xref: /linux/drivers/dma/dmaengine.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 
18 /*
19  * This code implements the DMA subsystem. It provides a HW-neutral interface
20  * for other kernel code to use asynchronous memory copy capabilities,
21  * if present, and allows different HW DMA drivers to register as providing
22  * this capability.
23  *
24  * Due to the fact we are accelerating what is already a relatively fast
25  * operation, the code goes to great lengths to avoid additional overhead,
26  * such as locking.
27  *
28  * LOCKING:
29  *
30  * The subsystem keeps a global list of dma_device structs it is protected by a
31  * mutex, dma_list_mutex.
32  *
33  * A subsystem can get access to a channel by calling dmaengine_get() followed
34  * by dma_find_channel(), or if it has need for an exclusive channel it can call
35  * dma_request_channel().  Once a channel is allocated a reference is taken
36  * against its corresponding driver to disable removal.
37  *
38  * Each device has a channels list, which runs unlocked but is never modified
39  * once the device is registered, it's just setup by the driver.
40  *
41  * See Documentation/dmaengine.txt for more details
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66 
67 static DEFINE_MUTEX(dma_list_mutex);
68 static DEFINE_IDR(dma_idr);
69 static LIST_HEAD(dma_device_list);
70 static long dmaengine_ref_count;
71 
72 /* --- sysfs implementation --- */
73 
74 /**
75  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
76  * @dev - device node
77  *
78  * Must be called under dma_list_mutex
79  */
80 static struct dma_chan *dev_to_dma_chan(struct device *dev)
81 {
82 	struct dma_chan_dev *chan_dev;
83 
84 	chan_dev = container_of(dev, typeof(*chan_dev), device);
85 	return chan_dev->chan;
86 }
87 
88 static ssize_t memcpy_count_show(struct device *dev,
89 				 struct device_attribute *attr, char *buf)
90 {
91 	struct dma_chan *chan;
92 	unsigned long count = 0;
93 	int i;
94 	int err;
95 
96 	mutex_lock(&dma_list_mutex);
97 	chan = dev_to_dma_chan(dev);
98 	if (chan) {
99 		for_each_possible_cpu(i)
100 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
101 		err = sprintf(buf, "%lu\n", count);
102 	} else
103 		err = -ENODEV;
104 	mutex_unlock(&dma_list_mutex);
105 
106 	return err;
107 }
108 static DEVICE_ATTR_RO(memcpy_count);
109 
110 static ssize_t bytes_transferred_show(struct device *dev,
111 				      struct device_attribute *attr, char *buf)
112 {
113 	struct dma_chan *chan;
114 	unsigned long count = 0;
115 	int i;
116 	int err;
117 
118 	mutex_lock(&dma_list_mutex);
119 	chan = dev_to_dma_chan(dev);
120 	if (chan) {
121 		for_each_possible_cpu(i)
122 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 		err = sprintf(buf, "%lu\n", count);
124 	} else
125 		err = -ENODEV;
126 	mutex_unlock(&dma_list_mutex);
127 
128 	return err;
129 }
130 static DEVICE_ATTR_RO(bytes_transferred);
131 
132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
133 			   char *buf)
134 {
135 	struct dma_chan *chan;
136 	int err;
137 
138 	mutex_lock(&dma_list_mutex);
139 	chan = dev_to_dma_chan(dev);
140 	if (chan)
141 		err = sprintf(buf, "%d\n", chan->client_count);
142 	else
143 		err = -ENODEV;
144 	mutex_unlock(&dma_list_mutex);
145 
146 	return err;
147 }
148 static DEVICE_ATTR_RO(in_use);
149 
150 static struct attribute *dma_dev_attrs[] = {
151 	&dev_attr_memcpy_count.attr,
152 	&dev_attr_bytes_transferred.attr,
153 	&dev_attr_in_use.attr,
154 	NULL,
155 };
156 ATTRIBUTE_GROUPS(dma_dev);
157 
158 static void chan_dev_release(struct device *dev)
159 {
160 	struct dma_chan_dev *chan_dev;
161 
162 	chan_dev = container_of(dev, typeof(*chan_dev), device);
163 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
164 		mutex_lock(&dma_list_mutex);
165 		idr_remove(&dma_idr, chan_dev->dev_id);
166 		mutex_unlock(&dma_list_mutex);
167 		kfree(chan_dev->idr_ref);
168 	}
169 	kfree(chan_dev);
170 }
171 
172 static struct class dma_devclass = {
173 	.name		= "dma",
174 	.dev_groups	= dma_dev_groups,
175 	.dev_release	= chan_dev_release,
176 };
177 
178 /* --- client and device registration --- */
179 
180 #define dma_device_satisfies_mask(device, mask) \
181 	__dma_device_satisfies_mask((device), &(mask))
182 static int
183 __dma_device_satisfies_mask(struct dma_device *device,
184 			    const dma_cap_mask_t *want)
185 {
186 	dma_cap_mask_t has;
187 
188 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
189 		DMA_TX_TYPE_END);
190 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
191 }
192 
193 static struct module *dma_chan_to_owner(struct dma_chan *chan)
194 {
195 	return chan->device->dev->driver->owner;
196 }
197 
198 /**
199  * balance_ref_count - catch up the channel reference count
200  * @chan - channel to balance ->client_count versus dmaengine_ref_count
201  *
202  * balance_ref_count must be called under dma_list_mutex
203  */
204 static void balance_ref_count(struct dma_chan *chan)
205 {
206 	struct module *owner = dma_chan_to_owner(chan);
207 
208 	while (chan->client_count < dmaengine_ref_count) {
209 		__module_get(owner);
210 		chan->client_count++;
211 	}
212 }
213 
214 /**
215  * dma_chan_get - try to grab a dma channel's parent driver module
216  * @chan - channel to grab
217  *
218  * Must be called under dma_list_mutex
219  */
220 static int dma_chan_get(struct dma_chan *chan)
221 {
222 	struct module *owner = dma_chan_to_owner(chan);
223 	int ret;
224 
225 	/* The channel is already in use, update client count */
226 	if (chan->client_count) {
227 		__module_get(owner);
228 		goto out;
229 	}
230 
231 	if (!try_module_get(owner))
232 		return -ENODEV;
233 
234 	/* allocate upon first client reference */
235 	if (chan->device->device_alloc_chan_resources) {
236 		ret = chan->device->device_alloc_chan_resources(chan);
237 		if (ret < 0)
238 			goto err_out;
239 	}
240 
241 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
242 		balance_ref_count(chan);
243 
244 out:
245 	chan->client_count++;
246 	return 0;
247 
248 err_out:
249 	module_put(owner);
250 	return ret;
251 }
252 
253 /**
254  * dma_chan_put - drop a reference to a dma channel's parent driver module
255  * @chan - channel to release
256  *
257  * Must be called under dma_list_mutex
258  */
259 static void dma_chan_put(struct dma_chan *chan)
260 {
261 	/* This channel is not in use, bail out */
262 	if (!chan->client_count)
263 		return;
264 
265 	chan->client_count--;
266 	module_put(dma_chan_to_owner(chan));
267 
268 	/* This channel is not in use anymore, free it */
269 	if (!chan->client_count && chan->device->device_free_chan_resources) {
270 		/* Make sure all operations have completed */
271 		dmaengine_synchronize(chan);
272 		chan->device->device_free_chan_resources(chan);
273 	}
274 
275 	/* If the channel is used via a DMA request router, free the mapping */
276 	if (chan->router && chan->router->route_free) {
277 		chan->router->route_free(chan->router->dev, chan->route_data);
278 		chan->router = NULL;
279 		chan->route_data = NULL;
280 	}
281 }
282 
283 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
284 {
285 	enum dma_status status;
286 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
287 
288 	dma_async_issue_pending(chan);
289 	do {
290 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
291 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
292 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
293 			return DMA_ERROR;
294 		}
295 		if (status != DMA_IN_PROGRESS)
296 			break;
297 		cpu_relax();
298 	} while (1);
299 
300 	return status;
301 }
302 EXPORT_SYMBOL(dma_sync_wait);
303 
304 /**
305  * dma_cap_mask_all - enable iteration over all operation types
306  */
307 static dma_cap_mask_t dma_cap_mask_all;
308 
309 /**
310  * dma_chan_tbl_ent - tracks channel allocations per core/operation
311  * @chan - associated channel for this entry
312  */
313 struct dma_chan_tbl_ent {
314 	struct dma_chan *chan;
315 };
316 
317 /**
318  * channel_table - percpu lookup table for memory-to-memory offload providers
319  */
320 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
321 
322 static int __init dma_channel_table_init(void)
323 {
324 	enum dma_transaction_type cap;
325 	int err = 0;
326 
327 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
328 
329 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
330 	 * but are not associated with an operation so they do not need
331 	 * an entry in the channel_table
332 	 */
333 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
334 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
335 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
336 
337 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
338 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
339 		if (!channel_table[cap]) {
340 			err = -ENOMEM;
341 			break;
342 		}
343 	}
344 
345 	if (err) {
346 		pr_err("initialization failure\n");
347 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
348 			free_percpu(channel_table[cap]);
349 	}
350 
351 	return err;
352 }
353 arch_initcall(dma_channel_table_init);
354 
355 /**
356  * dma_find_channel - find a channel to carry out the operation
357  * @tx_type: transaction type
358  */
359 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
360 {
361 	return this_cpu_read(channel_table[tx_type]->chan);
362 }
363 EXPORT_SYMBOL(dma_find_channel);
364 
365 /**
366  * dma_issue_pending_all - flush all pending operations across all channels
367  */
368 void dma_issue_pending_all(void)
369 {
370 	struct dma_device *device;
371 	struct dma_chan *chan;
372 
373 	rcu_read_lock();
374 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
375 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
376 			continue;
377 		list_for_each_entry(chan, &device->channels, device_node)
378 			if (chan->client_count)
379 				device->device_issue_pending(chan);
380 	}
381 	rcu_read_unlock();
382 }
383 EXPORT_SYMBOL(dma_issue_pending_all);
384 
385 /**
386  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
387  */
388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
389 {
390 	int node = dev_to_node(chan->device->dev);
391 	return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
392 }
393 
394 /**
395  * min_chan - returns the channel with min count and in the same numa-node as the cpu
396  * @cap: capability to match
397  * @cpu: cpu index which the channel should be close to
398  *
399  * If some channels are close to the given cpu, the one with the lowest
400  * reference count is returned. Otherwise, cpu is ignored and only the
401  * reference count is taken into account.
402  * Must be called under dma_list_mutex.
403  */
404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
405 {
406 	struct dma_device *device;
407 	struct dma_chan *chan;
408 	struct dma_chan *min = NULL;
409 	struct dma_chan *localmin = NULL;
410 
411 	list_for_each_entry(device, &dma_device_list, global_node) {
412 		if (!dma_has_cap(cap, device->cap_mask) ||
413 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
414 			continue;
415 		list_for_each_entry(chan, &device->channels, device_node) {
416 			if (!chan->client_count)
417 				continue;
418 			if (!min || chan->table_count < min->table_count)
419 				min = chan;
420 
421 			if (dma_chan_is_local(chan, cpu))
422 				if (!localmin ||
423 				    chan->table_count < localmin->table_count)
424 					localmin = chan;
425 		}
426 	}
427 
428 	chan = localmin ? localmin : min;
429 
430 	if (chan)
431 		chan->table_count++;
432 
433 	return chan;
434 }
435 
436 /**
437  * dma_channel_rebalance - redistribute the available channels
438  *
439  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
440  * operation type) in the SMP case,  and operation isolation (avoid
441  * multi-tasking channels) in the non-SMP case.  Must be called under
442  * dma_list_mutex.
443  */
444 static void dma_channel_rebalance(void)
445 {
446 	struct dma_chan *chan;
447 	struct dma_device *device;
448 	int cpu;
449 	int cap;
450 
451 	/* undo the last distribution */
452 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
453 		for_each_possible_cpu(cpu)
454 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
455 
456 	list_for_each_entry(device, &dma_device_list, global_node) {
457 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
458 			continue;
459 		list_for_each_entry(chan, &device->channels, device_node)
460 			chan->table_count = 0;
461 	}
462 
463 	/* don't populate the channel_table if no clients are available */
464 	if (!dmaengine_ref_count)
465 		return;
466 
467 	/* redistribute available channels */
468 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
469 		for_each_online_cpu(cpu) {
470 			chan = min_chan(cap, cpu);
471 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
472 		}
473 }
474 
475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
476 {
477 	struct dma_device *device;
478 
479 	if (!chan || !caps)
480 		return -EINVAL;
481 
482 	device = chan->device;
483 
484 	/* check if the channel supports slave transactions */
485 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
486 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
487 		return -ENXIO;
488 
489 	/*
490 	 * Check whether it reports it uses the generic slave
491 	 * capabilities, if not, that means it doesn't support any
492 	 * kind of slave capabilities reporting.
493 	 */
494 	if (!device->directions)
495 		return -ENXIO;
496 
497 	caps->src_addr_widths = device->src_addr_widths;
498 	caps->dst_addr_widths = device->dst_addr_widths;
499 	caps->directions = device->directions;
500 	caps->max_burst = device->max_burst;
501 	caps->residue_granularity = device->residue_granularity;
502 	caps->descriptor_reuse = device->descriptor_reuse;
503 
504 	/*
505 	 * Some devices implement only pause (e.g. to get residuum) but no
506 	 * resume. However cmd_pause is advertised as pause AND resume.
507 	 */
508 	caps->cmd_pause = !!(device->device_pause && device->device_resume);
509 	caps->cmd_terminate = !!device->device_terminate_all;
510 
511 	return 0;
512 }
513 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
514 
515 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
516 					  struct dma_device *dev,
517 					  dma_filter_fn fn, void *fn_param)
518 {
519 	struct dma_chan *chan;
520 
521 	if (mask && !__dma_device_satisfies_mask(dev, mask)) {
522 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
523 		return NULL;
524 	}
525 	/* devices with multiple channels need special handling as we need to
526 	 * ensure that all channels are either private or public.
527 	 */
528 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
529 		list_for_each_entry(chan, &dev->channels, device_node) {
530 			/* some channels are already publicly allocated */
531 			if (chan->client_count)
532 				return NULL;
533 		}
534 
535 	list_for_each_entry(chan, &dev->channels, device_node) {
536 		if (chan->client_count) {
537 			dev_dbg(dev->dev, "%s: %s busy\n",
538 				 __func__, dma_chan_name(chan));
539 			continue;
540 		}
541 		if (fn && !fn(chan, fn_param)) {
542 			dev_dbg(dev->dev, "%s: %s filter said false\n",
543 				 __func__, dma_chan_name(chan));
544 			continue;
545 		}
546 		return chan;
547 	}
548 
549 	return NULL;
550 }
551 
552 static struct dma_chan *find_candidate(struct dma_device *device,
553 				       const dma_cap_mask_t *mask,
554 				       dma_filter_fn fn, void *fn_param)
555 {
556 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
557 	int err;
558 
559 	if (chan) {
560 		/* Found a suitable channel, try to grab, prep, and return it.
561 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
562 		 * channel will not be published in the general-purpose
563 		 * allocator
564 		 */
565 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
566 		device->privatecnt++;
567 		err = dma_chan_get(chan);
568 
569 		if (err) {
570 			if (err == -ENODEV) {
571 				dev_dbg(device->dev, "%s: %s module removed\n",
572 					__func__, dma_chan_name(chan));
573 				list_del_rcu(&device->global_node);
574 			} else
575 				dev_dbg(device->dev,
576 					"%s: failed to get %s: (%d)\n",
577 					 __func__, dma_chan_name(chan), err);
578 
579 			if (--device->privatecnt == 0)
580 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
581 
582 			chan = ERR_PTR(err);
583 		}
584 	}
585 
586 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
587 }
588 
589 /**
590  * dma_get_slave_channel - try to get specific channel exclusively
591  * @chan: target channel
592  */
593 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
594 {
595 	int err = -EBUSY;
596 
597 	/* lock against __dma_request_channel */
598 	mutex_lock(&dma_list_mutex);
599 
600 	if (chan->client_count == 0) {
601 		struct dma_device *device = chan->device;
602 
603 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
604 		device->privatecnt++;
605 		err = dma_chan_get(chan);
606 		if (err) {
607 			dev_dbg(chan->device->dev,
608 				"%s: failed to get %s: (%d)\n",
609 				__func__, dma_chan_name(chan), err);
610 			chan = NULL;
611 			if (--device->privatecnt == 0)
612 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
613 		}
614 	} else
615 		chan = NULL;
616 
617 	mutex_unlock(&dma_list_mutex);
618 
619 
620 	return chan;
621 }
622 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
623 
624 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
625 {
626 	dma_cap_mask_t mask;
627 	struct dma_chan *chan;
628 
629 	dma_cap_zero(mask);
630 	dma_cap_set(DMA_SLAVE, mask);
631 
632 	/* lock against __dma_request_channel */
633 	mutex_lock(&dma_list_mutex);
634 
635 	chan = find_candidate(device, &mask, NULL, NULL);
636 
637 	mutex_unlock(&dma_list_mutex);
638 
639 	return IS_ERR(chan) ? NULL : chan;
640 }
641 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
642 
643 /**
644  * __dma_request_channel - try to allocate an exclusive channel
645  * @mask: capabilities that the channel must satisfy
646  * @fn: optional callback to disposition available channels
647  * @fn_param: opaque parameter to pass to dma_filter_fn
648  *
649  * Returns pointer to appropriate DMA channel on success or NULL.
650  */
651 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
652 				       dma_filter_fn fn, void *fn_param)
653 {
654 	struct dma_device *device, *_d;
655 	struct dma_chan *chan = NULL;
656 
657 	/* Find a channel */
658 	mutex_lock(&dma_list_mutex);
659 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
660 		chan = find_candidate(device, mask, fn, fn_param);
661 		if (!IS_ERR(chan))
662 			break;
663 
664 		chan = NULL;
665 	}
666 	mutex_unlock(&dma_list_mutex);
667 
668 	pr_debug("%s: %s (%s)\n",
669 		 __func__,
670 		 chan ? "success" : "fail",
671 		 chan ? dma_chan_name(chan) : NULL);
672 
673 	return chan;
674 }
675 EXPORT_SYMBOL_GPL(__dma_request_channel);
676 
677 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
678 						    const char *name,
679 						    struct device *dev)
680 {
681 	int i;
682 
683 	if (!device->filter.mapcnt)
684 		return NULL;
685 
686 	for (i = 0; i < device->filter.mapcnt; i++) {
687 		const struct dma_slave_map *map = &device->filter.map[i];
688 
689 		if (!strcmp(map->devname, dev_name(dev)) &&
690 		    !strcmp(map->slave, name))
691 			return map;
692 	}
693 
694 	return NULL;
695 }
696 
697 /**
698  * dma_request_chan - try to allocate an exclusive slave channel
699  * @dev:	pointer to client device structure
700  * @name:	slave channel name
701  *
702  * Returns pointer to appropriate DMA channel on success or an error pointer.
703  */
704 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
705 {
706 	struct dma_device *d, *_d;
707 	struct dma_chan *chan = NULL;
708 
709 	/* If device-tree is present get slave info from here */
710 	if (dev->of_node)
711 		chan = of_dma_request_slave_channel(dev->of_node, name);
712 
713 	/* If device was enumerated by ACPI get slave info from here */
714 	if (has_acpi_companion(dev) && !chan)
715 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
716 
717 	if (chan) {
718 		/* Valid channel found or requester need to be deferred */
719 		if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
720 			return chan;
721 	}
722 
723 	/* Try to find the channel via the DMA filter map(s) */
724 	mutex_lock(&dma_list_mutex);
725 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
726 		dma_cap_mask_t mask;
727 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
728 
729 		if (!map)
730 			continue;
731 
732 		dma_cap_zero(mask);
733 		dma_cap_set(DMA_SLAVE, mask);
734 
735 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
736 		if (!IS_ERR(chan))
737 			break;
738 	}
739 	mutex_unlock(&dma_list_mutex);
740 
741 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
742 }
743 EXPORT_SYMBOL_GPL(dma_request_chan);
744 
745 /**
746  * dma_request_slave_channel - try to allocate an exclusive slave channel
747  * @dev:	pointer to client device structure
748  * @name:	slave channel name
749  *
750  * Returns pointer to appropriate DMA channel on success or NULL.
751  */
752 struct dma_chan *dma_request_slave_channel(struct device *dev,
753 					   const char *name)
754 {
755 	struct dma_chan *ch = dma_request_chan(dev, name);
756 	if (IS_ERR(ch))
757 		return NULL;
758 
759 	return ch;
760 }
761 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
762 
763 /**
764  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
765  * @mask: capabilities that the channel must satisfy
766  *
767  * Returns pointer to appropriate DMA channel on success or an error pointer.
768  */
769 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
770 {
771 	struct dma_chan *chan;
772 
773 	if (!mask)
774 		return ERR_PTR(-ENODEV);
775 
776 	chan = __dma_request_channel(mask, NULL, NULL);
777 	if (!chan)
778 		chan = ERR_PTR(-ENODEV);
779 
780 	return chan;
781 }
782 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
783 
784 void dma_release_channel(struct dma_chan *chan)
785 {
786 	mutex_lock(&dma_list_mutex);
787 	WARN_ONCE(chan->client_count != 1,
788 		  "chan reference count %d != 1\n", chan->client_count);
789 	dma_chan_put(chan);
790 	/* drop PRIVATE cap enabled by __dma_request_channel() */
791 	if (--chan->device->privatecnt == 0)
792 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
793 	mutex_unlock(&dma_list_mutex);
794 }
795 EXPORT_SYMBOL_GPL(dma_release_channel);
796 
797 /**
798  * dmaengine_get - register interest in dma_channels
799  */
800 void dmaengine_get(void)
801 {
802 	struct dma_device *device, *_d;
803 	struct dma_chan *chan;
804 	int err;
805 
806 	mutex_lock(&dma_list_mutex);
807 	dmaengine_ref_count++;
808 
809 	/* try to grab channels */
810 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
811 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
812 			continue;
813 		list_for_each_entry(chan, &device->channels, device_node) {
814 			err = dma_chan_get(chan);
815 			if (err == -ENODEV) {
816 				/* module removed before we could use it */
817 				list_del_rcu(&device->global_node);
818 				break;
819 			} else if (err)
820 				dev_dbg(chan->device->dev,
821 					"%s: failed to get %s: (%d)\n",
822 					__func__, dma_chan_name(chan), err);
823 		}
824 	}
825 
826 	/* if this is the first reference and there were channels
827 	 * waiting we need to rebalance to get those channels
828 	 * incorporated into the channel table
829 	 */
830 	if (dmaengine_ref_count == 1)
831 		dma_channel_rebalance();
832 	mutex_unlock(&dma_list_mutex);
833 }
834 EXPORT_SYMBOL(dmaengine_get);
835 
836 /**
837  * dmaengine_put - let dma drivers be removed when ref_count == 0
838  */
839 void dmaengine_put(void)
840 {
841 	struct dma_device *device;
842 	struct dma_chan *chan;
843 
844 	mutex_lock(&dma_list_mutex);
845 	dmaengine_ref_count--;
846 	BUG_ON(dmaengine_ref_count < 0);
847 	/* drop channel references */
848 	list_for_each_entry(device, &dma_device_list, global_node) {
849 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
850 			continue;
851 		list_for_each_entry(chan, &device->channels, device_node)
852 			dma_chan_put(chan);
853 	}
854 	mutex_unlock(&dma_list_mutex);
855 }
856 EXPORT_SYMBOL(dmaengine_put);
857 
858 static bool device_has_all_tx_types(struct dma_device *device)
859 {
860 	/* A device that satisfies this test has channels that will never cause
861 	 * an async_tx channel switch event as all possible operation types can
862 	 * be handled.
863 	 */
864 	#ifdef CONFIG_ASYNC_TX_DMA
865 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
866 		return false;
867 	#endif
868 
869 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
870 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
871 		return false;
872 	#endif
873 
874 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
875 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
876 		return false;
877 
878 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
879 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
880 		return false;
881 	#endif
882 	#endif
883 
884 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
885 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
886 		return false;
887 
888 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
889 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
890 		return false;
891 	#endif
892 	#endif
893 
894 	return true;
895 }
896 
897 static int get_dma_id(struct dma_device *device)
898 {
899 	int rc;
900 
901 	mutex_lock(&dma_list_mutex);
902 
903 	rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
904 	if (rc >= 0)
905 		device->dev_id = rc;
906 
907 	mutex_unlock(&dma_list_mutex);
908 	return rc < 0 ? rc : 0;
909 }
910 
911 /**
912  * dma_async_device_register - registers DMA devices found
913  * @device: &dma_device
914  */
915 int dma_async_device_register(struct dma_device *device)
916 {
917 	int chancnt = 0, rc;
918 	struct dma_chan* chan;
919 	atomic_t *idr_ref;
920 
921 	if (!device)
922 		return -ENODEV;
923 
924 	/* validate device routines */
925 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
926 		!device->device_prep_dma_memcpy);
927 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
928 		!device->device_prep_dma_xor);
929 	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
930 		!device->device_prep_dma_xor_val);
931 	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
932 		!device->device_prep_dma_pq);
933 	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
934 		!device->device_prep_dma_pq_val);
935 	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
936 		!device->device_prep_dma_memset);
937 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
938 		!device->device_prep_dma_interrupt);
939 	BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
940 		!device->device_prep_dma_sg);
941 	BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
942 		!device->device_prep_dma_cyclic);
943 	BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
944 		!device->device_prep_interleaved_dma);
945 
946 	BUG_ON(!device->device_tx_status);
947 	BUG_ON(!device->device_issue_pending);
948 	BUG_ON(!device->dev);
949 
950 	/* note: this only matters in the
951 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
952 	 */
953 	if (device_has_all_tx_types(device))
954 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
955 
956 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
957 	if (!idr_ref)
958 		return -ENOMEM;
959 	rc = get_dma_id(device);
960 	if (rc != 0) {
961 		kfree(idr_ref);
962 		return rc;
963 	}
964 
965 	atomic_set(idr_ref, 0);
966 
967 	/* represent channels in sysfs. Probably want devs too */
968 	list_for_each_entry(chan, &device->channels, device_node) {
969 		rc = -ENOMEM;
970 		chan->local = alloc_percpu(typeof(*chan->local));
971 		if (chan->local == NULL)
972 			goto err_out;
973 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
974 		if (chan->dev == NULL) {
975 			free_percpu(chan->local);
976 			chan->local = NULL;
977 			goto err_out;
978 		}
979 
980 		chan->chan_id = chancnt++;
981 		chan->dev->device.class = &dma_devclass;
982 		chan->dev->device.parent = device->dev;
983 		chan->dev->chan = chan;
984 		chan->dev->idr_ref = idr_ref;
985 		chan->dev->dev_id = device->dev_id;
986 		atomic_inc(idr_ref);
987 		dev_set_name(&chan->dev->device, "dma%dchan%d",
988 			     device->dev_id, chan->chan_id);
989 
990 		rc = device_register(&chan->dev->device);
991 		if (rc) {
992 			free_percpu(chan->local);
993 			chan->local = NULL;
994 			kfree(chan->dev);
995 			atomic_dec(idr_ref);
996 			goto err_out;
997 		}
998 		chan->client_count = 0;
999 	}
1000 	device->chancnt = chancnt;
1001 
1002 	mutex_lock(&dma_list_mutex);
1003 	/* take references on public channels */
1004 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1005 		list_for_each_entry(chan, &device->channels, device_node) {
1006 			/* if clients are already waiting for channels we need
1007 			 * to take references on their behalf
1008 			 */
1009 			if (dma_chan_get(chan) == -ENODEV) {
1010 				/* note we can only get here for the first
1011 				 * channel as the remaining channels are
1012 				 * guaranteed to get a reference
1013 				 */
1014 				rc = -ENODEV;
1015 				mutex_unlock(&dma_list_mutex);
1016 				goto err_out;
1017 			}
1018 		}
1019 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1020 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1021 		device->privatecnt++;	/* Always private */
1022 	dma_channel_rebalance();
1023 	mutex_unlock(&dma_list_mutex);
1024 
1025 	return 0;
1026 
1027 err_out:
1028 	/* if we never registered a channel just release the idr */
1029 	if (atomic_read(idr_ref) == 0) {
1030 		mutex_lock(&dma_list_mutex);
1031 		idr_remove(&dma_idr, device->dev_id);
1032 		mutex_unlock(&dma_list_mutex);
1033 		kfree(idr_ref);
1034 		return rc;
1035 	}
1036 
1037 	list_for_each_entry(chan, &device->channels, device_node) {
1038 		if (chan->local == NULL)
1039 			continue;
1040 		mutex_lock(&dma_list_mutex);
1041 		chan->dev->chan = NULL;
1042 		mutex_unlock(&dma_list_mutex);
1043 		device_unregister(&chan->dev->device);
1044 		free_percpu(chan->local);
1045 	}
1046 	return rc;
1047 }
1048 EXPORT_SYMBOL(dma_async_device_register);
1049 
1050 /**
1051  * dma_async_device_unregister - unregister a DMA device
1052  * @device: &dma_device
1053  *
1054  * This routine is called by dma driver exit routines, dmaengine holds module
1055  * references to prevent it being called while channels are in use.
1056  */
1057 void dma_async_device_unregister(struct dma_device *device)
1058 {
1059 	struct dma_chan *chan;
1060 
1061 	mutex_lock(&dma_list_mutex);
1062 	list_del_rcu(&device->global_node);
1063 	dma_channel_rebalance();
1064 	mutex_unlock(&dma_list_mutex);
1065 
1066 	list_for_each_entry(chan, &device->channels, device_node) {
1067 		WARN_ONCE(chan->client_count,
1068 			  "%s called while %d clients hold a reference\n",
1069 			  __func__, chan->client_count);
1070 		mutex_lock(&dma_list_mutex);
1071 		chan->dev->chan = NULL;
1072 		mutex_unlock(&dma_list_mutex);
1073 		device_unregister(&chan->dev->device);
1074 		free_percpu(chan->local);
1075 	}
1076 }
1077 EXPORT_SYMBOL(dma_async_device_unregister);
1078 
1079 struct dmaengine_unmap_pool {
1080 	struct kmem_cache *cache;
1081 	const char *name;
1082 	mempool_t *pool;
1083 	size_t size;
1084 };
1085 
1086 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1087 static struct dmaengine_unmap_pool unmap_pool[] = {
1088 	__UNMAP_POOL(2),
1089 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1090 	__UNMAP_POOL(16),
1091 	__UNMAP_POOL(128),
1092 	__UNMAP_POOL(256),
1093 	#endif
1094 };
1095 
1096 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1097 {
1098 	int order = get_count_order(nr);
1099 
1100 	switch (order) {
1101 	case 0 ... 1:
1102 		return &unmap_pool[0];
1103 	case 2 ... 4:
1104 		return &unmap_pool[1];
1105 	case 5 ... 7:
1106 		return &unmap_pool[2];
1107 	case 8:
1108 		return &unmap_pool[3];
1109 	default:
1110 		BUG();
1111 		return NULL;
1112 	}
1113 }
1114 
1115 static void dmaengine_unmap(struct kref *kref)
1116 {
1117 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1118 	struct device *dev = unmap->dev;
1119 	int cnt, i;
1120 
1121 	cnt = unmap->to_cnt;
1122 	for (i = 0; i < cnt; i++)
1123 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1124 			       DMA_TO_DEVICE);
1125 	cnt += unmap->from_cnt;
1126 	for (; i < cnt; i++)
1127 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1128 			       DMA_FROM_DEVICE);
1129 	cnt += unmap->bidi_cnt;
1130 	for (; i < cnt; i++) {
1131 		if (unmap->addr[i] == 0)
1132 			continue;
1133 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1134 			       DMA_BIDIRECTIONAL);
1135 	}
1136 	cnt = unmap->map_cnt;
1137 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1138 }
1139 
1140 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1141 {
1142 	if (unmap)
1143 		kref_put(&unmap->kref, dmaengine_unmap);
1144 }
1145 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1146 
1147 static void dmaengine_destroy_unmap_pool(void)
1148 {
1149 	int i;
1150 
1151 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1152 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1153 
1154 		mempool_destroy(p->pool);
1155 		p->pool = NULL;
1156 		kmem_cache_destroy(p->cache);
1157 		p->cache = NULL;
1158 	}
1159 }
1160 
1161 static int __init dmaengine_init_unmap_pool(void)
1162 {
1163 	int i;
1164 
1165 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1166 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1167 		size_t size;
1168 
1169 		size = sizeof(struct dmaengine_unmap_data) +
1170 		       sizeof(dma_addr_t) * p->size;
1171 
1172 		p->cache = kmem_cache_create(p->name, size, 0,
1173 					     SLAB_HWCACHE_ALIGN, NULL);
1174 		if (!p->cache)
1175 			break;
1176 		p->pool = mempool_create_slab_pool(1, p->cache);
1177 		if (!p->pool)
1178 			break;
1179 	}
1180 
1181 	if (i == ARRAY_SIZE(unmap_pool))
1182 		return 0;
1183 
1184 	dmaengine_destroy_unmap_pool();
1185 	return -ENOMEM;
1186 }
1187 
1188 struct dmaengine_unmap_data *
1189 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1190 {
1191 	struct dmaengine_unmap_data *unmap;
1192 
1193 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1194 	if (!unmap)
1195 		return NULL;
1196 
1197 	memset(unmap, 0, sizeof(*unmap));
1198 	kref_init(&unmap->kref);
1199 	unmap->dev = dev;
1200 	unmap->map_cnt = nr;
1201 
1202 	return unmap;
1203 }
1204 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1205 
1206 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1207 	struct dma_chan *chan)
1208 {
1209 	tx->chan = chan;
1210 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1211 	spin_lock_init(&tx->lock);
1212 	#endif
1213 }
1214 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1215 
1216 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1217  * @tx: in-flight transaction to wait on
1218  */
1219 enum dma_status
1220 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1221 {
1222 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1223 
1224 	if (!tx)
1225 		return DMA_COMPLETE;
1226 
1227 	while (tx->cookie == -EBUSY) {
1228 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1229 			dev_err(tx->chan->device->dev,
1230 				"%s timeout waiting for descriptor submission\n",
1231 				__func__);
1232 			return DMA_ERROR;
1233 		}
1234 		cpu_relax();
1235 	}
1236 	return dma_sync_wait(tx->chan, tx->cookie);
1237 }
1238 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1239 
1240 /* dma_run_dependencies - helper routine for dma drivers to process
1241  *	(start) dependent operations on their target channel
1242  * @tx: transaction with dependencies
1243  */
1244 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1245 {
1246 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1247 	struct dma_async_tx_descriptor *dep_next;
1248 	struct dma_chan *chan;
1249 
1250 	if (!dep)
1251 		return;
1252 
1253 	/* we'll submit tx->next now, so clear the link */
1254 	txd_clear_next(tx);
1255 	chan = dep->chan;
1256 
1257 	/* keep submitting up until a channel switch is detected
1258 	 * in that case we will be called again as a result of
1259 	 * processing the interrupt from async_tx_channel_switch
1260 	 */
1261 	for (; dep; dep = dep_next) {
1262 		txd_lock(dep);
1263 		txd_clear_parent(dep);
1264 		dep_next = txd_next(dep);
1265 		if (dep_next && dep_next->chan == chan)
1266 			txd_clear_next(dep); /* ->next will be submitted */
1267 		else
1268 			dep_next = NULL; /* submit current dep and terminate */
1269 		txd_unlock(dep);
1270 
1271 		dep->tx_submit(dep);
1272 	}
1273 
1274 	chan->device->device_issue_pending(chan);
1275 }
1276 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1277 
1278 static int __init dma_bus_init(void)
1279 {
1280 	int err = dmaengine_init_unmap_pool();
1281 
1282 	if (err)
1283 		return err;
1284 	return class_register(&dma_devclass);
1285 }
1286 arch_initcall(dma_bus_init);
1287 
1288 
1289