1 /* 2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 3 * 4 * Copyright (C) 2014 Atmel Corporation 5 * 6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <asm/barrier.h> 22 #include <dt-bindings/dma/at91.h> 23 #include <linux/clk.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dmapool.h> 26 #include <linux/interrupt.h> 27 #include <linux/irq.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of_dma.h> 32 #include <linux/of_platform.h> 33 #include <linux/platform_device.h> 34 #include <linux/pm.h> 35 36 #include "dmaengine.h" 37 38 /* Global registers */ 39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */ 53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */ 54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */ 55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */ 56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */ 57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */ 58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */ 59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 60 61 /* Channel relative registers offsets */ 62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 159 #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */ 160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 163 164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */ 165 166 /* Microblock control members */ 167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 175 176 #define AT_XDMAC_MAX_CHAN 0x20 177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */ 178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */ 179 #define AT_XDMAC_RESIDUE_MAX_RETRIES 5 180 181 #define AT_XDMAC_DMA_BUSWIDTHS\ 182 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 184 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 185 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 186 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 187 188 enum atc_status { 189 AT_XDMAC_CHAN_IS_CYCLIC = 0, 190 AT_XDMAC_CHAN_IS_PAUSED, 191 }; 192 193 /* ----- Channels ----- */ 194 struct at_xdmac_chan { 195 struct dma_chan chan; 196 void __iomem *ch_regs; 197 u32 mask; /* Channel Mask */ 198 u32 cfg; /* Channel Configuration Register */ 199 u8 perid; /* Peripheral ID */ 200 u8 perif; /* Peripheral Interface */ 201 u8 memif; /* Memory Interface */ 202 u32 save_cc; 203 u32 save_cim; 204 u32 save_cnda; 205 u32 save_cndc; 206 unsigned long status; 207 struct tasklet_struct tasklet; 208 struct dma_slave_config sconfig; 209 210 spinlock_t lock; 211 212 struct list_head xfers_list; 213 struct list_head free_descs_list; 214 }; 215 216 217 /* ----- Controller ----- */ 218 struct at_xdmac { 219 struct dma_device dma; 220 void __iomem *regs; 221 int irq; 222 struct clk *clk; 223 u32 save_gim; 224 struct dma_pool *at_xdmac_desc_pool; 225 struct at_xdmac_chan chan[0]; 226 }; 227 228 229 /* ----- Descriptors ----- */ 230 231 /* Linked List Descriptor */ 232 struct at_xdmac_lld { 233 dma_addr_t mbr_nda; /* Next Descriptor Member */ 234 u32 mbr_ubc; /* Microblock Control Member */ 235 dma_addr_t mbr_sa; /* Source Address Member */ 236 dma_addr_t mbr_da; /* Destination Address Member */ 237 u32 mbr_cfg; /* Configuration Register */ 238 u32 mbr_bc; /* Block Control Register */ 239 u32 mbr_ds; /* Data Stride Register */ 240 u32 mbr_sus; /* Source Microblock Stride Register */ 241 u32 mbr_dus; /* Destination Microblock Stride Register */ 242 }; 243 244 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */ 245 struct at_xdmac_desc { 246 struct at_xdmac_lld lld; 247 enum dma_transfer_direction direction; 248 struct dma_async_tx_descriptor tx_dma_desc; 249 struct list_head desc_node; 250 /* Following members are only used by the first descriptor */ 251 bool active_xfer; 252 unsigned int xfer_size; 253 struct list_head descs_list; 254 struct list_head xfer_node; 255 } __aligned(sizeof(u64)); 256 257 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 258 { 259 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40); 260 } 261 262 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 263 #define at_xdmac_write(atxdmac, reg, value) \ 264 writel_relaxed((value), (atxdmac)->regs + (reg)) 265 266 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 267 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 268 269 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 270 { 271 return container_of(dchan, struct at_xdmac_chan, chan); 272 } 273 274 static struct device *chan2dev(struct dma_chan *chan) 275 { 276 return &chan->dev->device; 277 } 278 279 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 280 { 281 return container_of(ddev, struct at_xdmac, dma); 282 } 283 284 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 285 { 286 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 287 } 288 289 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 290 { 291 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 292 } 293 294 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 295 { 296 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 297 } 298 299 static inline int at_xdmac_csize(u32 maxburst) 300 { 301 int csize; 302 303 csize = ffs(maxburst) - 1; 304 if (csize > 4) 305 csize = -EINVAL; 306 307 return csize; 308 }; 309 310 static inline u8 at_xdmac_get_dwidth(u32 cfg) 311 { 312 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 313 }; 314 315 static unsigned int init_nr_desc_per_channel = 64; 316 module_param(init_nr_desc_per_channel, uint, 0644); 317 MODULE_PARM_DESC(init_nr_desc_per_channel, 318 "initial descriptors per channel (default: 64)"); 319 320 321 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 322 { 323 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 324 } 325 326 static void at_xdmac_off(struct at_xdmac *atxdmac) 327 { 328 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 329 330 /* Wait that all chans are disabled. */ 331 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 332 cpu_relax(); 333 334 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 335 } 336 337 /* Call with lock hold. */ 338 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 339 struct at_xdmac_desc *first) 340 { 341 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 342 u32 reg; 343 344 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 345 346 if (at_xdmac_chan_is_enabled(atchan)) 347 return; 348 349 /* Set transfer as active to not try to start it again. */ 350 first->active_xfer = true; 351 352 /* Tell xdmac where to get the first descriptor. */ 353 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys) 354 | AT_XDMAC_CNDA_NDAIF(atchan->memif); 355 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 356 357 /* 358 * When doing non cyclic transfer we need to use the next 359 * descriptor view 2 since some fields of the configuration register 360 * depend on transfer size and src/dest addresses. 361 */ 362 if (at_xdmac_chan_is_cyclic(atchan)) 363 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 364 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3) 365 reg = AT_XDMAC_CNDC_NDVIEW_NDV3; 366 else 367 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 368 /* 369 * Even if the register will be updated from the configuration in the 370 * descriptor when using view 2 or higher, the PROT bit won't be set 371 * properly. This bit can be modified only by using the channel 372 * configuration register. 373 */ 374 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 375 376 reg |= AT_XDMAC_CNDC_NDDUP 377 | AT_XDMAC_CNDC_NDSUP 378 | AT_XDMAC_CNDC_NDE; 379 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 380 381 dev_vdbg(chan2dev(&atchan->chan), 382 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 383 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 384 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 385 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 386 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 387 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 388 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 389 390 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 391 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE; 392 /* 393 * There is no end of list when doing cyclic dma, we need to get 394 * an interrupt after each periods. 395 */ 396 if (at_xdmac_chan_is_cyclic(atchan)) 397 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 398 reg | AT_XDMAC_CIE_BIE); 399 else 400 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 401 reg | AT_XDMAC_CIE_LIE); 402 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 403 dev_vdbg(chan2dev(&atchan->chan), 404 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 405 wmb(); 406 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 407 408 dev_vdbg(chan2dev(&atchan->chan), 409 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 410 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 411 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 413 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 414 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 415 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 416 417 } 418 419 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 420 { 421 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 422 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 423 dma_cookie_t cookie; 424 unsigned long irqflags; 425 426 spin_lock_irqsave(&atchan->lock, irqflags); 427 cookie = dma_cookie_assign(tx); 428 429 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 430 __func__, atchan, desc); 431 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 432 if (list_is_singular(&atchan->xfers_list)) 433 at_xdmac_start_xfer(atchan, desc); 434 435 spin_unlock_irqrestore(&atchan->lock, irqflags); 436 return cookie; 437 } 438 439 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 440 gfp_t gfp_flags) 441 { 442 struct at_xdmac_desc *desc; 443 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 444 dma_addr_t phys; 445 446 desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 447 if (desc) { 448 INIT_LIST_HEAD(&desc->descs_list); 449 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 450 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 451 desc->tx_dma_desc.phys = phys; 452 } 453 454 return desc; 455 } 456 457 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc) 458 { 459 memset(&desc->lld, 0, sizeof(desc->lld)); 460 INIT_LIST_HEAD(&desc->descs_list); 461 desc->direction = DMA_TRANS_NONE; 462 desc->xfer_size = 0; 463 desc->active_xfer = false; 464 } 465 466 /* Call must be protected by lock. */ 467 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 468 { 469 struct at_xdmac_desc *desc; 470 471 if (list_empty(&atchan->free_descs_list)) { 472 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 473 } else { 474 desc = list_first_entry(&atchan->free_descs_list, 475 struct at_xdmac_desc, desc_node); 476 list_del(&desc->desc_node); 477 at_xdmac_init_used_desc(desc); 478 } 479 480 return desc; 481 } 482 483 static void at_xdmac_queue_desc(struct dma_chan *chan, 484 struct at_xdmac_desc *prev, 485 struct at_xdmac_desc *desc) 486 { 487 if (!prev || !desc) 488 return; 489 490 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 491 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE; 492 493 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 494 __func__, prev, &prev->lld.mbr_nda); 495 } 496 497 static inline void at_xdmac_increment_block_count(struct dma_chan *chan, 498 struct at_xdmac_desc *desc) 499 { 500 if (!desc) 501 return; 502 503 desc->lld.mbr_bc++; 504 505 dev_dbg(chan2dev(chan), 506 "%s: incrementing the block count of the desc 0x%p\n", 507 __func__, desc); 508 } 509 510 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 511 struct of_dma *of_dma) 512 { 513 struct at_xdmac *atxdmac = of_dma->of_dma_data; 514 struct at_xdmac_chan *atchan; 515 struct dma_chan *chan; 516 struct device *dev = atxdmac->dma.dev; 517 518 if (dma_spec->args_count != 1) { 519 dev_err(dev, "dma phandler args: bad number of args\n"); 520 return NULL; 521 } 522 523 chan = dma_get_any_slave_channel(&atxdmac->dma); 524 if (!chan) { 525 dev_err(dev, "can't get a dma channel\n"); 526 return NULL; 527 } 528 529 atchan = to_at_xdmac_chan(chan); 530 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 531 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 532 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 533 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 534 atchan->memif, atchan->perif, atchan->perid); 535 536 return chan; 537 } 538 539 static int at_xdmac_compute_chan_conf(struct dma_chan *chan, 540 enum dma_transfer_direction direction) 541 { 542 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 543 int csize, dwidth; 544 545 if (direction == DMA_DEV_TO_MEM) { 546 atchan->cfg = 547 AT91_XDMAC_DT_PERID(atchan->perid) 548 | AT_XDMAC_CC_DAM_INCREMENTED_AM 549 | AT_XDMAC_CC_SAM_FIXED_AM 550 | AT_XDMAC_CC_DIF(atchan->memif) 551 | AT_XDMAC_CC_SIF(atchan->perif) 552 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 553 | AT_XDMAC_CC_DSYNC_PER2MEM 554 | AT_XDMAC_CC_MBSIZE_SIXTEEN 555 | AT_XDMAC_CC_TYPE_PER_TRAN; 556 csize = ffs(atchan->sconfig.src_maxburst) - 1; 557 if (csize < 0) { 558 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 559 return -EINVAL; 560 } 561 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 562 dwidth = ffs(atchan->sconfig.src_addr_width) - 1; 563 if (dwidth < 0) { 564 dev_err(chan2dev(chan), "invalid src addr width value\n"); 565 return -EINVAL; 566 } 567 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 568 } else if (direction == DMA_MEM_TO_DEV) { 569 atchan->cfg = 570 AT91_XDMAC_DT_PERID(atchan->perid) 571 | AT_XDMAC_CC_DAM_FIXED_AM 572 | AT_XDMAC_CC_SAM_INCREMENTED_AM 573 | AT_XDMAC_CC_DIF(atchan->perif) 574 | AT_XDMAC_CC_SIF(atchan->memif) 575 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 576 | AT_XDMAC_CC_DSYNC_MEM2PER 577 | AT_XDMAC_CC_MBSIZE_SIXTEEN 578 | AT_XDMAC_CC_TYPE_PER_TRAN; 579 csize = ffs(atchan->sconfig.dst_maxburst) - 1; 580 if (csize < 0) { 581 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 582 return -EINVAL; 583 } 584 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 585 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1; 586 if (dwidth < 0) { 587 dev_err(chan2dev(chan), "invalid dst addr width value\n"); 588 return -EINVAL; 589 } 590 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 591 } 592 593 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg); 594 595 return 0; 596 } 597 598 /* 599 * Only check that maxburst and addr width values are supported by the 600 * the controller but not that the configuration is good to perform the 601 * transfer since we don't know the direction at this stage. 602 */ 603 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig) 604 { 605 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE) 606 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE)) 607 return -EINVAL; 608 609 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH) 610 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH)) 611 return -EINVAL; 612 613 return 0; 614 } 615 616 static int at_xdmac_set_slave_config(struct dma_chan *chan, 617 struct dma_slave_config *sconfig) 618 { 619 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 620 621 if (at_xdmac_check_slave_config(sconfig)) { 622 dev_err(chan2dev(chan), "invalid slave configuration\n"); 623 return -EINVAL; 624 } 625 626 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig)); 627 628 return 0; 629 } 630 631 static struct dma_async_tx_descriptor * 632 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 633 unsigned int sg_len, enum dma_transfer_direction direction, 634 unsigned long flags, void *context) 635 { 636 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 637 struct at_xdmac_desc *first = NULL, *prev = NULL; 638 struct scatterlist *sg; 639 int i; 640 unsigned int xfer_size = 0; 641 unsigned long irqflags; 642 struct dma_async_tx_descriptor *ret = NULL; 643 644 if (!sgl) 645 return NULL; 646 647 if (!is_slave_direction(direction)) { 648 dev_err(chan2dev(chan), "invalid DMA direction\n"); 649 return NULL; 650 } 651 652 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 653 __func__, sg_len, 654 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 655 flags); 656 657 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 658 spin_lock_irqsave(&atchan->lock, irqflags); 659 660 if (at_xdmac_compute_chan_conf(chan, direction)) 661 goto spin_unlock; 662 663 /* Prepare descriptors. */ 664 for_each_sg(sgl, sg, sg_len, i) { 665 struct at_xdmac_desc *desc = NULL; 666 u32 len, mem, dwidth, fixed_dwidth; 667 668 len = sg_dma_len(sg); 669 mem = sg_dma_address(sg); 670 if (unlikely(!len)) { 671 dev_err(chan2dev(chan), "sg data length is zero\n"); 672 goto spin_unlock; 673 } 674 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 675 __func__, i, len, mem); 676 677 desc = at_xdmac_get_desc(atchan); 678 if (!desc) { 679 dev_err(chan2dev(chan), "can't get descriptor\n"); 680 if (first) 681 list_splice_init(&first->descs_list, &atchan->free_descs_list); 682 goto spin_unlock; 683 } 684 685 /* Linked list descriptor setup. */ 686 if (direction == DMA_DEV_TO_MEM) { 687 desc->lld.mbr_sa = atchan->sconfig.src_addr; 688 desc->lld.mbr_da = mem; 689 } else { 690 desc->lld.mbr_sa = mem; 691 desc->lld.mbr_da = atchan->sconfig.dst_addr; 692 } 693 dwidth = at_xdmac_get_dwidth(atchan->cfg); 694 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 695 ? dwidth 696 : AT_XDMAC_CC_DWIDTH_BYTE; 697 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 698 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 699 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 700 | (len >> fixed_dwidth); /* microblock length */ 701 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) | 702 AT_XDMAC_CC_DWIDTH(fixed_dwidth); 703 dev_dbg(chan2dev(chan), 704 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 705 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 706 707 /* Chain lld. */ 708 if (prev) 709 at_xdmac_queue_desc(chan, prev, desc); 710 711 prev = desc; 712 if (!first) 713 first = desc; 714 715 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 716 __func__, desc, first); 717 list_add_tail(&desc->desc_node, &first->descs_list); 718 xfer_size += len; 719 } 720 721 722 first->tx_dma_desc.flags = flags; 723 first->xfer_size = xfer_size; 724 first->direction = direction; 725 ret = &first->tx_dma_desc; 726 727 spin_unlock: 728 spin_unlock_irqrestore(&atchan->lock, irqflags); 729 return ret; 730 } 731 732 static struct dma_async_tx_descriptor * 733 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 734 size_t buf_len, size_t period_len, 735 enum dma_transfer_direction direction, 736 unsigned long flags) 737 { 738 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 739 struct at_xdmac_desc *first = NULL, *prev = NULL; 740 unsigned int periods = buf_len / period_len; 741 int i; 742 unsigned long irqflags; 743 744 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 745 __func__, &buf_addr, buf_len, period_len, 746 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 747 748 if (!is_slave_direction(direction)) { 749 dev_err(chan2dev(chan), "invalid DMA direction\n"); 750 return NULL; 751 } 752 753 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 754 dev_err(chan2dev(chan), "channel currently used\n"); 755 return NULL; 756 } 757 758 if (at_xdmac_compute_chan_conf(chan, direction)) 759 return NULL; 760 761 for (i = 0; i < periods; i++) { 762 struct at_xdmac_desc *desc = NULL; 763 764 spin_lock_irqsave(&atchan->lock, irqflags); 765 desc = at_xdmac_get_desc(atchan); 766 if (!desc) { 767 dev_err(chan2dev(chan), "can't get descriptor\n"); 768 if (first) 769 list_splice_init(&first->descs_list, &atchan->free_descs_list); 770 spin_unlock_irqrestore(&atchan->lock, irqflags); 771 return NULL; 772 } 773 spin_unlock_irqrestore(&atchan->lock, irqflags); 774 dev_dbg(chan2dev(chan), 775 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 776 __func__, desc, &desc->tx_dma_desc.phys); 777 778 if (direction == DMA_DEV_TO_MEM) { 779 desc->lld.mbr_sa = atchan->sconfig.src_addr; 780 desc->lld.mbr_da = buf_addr + i * period_len; 781 } else { 782 desc->lld.mbr_sa = buf_addr + i * period_len; 783 desc->lld.mbr_da = atchan->sconfig.dst_addr; 784 } 785 desc->lld.mbr_cfg = atchan->cfg; 786 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 787 | AT_XDMAC_MBR_UBC_NDEN 788 | AT_XDMAC_MBR_UBC_NSEN 789 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 790 791 dev_dbg(chan2dev(chan), 792 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 793 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 794 795 /* Chain lld. */ 796 if (prev) 797 at_xdmac_queue_desc(chan, prev, desc); 798 799 prev = desc; 800 if (!first) 801 first = desc; 802 803 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 804 __func__, desc, first); 805 list_add_tail(&desc->desc_node, &first->descs_list); 806 } 807 808 at_xdmac_queue_desc(chan, prev, first); 809 first->tx_dma_desc.flags = flags; 810 first->xfer_size = buf_len; 811 first->direction = direction; 812 813 return &first->tx_dma_desc; 814 } 815 816 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr) 817 { 818 u32 width; 819 820 /* 821 * Check address alignment to select the greater data width we 822 * can use. 823 * 824 * Some XDMAC implementations don't provide dword transfer, in 825 * this case selecting dword has the same behavior as 826 * selecting word transfers. 827 */ 828 if (!(addr & 7)) { 829 width = AT_XDMAC_CC_DWIDTH_DWORD; 830 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 831 } else if (!(addr & 3)) { 832 width = AT_XDMAC_CC_DWIDTH_WORD; 833 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 834 } else if (!(addr & 1)) { 835 width = AT_XDMAC_CC_DWIDTH_HALFWORD; 836 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 837 } else { 838 width = AT_XDMAC_CC_DWIDTH_BYTE; 839 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 840 } 841 842 return width; 843 } 844 845 static struct at_xdmac_desc * 846 at_xdmac_interleaved_queue_desc(struct dma_chan *chan, 847 struct at_xdmac_chan *atchan, 848 struct at_xdmac_desc *prev, 849 dma_addr_t src, dma_addr_t dst, 850 struct dma_interleaved_template *xt, 851 struct data_chunk *chunk) 852 { 853 struct at_xdmac_desc *desc; 854 u32 dwidth; 855 unsigned long flags; 856 size_t ublen; 857 /* 858 * WARNING: The channel configuration is set here since there is no 859 * dmaengine_slave_config call in this case. Moreover we don't know the 860 * direction, it involves we can't dynamically set the source and dest 861 * interface so we have to use the same one. Only interface 0 allows EBI 862 * access. Hopefully we can access DDR through both ports (at least on 863 * SAMA5D4x), so we can use the same interface for source and dest, 864 * that solves the fact we don't know the direction. 865 * ERRATA: Even if useless for memory transfers, the PERID has to not 866 * match the one of another channel. If not, it could lead to spurious 867 * flag status. 868 */ 869 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 870 | AT_XDMAC_CC_DIF(0) 871 | AT_XDMAC_CC_SIF(0) 872 | AT_XDMAC_CC_MBSIZE_SIXTEEN 873 | AT_XDMAC_CC_TYPE_MEM_TRAN; 874 875 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size); 876 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 877 dev_dbg(chan2dev(chan), 878 "%s: chunk too big (%zu, max size %lu)...\n", 879 __func__, chunk->size, 880 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth); 881 return NULL; 882 } 883 884 if (prev) 885 dev_dbg(chan2dev(chan), 886 "Adding items at the end of desc 0x%p\n", prev); 887 888 if (xt->src_inc) { 889 if (xt->src_sgl) 890 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM; 891 else 892 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM; 893 } 894 895 if (xt->dst_inc) { 896 if (xt->dst_sgl) 897 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM; 898 else 899 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM; 900 } 901 902 spin_lock_irqsave(&atchan->lock, flags); 903 desc = at_xdmac_get_desc(atchan); 904 spin_unlock_irqrestore(&atchan->lock, flags); 905 if (!desc) { 906 dev_err(chan2dev(chan), "can't get descriptor\n"); 907 return NULL; 908 } 909 910 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 911 912 ublen = chunk->size >> dwidth; 913 914 desc->lld.mbr_sa = src; 915 desc->lld.mbr_da = dst; 916 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk); 917 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk); 918 919 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 920 | AT_XDMAC_MBR_UBC_NDEN 921 | AT_XDMAC_MBR_UBC_NSEN 922 | ublen; 923 desc->lld.mbr_cfg = chan_cc; 924 925 dev_dbg(chan2dev(chan), 926 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 927 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, 928 desc->lld.mbr_ubc, desc->lld.mbr_cfg); 929 930 /* Chain lld. */ 931 if (prev) 932 at_xdmac_queue_desc(chan, prev, desc); 933 934 return desc; 935 } 936 937 static struct dma_async_tx_descriptor * 938 at_xdmac_prep_interleaved(struct dma_chan *chan, 939 struct dma_interleaved_template *xt, 940 unsigned long flags) 941 { 942 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 943 struct at_xdmac_desc *prev = NULL, *first = NULL; 944 dma_addr_t dst_addr, src_addr; 945 size_t src_skip = 0, dst_skip = 0, len = 0; 946 struct data_chunk *chunk; 947 int i; 948 949 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM)) 950 return NULL; 951 952 /* 953 * TODO: Handle the case where we have to repeat a chain of 954 * descriptors... 955 */ 956 if ((xt->numf > 1) && (xt->frame_size > 1)) 957 return NULL; 958 959 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n", 960 __func__, &xt->src_start, &xt->dst_start, xt->numf, 961 xt->frame_size, flags); 962 963 src_addr = xt->src_start; 964 dst_addr = xt->dst_start; 965 966 if (xt->numf > 1) { 967 first = at_xdmac_interleaved_queue_desc(chan, atchan, 968 NULL, 969 src_addr, dst_addr, 970 xt, xt->sgl); 971 972 /* Length of the block is (BLEN+1) microblocks. */ 973 for (i = 0; i < xt->numf - 1; i++) 974 at_xdmac_increment_block_count(chan, first); 975 976 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 977 __func__, first, first); 978 list_add_tail(&first->desc_node, &first->descs_list); 979 } else { 980 for (i = 0; i < xt->frame_size; i++) { 981 size_t src_icg = 0, dst_icg = 0; 982 struct at_xdmac_desc *desc; 983 984 chunk = xt->sgl + i; 985 986 dst_icg = dmaengine_get_dst_icg(xt, chunk); 987 src_icg = dmaengine_get_src_icg(xt, chunk); 988 989 src_skip = chunk->size + src_icg; 990 dst_skip = chunk->size + dst_icg; 991 992 dev_dbg(chan2dev(chan), 993 "%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n", 994 __func__, chunk->size, src_icg, dst_icg); 995 996 desc = at_xdmac_interleaved_queue_desc(chan, atchan, 997 prev, 998 src_addr, dst_addr, 999 xt, chunk); 1000 if (!desc) { 1001 list_splice_init(&first->descs_list, 1002 &atchan->free_descs_list); 1003 return NULL; 1004 } 1005 1006 if (!first) 1007 first = desc; 1008 1009 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1010 __func__, desc, first); 1011 list_add_tail(&desc->desc_node, &first->descs_list); 1012 1013 if (xt->src_sgl) 1014 src_addr += src_skip; 1015 1016 if (xt->dst_sgl) 1017 dst_addr += dst_skip; 1018 1019 len += chunk->size; 1020 prev = desc; 1021 } 1022 } 1023 1024 first->tx_dma_desc.cookie = -EBUSY; 1025 first->tx_dma_desc.flags = flags; 1026 first->xfer_size = len; 1027 1028 return &first->tx_dma_desc; 1029 } 1030 1031 static struct dma_async_tx_descriptor * 1032 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1033 size_t len, unsigned long flags) 1034 { 1035 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1036 struct at_xdmac_desc *first = NULL, *prev = NULL; 1037 size_t remaining_size = len, xfer_size = 0, ublen; 1038 dma_addr_t src_addr = src, dst_addr = dest; 1039 u32 dwidth; 1040 /* 1041 * WARNING: We don't know the direction, it involves we can't 1042 * dynamically set the source and dest interface so we have to use the 1043 * same one. Only interface 0 allows EBI access. Hopefully we can 1044 * access DDR through both ports (at least on SAMA5D4x), so we can use 1045 * the same interface for source and dest, that solves the fact we 1046 * don't know the direction. 1047 * ERRATA: Even if useless for memory transfers, the PERID has to not 1048 * match the one of another channel. If not, it could lead to spurious 1049 * flag status. 1050 */ 1051 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 1052 | AT_XDMAC_CC_DAM_INCREMENTED_AM 1053 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1054 | AT_XDMAC_CC_DIF(0) 1055 | AT_XDMAC_CC_SIF(0) 1056 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1057 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1058 unsigned long irqflags; 1059 1060 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 1061 __func__, &src, &dest, len, flags); 1062 1063 if (unlikely(!len)) 1064 return NULL; 1065 1066 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr); 1067 1068 /* Prepare descriptors. */ 1069 while (remaining_size) { 1070 struct at_xdmac_desc *desc = NULL; 1071 1072 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 1073 1074 spin_lock_irqsave(&atchan->lock, irqflags); 1075 desc = at_xdmac_get_desc(atchan); 1076 spin_unlock_irqrestore(&atchan->lock, irqflags); 1077 if (!desc) { 1078 dev_err(chan2dev(chan), "can't get descriptor\n"); 1079 if (first) 1080 list_splice_init(&first->descs_list, &atchan->free_descs_list); 1081 return NULL; 1082 } 1083 1084 /* Update src and dest addresses. */ 1085 src_addr += xfer_size; 1086 dst_addr += xfer_size; 1087 1088 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 1089 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 1090 else 1091 xfer_size = remaining_size; 1092 1093 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 1094 1095 /* Check remaining length and change data width if needed. */ 1096 dwidth = at_xdmac_align_width(chan, 1097 src_addr | dst_addr | xfer_size); 1098 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK; 1099 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1100 1101 ublen = xfer_size >> dwidth; 1102 remaining_size -= xfer_size; 1103 1104 desc->lld.mbr_sa = src_addr; 1105 desc->lld.mbr_da = dst_addr; 1106 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 1107 | AT_XDMAC_MBR_UBC_NDEN 1108 | AT_XDMAC_MBR_UBC_NSEN 1109 | ublen; 1110 desc->lld.mbr_cfg = chan_cc; 1111 1112 dev_dbg(chan2dev(chan), 1113 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1114 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 1115 1116 /* Chain lld. */ 1117 if (prev) 1118 at_xdmac_queue_desc(chan, prev, desc); 1119 1120 prev = desc; 1121 if (!first) 1122 first = desc; 1123 1124 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1125 __func__, desc, first); 1126 list_add_tail(&desc->desc_node, &first->descs_list); 1127 } 1128 1129 first->tx_dma_desc.flags = flags; 1130 first->xfer_size = len; 1131 1132 return &first->tx_dma_desc; 1133 } 1134 1135 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan, 1136 struct at_xdmac_chan *atchan, 1137 dma_addr_t dst_addr, 1138 size_t len, 1139 int value) 1140 { 1141 struct at_xdmac_desc *desc; 1142 unsigned long flags; 1143 size_t ublen; 1144 u32 dwidth; 1145 /* 1146 * WARNING: The channel configuration is set here since there is no 1147 * dmaengine_slave_config call in this case. Moreover we don't know the 1148 * direction, it involves we can't dynamically set the source and dest 1149 * interface so we have to use the same one. Only interface 0 allows EBI 1150 * access. Hopefully we can access DDR through both ports (at least on 1151 * SAMA5D4x), so we can use the same interface for source and dest, 1152 * that solves the fact we don't know the direction. 1153 * ERRATA: Even if useless for memory transfers, the PERID has to not 1154 * match the one of another channel. If not, it could lead to spurious 1155 * flag status. 1156 */ 1157 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 1158 | AT_XDMAC_CC_DAM_UBS_AM 1159 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1160 | AT_XDMAC_CC_DIF(0) 1161 | AT_XDMAC_CC_SIF(0) 1162 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1163 | AT_XDMAC_CC_MEMSET_HW_MODE 1164 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1165 1166 dwidth = at_xdmac_align_width(chan, dst_addr); 1167 1168 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 1169 dev_err(chan2dev(chan), 1170 "%s: Transfer too large, aborting...\n", 1171 __func__); 1172 return NULL; 1173 } 1174 1175 spin_lock_irqsave(&atchan->lock, flags); 1176 desc = at_xdmac_get_desc(atchan); 1177 spin_unlock_irqrestore(&atchan->lock, flags); 1178 if (!desc) { 1179 dev_err(chan2dev(chan), "can't get descriptor\n"); 1180 return NULL; 1181 } 1182 1183 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1184 1185 ublen = len >> dwidth; 1186 1187 desc->lld.mbr_da = dst_addr; 1188 desc->lld.mbr_ds = value; 1189 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 1190 | AT_XDMAC_MBR_UBC_NDEN 1191 | AT_XDMAC_MBR_UBC_NSEN 1192 | ublen; 1193 desc->lld.mbr_cfg = chan_cc; 1194 1195 dev_dbg(chan2dev(chan), 1196 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1197 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc, 1198 desc->lld.mbr_cfg); 1199 1200 return desc; 1201 } 1202 1203 static struct dma_async_tx_descriptor * 1204 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1205 size_t len, unsigned long flags) 1206 { 1207 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1208 struct at_xdmac_desc *desc; 1209 1210 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n", 1211 __func__, &dest, len, value, flags); 1212 1213 if (unlikely(!len)) 1214 return NULL; 1215 1216 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value); 1217 list_add_tail(&desc->desc_node, &desc->descs_list); 1218 1219 desc->tx_dma_desc.cookie = -EBUSY; 1220 desc->tx_dma_desc.flags = flags; 1221 desc->xfer_size = len; 1222 1223 return &desc->tx_dma_desc; 1224 } 1225 1226 static struct dma_async_tx_descriptor * 1227 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, 1228 unsigned int sg_len, int value, 1229 unsigned long flags) 1230 { 1231 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1232 struct at_xdmac_desc *desc, *pdesc = NULL, 1233 *ppdesc = NULL, *first = NULL; 1234 struct scatterlist *sg, *psg = NULL, *ppsg = NULL; 1235 size_t stride = 0, pstride = 0, len = 0; 1236 int i; 1237 1238 if (!sgl) 1239 return NULL; 1240 1241 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n", 1242 __func__, sg_len, value, flags); 1243 1244 /* Prepare descriptors. */ 1245 for_each_sg(sgl, sg, sg_len, i) { 1246 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n", 1247 __func__, &sg_dma_address(sg), sg_dma_len(sg), 1248 value, flags); 1249 desc = at_xdmac_memset_create_desc(chan, atchan, 1250 sg_dma_address(sg), 1251 sg_dma_len(sg), 1252 value); 1253 if (!desc && first) 1254 list_splice_init(&first->descs_list, 1255 &atchan->free_descs_list); 1256 1257 if (!first) 1258 first = desc; 1259 1260 /* Update our strides */ 1261 pstride = stride; 1262 if (psg) 1263 stride = sg_dma_address(sg) - 1264 (sg_dma_address(psg) + sg_dma_len(psg)); 1265 1266 /* 1267 * The scatterlist API gives us only the address and 1268 * length of each elements. 1269 * 1270 * Unfortunately, we don't have the stride, which we 1271 * will need to compute. 1272 * 1273 * That make us end up in a situation like this one: 1274 * len stride len stride len 1275 * +-------+ +-------+ +-------+ 1276 * | N-2 | | N-1 | | N | 1277 * +-------+ +-------+ +-------+ 1278 * 1279 * We need all these three elements (N-2, N-1 and N) 1280 * to actually take the decision on whether we need to 1281 * queue N-1 or reuse N-2. 1282 * 1283 * We will only consider N if it is the last element. 1284 */ 1285 if (ppdesc && pdesc) { 1286 if ((stride == pstride) && 1287 (sg_dma_len(ppsg) == sg_dma_len(psg))) { 1288 dev_dbg(chan2dev(chan), 1289 "%s: desc 0x%p can be merged with desc 0x%p\n", 1290 __func__, pdesc, ppdesc); 1291 1292 /* 1293 * Increment the block count of the 1294 * N-2 descriptor 1295 */ 1296 at_xdmac_increment_block_count(chan, ppdesc); 1297 ppdesc->lld.mbr_dus = stride; 1298 1299 /* 1300 * Put back the N-1 descriptor in the 1301 * free descriptor list 1302 */ 1303 list_add_tail(&pdesc->desc_node, 1304 &atchan->free_descs_list); 1305 1306 /* 1307 * Make our N-1 descriptor pointer 1308 * point to the N-2 since they were 1309 * actually merged. 1310 */ 1311 pdesc = ppdesc; 1312 1313 /* 1314 * Rule out the case where we don't have 1315 * pstride computed yet (our second sg 1316 * element) 1317 * 1318 * We also want to catch the case where there 1319 * would be a negative stride, 1320 */ 1321 } else if (pstride || 1322 sg_dma_address(sg) < sg_dma_address(psg)) { 1323 /* 1324 * Queue the N-1 descriptor after the 1325 * N-2 1326 */ 1327 at_xdmac_queue_desc(chan, ppdesc, pdesc); 1328 1329 /* 1330 * Add the N-1 descriptor to the list 1331 * of the descriptors used for this 1332 * transfer 1333 */ 1334 list_add_tail(&desc->desc_node, 1335 &first->descs_list); 1336 dev_dbg(chan2dev(chan), 1337 "%s: add desc 0x%p to descs_list 0x%p\n", 1338 __func__, desc, first); 1339 } 1340 } 1341 1342 /* 1343 * If we are the last element, just see if we have the 1344 * same size than the previous element. 1345 * 1346 * If so, we can merge it with the previous descriptor 1347 * since we don't care about the stride anymore. 1348 */ 1349 if ((i == (sg_len - 1)) && 1350 sg_dma_len(psg) == sg_dma_len(sg)) { 1351 dev_dbg(chan2dev(chan), 1352 "%s: desc 0x%p can be merged with desc 0x%p\n", 1353 __func__, desc, pdesc); 1354 1355 /* 1356 * Increment the block count of the N-1 1357 * descriptor 1358 */ 1359 at_xdmac_increment_block_count(chan, pdesc); 1360 pdesc->lld.mbr_dus = stride; 1361 1362 /* 1363 * Put back the N descriptor in the free 1364 * descriptor list 1365 */ 1366 list_add_tail(&desc->desc_node, 1367 &atchan->free_descs_list); 1368 } 1369 1370 /* Update our descriptors */ 1371 ppdesc = pdesc; 1372 pdesc = desc; 1373 1374 /* Update our scatter pointers */ 1375 ppsg = psg; 1376 psg = sg; 1377 1378 len += sg_dma_len(sg); 1379 } 1380 1381 first->tx_dma_desc.cookie = -EBUSY; 1382 first->tx_dma_desc.flags = flags; 1383 first->xfer_size = len; 1384 1385 return &first->tx_dma_desc; 1386 } 1387 1388 static enum dma_status 1389 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 1390 struct dma_tx_state *txstate) 1391 { 1392 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1393 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1394 struct at_xdmac_desc *desc, *_desc; 1395 struct list_head *descs_list; 1396 enum dma_status ret; 1397 int residue, retry; 1398 u32 cur_nda, check_nda, cur_ubc, mask, value; 1399 u8 dwidth = 0; 1400 unsigned long flags; 1401 bool initd; 1402 1403 ret = dma_cookie_status(chan, cookie, txstate); 1404 if (ret == DMA_COMPLETE) 1405 return ret; 1406 1407 if (!txstate) 1408 return ret; 1409 1410 spin_lock_irqsave(&atchan->lock, flags); 1411 1412 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1413 1414 /* 1415 * If the transfer has not been started yet, don't need to compute the 1416 * residue, it's the transfer length. 1417 */ 1418 if (!desc->active_xfer) { 1419 dma_set_residue(txstate, desc->xfer_size); 1420 goto spin_unlock; 1421 } 1422 1423 residue = desc->xfer_size; 1424 /* 1425 * Flush FIFO: only relevant when the transfer is source peripheral 1426 * synchronized. Flush is needed before reading CUBC because data in 1427 * the FIFO are not reported by CUBC. Reporting a residue of the 1428 * transfer length while we have data in FIFO can cause issue. 1429 * Usecase: atmel USART has a timeout which means I have received 1430 * characters but there is no more character received for a while. On 1431 * timeout, it requests the residue. If the data are in the DMA FIFO, 1432 * we will return a residue of the transfer length. It means no data 1433 * received. If an application is waiting for these data, it will hang 1434 * since we won't have another USART timeout without receiving new 1435 * data. 1436 */ 1437 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 1438 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 1439 if ((desc->lld.mbr_cfg & mask) == value) { 1440 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 1441 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1442 cpu_relax(); 1443 } 1444 1445 /* 1446 * The easiest way to compute the residue should be to pause the DMA 1447 * but doing this can lead to miss some data as some devices don't 1448 * have FIFO. 1449 * We need to read several registers because: 1450 * - DMA is running therefore a descriptor change is possible while 1451 * reading these registers 1452 * - When the block transfer is done, the value of the CUBC register 1453 * is set to its initial value until the fetch of the next descriptor. 1454 * This value will corrupt the residue calculation so we have to skip 1455 * it. 1456 * 1457 * INITD -------- ------------ 1458 * |____________________| 1459 * _______________________ _______________ 1460 * NDA @desc2 \/ @desc3 1461 * _______________________/\_______________ 1462 * __________ ___________ _______________ 1463 * CUBC 0 \/ MAX desc1 \/ MAX desc2 1464 * __________/\___________/\_______________ 1465 * 1466 * Since descriptors are aligned on 64 bits, we can assume that 1467 * the update of NDA and CUBC is atomic. 1468 * Memory barriers are used to ensure the read order of the registers. 1469 * A max number of retries is set because unlikely it could never ends. 1470 */ 1471 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) { 1472 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1473 rmb(); 1474 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD); 1475 rmb(); 1476 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC); 1477 rmb(); 1478 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1479 rmb(); 1480 1481 if ((check_nda == cur_nda) && initd) 1482 break; 1483 } 1484 1485 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) { 1486 ret = DMA_ERROR; 1487 goto spin_unlock; 1488 } 1489 1490 /* 1491 * Flush FIFO: only relevant when the transfer is source peripheral 1492 * synchronized. Another flush is needed here because CUBC is updated 1493 * when the controller sends the data write command. It can lead to 1494 * report data that are not written in the memory or the device. The 1495 * FIFO flush ensures that data are really written. 1496 */ 1497 if ((desc->lld.mbr_cfg & mask) == value) { 1498 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 1499 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1500 cpu_relax(); 1501 } 1502 1503 /* 1504 * Remove size of all microblocks already transferred and the current 1505 * one. Then add the remaining size to transfer of the current 1506 * microblock. 1507 */ 1508 descs_list = &desc->descs_list; 1509 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 1510 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 1511 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 1512 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 1513 break; 1514 } 1515 residue += cur_ubc << dwidth; 1516 1517 dma_set_residue(txstate, residue); 1518 1519 dev_dbg(chan2dev(chan), 1520 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 1521 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 1522 1523 spin_unlock: 1524 spin_unlock_irqrestore(&atchan->lock, flags); 1525 return ret; 1526 } 1527 1528 /* Call must be protected by lock. */ 1529 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 1530 struct at_xdmac_desc *desc) 1531 { 1532 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1533 1534 /* 1535 * Remove the transfer from the transfer list then move the transfer 1536 * descriptors into the free descriptors list. 1537 */ 1538 list_del(&desc->xfer_node); 1539 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 1540 } 1541 1542 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 1543 { 1544 struct at_xdmac_desc *desc; 1545 unsigned long flags; 1546 1547 spin_lock_irqsave(&atchan->lock, flags); 1548 1549 /* 1550 * If channel is enabled, do nothing, advance_work will be triggered 1551 * after the interruption. 1552 */ 1553 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 1554 desc = list_first_entry(&atchan->xfers_list, 1555 struct at_xdmac_desc, 1556 xfer_node); 1557 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1558 if (!desc->active_xfer) 1559 at_xdmac_start_xfer(atchan, desc); 1560 } 1561 1562 spin_unlock_irqrestore(&atchan->lock, flags); 1563 } 1564 1565 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 1566 { 1567 struct at_xdmac_desc *desc; 1568 struct dma_async_tx_descriptor *txd; 1569 1570 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1571 txd = &desc->tx_dma_desc; 1572 1573 if (txd->flags & DMA_PREP_INTERRUPT) 1574 dmaengine_desc_get_callback_invoke(txd, NULL); 1575 } 1576 1577 static void at_xdmac_tasklet(unsigned long data) 1578 { 1579 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data; 1580 struct at_xdmac_desc *desc; 1581 u32 error_mask; 1582 1583 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n", 1584 __func__, atchan->status); 1585 1586 error_mask = AT_XDMAC_CIS_RBEIS 1587 | AT_XDMAC_CIS_WBEIS 1588 | AT_XDMAC_CIS_ROIS; 1589 1590 if (at_xdmac_chan_is_cyclic(atchan)) { 1591 at_xdmac_handle_cyclic(atchan); 1592 } else if ((atchan->status & AT_XDMAC_CIS_LIS) 1593 || (atchan->status & error_mask)) { 1594 struct dma_async_tx_descriptor *txd; 1595 1596 if (atchan->status & AT_XDMAC_CIS_RBEIS) 1597 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1598 if (atchan->status & AT_XDMAC_CIS_WBEIS) 1599 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1600 if (atchan->status & AT_XDMAC_CIS_ROIS) 1601 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1602 1603 spin_lock_bh(&atchan->lock); 1604 desc = list_first_entry(&atchan->xfers_list, 1605 struct at_xdmac_desc, 1606 xfer_node); 1607 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1608 BUG_ON(!desc->active_xfer); 1609 1610 txd = &desc->tx_dma_desc; 1611 1612 at_xdmac_remove_xfer(atchan, desc); 1613 spin_unlock_bh(&atchan->lock); 1614 1615 if (!at_xdmac_chan_is_cyclic(atchan)) { 1616 dma_cookie_complete(txd); 1617 if (txd->flags & DMA_PREP_INTERRUPT) 1618 dmaengine_desc_get_callback_invoke(txd, NULL); 1619 } 1620 1621 dma_run_dependencies(txd); 1622 1623 at_xdmac_advance_work(atchan); 1624 } 1625 } 1626 1627 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1628 { 1629 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1630 struct at_xdmac_chan *atchan; 1631 u32 imr, status, pending; 1632 u32 chan_imr, chan_status; 1633 int i, ret = IRQ_NONE; 1634 1635 do { 1636 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1637 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1638 pending = status & imr; 1639 1640 dev_vdbg(atxdmac->dma.dev, 1641 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1642 __func__, status, imr, pending); 1643 1644 if (!pending) 1645 break; 1646 1647 /* We have to find which channel has generated the interrupt. */ 1648 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1649 if (!((1 << i) & pending)) 1650 continue; 1651 1652 atchan = &atxdmac->chan[i]; 1653 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1654 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1655 atchan->status = chan_status & chan_imr; 1656 dev_vdbg(atxdmac->dma.dev, 1657 "%s: chan%d: imr=0x%x, status=0x%x\n", 1658 __func__, i, chan_imr, chan_status); 1659 dev_vdbg(chan2dev(&atchan->chan), 1660 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1661 __func__, 1662 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1663 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1664 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1665 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1666 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1667 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1668 1669 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1670 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1671 1672 tasklet_schedule(&atchan->tasklet); 1673 ret = IRQ_HANDLED; 1674 } 1675 1676 } while (pending); 1677 1678 return ret; 1679 } 1680 1681 static void at_xdmac_issue_pending(struct dma_chan *chan) 1682 { 1683 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1684 1685 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1686 1687 if (!at_xdmac_chan_is_cyclic(atchan)) 1688 at_xdmac_advance_work(atchan); 1689 1690 return; 1691 } 1692 1693 static int at_xdmac_device_config(struct dma_chan *chan, 1694 struct dma_slave_config *config) 1695 { 1696 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1697 int ret; 1698 unsigned long flags; 1699 1700 dev_dbg(chan2dev(chan), "%s\n", __func__); 1701 1702 spin_lock_irqsave(&atchan->lock, flags); 1703 ret = at_xdmac_set_slave_config(chan, config); 1704 spin_unlock_irqrestore(&atchan->lock, flags); 1705 1706 return ret; 1707 } 1708 1709 static int at_xdmac_device_pause(struct dma_chan *chan) 1710 { 1711 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1712 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1713 unsigned long flags; 1714 1715 dev_dbg(chan2dev(chan), "%s\n", __func__); 1716 1717 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1718 return 0; 1719 1720 spin_lock_irqsave(&atchan->lock, flags); 1721 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask); 1722 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1723 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1724 cpu_relax(); 1725 spin_unlock_irqrestore(&atchan->lock, flags); 1726 1727 return 0; 1728 } 1729 1730 static int at_xdmac_device_resume(struct dma_chan *chan) 1731 { 1732 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1733 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1734 unsigned long flags; 1735 1736 dev_dbg(chan2dev(chan), "%s\n", __func__); 1737 1738 spin_lock_irqsave(&atchan->lock, flags); 1739 if (!at_xdmac_chan_is_paused(atchan)) { 1740 spin_unlock_irqrestore(&atchan->lock, flags); 1741 return 0; 1742 } 1743 1744 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask); 1745 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1746 spin_unlock_irqrestore(&atchan->lock, flags); 1747 1748 return 0; 1749 } 1750 1751 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1752 { 1753 struct at_xdmac_desc *desc, *_desc; 1754 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1755 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1756 unsigned long flags; 1757 1758 dev_dbg(chan2dev(chan), "%s\n", __func__); 1759 1760 spin_lock_irqsave(&atchan->lock, flags); 1761 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1762 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1763 cpu_relax(); 1764 1765 /* Cancel all pending transfers. */ 1766 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1767 at_xdmac_remove_xfer(atchan, desc); 1768 1769 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1770 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1771 spin_unlock_irqrestore(&atchan->lock, flags); 1772 1773 return 0; 1774 } 1775 1776 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1777 { 1778 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1779 struct at_xdmac_desc *desc; 1780 int i; 1781 unsigned long flags; 1782 1783 spin_lock_irqsave(&atchan->lock, flags); 1784 1785 if (at_xdmac_chan_is_enabled(atchan)) { 1786 dev_err(chan2dev(chan), 1787 "can't allocate channel resources (channel enabled)\n"); 1788 i = -EIO; 1789 goto spin_unlock; 1790 } 1791 1792 if (!list_empty(&atchan->free_descs_list)) { 1793 dev_err(chan2dev(chan), 1794 "can't allocate channel resources (channel not free from a previous use)\n"); 1795 i = -EIO; 1796 goto spin_unlock; 1797 } 1798 1799 for (i = 0; i < init_nr_desc_per_channel; i++) { 1800 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC); 1801 if (!desc) { 1802 dev_warn(chan2dev(chan), 1803 "only %d descriptors have been allocated\n", i); 1804 break; 1805 } 1806 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1807 } 1808 1809 dma_cookie_init(chan); 1810 1811 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1812 1813 spin_unlock: 1814 spin_unlock_irqrestore(&atchan->lock, flags); 1815 return i; 1816 } 1817 1818 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1819 { 1820 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1821 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1822 struct at_xdmac_desc *desc, *_desc; 1823 1824 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1825 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1826 list_del(&desc->desc_node); 1827 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1828 } 1829 1830 return; 1831 } 1832 1833 #ifdef CONFIG_PM 1834 static int atmel_xdmac_prepare(struct device *dev) 1835 { 1836 struct platform_device *pdev = to_platform_device(dev); 1837 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1838 struct dma_chan *chan, *_chan; 1839 1840 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1841 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1842 1843 /* Wait for transfer completion, except in cyclic case. */ 1844 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1845 return -EAGAIN; 1846 } 1847 return 0; 1848 } 1849 #else 1850 # define atmel_xdmac_prepare NULL 1851 #endif 1852 1853 #ifdef CONFIG_PM_SLEEP 1854 static int atmel_xdmac_suspend(struct device *dev) 1855 { 1856 struct platform_device *pdev = to_platform_device(dev); 1857 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1858 struct dma_chan *chan, *_chan; 1859 1860 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1861 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1862 1863 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1864 if (at_xdmac_chan_is_cyclic(atchan)) { 1865 if (!at_xdmac_chan_is_paused(atchan)) 1866 at_xdmac_device_pause(chan); 1867 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1868 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1869 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1870 } 1871 } 1872 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1873 1874 at_xdmac_off(atxdmac); 1875 clk_disable_unprepare(atxdmac->clk); 1876 return 0; 1877 } 1878 1879 static int atmel_xdmac_resume(struct device *dev) 1880 { 1881 struct platform_device *pdev = to_platform_device(dev); 1882 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1883 struct at_xdmac_chan *atchan; 1884 struct dma_chan *chan, *_chan; 1885 int i; 1886 int ret; 1887 1888 ret = clk_prepare_enable(atxdmac->clk); 1889 if (ret) 1890 return ret; 1891 1892 /* Clear pending interrupts. */ 1893 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1894 atchan = &atxdmac->chan[i]; 1895 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1896 cpu_relax(); 1897 } 1898 1899 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 1900 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1901 atchan = to_at_xdmac_chan(chan); 1902 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 1903 if (at_xdmac_chan_is_cyclic(atchan)) { 1904 if (at_xdmac_chan_is_paused(atchan)) 1905 at_xdmac_device_resume(chan); 1906 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 1907 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 1908 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 1909 wmb(); 1910 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 1911 } 1912 } 1913 return 0; 1914 } 1915 #endif /* CONFIG_PM_SLEEP */ 1916 1917 static int at_xdmac_probe(struct platform_device *pdev) 1918 { 1919 struct resource *res; 1920 struct at_xdmac *atxdmac; 1921 int irq, size, nr_channels, i, ret; 1922 void __iomem *base; 1923 u32 reg; 1924 1925 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1926 if (!res) 1927 return -EINVAL; 1928 1929 irq = platform_get_irq(pdev, 0); 1930 if (irq < 0) 1931 return irq; 1932 1933 base = devm_ioremap_resource(&pdev->dev, res); 1934 if (IS_ERR(base)) 1935 return PTR_ERR(base); 1936 1937 /* 1938 * Read number of xdmac channels, read helper function can't be used 1939 * since atxdmac is not yet allocated and we need to know the number 1940 * of channels to do the allocation. 1941 */ 1942 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 1943 nr_channels = AT_XDMAC_NB_CH(reg); 1944 if (nr_channels > AT_XDMAC_MAX_CHAN) { 1945 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 1946 nr_channels); 1947 return -EINVAL; 1948 } 1949 1950 size = sizeof(*atxdmac); 1951 size += nr_channels * sizeof(struct at_xdmac_chan); 1952 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1953 if (!atxdmac) { 1954 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 1955 return -ENOMEM; 1956 } 1957 1958 atxdmac->regs = base; 1959 atxdmac->irq = irq; 1960 1961 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1962 if (IS_ERR(atxdmac->clk)) { 1963 dev_err(&pdev->dev, "can't get dma_clk\n"); 1964 return PTR_ERR(atxdmac->clk); 1965 } 1966 1967 /* Do not use dev res to prevent races with tasklet */ 1968 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 1969 if (ret) { 1970 dev_err(&pdev->dev, "can't request irq\n"); 1971 return ret; 1972 } 1973 1974 ret = clk_prepare_enable(atxdmac->clk); 1975 if (ret) { 1976 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 1977 goto err_free_irq; 1978 } 1979 1980 atxdmac->at_xdmac_desc_pool = 1981 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 1982 sizeof(struct at_xdmac_desc), 4, 0); 1983 if (!atxdmac->at_xdmac_desc_pool) { 1984 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 1985 ret = -ENOMEM; 1986 goto err_clk_disable; 1987 } 1988 1989 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 1990 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask); 1991 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 1992 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask); 1993 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask); 1994 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 1995 /* 1996 * Without DMA_PRIVATE the driver is not able to allocate more than 1997 * one channel, second allocation fails in private_candidate. 1998 */ 1999 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 2000 atxdmac->dma.dev = &pdev->dev; 2001 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 2002 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 2003 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 2004 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 2005 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 2006 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved; 2007 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 2008 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset; 2009 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg; 2010 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 2011 atxdmac->dma.device_config = at_xdmac_device_config; 2012 atxdmac->dma.device_pause = at_xdmac_device_pause; 2013 atxdmac->dma.device_resume = at_xdmac_device_resume; 2014 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 2015 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 2016 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 2017 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2018 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2019 2020 /* Disable all chans and interrupts. */ 2021 at_xdmac_off(atxdmac); 2022 2023 /* Init channels. */ 2024 INIT_LIST_HEAD(&atxdmac->dma.channels); 2025 for (i = 0; i < nr_channels; i++) { 2026 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2027 2028 atchan->chan.device = &atxdmac->dma; 2029 list_add_tail(&atchan->chan.device_node, 2030 &atxdmac->dma.channels); 2031 2032 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 2033 atchan->mask = 1 << i; 2034 2035 spin_lock_init(&atchan->lock); 2036 INIT_LIST_HEAD(&atchan->xfers_list); 2037 INIT_LIST_HEAD(&atchan->free_descs_list); 2038 tasklet_init(&atchan->tasklet, at_xdmac_tasklet, 2039 (unsigned long)atchan); 2040 2041 /* Clear pending interrupts. */ 2042 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 2043 cpu_relax(); 2044 } 2045 platform_set_drvdata(pdev, atxdmac); 2046 2047 ret = dma_async_device_register(&atxdmac->dma); 2048 if (ret) { 2049 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 2050 goto err_clk_disable; 2051 } 2052 2053 ret = of_dma_controller_register(pdev->dev.of_node, 2054 at_xdmac_xlate, atxdmac); 2055 if (ret) { 2056 dev_err(&pdev->dev, "could not register of dma controller\n"); 2057 goto err_dma_unregister; 2058 } 2059 2060 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 2061 nr_channels, atxdmac->regs); 2062 2063 return 0; 2064 2065 err_dma_unregister: 2066 dma_async_device_unregister(&atxdmac->dma); 2067 err_clk_disable: 2068 clk_disable_unprepare(atxdmac->clk); 2069 err_free_irq: 2070 free_irq(atxdmac->irq, atxdmac); 2071 return ret; 2072 } 2073 2074 static int at_xdmac_remove(struct platform_device *pdev) 2075 { 2076 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 2077 int i; 2078 2079 at_xdmac_off(atxdmac); 2080 of_dma_controller_free(pdev->dev.of_node); 2081 dma_async_device_unregister(&atxdmac->dma); 2082 clk_disable_unprepare(atxdmac->clk); 2083 2084 free_irq(atxdmac->irq, atxdmac); 2085 2086 for (i = 0; i < atxdmac->dma.chancnt; i++) { 2087 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2088 2089 tasklet_kill(&atchan->tasklet); 2090 at_xdmac_free_chan_resources(&atchan->chan); 2091 } 2092 2093 return 0; 2094 } 2095 2096 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = { 2097 .prepare = atmel_xdmac_prepare, 2098 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 2099 }; 2100 2101 static const struct of_device_id atmel_xdmac_dt_ids[] = { 2102 { 2103 .compatible = "atmel,sama5d4-dma", 2104 }, { 2105 /* sentinel */ 2106 } 2107 }; 2108 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 2109 2110 static struct platform_driver at_xdmac_driver = { 2111 .probe = at_xdmac_probe, 2112 .remove = at_xdmac_remove, 2113 .driver = { 2114 .name = "at_xdmac", 2115 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 2116 .pm = &atmel_xdmac_dev_pm_ops, 2117 } 2118 }; 2119 2120 static int __init at_xdmac_init(void) 2121 { 2122 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe); 2123 } 2124 subsys_initcall(at_xdmac_init); 2125 2126 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 2127 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 2128 MODULE_LICENSE("GPL"); 2129