1193 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1194 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1195 		device->privatecnt++;	/* Always private */
1196 	dma_channel_rebalance();
1197 	mutex_unlock(&dma_list_mutex);
1198 
1199 	return 0;
1200 
1201 err_out:
1202 	/* if we never registered a channel just release the idr */
1203 	if (!device->chancnt) {
1204 		ida_free(&dma_ida, device->dev_id);
1205 		return rc;
1206 	}
1207 
1208 	list_for_each_entry(chan, &device->channels, device_node) {
1209 		if (chan->local == NULL)
1210 			continue;
1211 		mutex_lock(&dma_list_mutex);
1212 		chan->dev->chan = NULL;
1213 		mutex_unlock(&dma_list_mutex);
1214 		device_unregister(&chan->dev->device);
1215 		free_percpu(chan->local);
1216 	}
1217 	return rc;
1218 }
1219 EXPORT_SYMBOL(dma_async_device_register);
1220 
1221 /**
1222  * dma_async_device_unregister - unregister a DMA device
1223  * @device: &dma_device
1224  *
1225  * This routine is called by dma driver exit routines, dmaengine holds module
1226  * references to prevent it being called while channels are in use.
1227  */
1228 void dma_async_device_unregister(struct dma_device *device)
1229 {
1230 	struct dma_chan *chan, *n;
1231 
1232 	list_for_each_entry_safe(chan, n, &device->channels, device_node)
1233 		__dma_async_device_channel_unregister(device, chan);
1234 
1235 	mutex_lock(&dma_list_mutex);
1236 	/*
1237 	 * setting DMA_PRIVATE ensures the device being torn down will not
1238 	 * be used in the channel_table
1239 	 */
1240 	dma_cap_set(DMA_PRIVATE, device->cap_mask);
1241 	dma_channel_rebalance();
1242 	dma_device_put(device);
1243 	mutex_unlock(&dma_list_mutex);
1244 }
1245 EXPORT_SYMBOL(dma_async_device_unregister);
1246 
1247 static void dmam_device_release(struct device *dev, void *res)
1248 {
1249 	struct dma_device *device;
1250 
1251 	device = *(struct dma_device **)res;
1252 	dma_async_device_unregister(device);
1253 }
1254 
1255 /**
1256  * dmaenginem_async_device_register - registers DMA devices found
1257  * @device: &dma_device
1258  *
1259  * The operation is managed and will be undone on driver detach.
1260  */
1261 int dmaenginem_async_device_register(struct dma_device *device)
1262 {
1263 	void *p;
1264 	int ret;
1265 
1266 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1267 	if (!p)
1268 		return -ENOMEM;
1269 
1270 	ret = dma_async_device_register(device);
1271 	if (!ret) {
1272 		*(struct dma_device **)p = device;
1273 		devres_add(device->dev, p);
1274 	} else {
1275 		devres_free(p);
1276 	}
1277 
1278 	return ret;
1279 }
1280 EXPORT_SYMBOL(dmaenginem_async_device_register);
1281 
1282 struct dmaengine_unmap_pool {
1283 	struct kmem_cache *cache;
1284 	const char *name;
1285 	mempool_t *pool;
1286 	size_t size;
1287 };
1288 
1289 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1290 static struct dmaengine_unmap_pool unmap_pool[] = {
1291 	__UNMAP_POOL(2),
1292 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1293 	__UNMAP_POOL(16),
1294 	__UNMAP_POOL(128),
1295 	__UNMAP_POOL(256),
1296 	#endif
1297 };
1298 
1299 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1300 {
1301 	int order = get_count_order(nr);
1302 
1303 	switch (order) {
1304 	case 0 ... 1:
1305 		return &unmap_pool[0];
1306 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1307 	case 2 ... 4:
1308 		return &unmap_pool[1];
1309 	case 5 ... 7:
1310 		return &unmap_pool[2];
1311 	case 8:
1312 		return &unmap_pool[3];
1313 #endif
1314 	default:
1315 		BUG();
1316 		return NULL;
1317 	}
1318 }
1319 
1320 static void dmaengine_unmap(struct kref *kref)
1321 {
1322 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1323 	struct device *dev = unmap->dev;
1324 	int cnt, i;
1325 
1326 	cnt = unmap->to_cnt;
1327 	for (i = 0; i < cnt; i++)
1328 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1329 			       DMA_TO_DEVICE);
1330 	cnt += unmap->from_cnt;
1331 	for (; i < cnt; i++)
1332 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1333 			       DMA_FROM_DEVICE);
1334 	cnt += unmap->bidi_cnt;
1335 	for (; i < cnt; i++) {
1336 		if (unmap->addr[i] == 0)
1337 			continue;
1338 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1339 			       DMA_BIDIRECTIONAL);
1340 	}
1341 	cnt = unmap->map_cnt;
1342 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1343 }
1344 
1345 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1346 {
1347 	if (unmap)
1348 		kref_put(&unmap->kref, dmaengine_unmap);
1349 }
1350 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1351 
1352 static void dmaengine_destroy_unmap_pool(void)
1353 {
1354 	int i;
1355 
1356 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1357 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1358 
1359 		mempool_destroy(p->pool);
1360 		p->pool = NULL;
1361 		kmem_cache_destroy(p->cache);
1362 		p->cache = NULL;
1363 	}
1364 }
1365 
1366 static int __init dmaengine_init_unmap_pool(void)
1367 {
1368 	int i;
1369 
1370 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1371 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1372 		size_t size;
1373 
1374 		size = sizeof(struct dmaengine_unmap_data) +
1375 		       sizeof(dma_addr_t) * p->size;
1376 
1377 		p->cache = kmem_cache_create(p->name, size, 0,
1378 					     SLAB_HWCACHE_ALIGN, NULL);
1379 		if (!p->cache)
1380 			break;
1381 		p->pool = mempool_create_slab_pool(1, p->cache);
1382 		if (!p->pool)
1383 			break;
1384 	}
1385 
1386 	if (i == ARRAY_SIZE(unmap_pool))
1387 		return 0;
1388 
1389 	dmaengine_destroy_unmap_pool();
1390 	return -ENOMEM;
1391 }
1392 
1393 struct dmaengine_unmap_data *
1394 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1395 {
1396 	struct dmaengine_unmap_data *unmap;
1397 
1398 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1399 	if (!unmap)
1400 		return NULL;
1401 
1402 	memset(unmap, 0, sizeof(*unmap));
1403 	kref_init(&unmap->kref);
1404 	unmap->dev = dev;
1405 	unmap->map_cnt = nr;
1406 
1407 	return unmap;
1408 }
1409 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1410 
1411 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1412 	struct dma_chan *chan)
1413 {
1414 	tx->chan = chan;
1415 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1416 	spin_lock_init(&tx->lock);
1417 	#endif
1418 }
1419 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1420 
1421 static inline int desc_check_and_set_metadata_mode(
1422 	struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1423 {
1424 	/* Make sure that the metadata mode is not mixed */
1425 	if (!desc->desc_metadata_mode) {
1426 		if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1427 			desc->desc_metadata_mode = mode;
1428 		else
1429 			return -ENOTSUPP;
1430 	} else if (desc->desc_metadata_mode != mode) {
1431 		return -EINVAL;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1438 				   void *data, size_t len)
1439 {
1440 	int ret;
1441 
1442 	if (!desc)
1443 		return -EINVAL;
1444 
1445 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1446 	if (ret)
1447 		return ret;
1448 
1449 	if (!desc->metadata_ops || !desc->metadata_ops->attach)
1450 		return -ENOTSUPP;
1451 
1452 	return desc->metadata_ops->attach(desc, data, len);
1453 }
1454 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1455 
1456 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1457 				      size_t *payload_len, size_t *max_len)
1458 {
1459 	int ret;
1460 
1461 	if (!desc)
1462 		return ERR_PTR(-EINVAL);
1463 
1464 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1465 	if (ret)
1466 		return ERR_PTR(ret);
1467 
1468 	if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1469 		return ERR_PTR(-ENOTSUPP);
1470 
1471 	return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1472 }
1473 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1474 
1475 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1476 				    size_t payload_len)
1477 {
1478 	int ret;
1479 
1480 	if (!desc)
1481 		return -EINVAL;
1482 
1483 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1484 	if (ret)
1485 		return ret;
1486 
1487 	if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1488 		return -ENOTSUPP;
1489 
1490 	return desc->metadata_ops->set_len(desc, payload_len);
1491 }
1492 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1493 
1494 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1495  * @tx: in-flight transaction to wait on
1496  */
1497 enum dma_status
1498 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1499 {
1500 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1501 
1502 	if (!tx)
1503 		return DMA_COMPLETE;
1504 
1505 	while (tx->cookie == -EBUSY) {
1506 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1507 			dev_err(tx->chan->device->dev,
1508 				"%s timeout waiting for descriptor submission\n",
1509 				__func__);
1510 			return DMA_ERROR;
1511 		}
1512 		cpu_relax();
1513 	}
1514 	return dma_sync_wait(tx->chan, tx->cookie);
1515 }
1516 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1517 
1518 /* dma_run_dependencies - helper routine for dma drivers to process
1519  *	(start) dependent operations on their target channel
1520  * @tx: transaction with dependencies
1521  */
1522 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1523 {
1524 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1525 	struct dma_async_tx_descriptor *dep_next;
1526 	struct dma_chan *chan;
1527 
1528 	if (!dep)
1529 		return;
1530 
1531 	/* we'll submit tx->next now, so clear the link */
1532 	txd_clear_next(tx);
1533 	chan = dep->chan;
1534 
1535 	/* keep submitting up until a channel switch is detected
1536 	 * in that case we will be called again as a result of
1537 	 * processing the interrupt from async_tx_channel_switch
1538 	 */
1539 	for (; dep; dep = dep_next) {
1540 		txd_lock(dep);
1541 		txd_clear_parent(dep);
1542 		dep_next = txd_next(dep);
1543 		if (dep_next && dep_next->chan == chan)
1544 			txd_clear_next(dep); /* ->next will be submitted */
1545 		else
1546 			dep_next = NULL; /* submit current dep and terminate */
1547 		txd_unlock(dep);
1548 
1549 		dep->tx_submit(dep);
1550 	}
1551 
1552 	chan->device->device_issue_pending(chan);
1553 }
1554 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1555 
1556 static int __init dma_bus_init(void)
1557 {
1558 	int err = dmaengine_init_unmap_pool();
1559 
1560 	if (err)
1561 		return err;
1562 	return class_register(&dma_devclass);
1563 }
1564 arch_initcall(dma_bus_init);
1565