xref: /linux/drivers/dma/dmaengine.c (revision 08b5fa819970c318e58ab638f497633c25971813)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 
18 /*
19  * This code implements the DMA subsystem. It provides a HW-neutral interface
20  * for other kernel code to use asynchronous memory copy capabilities,
21  * if present, and allows different HW DMA drivers to register as providing
22  * this capability.
23  *
24  * Due to the fact we are accelerating what is already a relatively fast
25  * operation, the code goes to great lengths to avoid additional overhead,
26  * such as locking.
27  *
28  * LOCKING:
29  *
30  * The subsystem keeps a global list of dma_device structs it is protected by a
31  * mutex, dma_list_mutex.
32  *
33  * A subsystem can get access to a channel by calling dmaengine_get() followed
34  * by dma_find_channel(), or if it has need for an exclusive channel it can call
35  * dma_request_channel().  Once a channel is allocated a reference is taken
36  * against its corresponding driver to disable removal.
37  *
38  * Each device has a channels list, which runs unlocked but is never modified
39  * once the device is registered, it's just setup by the driver.
40  *
41  * See Documentation/driver-api/dmaengine for more details
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66 
67 static DEFINE_MUTEX(dma_list_mutex);
68 static DEFINE_IDA(dma_ida);
69 static LIST_HEAD(dma_device_list);
70 static long dmaengine_ref_count;
71 
72 /* --- sysfs implementation --- */
73 
74 /**
75  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
76  * @dev - device node
77  *
78  * Must be called under dma_list_mutex
79  */
80 static struct dma_chan *dev_to_dma_chan(struct device *dev)
81 {
82 	struct dma_chan_dev *chan_dev;
83 
84 	chan_dev = container_of(dev, typeof(*chan_dev), device);
85 	return chan_dev->chan;
86 }
87 
88 static ssize_t memcpy_count_show(struct device *dev,
89 				 struct device_attribute *attr, char *buf)
90 {
91 	struct dma_chan *chan;
92 	unsigned long count = 0;
93 	int i;
94 	int err;
95 
96 	mutex_lock(&dma_list_mutex);
97 	chan = dev_to_dma_chan(dev);
98 	if (chan) {
99 		for_each_possible_cpu(i)
100 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
101 		err = sprintf(buf, "%lu\n", count);
102 	} else
103 		err = -ENODEV;
104 	mutex_unlock(&dma_list_mutex);
105 
106 	return err;
107 }
108 static DEVICE_ATTR_RO(memcpy_count);
109 
110 static ssize_t bytes_transferred_show(struct device *dev,
111 				      struct device_attribute *attr, char *buf)
112 {
113 	struct dma_chan *chan;
114 	unsigned long count = 0;
115 	int i;
116 	int err;
117 
118 	mutex_lock(&dma_list_mutex);
119 	chan = dev_to_dma_chan(dev);
120 	if (chan) {
121 		for_each_possible_cpu(i)
122 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 		err = sprintf(buf, "%lu\n", count);
124 	} else
125 		err = -ENODEV;
126 	mutex_unlock(&dma_list_mutex);
127 
128 	return err;
129 }
130 static DEVICE_ATTR_RO(bytes_transferred);
131 
132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
133 			   char *buf)
134 {
135 	struct dma_chan *chan;
136 	int err;
137 
138 	mutex_lock(&dma_list_mutex);
139 	chan = dev_to_dma_chan(dev);
140 	if (chan)
141 		err = sprintf(buf, "%d\n", chan->client_count);
142 	else
143 		err = -ENODEV;
144 	mutex_unlock(&dma_list_mutex);
145 
146 	return err;
147 }
148 static DEVICE_ATTR_RO(in_use);
149 
150 static struct attribute *dma_dev_attrs[] = {
151 	&dev_attr_memcpy_count.attr,
152 	&dev_attr_bytes_transferred.attr,
153 	&dev_attr_in_use.attr,
154 	NULL,
155 };
156 ATTRIBUTE_GROUPS(dma_dev);
157 
158 static void chan_dev_release(struct device *dev)
159 {
160 	struct dma_chan_dev *chan_dev;
161 
162 	chan_dev = container_of(dev, typeof(*chan_dev), device);
163 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
164 		mutex_lock(&dma_list_mutex);
165 		ida_remove(&dma_ida, chan_dev->dev_id);
166 		mutex_unlock(&dma_list_mutex);
167 		kfree(chan_dev->idr_ref);
168 	}
169 	kfree(chan_dev);
170 }
171 
172 static struct class dma_devclass = {
173 	.name		= "dma",
174 	.dev_groups	= dma_dev_groups,
175 	.dev_release	= chan_dev_release,
176 };
177 
178 /* --- client and device registration --- */
179 
180 #define dma_device_satisfies_mask(device, mask) \
181 	__dma_device_satisfies_mask((device), &(mask))
182 static int
183 __dma_device_satisfies_mask(struct dma_device *device,
184 			    const dma_cap_mask_t *want)
185 {
186 	dma_cap_mask_t has;
187 
188 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
189 		DMA_TX_TYPE_END);
190 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
191 }
192 
193 static struct module *dma_chan_to_owner(struct dma_chan *chan)
194 {
195 	return chan->device->dev->driver->owner;
196 }
197 
198 /**
199  * balance_ref_count - catch up the channel reference count
200  * @chan - channel to balance ->client_count versus dmaengine_ref_count
201  *
202  * balance_ref_count must be called under dma_list_mutex
203  */
204 static void balance_ref_count(struct dma_chan *chan)
205 {
206 	struct module *owner = dma_chan_to_owner(chan);
207 
208 	while (chan->client_count < dmaengine_ref_count) {
209 		__module_get(owner);
210 		chan->client_count++;
211 	}
212 }
213 
214 /**
215  * dma_chan_get - try to grab a dma channel's parent driver module
216  * @chan - channel to grab
217  *
218  * Must be called under dma_list_mutex
219  */
220 static int dma_chan_get(struct dma_chan *chan)
221 {
222 	struct module *owner = dma_chan_to_owner(chan);
223 	int ret;
224 
225 	/* The channel is already in use, update client count */
226 	if (chan->client_count) {
227 		__module_get(owner);
228 		goto out;
229 	}
230 
231 	if (!try_module_get(owner))
232 		return -ENODEV;
233 
234 	/* allocate upon first client reference */
235 	if (chan->device->device_alloc_chan_resources) {
236 		ret = chan->device->device_alloc_chan_resources(chan);
237 		if (ret < 0)
238 			goto err_out;
239 	}
240 
241 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
242 		balance_ref_count(chan);
243 
244 out:
245 	chan->client_count++;
246 	return 0;
247 
248 err_out:
249 	module_put(owner);
250 	return ret;
251 }
252 
253 /**
254  * dma_chan_put - drop a reference to a dma channel's parent driver module
255  * @chan - channel to release
256  *
257  * Must be called under dma_list_mutex
258  */
259 static void dma_chan_put(struct dma_chan *chan)
260 {
261 	/* This channel is not in use, bail out */
262 	if (!chan->client_count)
263 		return;
264 
265 	chan->client_count--;
266 	module_put(dma_chan_to_owner(chan));
267 
268 	/* This channel is not in use anymore, free it */
269 	if (!chan->client_count && chan->device->device_free_chan_resources) {
270 		/* Make sure all operations have completed */
271 		dmaengine_synchronize(chan);
272 		chan->device->device_free_chan_resources(chan);
273 	}
274 
275 	/* If the channel is used via a DMA request router, free the mapping */
276 	if (chan->router && chan->router->route_free) {
277 		chan->router->route_free(chan->router->dev, chan->route_data);
278 		chan->router = NULL;
279 		chan->route_data = NULL;
280 	}
281 }
282 
283 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
284 {
285 	enum dma_status status;
286 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
287 
288 	dma_async_issue_pending(chan);
289 	do {
290 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
291 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
292 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
293 			return DMA_ERROR;
294 		}
295 		if (status != DMA_IN_PROGRESS)
296 			break;
297 		cpu_relax();
298 	} while (1);
299 
300 	return status;
301 }
302 EXPORT_SYMBOL(dma_sync_wait);
303 
304 /**
305  * dma_cap_mask_all - enable iteration over all operation types
306  */
307 static dma_cap_mask_t dma_cap_mask_all;
308 
309 /**
310  * dma_chan_tbl_ent - tracks channel allocations per core/operation
311  * @chan - associated channel for this entry
312  */
313 struct dma_chan_tbl_ent {
314 	struct dma_chan *chan;
315 };
316 
317 /**
318  * channel_table - percpu lookup table for memory-to-memory offload providers
319  */
320 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
321 
322 static int __init dma_channel_table_init(void)
323 {
324 	enum dma_transaction_type cap;
325 	int err = 0;
326 
327 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
328 
329 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
330 	 * but are not associated with an operation so they do not need
331 	 * an entry in the channel_table
332 	 */
333 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
334 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
335 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
336 
337 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
338 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
339 		if (!channel_table[cap]) {
340 			err = -ENOMEM;
341 			break;
342 		}
343 	}
344 
345 	if (err) {
346 		pr_err("initialization failure\n");
347 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
348 			free_percpu(channel_table[cap]);
349 	}
350 
351 	return err;
352 }
353 arch_initcall(dma_channel_table_init);
354 
355 /**
356  * dma_find_channel - find a channel to carry out the operation
357  * @tx_type: transaction type
358  */
359 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
360 {
361 	return this_cpu_read(channel_table[tx_type]->chan);
362 }
363 EXPORT_SYMBOL(dma_find_channel);
364 
365 /**
366  * dma_issue_pending_all - flush all pending operations across all channels
367  */
368 void dma_issue_pending_all(void)
369 {
370 	struct dma_device *device;
371 	struct dma_chan *chan;
372 
373 	rcu_read_lock();
374 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
375 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
376 			continue;
377 		list_for_each_entry(chan, &device->channels, device_node)
378 			if (chan->client_count)
379 				device->device_issue_pending(chan);
380 	}
381 	rcu_read_unlock();
382 }
383 EXPORT_SYMBOL(dma_issue_pending_all);
384 
385 /**
386  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
387  */
388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
389 {
390 	int node = dev_to_node(chan->device->dev);
391 	return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
392 }
393 
394 /**
395  * min_chan - returns the channel with min count and in the same numa-node as the cpu
396  * @cap: capability to match
397  * @cpu: cpu index which the channel should be close to
398  *
399  * If some channels are close to the given cpu, the one with the lowest
400  * reference count is returned. Otherwise, cpu is ignored and only the
401  * reference count is taken into account.
402  * Must be called under dma_list_mutex.
403  */
404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
405 {
406 	struct dma_device *device;
407 	struct dma_chan *chan;
408 	struct dma_chan *min = NULL;
409 	struct dma_chan *localmin = NULL;
410 
411 	list_for_each_entry(device, &dma_device_list, global_node) {
412 		if (!dma_has_cap(cap, device->cap_mask) ||
413 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
414 			continue;
415 		list_for_each_entry(chan, &device->channels, device_node) {
416 			if (!chan->client_count)
417 				continue;
418 			if (!min || chan->table_count < min->table_count)
419 				min = chan;
420 
421 			if (dma_chan_is_local(chan, cpu))
422 				if (!localmin ||
423 				    chan->table_count < localmin->table_count)
424 					localmin = chan;
425 		}
426 	}
427 
428 	chan = localmin ? localmin : min;
429 
430 	if (chan)
431 		chan->table_count++;
432 
433 	return chan;
434 }
435 
436 /**
437  * dma_channel_rebalance - redistribute the available channels
438  *
439  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
440  * operation type) in the SMP case,  and operation isolation (avoid
441  * multi-tasking channels) in the non-SMP case.  Must be called under
442  * dma_list_mutex.
443  */
444 static void dma_channel_rebalance(void)
445 {
446 	struct dma_chan *chan;
447 	struct dma_device *device;
448 	int cpu;
449 	int cap;
450 
451 	/* undo the last distribution */
452 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
453 		for_each_possible_cpu(cpu)
454 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
455 
456 	list_for_each_entry(device, &dma_device_list, global_node) {
457 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
458 			continue;
459 		list_for_each_entry(chan, &device->channels, device_node)
460 			chan->table_count = 0;
461 	}
462 
463 	/* don't populate the channel_table if no clients are available */
464 	if (!dmaengine_ref_count)
465 		return;
466 
467 	/* redistribute available channels */
468 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
469 		for_each_online_cpu(cpu) {
470 			chan = min_chan(cap, cpu);
471 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
472 		}
473 }
474 
475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
476 {
477 	struct dma_device *device;
478 
479 	if (!chan || !caps)
480 		return -EINVAL;
481 
482 	device = chan->device;
483 
484 	/* check if the channel supports slave transactions */
485 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
486 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
487 		return -ENXIO;
488 
489 	/*
490 	 * Check whether it reports it uses the generic slave
491 	 * capabilities, if not, that means it doesn't support any
492 	 * kind of slave capabilities reporting.
493 	 */
494 	if (!device->directions)
495 		return -ENXIO;
496 
497 	caps->src_addr_widths = device->src_addr_widths;
498 	caps->dst_addr_widths = device->dst_addr_widths;
499 	caps->directions = device->directions;
500 	caps->max_burst = device->max_burst;
501 	caps->residue_granularity = device->residue_granularity;
502 	caps->descriptor_reuse = device->descriptor_reuse;
503 	caps->cmd_pause = !!device->device_pause;
504 	caps->cmd_resume = !!device->device_resume;
505 	caps->cmd_terminate = !!device->device_terminate_all;
506 
507 	return 0;
508 }
509 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
510 
511 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
512 					  struct dma_device *dev,
513 					  dma_filter_fn fn, void *fn_param)
514 {
515 	struct dma_chan *chan;
516 
517 	if (mask && !__dma_device_satisfies_mask(dev, mask)) {
518 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
519 		return NULL;
520 	}
521 	/* devices with multiple channels need special handling as we need to
522 	 * ensure that all channels are either private or public.
523 	 */
524 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
525 		list_for_each_entry(chan, &dev->channels, device_node) {
526 			/* some channels are already publicly allocated */
527 			if (chan->client_count)
528 				return NULL;
529 		}
530 
531 	list_for_each_entry(chan, &dev->channels, device_node) {
532 		if (chan->client_count) {
533 			dev_dbg(dev->dev, "%s: %s busy\n",
534 				 __func__, dma_chan_name(chan));
535 			continue;
536 		}
537 		if (fn && !fn(chan, fn_param)) {
538 			dev_dbg(dev->dev, "%s: %s filter said false\n",
539 				 __func__, dma_chan_name(chan));
540 			continue;
541 		}
542 		return chan;
543 	}
544 
545 	return NULL;
546 }
547 
548 static struct dma_chan *find_candidate(struct dma_device *device,
549 				       const dma_cap_mask_t *mask,
550 				       dma_filter_fn fn, void *fn_param)
551 {
552 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
553 	int err;
554 
555 	if (chan) {
556 		/* Found a suitable channel, try to grab, prep, and return it.
557 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
558 		 * channel will not be published in the general-purpose
559 		 * allocator
560 		 */
561 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
562 		device->privatecnt++;
563 		err = dma_chan_get(chan);
564 
565 		if (err) {
566 			if (err == -ENODEV) {
567 				dev_dbg(device->dev, "%s: %s module removed\n",
568 					__func__, dma_chan_name(chan));
569 				list_del_rcu(&device->global_node);
570 			} else
571 				dev_dbg(device->dev,
572 					"%s: failed to get %s: (%d)\n",
573 					 __func__, dma_chan_name(chan), err);
574 
575 			if (--device->privatecnt == 0)
576 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
577 
578 			chan = ERR_PTR(err);
579 		}
580 	}
581 
582 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
583 }
584 
585 /**
586  * dma_get_slave_channel - try to get specific channel exclusively
587  * @chan: target channel
588  */
589 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
590 {
591 	int err = -EBUSY;
592 
593 	/* lock against __dma_request_channel */
594 	mutex_lock(&dma_list_mutex);
595 
596 	if (chan->client_count == 0) {
597 		struct dma_device *device = chan->device;
598 
599 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
600 		device->privatecnt++;
601 		err = dma_chan_get(chan);
602 		if (err) {
603 			dev_dbg(chan->device->dev,
604 				"%s: failed to get %s: (%d)\n",
605 				__func__, dma_chan_name(chan), err);
606 			chan = NULL;
607 			if (--device->privatecnt == 0)
608 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
609 		}
610 	} else
611 		chan = NULL;
612 
613 	mutex_unlock(&dma_list_mutex);
614 
615 
616 	return chan;
617 }
618 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
619 
620 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
621 {
622 	dma_cap_mask_t mask;
623 	struct dma_chan *chan;
624 
625 	dma_cap_zero(mask);
626 	dma_cap_set(DMA_SLAVE, mask);
627 
628 	/* lock against __dma_request_channel */
629 	mutex_lock(&dma_list_mutex);
630 
631 	chan = find_candidate(device, &mask, NULL, NULL);
632 
633 	mutex_unlock(&dma_list_mutex);
634 
635 	return IS_ERR(chan) ? NULL : chan;
636 }
637 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
638 
639 /**
640  * __dma_request_channel - try to allocate an exclusive channel
641  * @mask: capabilities that the channel must satisfy
642  * @fn: optional callback to disposition available channels
643  * @fn_param: opaque parameter to pass to dma_filter_fn
644  *
645  * Returns pointer to appropriate DMA channel on success or NULL.
646  */
647 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
648 				       dma_filter_fn fn, void *fn_param)
649 {
650 	struct dma_device *device, *_d;
651 	struct dma_chan *chan = NULL;
652 
653 	/* Find a channel */
654 	mutex_lock(&dma_list_mutex);
655 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
656 		chan = find_candidate(device, mask, fn, fn_param);
657 		if (!IS_ERR(chan))
658 			break;
659 
660 		chan = NULL;
661 	}
662 	mutex_unlock(&dma_list_mutex);
663 
664 	pr_debug("%s: %s (%s)\n",
665 		 __func__,
666 		 chan ? "success" : "fail",
667 		 chan ? dma_chan_name(chan) : NULL);
668 
669 	return chan;
670 }
671 EXPORT_SYMBOL_GPL(__dma_request_channel);
672 
673 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
674 						    const char *name,
675 						    struct device *dev)
676 {
677 	int i;
678 
679 	if (!device->filter.mapcnt)
680 		return NULL;
681 
682 	for (i = 0; i < device->filter.mapcnt; i++) {
683 		const struct dma_slave_map *map = &device->filter.map[i];
684 
685 		if (!strcmp(map->devname, dev_name(dev)) &&
686 		    !strcmp(map->slave, name))
687 			return map;
688 	}
689 
690 	return NULL;
691 }
692 
693 /**
694  * dma_request_chan - try to allocate an exclusive slave channel
695  * @dev:	pointer to client device structure
696  * @name:	slave channel name
697  *
698  * Returns pointer to appropriate DMA channel on success or an error pointer.
699  */
700 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
701 {
702 	struct dma_device *d, *_d;
703 	struct dma_chan *chan = NULL;
704 
705 	/* If device-tree is present get slave info from here */
706 	if (dev->of_node)
707 		chan = of_dma_request_slave_channel(dev->of_node, name);
708 
709 	/* If device was enumerated by ACPI get slave info from here */
710 	if (has_acpi_companion(dev) && !chan)
711 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
712 
713 	if (chan) {
714 		/* Valid channel found or requester need to be deferred */
715 		if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
716 			return chan;
717 	}
718 
719 	/* Try to find the channel via the DMA filter map(s) */
720 	mutex_lock(&dma_list_mutex);
721 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
722 		dma_cap_mask_t mask;
723 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
724 
725 		if (!map)
726 			continue;
727 
728 		dma_cap_zero(mask);
729 		dma_cap_set(DMA_SLAVE, mask);
730 
731 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
732 		if (!IS_ERR(chan))
733 			break;
734 	}
735 	mutex_unlock(&dma_list_mutex);
736 
737 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
738 }
739 EXPORT_SYMBOL_GPL(dma_request_chan);
740 
741 /**
742  * dma_request_slave_channel - try to allocate an exclusive slave channel
743  * @dev:	pointer to client device structure
744  * @name:	slave channel name
745  *
746  * Returns pointer to appropriate DMA channel on success or NULL.
747  */
748 struct dma_chan *dma_request_slave_channel(struct device *dev,
749 					   const char *name)
750 {
751 	struct dma_chan *ch = dma_request_chan(dev, name);
752 	if (IS_ERR(ch))
753 		return NULL;
754 
755 	return ch;
756 }
757 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
758 
759 /**
760  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
761  * @mask: capabilities that the channel must satisfy
762  *
763  * Returns pointer to appropriate DMA channel on success or an error pointer.
764  */
765 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
766 {
767 	struct dma_chan *chan;
768 
769 	if (!mask)
770 		return ERR_PTR(-ENODEV);
771 
772 	chan = __dma_request_channel(mask, NULL, NULL);
773 	if (!chan) {
774 		mutex_lock(&dma_list_mutex);
775 		if (list_empty(&dma_device_list))
776 			chan = ERR_PTR(-EPROBE_DEFER);
777 		else
778 			chan = ERR_PTR(-ENODEV);
779 		mutex_unlock(&dma_list_mutex);
780 	}
781 
782 	return chan;
783 }
784 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
785 
786 void dma_release_channel(struct dma_chan *chan)
787 {
788 	mutex_lock(&dma_list_mutex);
789 	WARN_ONCE(chan->client_count != 1,
790 		  "chan reference count %d != 1\n", chan->client_count);
791 	dma_chan_put(chan);
792 	/* drop PRIVATE cap enabled by __dma_request_channel() */
793 	if (--chan->device->privatecnt == 0)
794 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
795 	mutex_unlock(&dma_list_mutex);
796 }
797 EXPORT_SYMBOL_GPL(dma_release_channel);
798 
799 /**
800  * dmaengine_get - register interest in dma_channels
801  */
802 void dmaengine_get(void)
803 {
804 	struct dma_device *device, *_d;
805 	struct dma_chan *chan;
806 	int err;
807 
808 	mutex_lock(&dma_list_mutex);
809 	dmaengine_ref_count++;
810 
811 	/* try to grab channels */
812 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
813 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
814 			continue;
815 		list_for_each_entry(chan, &device->channels, device_node) {
816 			err = dma_chan_get(chan);
817 			if (err == -ENODEV) {
818 				/* module removed before we could use it */
819 				list_del_rcu(&device->global_node);
820 				break;
821 			} else if (err)
822 				dev_dbg(chan->device->dev,
823 					"%s: failed to get %s: (%d)\n",
824 					__func__, dma_chan_name(chan), err);
825 		}
826 	}
827 
828 	/* if this is the first reference and there were channels
829 	 * waiting we need to rebalance to get those channels
830 	 * incorporated into the channel table
831 	 */
832 	if (dmaengine_ref_count == 1)
833 		dma_channel_rebalance();
834 	mutex_unlock(&dma_list_mutex);
835 }
836 EXPORT_SYMBOL(dmaengine_get);
837 
838 /**
839  * dmaengine_put - let dma drivers be removed when ref_count == 0
840  */
841 void dmaengine_put(void)
842 {
843 	struct dma_device *device;
844 	struct dma_chan *chan;
845 
846 	mutex_lock(&dma_list_mutex);
847 	dmaengine_ref_count--;
848 	BUG_ON(dmaengine_ref_count < 0);
849 	/* drop channel references */
850 	list_for_each_entry(device, &dma_device_list, global_node) {
851 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
852 			continue;
853 		list_for_each_entry(chan, &device->channels, device_node)
854 			dma_chan_put(chan);
855 	}
856 	mutex_unlock(&dma_list_mutex);
857 }
858 EXPORT_SYMBOL(dmaengine_put);
859 
860 static bool device_has_all_tx_types(struct dma_device *device)
861 {
862 	/* A device that satisfies this test has channels that will never cause
863 	 * an async_tx channel switch event as all possible operation types can
864 	 * be handled.
865 	 */
866 	#ifdef CONFIG_ASYNC_TX_DMA
867 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
868 		return false;
869 	#endif
870 
871 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
872 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
873 		return false;
874 	#endif
875 
876 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
877 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
878 		return false;
879 
880 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
881 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
882 		return false;
883 	#endif
884 	#endif
885 
886 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
887 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
888 		return false;
889 
890 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
891 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
892 		return false;
893 	#endif
894 	#endif
895 
896 	return true;
897 }
898 
899 static int get_dma_id(struct dma_device *device)
900 {
901 	int rc;
902 
903 	do {
904 		if (!ida_pre_get(&dma_ida, GFP_KERNEL))
905 			return -ENOMEM;
906 		mutex_lock(&dma_list_mutex);
907 		rc = ida_get_new(&dma_ida, &device->dev_id);
908 		mutex_unlock(&dma_list_mutex);
909 	} while (rc == -EAGAIN);
910 
911 	return rc;
912 }
913 
914 /**
915  * dma_async_device_register - registers DMA devices found
916  * @device: &dma_device
917  */
918 int dma_async_device_register(struct dma_device *device)
919 {
920 	int chancnt = 0, rc;
921 	struct dma_chan* chan;
922 	atomic_t *idr_ref;
923 
924 	if (!device)
925 		return -ENODEV;
926 
927 	/* validate device routines */
928 	if (!device->dev) {
929 		pr_err("DMAdevice must have dev\n");
930 		return -EIO;
931 	}
932 
933 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
934 		dev_err(device->dev,
935 			"Device claims capability %s, but op is not defined\n",
936 			"DMA_MEMCPY");
937 		return -EIO;
938 	}
939 
940 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
941 		dev_err(device->dev,
942 			"Device claims capability %s, but op is not defined\n",
943 			"DMA_XOR");
944 		return -EIO;
945 	}
946 
947 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
948 		dev_err(device->dev,
949 			"Device claims capability %s, but op is not defined\n",
950 			"DMA_XOR_VAL");
951 		return -EIO;
952 	}
953 
954 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
955 		dev_err(device->dev,
956 			"Device claims capability %s, but op is not defined\n",
957 			"DMA_PQ");
958 		return -EIO;
959 	}
960 
961 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
962 		dev_err(device->dev,
963 			"Device claims capability %s, but op is not defined\n",
964 			"DMA_PQ_VAL");
965 		return -EIO;
966 	}
967 
968 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
969 		dev_err(device->dev,
970 			"Device claims capability %s, but op is not defined\n",
971 			"DMA_MEMSET");
972 		return -EIO;
973 	}
974 
975 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
976 		dev_err(device->dev,
977 			"Device claims capability %s, but op is not defined\n",
978 			"DMA_INTERRUPT");
979 		return -EIO;
980 	}
981 
982 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
983 		dev_err(device->dev,
984 			"Device claims capability %s, but op is not defined\n",
985 			"DMA_CYCLIC");
986 		return -EIO;
987 	}
988 
989 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
990 		dev_err(device->dev,
991 			"Device claims capability %s, but op is not defined\n",
992 			"DMA_INTERLEAVE");
993 		return -EIO;
994 	}
995 
996 
997 	if (!device->device_tx_status) {
998 		dev_err(device->dev, "Device tx_status is not defined\n");
999 		return -EIO;
1000 	}
1001 
1002 
1003 	if (!device->device_issue_pending) {
1004 		dev_err(device->dev, "Device issue_pending is not defined\n");
1005 		return -EIO;
1006 	}
1007 
1008 	/* note: this only matters in the
1009 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1010 	 */
1011 	if (device_has_all_tx_types(device))
1012 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1013 
1014 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1015 	if (!idr_ref)
1016 		return -ENOMEM;
1017 	rc = get_dma_id(device);
1018 	if (rc != 0) {
1019 		kfree(idr_ref);
1020 		return rc;
1021 	}
1022 
1023 	atomic_set(idr_ref, 0);
1024 
1025 	/* represent channels in sysfs. Probably want devs too */
1026 	list_for_each_entry(chan, &device->channels, device_node) {
1027 		rc = -ENOMEM;
1028 		chan->local = alloc_percpu(typeof(*chan->local));
1029 		if (chan->local == NULL)
1030 			goto err_out;
1031 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1032 		if (chan->dev == NULL) {
1033 			free_percpu(chan->local);
1034 			chan->local = NULL;
1035 			goto err_out;
1036 		}
1037 
1038 		chan->chan_id = chancnt++;
1039 		chan->dev->device.class = &dma_devclass;
1040 		chan->dev->device.parent = device->dev;
1041 		chan->dev->chan = chan;
1042 		chan->dev->idr_ref = idr_ref;
1043 		chan->dev->dev_id = device->dev_id;
1044 		atomic_inc(idr_ref);
1045 		dev_set_name(&chan->dev->device, "dma%dchan%d",
1046 			     device->dev_id, chan->chan_id);
1047 
1048 		rc = device_register(&chan->dev->device);
1049 		if (rc) {
1050 			free_percpu(chan->local);
1051 			chan->local = NULL;
1052 			kfree(chan->dev);
1053 			atomic_dec(idr_ref);
1054 			goto err_out;
1055 		}
1056 		chan->client_count = 0;
1057 	}
1058 
1059 	if (!chancnt) {
1060 		dev_err(device->dev, "%s: device has no channels!\n", __func__);
1061 		rc = -ENODEV;
1062 		goto err_out;
1063 	}
1064 
1065 	device->chancnt = chancnt;
1066 
1067 	mutex_lock(&dma_list_mutex);
1068 	/* take references on public channels */
1069 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1070 		list_for_each_entry(chan, &device->channels, device_node) {
1071 			/* if clients are already waiting for channels we need
1072 			 * to take references on their behalf
1073 			 */
1074 			if (dma_chan_get(chan) == -ENODEV) {
1075 				/* note we can only get here for the first
1076 				 * channel as the remaining channels are
1077 				 * guaranteed to get a reference
1078 				 */
1079 				rc = -ENODEV;
1080 				mutex_unlock(&dma_list_mutex);
1081 				goto err_out;
1082 			}
1083 		}
1084 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1085 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1086 		device->privatecnt++;	/* Always private */
1087 	dma_channel_rebalance();
1088 	mutex_unlock(&dma_list_mutex);
1089 
1090 	return 0;
1091 
1092 err_out:
1093 	/* if we never registered a channel just release the idr */
1094 	if (atomic_read(idr_ref) == 0) {
1095 		mutex_lock(&dma_list_mutex);
1096 		ida_remove(&dma_ida, device->dev_id);
1097 		mutex_unlock(&dma_list_mutex);
1098 		kfree(idr_ref);
1099 		return rc;
1100 	}
1101 
1102 	list_for_each_entry(chan, &device->channels, device_node) {
1103 		if (chan->local == NULL)
1104 			continue;
1105 		mutex_lock(&dma_list_mutex);
1106 		chan->dev->chan = NULL;
1107 		mutex_unlock(&dma_list_mutex);
1108 		device_unregister(&chan->dev->device);
1109 		free_percpu(chan->local);
1110 	}
1111 	return rc;
1112 }
1113 EXPORT_SYMBOL(dma_async_device_register);
1114 
1115 /**
1116  * dma_async_device_unregister - unregister a DMA device
1117  * @device: &dma_device
1118  *
1119  * This routine is called by dma driver exit routines, dmaengine holds module
1120  * references to prevent it being called while channels are in use.
1121  */
1122 void dma_async_device_unregister(struct dma_device *device)
1123 {
1124 	struct dma_chan *chan;
1125 
1126 	mutex_lock(&dma_list_mutex);
1127 	list_del_rcu(&device->global_node);
1128 	dma_channel_rebalance();
1129 	mutex_unlock(&dma_list_mutex);
1130 
1131 	list_for_each_entry(chan, &device->channels, device_node) {
1132 		WARN_ONCE(chan->client_count,
1133 			  "%s called while %d clients hold a reference\n",
1134 			  __func__, chan->client_count);
1135 		mutex_lock(&dma_list_mutex);
1136 		chan->dev->chan = NULL;
1137 		mutex_unlock(&dma_list_mutex);
1138 		device_unregister(&chan->dev->device);
1139 		free_percpu(chan->local);
1140 	}
1141 }
1142 EXPORT_SYMBOL(dma_async_device_unregister);
1143 
1144 static void dmam_device_release(struct device *dev, void *res)
1145 {
1146 	struct dma_device *device;
1147 
1148 	device = *(struct dma_device **)res;
1149 	dma_async_device_unregister(device);
1150 }
1151 
1152 /**
1153  * dmaenginem_async_device_register - registers DMA devices found
1154  * @device: &dma_device
1155  *
1156  * The operation is managed and will be undone on driver detach.
1157  */
1158 int dmaenginem_async_device_register(struct dma_device *device)
1159 {
1160 	void *p;
1161 	int ret;
1162 
1163 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1164 	if (!p)
1165 		return -ENOMEM;
1166 
1167 	ret = dma_async_device_register(device);
1168 	if (!ret) {
1169 		*(struct dma_device **)p = device;
1170 		devres_add(device->dev, p);
1171 	} else {
1172 		devres_free(p);
1173 	}
1174 
1175 	return ret;
1176 }
1177 EXPORT_SYMBOL(dmaenginem_async_device_register);
1178 
1179 struct dmaengine_unmap_pool {
1180 	struct kmem_cache *cache;
1181 	const char *name;
1182 	mempool_t *pool;
1183 	size_t size;
1184 };
1185 
1186 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1187 static struct dmaengine_unmap_pool unmap_pool[] = {
1188 	__UNMAP_POOL(2),
1189 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1190 	__UNMAP_POOL(16),
1191 	__UNMAP_POOL(128),
1192 	__UNMAP_POOL(256),
1193 	#endif
1194 };
1195 
1196 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1197 {
1198 	int order = get_count_order(nr);
1199 
1200 	switch (order) {
1201 	case 0 ... 1:
1202 		return &unmap_pool[0];
1203 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1204 	case 2 ... 4:
1205 		return &unmap_pool[1];
1206 	case 5 ... 7:
1207 		return &unmap_pool[2];
1208 	case 8:
1209 		return &unmap_pool[3];
1210 #endif
1211 	default:
1212 		BUG();
1213 		return NULL;
1214 	}
1215 }
1216 
1217 static void dmaengine_unmap(struct kref *kref)
1218 {
1219 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1220 	struct device *dev = unmap->dev;
1221 	int cnt, i;
1222 
1223 	cnt = unmap->to_cnt;
1224 	for (i = 0; i < cnt; i++)
1225 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1226 			       DMA_TO_DEVICE);
1227 	cnt += unmap->from_cnt;
1228 	for (; i < cnt; i++)
1229 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1230 			       DMA_FROM_DEVICE);
1231 	cnt += unmap->bidi_cnt;
1232 	for (; i < cnt; i++) {
1233 		if (unmap->addr[i] == 0)
1234 			continue;
1235 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1236 			       DMA_BIDIRECTIONAL);
1237 	}
1238 	cnt = unmap->map_cnt;
1239 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1240 }
1241 
1242 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1243 {
1244 	if (unmap)
1245 		kref_put(&unmap->kref, dmaengine_unmap);
1246 }
1247 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1248 
1249 static void dmaengine_destroy_unmap_pool(void)
1250 {
1251 	int i;
1252 
1253 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1254 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1255 
1256 		mempool_destroy(p->pool);
1257 		p->pool = NULL;
1258 		kmem_cache_destroy(p->cache);
1259 		p->cache = NULL;
1260 	}
1261 }
1262 
1263 static int __init dmaengine_init_unmap_pool(void)
1264 {
1265 	int i;
1266 
1267 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1268 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1269 		size_t size;
1270 
1271 		size = sizeof(struct dmaengine_unmap_data) +
1272 		       sizeof(dma_addr_t) * p->size;
1273 
1274 		p->cache = kmem_cache_create(p->name, size, 0,
1275 					     SLAB_HWCACHE_ALIGN, NULL);
1276 		if (!p->cache)
1277 			break;
1278 		p->pool = mempool_create_slab_pool(1, p->cache);
1279 		if (!p->pool)
1280 			break;
1281 	}
1282 
1283 	if (i == ARRAY_SIZE(unmap_pool))
1284 		return 0;
1285 
1286 	dmaengine_destroy_unmap_pool();
1287 	return -ENOMEM;
1288 }
1289 
1290 struct dmaengine_unmap_data *
1291 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1292 {
1293 	struct dmaengine_unmap_data *unmap;
1294 
1295 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1296 	if (!unmap)
1297 		return NULL;
1298 
1299 	memset(unmap, 0, sizeof(*unmap));
1300 	kref_init(&unmap->kref);
1301 	unmap->dev = dev;
1302 	unmap->map_cnt = nr;
1303 
1304 	return unmap;
1305 }
1306 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1307 
1308 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1309 	struct dma_chan *chan)
1310 {
1311 	tx->chan = chan;
1312 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1313 	spin_lock_init(&tx->lock);
1314 	#endif
1315 }
1316 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1317 
1318 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1319  * @tx: in-flight transaction to wait on
1320  */
1321 enum dma_status
1322 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1323 {
1324 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1325 
1326 	if (!tx)
1327 		return DMA_COMPLETE;
1328 
1329 	while (tx->cookie == -EBUSY) {
1330 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1331 			dev_err(tx->chan->device->dev,
1332 				"%s timeout waiting for descriptor submission\n",
1333 				__func__);
1334 			return DMA_ERROR;
1335 		}
1336 		cpu_relax();
1337 	}
1338 	return dma_sync_wait(tx->chan, tx->cookie);
1339 }
1340 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1341 
1342 /* dma_run_dependencies - helper routine for dma drivers to process
1343  *	(start) dependent operations on their target channel
1344  * @tx: transaction with dependencies
1345  */
1346 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1347 {
1348 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1349 	struct dma_async_tx_descriptor *dep_next;
1350 	struct dma_chan *chan;
1351 
1352 	if (!dep)
1353 		return;
1354 
1355 	/* we'll submit tx->next now, so clear the link */
1356 	txd_clear_next(tx);
1357 	chan = dep->chan;
1358 
1359 	/* keep submitting up until a channel switch is detected
1360 	 * in that case we will be called again as a result of
1361 	 * processing the interrupt from async_tx_channel_switch
1362 	 */
1363 	for (; dep; dep = dep_next) {
1364 		txd_lock(dep);
1365 		txd_clear_parent(dep);
1366 		dep_next = txd_next(dep);
1367 		if (dep_next && dep_next->chan == chan)
1368 			txd_clear_next(dep); /* ->next will be submitted */
1369 		else
1370 			dep_next = NULL; /* submit current dep and terminate */
1371 		txd_unlock(dep);
1372 
1373 		dep->tx_submit(dep);
1374 	}
1375 
1376 	chan->device->device_issue_pending(chan);
1377 }
1378 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1379 
1380 static int __init dma_bus_init(void)
1381 {
1382 	int err = dmaengine_init_unmap_pool();
1383 
1384 	if (err)
1385 		return err;
1386 	return class_register(&dma_devclass);
1387 }
1388 arch_initcall(dma_bus_init);
1389 
1390 
1391