xref: /linux/drivers/dma/dma-axi-dmac.c (revision 95444b9eeb8c5c0330563931d70c61ca3b101548)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Analog Devices AXI-DMAC core
4  *
5  * Copyright 2013-2019 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_address.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/slab.h>
25 #include <linux/fpga/adi-axi-common.h>
26 
27 #include <dt-bindings/dma/axi-dmac.h>
28 
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31 
32 /*
33  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
34  * various instantiation parameters which decided the exact feature set support
35  * by the core.
36  *
37  * Each channel of the core has a source interface and a destination interface.
38  * The number of channels and the type of the channel interfaces is selected at
39  * configuration time. A interface can either be a connected to a central memory
40  * interconnect, which allows access to system memory, or it can be connected to
41  * a dedicated bus which is directly connected to a data port on a peripheral.
42  * Given that those are configuration options of the core that are selected when
43  * it is instantiated this means that they can not be changed by software at
44  * runtime. By extension this means that each channel is uni-directional. It can
45  * either be device to memory or memory to device, but not both. Also since the
46  * device side is a dedicated data bus only connected to a single peripheral
47  * there is no address than can or needs to be configured for the device side.
48  */
49 
50 #define AXI_DMAC_REG_INTERFACE_DESC	0x10
51 #define   AXI_DMAC_DMA_SRC_TYPE_MSK	GENMASK(13, 12)
52 #define   AXI_DMAC_DMA_SRC_TYPE_GET(x)	FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
53 #define   AXI_DMAC_DMA_SRC_WIDTH_MSK	GENMASK(11, 8)
54 #define   AXI_DMAC_DMA_SRC_WIDTH_GET(x)	FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
55 #define   AXI_DMAC_DMA_DST_TYPE_MSK	GENMASK(5, 4)
56 #define   AXI_DMAC_DMA_DST_TYPE_GET(x)	FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
57 #define   AXI_DMAC_DMA_DST_WIDTH_MSK	GENMASK(3, 0)
58 #define   AXI_DMAC_DMA_DST_WIDTH_GET(x)	FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
59 #define AXI_DMAC_REG_COHERENCY_DESC	0x14
60 #define   AXI_DMAC_DST_COHERENT_MSK	BIT(0)
61 #define   AXI_DMAC_DST_COHERENT_GET(x)	FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
62 
63 #define AXI_DMAC_REG_IRQ_MASK		0x80
64 #define AXI_DMAC_REG_IRQ_PENDING	0x84
65 #define AXI_DMAC_REG_IRQ_SOURCE		0x88
66 
67 #define AXI_DMAC_REG_CTRL		0x400
68 #define AXI_DMAC_REG_TRANSFER_ID	0x404
69 #define AXI_DMAC_REG_START_TRANSFER	0x408
70 #define AXI_DMAC_REG_FLAGS		0x40c
71 #define AXI_DMAC_REG_DEST_ADDRESS	0x410
72 #define AXI_DMAC_REG_SRC_ADDRESS	0x414
73 #define AXI_DMAC_REG_X_LENGTH		0x418
74 #define AXI_DMAC_REG_Y_LENGTH		0x41c
75 #define AXI_DMAC_REG_DEST_STRIDE	0x420
76 #define AXI_DMAC_REG_SRC_STRIDE		0x424
77 #define AXI_DMAC_REG_TRANSFER_DONE	0x428
78 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
79 #define AXI_DMAC_REG_STATUS		0x430
80 #define AXI_DMAC_REG_CURRENT_SRC_ADDR	0x434
81 #define AXI_DMAC_REG_CURRENT_DEST_ADDR	0x438
82 #define AXI_DMAC_REG_PARTIAL_XFER_LEN	0x44c
83 #define AXI_DMAC_REG_PARTIAL_XFER_ID	0x450
84 #define AXI_DMAC_REG_CURRENT_SG_ID	0x454
85 #define AXI_DMAC_REG_SG_ADDRESS		0x47c
86 #define AXI_DMAC_REG_SG_ADDRESS_HIGH	0x4bc
87 
88 #define AXI_DMAC_CTRL_ENABLE		BIT(0)
89 #define AXI_DMAC_CTRL_PAUSE		BIT(1)
90 #define AXI_DMAC_CTRL_ENABLE_SG		BIT(2)
91 
92 #define AXI_DMAC_IRQ_SOT		BIT(0)
93 #define AXI_DMAC_IRQ_EOT		BIT(1)
94 
95 #define AXI_DMAC_FLAG_CYCLIC		BIT(0)
96 #define AXI_DMAC_FLAG_LAST		BIT(1)
97 #define AXI_DMAC_FLAG_PARTIAL_REPORT	BIT(2)
98 
99 #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
100 
101 /* The maximum ID allocated by the hardware is 31 */
102 #define AXI_DMAC_SG_UNUSED 32U
103 
104 /* Flags for axi_dmac_hw_desc.flags */
105 #define AXI_DMAC_HW_FLAG_LAST		BIT(0)
106 #define AXI_DMAC_HW_FLAG_IRQ		BIT(1)
107 
108 struct axi_dmac_hw_desc {
109 	u32 flags;
110 	u32 id;
111 	u64 dest_addr;
112 	u64 src_addr;
113 	u64 next_sg_addr;
114 	u32 y_len;
115 	u32 x_len;
116 	u32 src_stride;
117 	u32 dst_stride;
118 	u64 __pad[2];
119 };
120 
121 struct axi_dmac_sg {
122 	unsigned int partial_len;
123 	bool schedule_when_free;
124 
125 	struct axi_dmac_hw_desc *hw;
126 	dma_addr_t hw_phys;
127 };
128 
129 struct axi_dmac_desc {
130 	struct virt_dma_desc vdesc;
131 	struct axi_dmac_chan *chan;
132 
133 	bool cyclic;
134 	bool have_partial_xfer;
135 
136 	unsigned int num_submitted;
137 	unsigned int num_completed;
138 	unsigned int num_sgs;
139 	struct axi_dmac_sg sg[] __counted_by(num_sgs);
140 };
141 
142 struct axi_dmac_chan {
143 	struct virt_dma_chan vchan;
144 
145 	struct axi_dmac_desc *next_desc;
146 	struct list_head active_descs;
147 	enum dma_transfer_direction direction;
148 
149 	unsigned int src_width;
150 	unsigned int dest_width;
151 	unsigned int src_type;
152 	unsigned int dest_type;
153 
154 	unsigned int max_length;
155 	unsigned int address_align_mask;
156 	unsigned int length_align_mask;
157 
158 	bool hw_partial_xfer;
159 	bool hw_cyclic;
160 	bool hw_2d;
161 	bool hw_sg;
162 };
163 
164 struct axi_dmac {
165 	void __iomem *base;
166 	int irq;
167 
168 	struct clk *clk;
169 
170 	struct dma_device dma_dev;
171 	struct axi_dmac_chan chan;
172 };
173 
174 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
175 {
176 	return container_of(chan->vchan.chan.device, struct axi_dmac,
177 		dma_dev);
178 }
179 
180 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
181 {
182 	return container_of(c, struct axi_dmac_chan, vchan.chan);
183 }
184 
185 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
186 {
187 	return container_of(vdesc, struct axi_dmac_desc, vdesc);
188 }
189 
190 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
191 	unsigned int val)
192 {
193 	writel(val, axi_dmac->base + reg);
194 }
195 
196 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
197 {
198 	return readl(axi_dmac->base + reg);
199 }
200 
201 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
202 {
203 	return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
204 }
205 
206 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
207 {
208 	return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
209 }
210 
211 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
212 {
213 	if (len == 0)
214 		return false;
215 	if ((len & chan->length_align_mask) != 0) /* Not aligned */
216 		return false;
217 	return true;
218 }
219 
220 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
221 {
222 	if ((addr & chan->address_align_mask) != 0) /* Not aligned */
223 		return false;
224 	return true;
225 }
226 
227 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
228 {
229 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
230 	struct virt_dma_desc *vdesc;
231 	struct axi_dmac_desc *desc;
232 	struct axi_dmac_sg *sg;
233 	unsigned int flags = 0;
234 	unsigned int val;
235 
236 	if (!chan->hw_sg) {
237 		val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
238 		if (val) /* Queue is full, wait for the next SOT IRQ */
239 			return;
240 	}
241 
242 	desc = chan->next_desc;
243 
244 	if (!desc) {
245 		vdesc = vchan_next_desc(&chan->vchan);
246 		if (!vdesc)
247 			return;
248 		list_move_tail(&vdesc->node, &chan->active_descs);
249 		desc = to_axi_dmac_desc(vdesc);
250 	}
251 	sg = &desc->sg[desc->num_submitted];
252 
253 	/* Already queued in cyclic mode. Wait for it to finish */
254 	if (sg->hw->id != AXI_DMAC_SG_UNUSED) {
255 		sg->schedule_when_free = true;
256 		return;
257 	}
258 
259 	if (chan->hw_sg) {
260 		chan->next_desc = NULL;
261 	} else if (++desc->num_submitted == desc->num_sgs ||
262 		   desc->have_partial_xfer) {
263 		if (desc->cyclic)
264 			desc->num_submitted = 0; /* Start again */
265 		else
266 			chan->next_desc = NULL;
267 		flags |= AXI_DMAC_FLAG_LAST;
268 	} else {
269 		chan->next_desc = desc;
270 	}
271 
272 	sg->hw->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
273 
274 	if (!chan->hw_sg) {
275 		if (axi_dmac_dest_is_mem(chan)) {
276 			axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->hw->dest_addr);
277 			axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->hw->dst_stride);
278 		}
279 
280 		if (axi_dmac_src_is_mem(chan)) {
281 			axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->hw->src_addr);
282 			axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->hw->src_stride);
283 		}
284 	}
285 
286 	/*
287 	 * If the hardware supports cyclic transfers and there is no callback to
288 	 * call, enable hw cyclic mode to avoid unnecessary interrupts.
289 	 */
290 	if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) {
291 		if (chan->hw_sg)
292 			desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ;
293 		else if (desc->num_sgs == 1)
294 			flags |= AXI_DMAC_FLAG_CYCLIC;
295 	}
296 
297 	if (chan->hw_partial_xfer)
298 		flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
299 
300 	if (chan->hw_sg) {
301 		axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, (u32)sg->hw_phys);
302 		axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH,
303 			       (u64)sg->hw_phys >> 32);
304 	} else {
305 		axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->hw->x_len);
306 		axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->hw->y_len);
307 	}
308 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
309 	axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
310 }
311 
312 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
313 {
314 	return list_first_entry_or_null(&chan->active_descs,
315 		struct axi_dmac_desc, vdesc.node);
316 }
317 
318 static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
319 	struct axi_dmac_sg *sg)
320 {
321 	if (chan->hw_2d)
322 		return (sg->hw->x_len + 1) * (sg->hw->y_len + 1);
323 	else
324 		return (sg->hw->x_len + 1);
325 }
326 
327 static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
328 {
329 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
330 	struct axi_dmac_desc *desc;
331 	struct axi_dmac_sg *sg;
332 	u32 xfer_done, len, id, i;
333 	bool found_sg;
334 
335 	do {
336 		len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
337 		id  = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
338 
339 		found_sg = false;
340 		list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
341 			for (i = 0; i < desc->num_sgs; i++) {
342 				sg = &desc->sg[i];
343 				if (sg->hw->id == AXI_DMAC_SG_UNUSED)
344 					continue;
345 				if (sg->hw->id == id) {
346 					desc->have_partial_xfer = true;
347 					sg->partial_len = len;
348 					found_sg = true;
349 					break;
350 				}
351 			}
352 			if (found_sg)
353 				break;
354 		}
355 
356 		if (found_sg) {
357 			dev_dbg(dmac->dma_dev.dev,
358 				"Found partial segment id=%u, len=%u\n",
359 				id, len);
360 		} else {
361 			dev_warn(dmac->dma_dev.dev,
362 				 "Not found partial segment id=%u, len=%u\n",
363 				 id, len);
364 		}
365 
366 		/* Check if we have any more partial transfers */
367 		xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
368 		xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
369 
370 	} while (!xfer_done);
371 }
372 
373 static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
374 	struct axi_dmac_desc *active)
375 {
376 	struct dmaengine_result *rslt = &active->vdesc.tx_result;
377 	unsigned int start = active->num_completed - 1;
378 	struct axi_dmac_sg *sg;
379 	unsigned int i, total;
380 
381 	rslt->result = DMA_TRANS_NOERROR;
382 	rslt->residue = 0;
383 
384 	if (chan->hw_sg)
385 		return;
386 
387 	/*
388 	 * We get here if the last completed segment is partial, which
389 	 * means we can compute the residue from that segment onwards
390 	 */
391 	for (i = start; i < active->num_sgs; i++) {
392 		sg = &active->sg[i];
393 		total = axi_dmac_total_sg_bytes(chan, sg);
394 		rslt->residue += (total - sg->partial_len);
395 	}
396 }
397 
398 static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
399 	unsigned int completed_transfers)
400 {
401 	struct axi_dmac_desc *active;
402 	struct axi_dmac_sg *sg;
403 	bool start_next = false;
404 
405 	active = axi_dmac_active_desc(chan);
406 	if (!active)
407 		return false;
408 
409 	if (chan->hw_partial_xfer &&
410 	    (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
411 		axi_dmac_dequeue_partial_xfers(chan);
412 
413 	if (chan->hw_sg) {
414 		if (active->cyclic) {
415 			vchan_cyclic_callback(&active->vdesc);
416 		} else {
417 			list_del(&active->vdesc.node);
418 			vchan_cookie_complete(&active->vdesc);
419 			active = axi_dmac_active_desc(chan);
420 			start_next = !!active;
421 		}
422 	} else {
423 		do {
424 			sg = &active->sg[active->num_completed];
425 			if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
426 				break;
427 			if (!(BIT(sg->hw->id) & completed_transfers))
428 				break;
429 			active->num_completed++;
430 			sg->hw->id = AXI_DMAC_SG_UNUSED;
431 			if (sg->schedule_when_free) {
432 				sg->schedule_when_free = false;
433 				start_next = true;
434 			}
435 
436 			if (sg->partial_len)
437 				axi_dmac_compute_residue(chan, active);
438 
439 			if (active->cyclic)
440 				vchan_cyclic_callback(&active->vdesc);
441 
442 			if (active->num_completed == active->num_sgs ||
443 			    sg->partial_len) {
444 				if (active->cyclic) {
445 					active->num_completed = 0; /* wrap around */
446 				} else {
447 					list_del(&active->vdesc.node);
448 					vchan_cookie_complete(&active->vdesc);
449 					active = axi_dmac_active_desc(chan);
450 				}
451 			}
452 		} while (active);
453 	}
454 
455 	return start_next;
456 }
457 
458 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
459 {
460 	struct axi_dmac *dmac = devid;
461 	unsigned int pending;
462 	bool start_next = false;
463 
464 	pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
465 	if (!pending)
466 		return IRQ_NONE;
467 
468 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
469 
470 	spin_lock(&dmac->chan.vchan.lock);
471 	/* One or more transfers have finished */
472 	if (pending & AXI_DMAC_IRQ_EOT) {
473 		unsigned int completed;
474 
475 		completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
476 		start_next = axi_dmac_transfer_done(&dmac->chan, completed);
477 	}
478 	/* Space has become available in the descriptor queue */
479 	if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
480 		axi_dmac_start_transfer(&dmac->chan);
481 	spin_unlock(&dmac->chan.vchan.lock);
482 
483 	return IRQ_HANDLED;
484 }
485 
486 static int axi_dmac_terminate_all(struct dma_chan *c)
487 {
488 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
489 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
490 	unsigned long flags;
491 	LIST_HEAD(head);
492 
493 	spin_lock_irqsave(&chan->vchan.lock, flags);
494 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
495 	chan->next_desc = NULL;
496 	vchan_get_all_descriptors(&chan->vchan, &head);
497 	list_splice_tail_init(&chan->active_descs, &head);
498 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
499 
500 	vchan_dma_desc_free_list(&chan->vchan, &head);
501 
502 	return 0;
503 }
504 
505 static void axi_dmac_synchronize(struct dma_chan *c)
506 {
507 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
508 
509 	vchan_synchronize(&chan->vchan);
510 }
511 
512 static void axi_dmac_issue_pending(struct dma_chan *c)
513 {
514 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
515 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
516 	unsigned long flags;
517 	u32 ctrl = AXI_DMAC_CTRL_ENABLE;
518 
519 	if (chan->hw_sg)
520 		ctrl |= AXI_DMAC_CTRL_ENABLE_SG;
521 
522 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, ctrl);
523 
524 	spin_lock_irqsave(&chan->vchan.lock, flags);
525 	if (vchan_issue_pending(&chan->vchan))
526 		axi_dmac_start_transfer(chan);
527 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
528 }
529 
530 static struct axi_dmac_desc *
531 axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs)
532 {
533 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
534 	struct device *dev = dmac->dma_dev.dev;
535 	struct axi_dmac_hw_desc *hws;
536 	struct axi_dmac_desc *desc;
537 	dma_addr_t hw_phys;
538 	unsigned int i;
539 
540 	desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
541 	if (!desc)
542 		return NULL;
543 	desc->num_sgs = num_sgs;
544 	desc->chan = chan;
545 
546 	hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)),
547 				&hw_phys, GFP_ATOMIC);
548 	if (!hws) {
549 		kfree(desc);
550 		return NULL;
551 	}
552 
553 	for (i = 0; i < num_sgs; i++) {
554 		desc->sg[i].hw = &hws[i];
555 		desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws);
556 
557 		hws[i].id = AXI_DMAC_SG_UNUSED;
558 		hws[i].flags = 0;
559 
560 		/* Link hardware descriptors */
561 		hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws);
562 	}
563 
564 	/* The last hardware descriptor will trigger an interrupt */
565 	desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ;
566 
567 	return desc;
568 }
569 
570 static void axi_dmac_free_desc(struct axi_dmac_desc *desc)
571 {
572 	struct axi_dmac *dmac = chan_to_axi_dmac(desc->chan);
573 	struct device *dev = dmac->dma_dev.dev;
574 	struct axi_dmac_hw_desc *hw = desc->sg[0].hw;
575 	dma_addr_t hw_phys = desc->sg[0].hw_phys;
576 
577 	dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)),
578 			  hw, hw_phys);
579 	kfree(desc);
580 }
581 
582 static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
583 	enum dma_transfer_direction direction, dma_addr_t addr,
584 	unsigned int num_periods, unsigned int period_len,
585 	struct axi_dmac_sg *sg)
586 {
587 	unsigned int num_segments, i;
588 	unsigned int segment_size;
589 	unsigned int len;
590 
591 	/* Split into multiple equally sized segments if necessary */
592 	num_segments = DIV_ROUND_UP(period_len, chan->max_length);
593 	segment_size = DIV_ROUND_UP(period_len, num_segments);
594 	/* Take care of alignment */
595 	segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
596 
597 	for (i = 0; i < num_periods; i++) {
598 		for (len = period_len; len > segment_size; sg++) {
599 			if (direction == DMA_DEV_TO_MEM)
600 				sg->hw->dest_addr = addr;
601 			else
602 				sg->hw->src_addr = addr;
603 			sg->hw->x_len = segment_size - 1;
604 			sg->hw->y_len = 0;
605 			sg->hw->flags = 0;
606 			addr += segment_size;
607 			len -= segment_size;
608 		}
609 
610 		if (direction == DMA_DEV_TO_MEM)
611 			sg->hw->dest_addr = addr;
612 		else
613 			sg->hw->src_addr = addr;
614 		sg->hw->x_len = len - 1;
615 		sg->hw->y_len = 0;
616 		sg++;
617 		addr += len;
618 	}
619 
620 	return sg;
621 }
622 
623 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
624 	struct dma_chan *c, struct scatterlist *sgl,
625 	unsigned int sg_len, enum dma_transfer_direction direction,
626 	unsigned long flags, void *context)
627 {
628 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
629 	struct axi_dmac_desc *desc;
630 	struct axi_dmac_sg *dsg;
631 	struct scatterlist *sg;
632 	unsigned int num_sgs;
633 	unsigned int i;
634 
635 	if (direction != chan->direction)
636 		return NULL;
637 
638 	num_sgs = 0;
639 	for_each_sg(sgl, sg, sg_len, i)
640 		num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
641 
642 	desc = axi_dmac_alloc_desc(chan, num_sgs);
643 	if (!desc)
644 		return NULL;
645 
646 	dsg = desc->sg;
647 
648 	for_each_sg(sgl, sg, sg_len, i) {
649 		if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
650 		    !axi_dmac_check_len(chan, sg_dma_len(sg))) {
651 			axi_dmac_free_desc(desc);
652 			return NULL;
653 		}
654 
655 		dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
656 			sg_dma_len(sg), dsg);
657 	}
658 
659 	desc->cyclic = false;
660 
661 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
662 }
663 
664 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
665 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
666 	size_t period_len, enum dma_transfer_direction direction,
667 	unsigned long flags)
668 {
669 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
670 	struct axi_dmac_desc *desc;
671 	unsigned int num_periods, num_segments, num_sgs;
672 
673 	if (direction != chan->direction)
674 		return NULL;
675 
676 	if (!axi_dmac_check_len(chan, buf_len) ||
677 	    !axi_dmac_check_addr(chan, buf_addr))
678 		return NULL;
679 
680 	if (period_len == 0 || buf_len % period_len)
681 		return NULL;
682 
683 	num_periods = buf_len / period_len;
684 	num_segments = DIV_ROUND_UP(period_len, chan->max_length);
685 	num_sgs = num_periods * num_segments;
686 
687 	desc = axi_dmac_alloc_desc(chan, num_sgs);
688 	if (!desc)
689 		return NULL;
690 
691 	/* Chain the last descriptor to the first, and remove its "last" flag */
692 	desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys;
693 	desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST;
694 
695 	axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
696 		period_len, desc->sg);
697 
698 	desc->cyclic = true;
699 
700 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
701 }
702 
703 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
704 	struct dma_chan *c, struct dma_interleaved_template *xt,
705 	unsigned long flags)
706 {
707 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
708 	struct axi_dmac_desc *desc;
709 	size_t dst_icg, src_icg;
710 
711 	if (xt->frame_size != 1)
712 		return NULL;
713 
714 	if (xt->dir != chan->direction)
715 		return NULL;
716 
717 	if (axi_dmac_src_is_mem(chan)) {
718 		if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
719 			return NULL;
720 	}
721 
722 	if (axi_dmac_dest_is_mem(chan)) {
723 		if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
724 			return NULL;
725 	}
726 
727 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
728 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
729 
730 	if (chan->hw_2d) {
731 		if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
732 		    xt->numf == 0)
733 			return NULL;
734 		if (xt->sgl[0].size + dst_icg > chan->max_length ||
735 		    xt->sgl[0].size + src_icg > chan->max_length)
736 			return NULL;
737 	} else {
738 		if (dst_icg != 0 || src_icg != 0)
739 			return NULL;
740 		if (chan->max_length / xt->sgl[0].size < xt->numf)
741 			return NULL;
742 		if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
743 			return NULL;
744 	}
745 
746 	desc = axi_dmac_alloc_desc(chan, 1);
747 	if (!desc)
748 		return NULL;
749 
750 	if (axi_dmac_src_is_mem(chan)) {
751 		desc->sg[0].hw->src_addr = xt->src_start;
752 		desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg;
753 	}
754 
755 	if (axi_dmac_dest_is_mem(chan)) {
756 		desc->sg[0].hw->dest_addr = xt->dst_start;
757 		desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg;
758 	}
759 
760 	if (chan->hw_2d) {
761 		desc->sg[0].hw->x_len = xt->sgl[0].size - 1;
762 		desc->sg[0].hw->y_len = xt->numf - 1;
763 	} else {
764 		desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1;
765 		desc->sg[0].hw->y_len = 0;
766 	}
767 
768 	if (flags & DMA_CYCLIC)
769 		desc->cyclic = true;
770 
771 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
772 }
773 
774 static void axi_dmac_free_chan_resources(struct dma_chan *c)
775 {
776 	vchan_free_chan_resources(to_virt_chan(c));
777 }
778 
779 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
780 {
781 	axi_dmac_free_desc(to_axi_dmac_desc(vdesc));
782 }
783 
784 static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
785 {
786 	switch (reg) {
787 	case AXI_DMAC_REG_IRQ_MASK:
788 	case AXI_DMAC_REG_IRQ_SOURCE:
789 	case AXI_DMAC_REG_IRQ_PENDING:
790 	case AXI_DMAC_REG_CTRL:
791 	case AXI_DMAC_REG_TRANSFER_ID:
792 	case AXI_DMAC_REG_START_TRANSFER:
793 	case AXI_DMAC_REG_FLAGS:
794 	case AXI_DMAC_REG_DEST_ADDRESS:
795 	case AXI_DMAC_REG_SRC_ADDRESS:
796 	case AXI_DMAC_REG_X_LENGTH:
797 	case AXI_DMAC_REG_Y_LENGTH:
798 	case AXI_DMAC_REG_DEST_STRIDE:
799 	case AXI_DMAC_REG_SRC_STRIDE:
800 	case AXI_DMAC_REG_TRANSFER_DONE:
801 	case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
802 	case AXI_DMAC_REG_STATUS:
803 	case AXI_DMAC_REG_CURRENT_SRC_ADDR:
804 	case AXI_DMAC_REG_CURRENT_DEST_ADDR:
805 	case AXI_DMAC_REG_PARTIAL_XFER_LEN:
806 	case AXI_DMAC_REG_PARTIAL_XFER_ID:
807 	case AXI_DMAC_REG_CURRENT_SG_ID:
808 	case AXI_DMAC_REG_SG_ADDRESS:
809 	case AXI_DMAC_REG_SG_ADDRESS_HIGH:
810 		return true;
811 	default:
812 		return false;
813 	}
814 }
815 
816 static const struct regmap_config axi_dmac_regmap_config = {
817 	.reg_bits = 32,
818 	.val_bits = 32,
819 	.reg_stride = 4,
820 	.max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
821 	.readable_reg = axi_dmac_regmap_rdwr,
822 	.writeable_reg = axi_dmac_regmap_rdwr,
823 };
824 
825 static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
826 {
827 	chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
828 
829 	if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
830 		chan->direction = DMA_MEM_TO_MEM;
831 	else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
832 		chan->direction = DMA_MEM_TO_DEV;
833 	else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
834 		chan->direction = DMA_DEV_TO_MEM;
835 	else
836 		chan->direction = DMA_DEV_TO_DEV;
837 }
838 
839 /*
840  * The configuration stored in the devicetree matches the configuration
841  * parameters of the peripheral instance and allows the driver to know which
842  * features are implemented and how it should behave.
843  */
844 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
845 	struct axi_dmac_chan *chan)
846 {
847 	u32 val;
848 	int ret;
849 
850 	ret = of_property_read_u32(of_chan, "reg", &val);
851 	if (ret)
852 		return ret;
853 
854 	/* We only support 1 channel for now */
855 	if (val != 0)
856 		return -EINVAL;
857 
858 	ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
859 	if (ret)
860 		return ret;
861 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
862 		return -EINVAL;
863 	chan->src_type = val;
864 
865 	ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
866 	if (ret)
867 		return ret;
868 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
869 		return -EINVAL;
870 	chan->dest_type = val;
871 
872 	ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
873 	if (ret)
874 		return ret;
875 	chan->src_width = val / 8;
876 
877 	ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
878 	if (ret)
879 		return ret;
880 	chan->dest_width = val / 8;
881 
882 	axi_dmac_adjust_chan_params(chan);
883 
884 	return 0;
885 }
886 
887 static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
888 {
889 	struct device_node *of_channels, *of_chan;
890 	int ret;
891 
892 	of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
893 	if (of_channels == NULL)
894 		return -ENODEV;
895 
896 	for_each_child_of_node(of_channels, of_chan) {
897 		ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
898 		if (ret) {
899 			of_node_put(of_chan);
900 			of_node_put(of_channels);
901 			return -EINVAL;
902 		}
903 	}
904 	of_node_put(of_channels);
905 
906 	return 0;
907 }
908 
909 static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
910 {
911 	struct axi_dmac_chan *chan = &dmac->chan;
912 	unsigned int val, desc;
913 
914 	desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
915 	if (desc == 0) {
916 		dev_err(dev, "DMA interface register reads zero\n");
917 		return -EFAULT;
918 	}
919 
920 	val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
921 	if (val > AXI_DMAC_BUS_TYPE_FIFO) {
922 		dev_err(dev, "Invalid source bus type read: %d\n", val);
923 		return -EINVAL;
924 	}
925 	chan->src_type = val;
926 
927 	val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
928 	if (val > AXI_DMAC_BUS_TYPE_FIFO) {
929 		dev_err(dev, "Invalid destination bus type read: %d\n", val);
930 		return -EINVAL;
931 	}
932 	chan->dest_type = val;
933 
934 	val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
935 	if (val == 0) {
936 		dev_err(dev, "Source bus width is zero\n");
937 		return -EINVAL;
938 	}
939 	/* widths are stored in log2 */
940 	chan->src_width = 1 << val;
941 
942 	val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
943 	if (val == 0) {
944 		dev_err(dev, "Destination bus width is zero\n");
945 		return -EINVAL;
946 	}
947 	chan->dest_width = 1 << val;
948 
949 	axi_dmac_adjust_chan_params(chan);
950 
951 	return 0;
952 }
953 
954 static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
955 {
956 	struct axi_dmac_chan *chan = &dmac->chan;
957 
958 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
959 	if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
960 		chan->hw_cyclic = true;
961 
962 	axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, 0xffffffff);
963 	if (axi_dmac_read(dmac, AXI_DMAC_REG_SG_ADDRESS))
964 		chan->hw_sg = true;
965 
966 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
967 	if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
968 		chan->hw_2d = true;
969 
970 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
971 	chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
972 	if (chan->max_length != UINT_MAX)
973 		chan->max_length++;
974 
975 	axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
976 	if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
977 	    chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
978 		dev_err(dmac->dma_dev.dev,
979 			"Destination memory-mapped interface not supported.");
980 		return -ENODEV;
981 	}
982 
983 	axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
984 	if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
985 	    chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
986 		dev_err(dmac->dma_dev.dev,
987 			"Source memory-mapped interface not supported.");
988 		return -ENODEV;
989 	}
990 
991 	if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
992 		chan->hw_partial_xfer = true;
993 
994 	if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
995 		axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
996 		chan->length_align_mask =
997 			axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
998 	} else {
999 		chan->length_align_mask = chan->address_align_mask;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 static void axi_dmac_tasklet_kill(void *task)
1006 {
1007 	tasklet_kill(task);
1008 }
1009 
1010 static void axi_dmac_free_dma_controller(void *of_node)
1011 {
1012 	of_dma_controller_free(of_node);
1013 }
1014 
1015 static int axi_dmac_probe(struct platform_device *pdev)
1016 {
1017 	struct dma_device *dma_dev;
1018 	struct axi_dmac *dmac;
1019 	struct regmap *regmap;
1020 	unsigned int version;
1021 	u32 irq_mask = 0;
1022 	int ret;
1023 
1024 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1025 	if (!dmac)
1026 		return -ENOMEM;
1027 
1028 	dmac->irq = platform_get_irq(pdev, 0);
1029 	if (dmac->irq < 0)
1030 		return dmac->irq;
1031 	if (dmac->irq == 0)
1032 		return -EINVAL;
1033 
1034 	dmac->base = devm_platform_ioremap_resource(pdev, 0);
1035 	if (IS_ERR(dmac->base))
1036 		return PTR_ERR(dmac->base);
1037 
1038 	dmac->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1039 	if (IS_ERR(dmac->clk))
1040 		return PTR_ERR(dmac->clk);
1041 
1042 	version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
1043 
1044 	if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
1045 		ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
1046 	else
1047 		ret = axi_dmac_parse_dt(&pdev->dev, dmac);
1048 
1049 	if (ret < 0)
1050 		return ret;
1051 
1052 	INIT_LIST_HEAD(&dmac->chan.active_descs);
1053 
1054 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1055 
1056 	dma_dev = &dmac->dma_dev;
1057 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1058 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1059 	dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
1060 	dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
1061 	dma_dev->device_tx_status = dma_cookie_status;
1062 	dma_dev->device_issue_pending = axi_dmac_issue_pending;
1063 	dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
1064 	dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
1065 	dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
1066 	dma_dev->device_terminate_all = axi_dmac_terminate_all;
1067 	dma_dev->device_synchronize = axi_dmac_synchronize;
1068 	dma_dev->dev = &pdev->dev;
1069 	dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
1070 	dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
1071 	dma_dev->directions = BIT(dmac->chan.direction);
1072 	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1073 	dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */
1074 	INIT_LIST_HEAD(&dma_dev->channels);
1075 
1076 	dmac->chan.vchan.desc_free = axi_dmac_desc_free;
1077 	vchan_init(&dmac->chan.vchan, dma_dev);
1078 
1079 	ret = axi_dmac_detect_caps(dmac, version);
1080 	if (ret)
1081 		return ret;
1082 
1083 	dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
1084 
1085 	if (dmac->chan.hw_sg)
1086 		irq_mask |= AXI_DMAC_IRQ_SOT;
1087 
1088 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, irq_mask);
1089 
1090 	if (of_dma_is_coherent(pdev->dev.of_node)) {
1091 		ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);
1092 
1093 		if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
1094 		    !AXI_DMAC_DST_COHERENT_GET(ret)) {
1095 			dev_err(dmac->dma_dev.dev,
1096 				"Coherent DMA not supported in hardware");
1097 			return -EINVAL;
1098 		}
1099 	}
1100 
1101 	ret = dmaenginem_async_device_register(dma_dev);
1102 	if (ret)
1103 		return ret;
1104 
1105 	/*
1106 	 * Put the action in here so it get's done before unregistering the DMA
1107 	 * device.
1108 	 */
1109 	ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_tasklet_kill,
1110 				       &dmac->chan.vchan.task);
1111 	if (ret)
1112 		return ret;
1113 
1114 	ret = of_dma_controller_register(pdev->dev.of_node,
1115 		of_dma_xlate_by_chan_id, dma_dev);
1116 	if (ret)
1117 		return ret;
1118 
1119 	ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_free_dma_controller,
1120 				       pdev->dev.of_node);
1121 	if (ret)
1122 		return ret;
1123 
1124 	ret = devm_request_irq(&pdev->dev, dmac->irq, axi_dmac_interrupt_handler,
1125 			       IRQF_SHARED, dev_name(&pdev->dev), dmac);
1126 	if (ret)
1127 		return ret;
1128 
1129 	regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
1130 		 &axi_dmac_regmap_config);
1131 
1132 	return PTR_ERR_OR_ZERO(regmap);
1133 }
1134 
1135 static const struct of_device_id axi_dmac_of_match_table[] = {
1136 	{ .compatible = "adi,axi-dmac-1.00.a" },
1137 	{ },
1138 };
1139 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1140 
1141 static struct platform_driver axi_dmac_driver = {
1142 	.driver = {
1143 		.name = "dma-axi-dmac",
1144 		.of_match_table = axi_dmac_of_match_table,
1145 	},
1146 	.probe = axi_dmac_probe,
1147 };
1148 module_platform_driver(axi_dmac_driver);
1149 
1150 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1151 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1152 MODULE_LICENSE("GPL v2");
1153