1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in the 15 * file called COPYING. 16 */ 17 18 /* 19 * This code implements the DMA subsystem. It provides a HW-neutral interface 20 * for other kernel code to use asynchronous memory copy capabilities, 21 * if present, and allows different HW DMA drivers to register as providing 22 * this capability. 23 * 24 * Due to the fact we are accelerating what is already a relatively fast 25 * operation, the code goes to great lengths to avoid additional overhead, 26 * such as locking. 27 * 28 * LOCKING: 29 * 30 * The subsystem keeps a global list of dma_device structs it is protected by a 31 * mutex, dma_list_mutex. 32 * 33 * A subsystem can get access to a channel by calling dmaengine_get() followed 34 * by dma_find_channel(), or if it has need for an exclusive channel it can call 35 * dma_request_channel(). Once a channel is allocated a reference is taken 36 * against its corresponding driver to disable removal. 37 * 38 * Each device has a channels list, which runs unlocked but is never modified 39 * once the device is registered, it's just setup by the driver. 40 * 41 * See Documentation/driver-api/dmaengine for more details 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/platform_device.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/init.h> 49 #include <linux/module.h> 50 #include <linux/mm.h> 51 #include <linux/device.h> 52 #include <linux/dmaengine.h> 53 #include <linux/hardirq.h> 54 #include <linux/spinlock.h> 55 #include <linux/percpu.h> 56 #include <linux/rcupdate.h> 57 #include <linux/mutex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rculist.h> 60 #include <linux/idr.h> 61 #include <linux/slab.h> 62 #include <linux/acpi.h> 63 #include <linux/acpi_dma.h> 64 #include <linux/of_dma.h> 65 #include <linux/mempool.h> 66 67 static DEFINE_MUTEX(dma_list_mutex); 68 static DEFINE_IDA(dma_ida); 69 static LIST_HEAD(dma_device_list); 70 static long dmaengine_ref_count; 71 72 /* --- sysfs implementation --- */ 73 74 /** 75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object 76 * @dev - device node 77 * 78 * Must be called under dma_list_mutex 79 */ 80 static struct dma_chan *dev_to_dma_chan(struct device *dev) 81 { 82 struct dma_chan_dev *chan_dev; 83 84 chan_dev = container_of(dev, typeof(*chan_dev), device); 85 return chan_dev->chan; 86 } 87 88 static ssize_t memcpy_count_show(struct device *dev, 89 struct device_attribute *attr, char *buf) 90 { 91 struct dma_chan *chan; 92 unsigned long count = 0; 93 int i; 94 int err; 95 96 mutex_lock(&dma_list_mutex); 97 chan = dev_to_dma_chan(dev); 98 if (chan) { 99 for_each_possible_cpu(i) 100 count += per_cpu_ptr(chan->local, i)->memcpy_count; 101 err = sprintf(buf, "%lu\n", count); 102 } else 103 err = -ENODEV; 104 mutex_unlock(&dma_list_mutex); 105 106 return err; 107 } 108 static DEVICE_ATTR_RO(memcpy_count); 109 110 static ssize_t bytes_transferred_show(struct device *dev, 111 struct device_attribute *attr, char *buf) 112 { 113 struct dma_chan *chan; 114 unsigned long count = 0; 115 int i; 116 int err; 117 118 mutex_lock(&dma_list_mutex); 119 chan = dev_to_dma_chan(dev); 120 if (chan) { 121 for_each_possible_cpu(i) 122 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 123 err = sprintf(buf, "%lu\n", count); 124 } else 125 err = -ENODEV; 126 mutex_unlock(&dma_list_mutex); 127 128 return err; 129 } 130 static DEVICE_ATTR_RO(bytes_transferred); 131 132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 133 char *buf) 134 { 135 struct dma_chan *chan; 136 int err; 137 138 mutex_lock(&dma_list_mutex); 139 chan = dev_to_dma_chan(dev); 140 if (chan) 141 err = sprintf(buf, "%d\n", chan->client_count); 142 else 143 err = -ENODEV; 144 mutex_unlock(&dma_list_mutex); 145 146 return err; 147 } 148 static DEVICE_ATTR_RO(in_use); 149 150 static struct attribute *dma_dev_attrs[] = { 151 &dev_attr_memcpy_count.attr, 152 &dev_attr_bytes_transferred.attr, 153 &dev_attr_in_use.attr, 154 NULL, 155 }; 156 ATTRIBUTE_GROUPS(dma_dev); 157 158 static void chan_dev_release(struct device *dev) 159 { 160 struct dma_chan_dev *chan_dev; 161 162 chan_dev = container_of(dev, typeof(*chan_dev), device); 163 if (atomic_dec_and_test(chan_dev->idr_ref)) { 164 mutex_lock(&dma_list_mutex); 165 ida_remove(&dma_ida, chan_dev->dev_id); 166 mutex_unlock(&dma_list_mutex); 167 kfree(chan_dev->idr_ref); 168 } 169 kfree(chan_dev); 170 } 171 172 static struct class dma_devclass = { 173 .name = "dma", 174 .dev_groups = dma_dev_groups, 175 .dev_release = chan_dev_release, 176 }; 177 178 /* --- client and device registration --- */ 179 180 #define dma_device_satisfies_mask(device, mask) \ 181 __dma_device_satisfies_mask((device), &(mask)) 182 static int 183 __dma_device_satisfies_mask(struct dma_device *device, 184 const dma_cap_mask_t *want) 185 { 186 dma_cap_mask_t has; 187 188 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 189 DMA_TX_TYPE_END); 190 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 191 } 192 193 static struct module *dma_chan_to_owner(struct dma_chan *chan) 194 { 195 return chan->device->dev->driver->owner; 196 } 197 198 /** 199 * balance_ref_count - catch up the channel reference count 200 * @chan - channel to balance ->client_count versus dmaengine_ref_count 201 * 202 * balance_ref_count must be called under dma_list_mutex 203 */ 204 static void balance_ref_count(struct dma_chan *chan) 205 { 206 struct module *owner = dma_chan_to_owner(chan); 207 208 while (chan->client_count < dmaengine_ref_count) { 209 __module_get(owner); 210 chan->client_count++; 211 } 212 } 213 214 /** 215 * dma_chan_get - try to grab a dma channel's parent driver module 216 * @chan - channel to grab 217 * 218 * Must be called under dma_list_mutex 219 */ 220 static int dma_chan_get(struct dma_chan *chan) 221 { 222 struct module *owner = dma_chan_to_owner(chan); 223 int ret; 224 225 /* The channel is already in use, update client count */ 226 if (chan->client_count) { 227 __module_get(owner); 228 goto out; 229 } 230 231 if (!try_module_get(owner)) 232 return -ENODEV; 233 234 /* allocate upon first client reference */ 235 if (chan->device->device_alloc_chan_resources) { 236 ret = chan->device->device_alloc_chan_resources(chan); 237 if (ret < 0) 238 goto err_out; 239 } 240 241 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 242 balance_ref_count(chan); 243 244 out: 245 chan->client_count++; 246 return 0; 247 248 err_out: 249 module_put(owner); 250 return ret; 251 } 252 253 /** 254 * dma_chan_put - drop a reference to a dma channel's parent driver module 255 * @chan - channel to release 256 * 257 * Must be called under dma_list_mutex 258 */ 259 static void dma_chan_put(struct dma_chan *chan) 260 { 261 /* This channel is not in use, bail out */ 262 if (!chan->client_count) 263 return; 264 265 chan->client_count--; 266 module_put(dma_chan_to_owner(chan)); 267 268 /* This channel is not in use anymore, free it */ 269 if (!chan->client_count && chan->device->device_free_chan_resources) { 270 /* Make sure all operations have completed */ 271 dmaengine_synchronize(chan); 272 chan->device->device_free_chan_resources(chan); 273 } 274 275 /* If the channel is used via a DMA request router, free the mapping */ 276 if (chan->router && chan->router->route_free) { 277 chan->router->route_free(chan->router->dev, chan->route_data); 278 chan->router = NULL; 279 chan->route_data = NULL; 280 } 281 } 282 283 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 284 { 285 enum dma_status status; 286 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 287 288 dma_async_issue_pending(chan); 289 do { 290 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 291 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 292 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 293 return DMA_ERROR; 294 } 295 if (status != DMA_IN_PROGRESS) 296 break; 297 cpu_relax(); 298 } while (1); 299 300 return status; 301 } 302 EXPORT_SYMBOL(dma_sync_wait); 303 304 /** 305 * dma_cap_mask_all - enable iteration over all operation types 306 */ 307 static dma_cap_mask_t dma_cap_mask_all; 308 309 /** 310 * dma_chan_tbl_ent - tracks channel allocations per core/operation 311 * @chan - associated channel for this entry 312 */ 313 struct dma_chan_tbl_ent { 314 struct dma_chan *chan; 315 }; 316 317 /** 318 * channel_table - percpu lookup table for memory-to-memory offload providers 319 */ 320 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 321 322 static int __init dma_channel_table_init(void) 323 { 324 enum dma_transaction_type cap; 325 int err = 0; 326 327 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 328 329 /* 'interrupt', 'private', and 'slave' are channel capabilities, 330 * but are not associated with an operation so they do not need 331 * an entry in the channel_table 332 */ 333 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 334 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 335 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 336 337 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 338 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 339 if (!channel_table[cap]) { 340 err = -ENOMEM; 341 break; 342 } 343 } 344 345 if (err) { 346 pr_err("initialization failure\n"); 347 for_each_dma_cap_mask(cap, dma_cap_mask_all) 348 free_percpu(channel_table[cap]); 349 } 350 351 return err; 352 } 353 arch_initcall(dma_channel_table_init); 354 355 /** 356 * dma_find_channel - find a channel to carry out the operation 357 * @tx_type: transaction type 358 */ 359 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 360 { 361 return this_cpu_read(channel_table[tx_type]->chan); 362 } 363 EXPORT_SYMBOL(dma_find_channel); 364 365 /** 366 * dma_issue_pending_all - flush all pending operations across all channels 367 */ 368 void dma_issue_pending_all(void) 369 { 370 struct dma_device *device; 371 struct dma_chan *chan; 372 373 rcu_read_lock(); 374 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 375 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 376 continue; 377 list_for_each_entry(chan, &device->channels, device_node) 378 if (chan->client_count) 379 device->device_issue_pending(chan); 380 } 381 rcu_read_unlock(); 382 } 383 EXPORT_SYMBOL(dma_issue_pending_all); 384 385 /** 386 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu 387 */ 388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 389 { 390 int node = dev_to_node(chan->device->dev); 391 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node)); 392 } 393 394 /** 395 * min_chan - returns the channel with min count and in the same numa-node as the cpu 396 * @cap: capability to match 397 * @cpu: cpu index which the channel should be close to 398 * 399 * If some channels are close to the given cpu, the one with the lowest 400 * reference count is returned. Otherwise, cpu is ignored and only the 401 * reference count is taken into account. 402 * Must be called under dma_list_mutex. 403 */ 404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 405 { 406 struct dma_device *device; 407 struct dma_chan *chan; 408 struct dma_chan *min = NULL; 409 struct dma_chan *localmin = NULL; 410 411 list_for_each_entry(device, &dma_device_list, global_node) { 412 if (!dma_has_cap(cap, device->cap_mask) || 413 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 414 continue; 415 list_for_each_entry(chan, &device->channels, device_node) { 416 if (!chan->client_count) 417 continue; 418 if (!min || chan->table_count < min->table_count) 419 min = chan; 420 421 if (dma_chan_is_local(chan, cpu)) 422 if (!localmin || 423 chan->table_count < localmin->table_count) 424 localmin = chan; 425 } 426 } 427 428 chan = localmin ? localmin : min; 429 430 if (chan) 431 chan->table_count++; 432 433 return chan; 434 } 435 436 /** 437 * dma_channel_rebalance - redistribute the available channels 438 * 439 * Optimize for cpu isolation (each cpu gets a dedicated channel for an 440 * operation type) in the SMP case, and operation isolation (avoid 441 * multi-tasking channels) in the non-SMP case. Must be called under 442 * dma_list_mutex. 443 */ 444 static void dma_channel_rebalance(void) 445 { 446 struct dma_chan *chan; 447 struct dma_device *device; 448 int cpu; 449 int cap; 450 451 /* undo the last distribution */ 452 for_each_dma_cap_mask(cap, dma_cap_mask_all) 453 for_each_possible_cpu(cpu) 454 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 455 456 list_for_each_entry(device, &dma_device_list, global_node) { 457 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 458 continue; 459 list_for_each_entry(chan, &device->channels, device_node) 460 chan->table_count = 0; 461 } 462 463 /* don't populate the channel_table if no clients are available */ 464 if (!dmaengine_ref_count) 465 return; 466 467 /* redistribute available channels */ 468 for_each_dma_cap_mask(cap, dma_cap_mask_all) 469 for_each_online_cpu(cpu) { 470 chan = min_chan(cap, cpu); 471 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 472 } 473 } 474 475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 476 { 477 struct dma_device *device; 478 479 if (!chan || !caps) 480 return -EINVAL; 481 482 device = chan->device; 483 484 /* check if the channel supports slave transactions */ 485 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 486 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 487 return -ENXIO; 488 489 /* 490 * Check whether it reports it uses the generic slave 491 * capabilities, if not, that means it doesn't support any 492 * kind of slave capabilities reporting. 493 */ 494 if (!device->directions) 495 return -ENXIO; 496 497 caps->src_addr_widths = device->src_addr_widths; 498 caps->dst_addr_widths = device->dst_addr_widths; 499 caps->directions = device->directions; 500 caps->max_burst = device->max_burst; 501 caps->residue_granularity = device->residue_granularity; 502 caps->descriptor_reuse = device->descriptor_reuse; 503 caps->cmd_pause = !!device->device_pause; 504 caps->cmd_resume = !!device->device_resume; 505 caps->cmd_terminate = !!device->device_terminate_all; 506 507 return 0; 508 } 509 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 510 511 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 512 struct dma_device *dev, 513 dma_filter_fn fn, void *fn_param) 514 { 515 struct dma_chan *chan; 516 517 if (mask && !__dma_device_satisfies_mask(dev, mask)) { 518 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 519 return NULL; 520 } 521 /* devices with multiple channels need special handling as we need to 522 * ensure that all channels are either private or public. 523 */ 524 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 525 list_for_each_entry(chan, &dev->channels, device_node) { 526 /* some channels are already publicly allocated */ 527 if (chan->client_count) 528 return NULL; 529 } 530 531 list_for_each_entry(chan, &dev->channels, device_node) { 532 if (chan->client_count) { 533 dev_dbg(dev->dev, "%s: %s busy\n", 534 __func__, dma_chan_name(chan)); 535 continue; 536 } 537 if (fn && !fn(chan, fn_param)) { 538 dev_dbg(dev->dev, "%s: %s filter said false\n", 539 __func__, dma_chan_name(chan)); 540 continue; 541 } 542 return chan; 543 } 544 545 return NULL; 546 } 547 548 static struct dma_chan *find_candidate(struct dma_device *device, 549 const dma_cap_mask_t *mask, 550 dma_filter_fn fn, void *fn_param) 551 { 552 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 553 int err; 554 555 if (chan) { 556 /* Found a suitable channel, try to grab, prep, and return it. 557 * We first set DMA_PRIVATE to disable balance_ref_count as this 558 * channel will not be published in the general-purpose 559 * allocator 560 */ 561 dma_cap_set(DMA_PRIVATE, device->cap_mask); 562 device->privatecnt++; 563 err = dma_chan_get(chan); 564 565 if (err) { 566 if (err == -ENODEV) { 567 dev_dbg(device->dev, "%s: %s module removed\n", 568 __func__, dma_chan_name(chan)); 569 list_del_rcu(&device->global_node); 570 } else 571 dev_dbg(device->dev, 572 "%s: failed to get %s: (%d)\n", 573 __func__, dma_chan_name(chan), err); 574 575 if (--device->privatecnt == 0) 576 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 577 578 chan = ERR_PTR(err); 579 } 580 } 581 582 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 583 } 584 585 /** 586 * dma_get_slave_channel - try to get specific channel exclusively 587 * @chan: target channel 588 */ 589 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 590 { 591 int err = -EBUSY; 592 593 /* lock against __dma_request_channel */ 594 mutex_lock(&dma_list_mutex); 595 596 if (chan->client_count == 0) { 597 struct dma_device *device = chan->device; 598 599 dma_cap_set(DMA_PRIVATE, device->cap_mask); 600 device->privatecnt++; 601 err = dma_chan_get(chan); 602 if (err) { 603 dev_dbg(chan->device->dev, 604 "%s: failed to get %s: (%d)\n", 605 __func__, dma_chan_name(chan), err); 606 chan = NULL; 607 if (--device->privatecnt == 0) 608 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 609 } 610 } else 611 chan = NULL; 612 613 mutex_unlock(&dma_list_mutex); 614 615 616 return chan; 617 } 618 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 619 620 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 621 { 622 dma_cap_mask_t mask; 623 struct dma_chan *chan; 624 625 dma_cap_zero(mask); 626 dma_cap_set(DMA_SLAVE, mask); 627 628 /* lock against __dma_request_channel */ 629 mutex_lock(&dma_list_mutex); 630 631 chan = find_candidate(device, &mask, NULL, NULL); 632 633 mutex_unlock(&dma_list_mutex); 634 635 return IS_ERR(chan) ? NULL : chan; 636 } 637 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 638 639 /** 640 * __dma_request_channel - try to allocate an exclusive channel 641 * @mask: capabilities that the channel must satisfy 642 * @fn: optional callback to disposition available channels 643 * @fn_param: opaque parameter to pass to dma_filter_fn 644 * 645 * Returns pointer to appropriate DMA channel on success or NULL. 646 */ 647 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 648 dma_filter_fn fn, void *fn_param) 649 { 650 struct dma_device *device, *_d; 651 struct dma_chan *chan = NULL; 652 653 /* Find a channel */ 654 mutex_lock(&dma_list_mutex); 655 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 656 chan = find_candidate(device, mask, fn, fn_param); 657 if (!IS_ERR(chan)) 658 break; 659 660 chan = NULL; 661 } 662 mutex_unlock(&dma_list_mutex); 663 664 pr_debug("%s: %s (%s)\n", 665 __func__, 666 chan ? "success" : "fail", 667 chan ? dma_chan_name(chan) : NULL); 668 669 return chan; 670 } 671 EXPORT_SYMBOL_GPL(__dma_request_channel); 672 673 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 674 const char *name, 675 struct device *dev) 676 { 677 int i; 678 679 if (!device->filter.mapcnt) 680 return NULL; 681 682 for (i = 0; i < device->filter.mapcnt; i++) { 683 const struct dma_slave_map *map = &device->filter.map[i]; 684 685 if (!strcmp(map->devname, dev_name(dev)) && 686 !strcmp(map->slave, name)) 687 return map; 688 } 689 690 return NULL; 691 } 692 693 /** 694 * dma_request_chan - try to allocate an exclusive slave channel 695 * @dev: pointer to client device structure 696 * @name: slave channel name 697 * 698 * Returns pointer to appropriate DMA channel on success or an error pointer. 699 */ 700 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 701 { 702 struct dma_device *d, *_d; 703 struct dma_chan *chan = NULL; 704 705 /* If device-tree is present get slave info from here */ 706 if (dev->of_node) 707 chan = of_dma_request_slave_channel(dev->of_node, name); 708 709 /* If device was enumerated by ACPI get slave info from here */ 710 if (has_acpi_companion(dev) && !chan) 711 chan = acpi_dma_request_slave_chan_by_name(dev, name); 712 713 if (chan) { 714 /* Valid channel found or requester need to be deferred */ 715 if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER) 716 return chan; 717 } 718 719 /* Try to find the channel via the DMA filter map(s) */ 720 mutex_lock(&dma_list_mutex); 721 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 722 dma_cap_mask_t mask; 723 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 724 725 if (!map) 726 continue; 727 728 dma_cap_zero(mask); 729 dma_cap_set(DMA_SLAVE, mask); 730 731 chan = find_candidate(d, &mask, d->filter.fn, map->param); 732 if (!IS_ERR(chan)) 733 break; 734 } 735 mutex_unlock(&dma_list_mutex); 736 737 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 738 } 739 EXPORT_SYMBOL_GPL(dma_request_chan); 740 741 /** 742 * dma_request_slave_channel - try to allocate an exclusive slave channel 743 * @dev: pointer to client device structure 744 * @name: slave channel name 745 * 746 * Returns pointer to appropriate DMA channel on success or NULL. 747 */ 748 struct dma_chan *dma_request_slave_channel(struct device *dev, 749 const char *name) 750 { 751 struct dma_chan *ch = dma_request_chan(dev, name); 752 if (IS_ERR(ch)) 753 return NULL; 754 755 return ch; 756 } 757 EXPORT_SYMBOL_GPL(dma_request_slave_channel); 758 759 /** 760 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 761 * @mask: capabilities that the channel must satisfy 762 * 763 * Returns pointer to appropriate DMA channel on success or an error pointer. 764 */ 765 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 766 { 767 struct dma_chan *chan; 768 769 if (!mask) 770 return ERR_PTR(-ENODEV); 771 772 chan = __dma_request_channel(mask, NULL, NULL); 773 if (!chan) { 774 mutex_lock(&dma_list_mutex); 775 if (list_empty(&dma_device_list)) 776 chan = ERR_PTR(-EPROBE_DEFER); 777 else 778 chan = ERR_PTR(-ENODEV); 779 mutex_unlock(&dma_list_mutex); 780 } 781 782 return chan; 783 } 784 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 785 786 void dma_release_channel(struct dma_chan *chan) 787 { 788 mutex_lock(&dma_list_mutex); 789 WARN_ONCE(chan->client_count != 1, 790 "chan reference count %d != 1\n", chan->client_count); 791 dma_chan_put(chan); 792 /* drop PRIVATE cap enabled by __dma_request_channel() */ 793 if (--chan->device->privatecnt == 0) 794 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 795 mutex_unlock(&dma_list_mutex); 796 } 797 EXPORT_SYMBOL_GPL(dma_release_channel); 798 799 /** 800 * dmaengine_get - register interest in dma_channels 801 */ 802 void dmaengine_get(void) 803 { 804 struct dma_device *device, *_d; 805 struct dma_chan *chan; 806 int err; 807 808 mutex_lock(&dma_list_mutex); 809 dmaengine_ref_count++; 810 811 /* try to grab channels */ 812 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 813 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 814 continue; 815 list_for_each_entry(chan, &device->channels, device_node) { 816 err = dma_chan_get(chan); 817 if (err == -ENODEV) { 818 /* module removed before we could use it */ 819 list_del_rcu(&device->global_node); 820 break; 821 } else if (err) 822 dev_dbg(chan->device->dev, 823 "%s: failed to get %s: (%d)\n", 824 __func__, dma_chan_name(chan), err); 825 } 826 } 827 828 /* if this is the first reference and there were channels 829 * waiting we need to rebalance to get those channels 830 * incorporated into the channel table 831 */ 832 if (dmaengine_ref_count == 1) 833 dma_channel_rebalance(); 834 mutex_unlock(&dma_list_mutex); 835 } 836 EXPORT_SYMBOL(dmaengine_get); 837 838 /** 839 * dmaengine_put - let dma drivers be removed when ref_count == 0 840 */ 841 void dmaengine_put(void) 842 { 843 struct dma_device *device; 844 struct dma_chan *chan; 845 846 mutex_lock(&dma_list_mutex); 847 dmaengine_ref_count--; 848 BUG_ON(dmaengine_ref_count < 0); 849 /* drop channel references */ 850 list_for_each_entry(device, &dma_device_list, global_node) { 851 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 852 continue; 853 list_for_each_entry(chan, &device->channels, device_node) 854 dma_chan_put(chan); 855 } 856 mutex_unlock(&dma_list_mutex); 857 } 858 EXPORT_SYMBOL(dmaengine_put); 859 860 static bool device_has_all_tx_types(struct dma_device *device) 861 { 862 /* A device that satisfies this test has channels that will never cause 863 * an async_tx channel switch event as all possible operation types can 864 * be handled. 865 */ 866 #ifdef CONFIG_ASYNC_TX_DMA 867 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 868 return false; 869 #endif 870 871 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 872 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 873 return false; 874 #endif 875 876 #if IS_ENABLED(CONFIG_ASYNC_XOR) 877 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 878 return false; 879 880 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 881 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 882 return false; 883 #endif 884 #endif 885 886 #if IS_ENABLED(CONFIG_ASYNC_PQ) 887 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 888 return false; 889 890 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 891 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 892 return false; 893 #endif 894 #endif 895 896 return true; 897 } 898 899 static int get_dma_id(struct dma_device *device) 900 { 901 int rc; 902 903 do { 904 if (!ida_pre_get(&dma_ida, GFP_KERNEL)) 905 return -ENOMEM; 906 mutex_lock(&dma_list_mutex); 907 rc = ida_get_new(&dma_ida, &device->dev_id); 908 mutex_unlock(&dma_list_mutex); 909 } while (rc == -EAGAIN); 910 911 return rc; 912 } 913 914 /** 915 * dma_async_device_register - registers DMA devices found 916 * @device: &dma_device 917 */ 918 int dma_async_device_register(struct dma_device *device) 919 { 920 int chancnt = 0, rc; 921 struct dma_chan* chan; 922 atomic_t *idr_ref; 923 924 if (!device) 925 return -ENODEV; 926 927 /* validate device routines */ 928 if (!device->dev) { 929 pr_err("DMAdevice must have dev\n"); 930 return -EIO; 931 } 932 933 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { 934 dev_err(device->dev, 935 "Device claims capability %s, but op is not defined\n", 936 "DMA_MEMCPY"); 937 return -EIO; 938 } 939 940 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { 941 dev_err(device->dev, 942 "Device claims capability %s, but op is not defined\n", 943 "DMA_XOR"); 944 return -EIO; 945 } 946 947 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { 948 dev_err(device->dev, 949 "Device claims capability %s, but op is not defined\n", 950 "DMA_XOR_VAL"); 951 return -EIO; 952 } 953 954 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { 955 dev_err(device->dev, 956 "Device claims capability %s, but op is not defined\n", 957 "DMA_PQ"); 958 return -EIO; 959 } 960 961 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { 962 dev_err(device->dev, 963 "Device claims capability %s, but op is not defined\n", 964 "DMA_PQ_VAL"); 965 return -EIO; 966 } 967 968 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { 969 dev_err(device->dev, 970 "Device claims capability %s, but op is not defined\n", 971 "DMA_MEMSET"); 972 return -EIO; 973 } 974 975 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { 976 dev_err(device->dev, 977 "Device claims capability %s, but op is not defined\n", 978 "DMA_INTERRUPT"); 979 return -EIO; 980 } 981 982 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { 983 dev_err(device->dev, 984 "Device claims capability %s, but op is not defined\n", 985 "DMA_CYCLIC"); 986 return -EIO; 987 } 988 989 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { 990 dev_err(device->dev, 991 "Device claims capability %s, but op is not defined\n", 992 "DMA_INTERLEAVE"); 993 return -EIO; 994 } 995 996 997 if (!device->device_tx_status) { 998 dev_err(device->dev, "Device tx_status is not defined\n"); 999 return -EIO; 1000 } 1001 1002 1003 if (!device->device_issue_pending) { 1004 dev_err(device->dev, "Device issue_pending is not defined\n"); 1005 return -EIO; 1006 } 1007 1008 /* note: this only matters in the 1009 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 1010 */ 1011 if (device_has_all_tx_types(device)) 1012 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 1013 1014 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); 1015 if (!idr_ref) 1016 return -ENOMEM; 1017 rc = get_dma_id(device); 1018 if (rc != 0) { 1019 kfree(idr_ref); 1020 return rc; 1021 } 1022 1023 atomic_set(idr_ref, 0); 1024 1025 /* represent channels in sysfs. Probably want devs too */ 1026 list_for_each_entry(chan, &device->channels, device_node) { 1027 rc = -ENOMEM; 1028 chan->local = alloc_percpu(typeof(*chan->local)); 1029 if (chan->local == NULL) 1030 goto err_out; 1031 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 1032 if (chan->dev == NULL) { 1033 free_percpu(chan->local); 1034 chan->local = NULL; 1035 goto err_out; 1036 } 1037 1038 chan->chan_id = chancnt++; 1039 chan->dev->device.class = &dma_devclass; 1040 chan->dev->device.parent = device->dev; 1041 chan->dev->chan = chan; 1042 chan->dev->idr_ref = idr_ref; 1043 chan->dev->dev_id = device->dev_id; 1044 atomic_inc(idr_ref); 1045 dev_set_name(&chan->dev->device, "dma%dchan%d", 1046 device->dev_id, chan->chan_id); 1047 1048 rc = device_register(&chan->dev->device); 1049 if (rc) { 1050 free_percpu(chan->local); 1051 chan->local = NULL; 1052 kfree(chan->dev); 1053 atomic_dec(idr_ref); 1054 goto err_out; 1055 } 1056 chan->client_count = 0; 1057 } 1058 1059 if (!chancnt) { 1060 dev_err(device->dev, "%s: device has no channels!\n", __func__); 1061 rc = -ENODEV; 1062 goto err_out; 1063 } 1064 1065 device->chancnt = chancnt; 1066 1067 mutex_lock(&dma_list_mutex); 1068 /* take references on public channels */ 1069 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1070 list_for_each_entry(chan, &device->channels, device_node) { 1071 /* if clients are already waiting for channels we need 1072 * to take references on their behalf 1073 */ 1074 if (dma_chan_get(chan) == -ENODEV) { 1075 /* note we can only get here for the first 1076 * channel as the remaining channels are 1077 * guaranteed to get a reference 1078 */ 1079 rc = -ENODEV; 1080 mutex_unlock(&dma_list_mutex); 1081 goto err_out; 1082 } 1083 } 1084 list_add_tail_rcu(&device->global_node, &dma_device_list); 1085 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1086 device->privatecnt++; /* Always private */ 1087 dma_channel_rebalance(); 1088 mutex_unlock(&dma_list_mutex); 1089 1090 return 0; 1091 1092 err_out: 1093 /* if we never registered a channel just release the idr */ 1094 if (atomic_read(idr_ref) == 0) { 1095 mutex_lock(&dma_list_mutex); 1096 ida_remove(&dma_ida, device->dev_id); 1097 mutex_unlock(&dma_list_mutex); 1098 kfree(idr_ref); 1099 return rc; 1100 } 1101 1102 list_for_each_entry(chan, &device->channels, device_node) { 1103 if (chan->local == NULL) 1104 continue; 1105 mutex_lock(&dma_list_mutex); 1106 chan->dev->chan = NULL; 1107 mutex_unlock(&dma_list_mutex); 1108 device_unregister(&chan->dev->device); 1109 free_percpu(chan->local); 1110 } 1111 return rc; 1112 } 1113 EXPORT_SYMBOL(dma_async_device_register); 1114 1115 /** 1116 * dma_async_device_unregister - unregister a DMA device 1117 * @device: &dma_device 1118 * 1119 * This routine is called by dma driver exit routines, dmaengine holds module 1120 * references to prevent it being called while channels are in use. 1121 */ 1122 void dma_async_device_unregister(struct dma_device *device) 1123 { 1124 struct dma_chan *chan; 1125 1126 mutex_lock(&dma_list_mutex); 1127 list_del_rcu(&device->global_node); 1128 dma_channel_rebalance(); 1129 mutex_unlock(&dma_list_mutex); 1130 1131 list_for_each_entry(chan, &device->channels, device_node) { 1132 WARN_ONCE(chan->client_count, 1133 "%s called while %d clients hold a reference\n", 1134 __func__, chan->client_count); 1135 mutex_lock(&dma_list_mutex); 1136 chan->dev->chan = NULL; 1137 mutex_unlock(&dma_list_mutex); 1138 device_unregister(&chan->dev->device); 1139 free_percpu(chan->local); 1140 } 1141 } 1142 EXPORT_SYMBOL(dma_async_device_unregister); 1143 1144 static void dmam_device_release(struct device *dev, void *res) 1145 { 1146 struct dma_device *device; 1147 1148 device = *(struct dma_device **)res; 1149 dma_async_device_unregister(device); 1150 } 1151 1152 /** 1153 * dmaenginem_async_device_register - registers DMA devices found 1154 * @device: &dma_device 1155 * 1156 * The operation is managed and will be undone on driver detach. 1157 */ 1158 int dmaenginem_async_device_register(struct dma_device *device) 1159 { 1160 void *p; 1161 int ret; 1162 1163 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); 1164 if (!p) 1165 return -ENOMEM; 1166 1167 ret = dma_async_device_register(device); 1168 if (!ret) { 1169 *(struct dma_device **)p = device; 1170 devres_add(device->dev, p); 1171 } else { 1172 devres_free(p); 1173 } 1174 1175 return ret; 1176 } 1177 EXPORT_SYMBOL(dmaenginem_async_device_register); 1178 1179 struct dmaengine_unmap_pool { 1180 struct kmem_cache *cache; 1181 const char *name; 1182 mempool_t *pool; 1183 size_t size; 1184 }; 1185 1186 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1187 static struct dmaengine_unmap_pool unmap_pool[] = { 1188 __UNMAP_POOL(2), 1189 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1190 __UNMAP_POOL(16), 1191 __UNMAP_POOL(128), 1192 __UNMAP_POOL(256), 1193 #endif 1194 }; 1195 1196 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1197 { 1198 int order = get_count_order(nr); 1199 1200 switch (order) { 1201 case 0 ... 1: 1202 return &unmap_pool[0]; 1203 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1204 case 2 ... 4: 1205 return &unmap_pool[1]; 1206 case 5 ... 7: 1207 return &unmap_pool[2]; 1208 case 8: 1209 return &unmap_pool[3]; 1210 #endif 1211 default: 1212 BUG(); 1213 return NULL; 1214 } 1215 } 1216 1217 static void dmaengine_unmap(struct kref *kref) 1218 { 1219 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1220 struct device *dev = unmap->dev; 1221 int cnt, i; 1222 1223 cnt = unmap->to_cnt; 1224 for (i = 0; i < cnt; i++) 1225 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1226 DMA_TO_DEVICE); 1227 cnt += unmap->from_cnt; 1228 for (; i < cnt; i++) 1229 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1230 DMA_FROM_DEVICE); 1231 cnt += unmap->bidi_cnt; 1232 for (; i < cnt; i++) { 1233 if (unmap->addr[i] == 0) 1234 continue; 1235 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1236 DMA_BIDIRECTIONAL); 1237 } 1238 cnt = unmap->map_cnt; 1239 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1240 } 1241 1242 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1243 { 1244 if (unmap) 1245 kref_put(&unmap->kref, dmaengine_unmap); 1246 } 1247 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1248 1249 static void dmaengine_destroy_unmap_pool(void) 1250 { 1251 int i; 1252 1253 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1254 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1255 1256 mempool_destroy(p->pool); 1257 p->pool = NULL; 1258 kmem_cache_destroy(p->cache); 1259 p->cache = NULL; 1260 } 1261 } 1262 1263 static int __init dmaengine_init_unmap_pool(void) 1264 { 1265 int i; 1266 1267 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1268 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1269 size_t size; 1270 1271 size = sizeof(struct dmaengine_unmap_data) + 1272 sizeof(dma_addr_t) * p->size; 1273 1274 p->cache = kmem_cache_create(p->name, size, 0, 1275 SLAB_HWCACHE_ALIGN, NULL); 1276 if (!p->cache) 1277 break; 1278 p->pool = mempool_create_slab_pool(1, p->cache); 1279 if (!p->pool) 1280 break; 1281 } 1282 1283 if (i == ARRAY_SIZE(unmap_pool)) 1284 return 0; 1285 1286 dmaengine_destroy_unmap_pool(); 1287 return -ENOMEM; 1288 } 1289 1290 struct dmaengine_unmap_data * 1291 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1292 { 1293 struct dmaengine_unmap_data *unmap; 1294 1295 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1296 if (!unmap) 1297 return NULL; 1298 1299 memset(unmap, 0, sizeof(*unmap)); 1300 kref_init(&unmap->kref); 1301 unmap->dev = dev; 1302 unmap->map_cnt = nr; 1303 1304 return unmap; 1305 } 1306 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1307 1308 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1309 struct dma_chan *chan) 1310 { 1311 tx->chan = chan; 1312 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1313 spin_lock_init(&tx->lock); 1314 #endif 1315 } 1316 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1317 1318 /* dma_wait_for_async_tx - spin wait for a transaction to complete 1319 * @tx: in-flight transaction to wait on 1320 */ 1321 enum dma_status 1322 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1323 { 1324 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1325 1326 if (!tx) 1327 return DMA_COMPLETE; 1328 1329 while (tx->cookie == -EBUSY) { 1330 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1331 dev_err(tx->chan->device->dev, 1332 "%s timeout waiting for descriptor submission\n", 1333 __func__); 1334 return DMA_ERROR; 1335 } 1336 cpu_relax(); 1337 } 1338 return dma_sync_wait(tx->chan, tx->cookie); 1339 } 1340 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1341 1342 /* dma_run_dependencies - helper routine for dma drivers to process 1343 * (start) dependent operations on their target channel 1344 * @tx: transaction with dependencies 1345 */ 1346 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1347 { 1348 struct dma_async_tx_descriptor *dep = txd_next(tx); 1349 struct dma_async_tx_descriptor *dep_next; 1350 struct dma_chan *chan; 1351 1352 if (!dep) 1353 return; 1354 1355 /* we'll submit tx->next now, so clear the link */ 1356 txd_clear_next(tx); 1357 chan = dep->chan; 1358 1359 /* keep submitting up until a channel switch is detected 1360 * in that case we will be called again as a result of 1361 * processing the interrupt from async_tx_channel_switch 1362 */ 1363 for (; dep; dep = dep_next) { 1364 txd_lock(dep); 1365 txd_clear_parent(dep); 1366 dep_next = txd_next(dep); 1367 if (dep_next && dep_next->chan == chan) 1368 txd_clear_next(dep); /* ->next will be submitted */ 1369 else 1370 dep_next = NULL; /* submit current dep and terminate */ 1371 txd_unlock(dep); 1372 1373 dep->tx_submit(dep); 1374 } 1375 1376 chan->device->device_issue_pending(chan); 1377 } 1378 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1379 1380 static int __init dma_bus_init(void) 1381 { 1382 int err = dmaengine_init_unmap_pool(); 1383 1384 if (err) 1385 return err; 1386 return class_register(&dma_devclass); 1387 } 1388 arch_initcall(dma_bus_init); 1389 1390 1391