xref: /linux/drivers/dma/dma-axi-dmac.c (revision 77ec462536a13d4b428a1eead725c4818a49f0b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Analog Devices AXI-DMAC core
4  *
5  * Copyright 2013-2019 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23 #include <linux/slab.h>
24 #include <linux/fpga/adi-axi-common.h>
25 
26 #include <dt-bindings/dma/axi-dmac.h>
27 
28 #include "dmaengine.h"
29 #include "virt-dma.h"
30 
31 /*
32  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
33  * various instantiation parameters which decided the exact feature set support
34  * by the core.
35  *
36  * Each channel of the core has a source interface and a destination interface.
37  * The number of channels and the type of the channel interfaces is selected at
38  * configuration time. A interface can either be a connected to a central memory
39  * interconnect, which allows access to system memory, or it can be connected to
40  * a dedicated bus which is directly connected to a data port on a peripheral.
41  * Given that those are configuration options of the core that are selected when
42  * it is instantiated this means that they can not be changed by software at
43  * runtime. By extension this means that each channel is uni-directional. It can
44  * either be device to memory or memory to device, but not both. Also since the
45  * device side is a dedicated data bus only connected to a single peripheral
46  * there is no address than can or needs to be configured for the device side.
47  */
48 
49 #define AXI_DMAC_REG_INTERFACE_DESC	0x10
50 #define   AXI_DMAC_DMA_SRC_TYPE_MSK	GENMASK(13, 12)
51 #define   AXI_DMAC_DMA_SRC_TYPE_GET(x)	FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
52 #define   AXI_DMAC_DMA_SRC_WIDTH_MSK	GENMASK(11, 8)
53 #define   AXI_DMAC_DMA_SRC_WIDTH_GET(x)	FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
54 #define   AXI_DMAC_DMA_DST_TYPE_MSK	GENMASK(5, 4)
55 #define   AXI_DMAC_DMA_DST_TYPE_GET(x)	FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
56 #define   AXI_DMAC_DMA_DST_WIDTH_MSK	GENMASK(3, 0)
57 #define   AXI_DMAC_DMA_DST_WIDTH_GET(x)	FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
58 
59 #define AXI_DMAC_REG_IRQ_MASK		0x80
60 #define AXI_DMAC_REG_IRQ_PENDING	0x84
61 #define AXI_DMAC_REG_IRQ_SOURCE		0x88
62 
63 #define AXI_DMAC_REG_CTRL		0x400
64 #define AXI_DMAC_REG_TRANSFER_ID	0x404
65 #define AXI_DMAC_REG_START_TRANSFER	0x408
66 #define AXI_DMAC_REG_FLAGS		0x40c
67 #define AXI_DMAC_REG_DEST_ADDRESS	0x410
68 #define AXI_DMAC_REG_SRC_ADDRESS	0x414
69 #define AXI_DMAC_REG_X_LENGTH		0x418
70 #define AXI_DMAC_REG_Y_LENGTH		0x41c
71 #define AXI_DMAC_REG_DEST_STRIDE	0x420
72 #define AXI_DMAC_REG_SRC_STRIDE		0x424
73 #define AXI_DMAC_REG_TRANSFER_DONE	0x428
74 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
75 #define AXI_DMAC_REG_STATUS		0x430
76 #define AXI_DMAC_REG_CURRENT_SRC_ADDR	0x434
77 #define AXI_DMAC_REG_CURRENT_DEST_ADDR	0x438
78 #define AXI_DMAC_REG_PARTIAL_XFER_LEN	0x44c
79 #define AXI_DMAC_REG_PARTIAL_XFER_ID	0x450
80 
81 #define AXI_DMAC_CTRL_ENABLE		BIT(0)
82 #define AXI_DMAC_CTRL_PAUSE		BIT(1)
83 
84 #define AXI_DMAC_IRQ_SOT		BIT(0)
85 #define AXI_DMAC_IRQ_EOT		BIT(1)
86 
87 #define AXI_DMAC_FLAG_CYCLIC		BIT(0)
88 #define AXI_DMAC_FLAG_LAST		BIT(1)
89 #define AXI_DMAC_FLAG_PARTIAL_REPORT	BIT(2)
90 
91 #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
92 
93 /* The maximum ID allocated by the hardware is 31 */
94 #define AXI_DMAC_SG_UNUSED 32U
95 
96 struct axi_dmac_sg {
97 	dma_addr_t src_addr;
98 	dma_addr_t dest_addr;
99 	unsigned int x_len;
100 	unsigned int y_len;
101 	unsigned int dest_stride;
102 	unsigned int src_stride;
103 	unsigned int id;
104 	unsigned int partial_len;
105 	bool schedule_when_free;
106 };
107 
108 struct axi_dmac_desc {
109 	struct virt_dma_desc vdesc;
110 	bool cyclic;
111 	bool have_partial_xfer;
112 
113 	unsigned int num_submitted;
114 	unsigned int num_completed;
115 	unsigned int num_sgs;
116 	struct axi_dmac_sg sg[];
117 };
118 
119 struct axi_dmac_chan {
120 	struct virt_dma_chan vchan;
121 
122 	struct axi_dmac_desc *next_desc;
123 	struct list_head active_descs;
124 	enum dma_transfer_direction direction;
125 
126 	unsigned int src_width;
127 	unsigned int dest_width;
128 	unsigned int src_type;
129 	unsigned int dest_type;
130 
131 	unsigned int max_length;
132 	unsigned int address_align_mask;
133 	unsigned int length_align_mask;
134 
135 	bool hw_partial_xfer;
136 	bool hw_cyclic;
137 	bool hw_2d;
138 };
139 
140 struct axi_dmac {
141 	void __iomem *base;
142 	int irq;
143 
144 	struct clk *clk;
145 
146 	struct dma_device dma_dev;
147 	struct axi_dmac_chan chan;
148 };
149 
150 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
151 {
152 	return container_of(chan->vchan.chan.device, struct axi_dmac,
153 		dma_dev);
154 }
155 
156 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
157 {
158 	return container_of(c, struct axi_dmac_chan, vchan.chan);
159 }
160 
161 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
162 {
163 	return container_of(vdesc, struct axi_dmac_desc, vdesc);
164 }
165 
166 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
167 	unsigned int val)
168 {
169 	writel(val, axi_dmac->base + reg);
170 }
171 
172 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
173 {
174 	return readl(axi_dmac->base + reg);
175 }
176 
177 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
178 {
179 	return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
180 }
181 
182 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
183 {
184 	return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
185 }
186 
187 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
188 {
189 	if (len == 0)
190 		return false;
191 	if ((len & chan->length_align_mask) != 0) /* Not aligned */
192 		return false;
193 	return true;
194 }
195 
196 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
197 {
198 	if ((addr & chan->address_align_mask) != 0) /* Not aligned */
199 		return false;
200 	return true;
201 }
202 
203 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
204 {
205 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
206 	struct virt_dma_desc *vdesc;
207 	struct axi_dmac_desc *desc;
208 	struct axi_dmac_sg *sg;
209 	unsigned int flags = 0;
210 	unsigned int val;
211 
212 	val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
213 	if (val) /* Queue is full, wait for the next SOT IRQ */
214 		return;
215 
216 	desc = chan->next_desc;
217 
218 	if (!desc) {
219 		vdesc = vchan_next_desc(&chan->vchan);
220 		if (!vdesc)
221 			return;
222 		list_move_tail(&vdesc->node, &chan->active_descs);
223 		desc = to_axi_dmac_desc(vdesc);
224 	}
225 	sg = &desc->sg[desc->num_submitted];
226 
227 	/* Already queued in cyclic mode. Wait for it to finish */
228 	if (sg->id != AXI_DMAC_SG_UNUSED) {
229 		sg->schedule_when_free = true;
230 		return;
231 	}
232 
233 	desc->num_submitted++;
234 	if (desc->num_submitted == desc->num_sgs ||
235 	    desc->have_partial_xfer) {
236 		if (desc->cyclic)
237 			desc->num_submitted = 0; /* Start again */
238 		else
239 			chan->next_desc = NULL;
240 		flags |= AXI_DMAC_FLAG_LAST;
241 	} else {
242 		chan->next_desc = desc;
243 	}
244 
245 	sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
246 
247 	if (axi_dmac_dest_is_mem(chan)) {
248 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
249 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
250 	}
251 
252 	if (axi_dmac_src_is_mem(chan)) {
253 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
254 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
255 	}
256 
257 	/*
258 	 * If the hardware supports cyclic transfers and there is no callback to
259 	 * call and only a single segment, enable hw cyclic mode to avoid
260 	 * unnecessary interrupts.
261 	 */
262 	if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
263 		desc->num_sgs == 1)
264 		flags |= AXI_DMAC_FLAG_CYCLIC;
265 
266 	if (chan->hw_partial_xfer)
267 		flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
268 
269 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
270 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
271 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
272 	axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
273 }
274 
275 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
276 {
277 	return list_first_entry_or_null(&chan->active_descs,
278 		struct axi_dmac_desc, vdesc.node);
279 }
280 
281 static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
282 	struct axi_dmac_sg *sg)
283 {
284 	if (chan->hw_2d)
285 		return sg->x_len * sg->y_len;
286 	else
287 		return sg->x_len;
288 }
289 
290 static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
291 {
292 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
293 	struct axi_dmac_desc *desc;
294 	struct axi_dmac_sg *sg;
295 	u32 xfer_done, len, id, i;
296 	bool found_sg;
297 
298 	do {
299 		len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
300 		id  = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
301 
302 		found_sg = false;
303 		list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
304 			for (i = 0; i < desc->num_sgs; i++) {
305 				sg = &desc->sg[i];
306 				if (sg->id == AXI_DMAC_SG_UNUSED)
307 					continue;
308 				if (sg->id == id) {
309 					desc->have_partial_xfer = true;
310 					sg->partial_len = len;
311 					found_sg = true;
312 					break;
313 				}
314 			}
315 			if (found_sg)
316 				break;
317 		}
318 
319 		if (found_sg) {
320 			dev_dbg(dmac->dma_dev.dev,
321 				"Found partial segment id=%u, len=%u\n",
322 				id, len);
323 		} else {
324 			dev_warn(dmac->dma_dev.dev,
325 				 "Not found partial segment id=%u, len=%u\n",
326 				 id, len);
327 		}
328 
329 		/* Check if we have any more partial transfers */
330 		xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
331 		xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
332 
333 	} while (!xfer_done);
334 }
335 
336 static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
337 	struct axi_dmac_desc *active)
338 {
339 	struct dmaengine_result *rslt = &active->vdesc.tx_result;
340 	unsigned int start = active->num_completed - 1;
341 	struct axi_dmac_sg *sg;
342 	unsigned int i, total;
343 
344 	rslt->result = DMA_TRANS_NOERROR;
345 	rslt->residue = 0;
346 
347 	/*
348 	 * We get here if the last completed segment is partial, which
349 	 * means we can compute the residue from that segment onwards
350 	 */
351 	for (i = start; i < active->num_sgs; i++) {
352 		sg = &active->sg[i];
353 		total = axi_dmac_total_sg_bytes(chan, sg);
354 		rslt->residue += (total - sg->partial_len);
355 	}
356 }
357 
358 static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
359 	unsigned int completed_transfers)
360 {
361 	struct axi_dmac_desc *active;
362 	struct axi_dmac_sg *sg;
363 	bool start_next = false;
364 
365 	active = axi_dmac_active_desc(chan);
366 	if (!active)
367 		return false;
368 
369 	if (chan->hw_partial_xfer &&
370 	    (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
371 		axi_dmac_dequeue_partial_xfers(chan);
372 
373 	do {
374 		sg = &active->sg[active->num_completed];
375 		if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
376 			break;
377 		if (!(BIT(sg->id) & completed_transfers))
378 			break;
379 		active->num_completed++;
380 		sg->id = AXI_DMAC_SG_UNUSED;
381 		if (sg->schedule_when_free) {
382 			sg->schedule_when_free = false;
383 			start_next = true;
384 		}
385 
386 		if (sg->partial_len)
387 			axi_dmac_compute_residue(chan, active);
388 
389 		if (active->cyclic)
390 			vchan_cyclic_callback(&active->vdesc);
391 
392 		if (active->num_completed == active->num_sgs ||
393 		    sg->partial_len) {
394 			if (active->cyclic) {
395 				active->num_completed = 0; /* wrap around */
396 			} else {
397 				list_del(&active->vdesc.node);
398 				vchan_cookie_complete(&active->vdesc);
399 				active = axi_dmac_active_desc(chan);
400 			}
401 		}
402 	} while (active);
403 
404 	return start_next;
405 }
406 
407 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
408 {
409 	struct axi_dmac *dmac = devid;
410 	unsigned int pending;
411 	bool start_next = false;
412 
413 	pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
414 	if (!pending)
415 		return IRQ_NONE;
416 
417 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
418 
419 	spin_lock(&dmac->chan.vchan.lock);
420 	/* One or more transfers have finished */
421 	if (pending & AXI_DMAC_IRQ_EOT) {
422 		unsigned int completed;
423 
424 		completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
425 		start_next = axi_dmac_transfer_done(&dmac->chan, completed);
426 	}
427 	/* Space has become available in the descriptor queue */
428 	if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
429 		axi_dmac_start_transfer(&dmac->chan);
430 	spin_unlock(&dmac->chan.vchan.lock);
431 
432 	return IRQ_HANDLED;
433 }
434 
435 static int axi_dmac_terminate_all(struct dma_chan *c)
436 {
437 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
438 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
439 	unsigned long flags;
440 	LIST_HEAD(head);
441 
442 	spin_lock_irqsave(&chan->vchan.lock, flags);
443 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
444 	chan->next_desc = NULL;
445 	vchan_get_all_descriptors(&chan->vchan, &head);
446 	list_splice_tail_init(&chan->active_descs, &head);
447 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
448 
449 	vchan_dma_desc_free_list(&chan->vchan, &head);
450 
451 	return 0;
452 }
453 
454 static void axi_dmac_synchronize(struct dma_chan *c)
455 {
456 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
457 
458 	vchan_synchronize(&chan->vchan);
459 }
460 
461 static void axi_dmac_issue_pending(struct dma_chan *c)
462 {
463 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
464 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
465 	unsigned long flags;
466 
467 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
468 
469 	spin_lock_irqsave(&chan->vchan.lock, flags);
470 	if (vchan_issue_pending(&chan->vchan))
471 		axi_dmac_start_transfer(chan);
472 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
473 }
474 
475 static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
476 {
477 	struct axi_dmac_desc *desc;
478 	unsigned int i;
479 
480 	desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
481 	if (!desc)
482 		return NULL;
483 
484 	for (i = 0; i < num_sgs; i++)
485 		desc->sg[i].id = AXI_DMAC_SG_UNUSED;
486 
487 	desc->num_sgs = num_sgs;
488 
489 	return desc;
490 }
491 
492 static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
493 	enum dma_transfer_direction direction, dma_addr_t addr,
494 	unsigned int num_periods, unsigned int period_len,
495 	struct axi_dmac_sg *sg)
496 {
497 	unsigned int num_segments, i;
498 	unsigned int segment_size;
499 	unsigned int len;
500 
501 	/* Split into multiple equally sized segments if necessary */
502 	num_segments = DIV_ROUND_UP(period_len, chan->max_length);
503 	segment_size = DIV_ROUND_UP(period_len, num_segments);
504 	/* Take care of alignment */
505 	segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
506 
507 	for (i = 0; i < num_periods; i++) {
508 		len = period_len;
509 
510 		while (len > segment_size) {
511 			if (direction == DMA_DEV_TO_MEM)
512 				sg->dest_addr = addr;
513 			else
514 				sg->src_addr = addr;
515 			sg->x_len = segment_size;
516 			sg->y_len = 1;
517 			sg++;
518 			addr += segment_size;
519 			len -= segment_size;
520 		}
521 
522 		if (direction == DMA_DEV_TO_MEM)
523 			sg->dest_addr = addr;
524 		else
525 			sg->src_addr = addr;
526 		sg->x_len = len;
527 		sg->y_len = 1;
528 		sg++;
529 		addr += len;
530 	}
531 
532 	return sg;
533 }
534 
535 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
536 	struct dma_chan *c, struct scatterlist *sgl,
537 	unsigned int sg_len, enum dma_transfer_direction direction,
538 	unsigned long flags, void *context)
539 {
540 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
541 	struct axi_dmac_desc *desc;
542 	struct axi_dmac_sg *dsg;
543 	struct scatterlist *sg;
544 	unsigned int num_sgs;
545 	unsigned int i;
546 
547 	if (direction != chan->direction)
548 		return NULL;
549 
550 	num_sgs = 0;
551 	for_each_sg(sgl, sg, sg_len, i)
552 		num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
553 
554 	desc = axi_dmac_alloc_desc(num_sgs);
555 	if (!desc)
556 		return NULL;
557 
558 	dsg = desc->sg;
559 
560 	for_each_sg(sgl, sg, sg_len, i) {
561 		if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
562 		    !axi_dmac_check_len(chan, sg_dma_len(sg))) {
563 			kfree(desc);
564 			return NULL;
565 		}
566 
567 		dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
568 			sg_dma_len(sg), dsg);
569 	}
570 
571 	desc->cyclic = false;
572 
573 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
574 }
575 
576 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
577 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
578 	size_t period_len, enum dma_transfer_direction direction,
579 	unsigned long flags)
580 {
581 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
582 	struct axi_dmac_desc *desc;
583 	unsigned int num_periods, num_segments;
584 
585 	if (direction != chan->direction)
586 		return NULL;
587 
588 	if (!axi_dmac_check_len(chan, buf_len) ||
589 	    !axi_dmac_check_addr(chan, buf_addr))
590 		return NULL;
591 
592 	if (period_len == 0 || buf_len % period_len)
593 		return NULL;
594 
595 	num_periods = buf_len / period_len;
596 	num_segments = DIV_ROUND_UP(period_len, chan->max_length);
597 
598 	desc = axi_dmac_alloc_desc(num_periods * num_segments);
599 	if (!desc)
600 		return NULL;
601 
602 	axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
603 		period_len, desc->sg);
604 
605 	desc->cyclic = true;
606 
607 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
608 }
609 
610 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
611 	struct dma_chan *c, struct dma_interleaved_template *xt,
612 	unsigned long flags)
613 {
614 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
615 	struct axi_dmac_desc *desc;
616 	size_t dst_icg, src_icg;
617 
618 	if (xt->frame_size != 1)
619 		return NULL;
620 
621 	if (xt->dir != chan->direction)
622 		return NULL;
623 
624 	if (axi_dmac_src_is_mem(chan)) {
625 		if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
626 			return NULL;
627 	}
628 
629 	if (axi_dmac_dest_is_mem(chan)) {
630 		if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
631 			return NULL;
632 	}
633 
634 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
635 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
636 
637 	if (chan->hw_2d) {
638 		if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
639 		    xt->numf == 0)
640 			return NULL;
641 		if (xt->sgl[0].size + dst_icg > chan->max_length ||
642 		    xt->sgl[0].size + src_icg > chan->max_length)
643 			return NULL;
644 	} else {
645 		if (dst_icg != 0 || src_icg != 0)
646 			return NULL;
647 		if (chan->max_length / xt->sgl[0].size < xt->numf)
648 			return NULL;
649 		if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
650 			return NULL;
651 	}
652 
653 	desc = axi_dmac_alloc_desc(1);
654 	if (!desc)
655 		return NULL;
656 
657 	if (axi_dmac_src_is_mem(chan)) {
658 		desc->sg[0].src_addr = xt->src_start;
659 		desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
660 	}
661 
662 	if (axi_dmac_dest_is_mem(chan)) {
663 		desc->sg[0].dest_addr = xt->dst_start;
664 		desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
665 	}
666 
667 	if (chan->hw_2d) {
668 		desc->sg[0].x_len = xt->sgl[0].size;
669 		desc->sg[0].y_len = xt->numf;
670 	} else {
671 		desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
672 		desc->sg[0].y_len = 1;
673 	}
674 
675 	if (flags & DMA_CYCLIC)
676 		desc->cyclic = true;
677 
678 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
679 }
680 
681 static void axi_dmac_free_chan_resources(struct dma_chan *c)
682 {
683 	vchan_free_chan_resources(to_virt_chan(c));
684 }
685 
686 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
687 {
688 	kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
689 }
690 
691 static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
692 {
693 	switch (reg) {
694 	case AXI_DMAC_REG_IRQ_MASK:
695 	case AXI_DMAC_REG_IRQ_SOURCE:
696 	case AXI_DMAC_REG_IRQ_PENDING:
697 	case AXI_DMAC_REG_CTRL:
698 	case AXI_DMAC_REG_TRANSFER_ID:
699 	case AXI_DMAC_REG_START_TRANSFER:
700 	case AXI_DMAC_REG_FLAGS:
701 	case AXI_DMAC_REG_DEST_ADDRESS:
702 	case AXI_DMAC_REG_SRC_ADDRESS:
703 	case AXI_DMAC_REG_X_LENGTH:
704 	case AXI_DMAC_REG_Y_LENGTH:
705 	case AXI_DMAC_REG_DEST_STRIDE:
706 	case AXI_DMAC_REG_SRC_STRIDE:
707 	case AXI_DMAC_REG_TRANSFER_DONE:
708 	case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
709 	case AXI_DMAC_REG_STATUS:
710 	case AXI_DMAC_REG_CURRENT_SRC_ADDR:
711 	case AXI_DMAC_REG_CURRENT_DEST_ADDR:
712 	case AXI_DMAC_REG_PARTIAL_XFER_LEN:
713 	case AXI_DMAC_REG_PARTIAL_XFER_ID:
714 		return true;
715 	default:
716 		return false;
717 	}
718 }
719 
720 static const struct regmap_config axi_dmac_regmap_config = {
721 	.reg_bits = 32,
722 	.val_bits = 32,
723 	.reg_stride = 4,
724 	.max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
725 	.readable_reg = axi_dmac_regmap_rdwr,
726 	.writeable_reg = axi_dmac_regmap_rdwr,
727 };
728 
729 static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
730 {
731 	chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
732 
733 	if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
734 		chan->direction = DMA_MEM_TO_MEM;
735 	else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
736 		chan->direction = DMA_MEM_TO_DEV;
737 	else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
738 		chan->direction = DMA_DEV_TO_MEM;
739 	else
740 		chan->direction = DMA_DEV_TO_DEV;
741 }
742 
743 /*
744  * The configuration stored in the devicetree matches the configuration
745  * parameters of the peripheral instance and allows the driver to know which
746  * features are implemented and how it should behave.
747  */
748 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
749 	struct axi_dmac_chan *chan)
750 {
751 	u32 val;
752 	int ret;
753 
754 	ret = of_property_read_u32(of_chan, "reg", &val);
755 	if (ret)
756 		return ret;
757 
758 	/* We only support 1 channel for now */
759 	if (val != 0)
760 		return -EINVAL;
761 
762 	ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
763 	if (ret)
764 		return ret;
765 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
766 		return -EINVAL;
767 	chan->src_type = val;
768 
769 	ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
770 	if (ret)
771 		return ret;
772 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
773 		return -EINVAL;
774 	chan->dest_type = val;
775 
776 	ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
777 	if (ret)
778 		return ret;
779 	chan->src_width = val / 8;
780 
781 	ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
782 	if (ret)
783 		return ret;
784 	chan->dest_width = val / 8;
785 
786 	axi_dmac_adjust_chan_params(chan);
787 
788 	return 0;
789 }
790 
791 static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
792 {
793 	struct device_node *of_channels, *of_chan;
794 	int ret;
795 
796 	of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
797 	if (of_channels == NULL)
798 		return -ENODEV;
799 
800 	for_each_child_of_node(of_channels, of_chan) {
801 		ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
802 		if (ret) {
803 			of_node_put(of_chan);
804 			of_node_put(of_channels);
805 			return -EINVAL;
806 		}
807 	}
808 	of_node_put(of_channels);
809 
810 	return 0;
811 }
812 
813 static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
814 {
815 	struct axi_dmac_chan *chan = &dmac->chan;
816 	unsigned int val, desc;
817 
818 	desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
819 	if (desc == 0) {
820 		dev_err(dev, "DMA interface register reads zero\n");
821 		return -EFAULT;
822 	}
823 
824 	val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
825 	if (val > AXI_DMAC_BUS_TYPE_FIFO) {
826 		dev_err(dev, "Invalid source bus type read: %d\n", val);
827 		return -EINVAL;
828 	}
829 	chan->src_type = val;
830 
831 	val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
832 	if (val > AXI_DMAC_BUS_TYPE_FIFO) {
833 		dev_err(dev, "Invalid destination bus type read: %d\n", val);
834 		return -EINVAL;
835 	}
836 	chan->dest_type = val;
837 
838 	val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
839 	if (val == 0) {
840 		dev_err(dev, "Source bus width is zero\n");
841 		return -EINVAL;
842 	}
843 	/* widths are stored in log2 */
844 	chan->src_width = 1 << val;
845 
846 	val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
847 	if (val == 0) {
848 		dev_err(dev, "Destination bus width is zero\n");
849 		return -EINVAL;
850 	}
851 	chan->dest_width = 1 << val;
852 
853 	axi_dmac_adjust_chan_params(chan);
854 
855 	return 0;
856 }
857 
858 static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
859 {
860 	struct axi_dmac_chan *chan = &dmac->chan;
861 
862 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
863 	if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
864 		chan->hw_cyclic = true;
865 
866 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
867 	if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
868 		chan->hw_2d = true;
869 
870 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
871 	chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
872 	if (chan->max_length != UINT_MAX)
873 		chan->max_length++;
874 
875 	axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
876 	if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
877 	    chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
878 		dev_err(dmac->dma_dev.dev,
879 			"Destination memory-mapped interface not supported.");
880 		return -ENODEV;
881 	}
882 
883 	axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
884 	if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
885 	    chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
886 		dev_err(dmac->dma_dev.dev,
887 			"Source memory-mapped interface not supported.");
888 		return -ENODEV;
889 	}
890 
891 	if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
892 		chan->hw_partial_xfer = true;
893 
894 	if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
895 		axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
896 		chan->length_align_mask =
897 			axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
898 	} else {
899 		chan->length_align_mask = chan->address_align_mask;
900 	}
901 
902 	return 0;
903 }
904 
905 static int axi_dmac_probe(struct platform_device *pdev)
906 {
907 	struct dma_device *dma_dev;
908 	struct axi_dmac *dmac;
909 	struct resource *res;
910 	struct regmap *regmap;
911 	unsigned int version;
912 	int ret;
913 
914 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
915 	if (!dmac)
916 		return -ENOMEM;
917 
918 	dmac->irq = platform_get_irq(pdev, 0);
919 	if (dmac->irq < 0)
920 		return dmac->irq;
921 	if (dmac->irq == 0)
922 		return -EINVAL;
923 
924 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
925 	dmac->base = devm_ioremap_resource(&pdev->dev, res);
926 	if (IS_ERR(dmac->base))
927 		return PTR_ERR(dmac->base);
928 
929 	dmac->clk = devm_clk_get(&pdev->dev, NULL);
930 	if (IS_ERR(dmac->clk))
931 		return PTR_ERR(dmac->clk);
932 
933 	ret = clk_prepare_enable(dmac->clk);
934 	if (ret < 0)
935 		return ret;
936 
937 	version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
938 
939 	if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
940 		ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
941 	else
942 		ret = axi_dmac_parse_dt(&pdev->dev, dmac);
943 
944 	if (ret < 0)
945 		goto err_clk_disable;
946 
947 	INIT_LIST_HEAD(&dmac->chan.active_descs);
948 
949 	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
950 
951 	dma_dev = &dmac->dma_dev;
952 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
953 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
954 	dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
955 	dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
956 	dma_dev->device_tx_status = dma_cookie_status;
957 	dma_dev->device_issue_pending = axi_dmac_issue_pending;
958 	dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
959 	dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
960 	dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
961 	dma_dev->device_terminate_all = axi_dmac_terminate_all;
962 	dma_dev->device_synchronize = axi_dmac_synchronize;
963 	dma_dev->dev = &pdev->dev;
964 	dma_dev->chancnt = 1;
965 	dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
966 	dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
967 	dma_dev->directions = BIT(dmac->chan.direction);
968 	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
969 	INIT_LIST_HEAD(&dma_dev->channels);
970 
971 	dmac->chan.vchan.desc_free = axi_dmac_desc_free;
972 	vchan_init(&dmac->chan.vchan, dma_dev);
973 
974 	ret = axi_dmac_detect_caps(dmac, version);
975 	if (ret)
976 		goto err_clk_disable;
977 
978 	dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
979 
980 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
981 
982 	ret = dma_async_device_register(dma_dev);
983 	if (ret)
984 		goto err_clk_disable;
985 
986 	ret = of_dma_controller_register(pdev->dev.of_node,
987 		of_dma_xlate_by_chan_id, dma_dev);
988 	if (ret)
989 		goto err_unregister_device;
990 
991 	ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
992 		dev_name(&pdev->dev), dmac);
993 	if (ret)
994 		goto err_unregister_of;
995 
996 	platform_set_drvdata(pdev, dmac);
997 
998 	regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
999 		 &axi_dmac_regmap_config);
1000 	if (IS_ERR(regmap)) {
1001 		ret = PTR_ERR(regmap);
1002 		goto err_free_irq;
1003 	}
1004 
1005 	return 0;
1006 
1007 err_free_irq:
1008 	free_irq(dmac->irq, dmac);
1009 err_unregister_of:
1010 	of_dma_controller_free(pdev->dev.of_node);
1011 err_unregister_device:
1012 	dma_async_device_unregister(&dmac->dma_dev);
1013 err_clk_disable:
1014 	clk_disable_unprepare(dmac->clk);
1015 
1016 	return ret;
1017 }
1018 
1019 static int axi_dmac_remove(struct platform_device *pdev)
1020 {
1021 	struct axi_dmac *dmac = platform_get_drvdata(pdev);
1022 
1023 	of_dma_controller_free(pdev->dev.of_node);
1024 	free_irq(dmac->irq, dmac);
1025 	tasklet_kill(&dmac->chan.vchan.task);
1026 	dma_async_device_unregister(&dmac->dma_dev);
1027 	clk_disable_unprepare(dmac->clk);
1028 
1029 	return 0;
1030 }
1031 
1032 static const struct of_device_id axi_dmac_of_match_table[] = {
1033 	{ .compatible = "adi,axi-dmac-1.00.a" },
1034 	{ },
1035 };
1036 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1037 
1038 static struct platform_driver axi_dmac_driver = {
1039 	.driver = {
1040 		.name = "dma-axi-dmac",
1041 		.of_match_table = axi_dmac_of_match_table,
1042 	},
1043 	.probe = axi_dmac_probe,
1044 	.remove = axi_dmac_remove,
1045 };
1046 module_platform_driver(axi_dmac_driver);
1047 
1048 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1049 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1050 MODULE_LICENSE("GPL v2");
1051