1 /* 2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 3 * 4 * Copyright (C) 2014 Atmel Corporation 5 * 6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <asm/barrier.h> 22 #include <dt-bindings/dma/at91.h> 23 #include <linux/clk.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dmapool.h> 26 #include <linux/interrupt.h> 27 #include <linux/irq.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of_dma.h> 32 #include <linux/of_platform.h> 33 #include <linux/platform_device.h> 34 #include <linux/pm.h> 35 36 #include "dmaengine.h" 37 38 /* Global registers */ 39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */ 53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */ 54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */ 55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */ 56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */ 57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */ 58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */ 59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 60 61 /* Channel relative registers offsets */ 62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 159 #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */ 160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 163 164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */ 165 166 /* Microblock control members */ 167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 175 176 #define AT_XDMAC_MAX_CHAN 0x20 177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */ 178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */ 179 #define AT_XDMAC_RESIDUE_MAX_RETRIES 5 180 181 #define AT_XDMAC_DMA_BUSWIDTHS\ 182 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 184 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 185 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 186 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 187 188 enum atc_status { 189 AT_XDMAC_CHAN_IS_CYCLIC = 0, 190 AT_XDMAC_CHAN_IS_PAUSED, 191 }; 192 193 /* ----- Channels ----- */ 194 struct at_xdmac_chan { 195 struct dma_chan chan; 196 void __iomem *ch_regs; 197 u32 mask; /* Channel Mask */ 198 u32 cfg; /* Channel Configuration Register */ 199 u8 perid; /* Peripheral ID */ 200 u8 perif; /* Peripheral Interface */ 201 u8 memif; /* Memory Interface */ 202 u32 save_cc; 203 u32 save_cim; 204 u32 save_cnda; 205 u32 save_cndc; 206 unsigned long status; 207 struct tasklet_struct tasklet; 208 struct dma_slave_config sconfig; 209 210 spinlock_t lock; 211 212 struct list_head xfers_list; 213 struct list_head free_descs_list; 214 }; 215 216 217 /* ----- Controller ----- */ 218 struct at_xdmac { 219 struct dma_device dma; 220 void __iomem *regs; 221 int irq; 222 struct clk *clk; 223 u32 save_gim; 224 u32 save_gs; 225 struct dma_pool *at_xdmac_desc_pool; 226 struct at_xdmac_chan chan[0]; 227 }; 228 229 230 /* ----- Descriptors ----- */ 231 232 /* Linked List Descriptor */ 233 struct at_xdmac_lld { 234 dma_addr_t mbr_nda; /* Next Descriptor Member */ 235 u32 mbr_ubc; /* Microblock Control Member */ 236 dma_addr_t mbr_sa; /* Source Address Member */ 237 dma_addr_t mbr_da; /* Destination Address Member */ 238 u32 mbr_cfg; /* Configuration Register */ 239 u32 mbr_bc; /* Block Control Register */ 240 u32 mbr_ds; /* Data Stride Register */ 241 u32 mbr_sus; /* Source Microblock Stride Register */ 242 u32 mbr_dus; /* Destination Microblock Stride Register */ 243 }; 244 245 246 struct at_xdmac_desc { 247 struct at_xdmac_lld lld; 248 enum dma_transfer_direction direction; 249 struct dma_async_tx_descriptor tx_dma_desc; 250 struct list_head desc_node; 251 /* Following members are only used by the first descriptor */ 252 bool active_xfer; 253 unsigned int xfer_size; 254 struct list_head descs_list; 255 struct list_head xfer_node; 256 }; 257 258 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 259 { 260 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40); 261 } 262 263 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 264 #define at_xdmac_write(atxdmac, reg, value) \ 265 writel_relaxed((value), (atxdmac)->regs + (reg)) 266 267 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 268 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 269 270 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 271 { 272 return container_of(dchan, struct at_xdmac_chan, chan); 273 } 274 275 static struct device *chan2dev(struct dma_chan *chan) 276 { 277 return &chan->dev->device; 278 } 279 280 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 281 { 282 return container_of(ddev, struct at_xdmac, dma); 283 } 284 285 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 286 { 287 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 288 } 289 290 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 291 { 292 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 293 } 294 295 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 296 { 297 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 298 } 299 300 static inline int at_xdmac_csize(u32 maxburst) 301 { 302 int csize; 303 304 csize = ffs(maxburst) - 1; 305 if (csize > 4) 306 csize = -EINVAL; 307 308 return csize; 309 }; 310 311 static inline u8 at_xdmac_get_dwidth(u32 cfg) 312 { 313 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 314 }; 315 316 static unsigned int init_nr_desc_per_channel = 64; 317 module_param(init_nr_desc_per_channel, uint, 0644); 318 MODULE_PARM_DESC(init_nr_desc_per_channel, 319 "initial descriptors per channel (default: 64)"); 320 321 322 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 323 { 324 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 325 } 326 327 static void at_xdmac_off(struct at_xdmac *atxdmac) 328 { 329 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 330 331 /* Wait that all chans are disabled. */ 332 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 333 cpu_relax(); 334 335 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 336 } 337 338 /* Call with lock hold. */ 339 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 340 struct at_xdmac_desc *first) 341 { 342 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 343 u32 reg; 344 345 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 346 347 if (at_xdmac_chan_is_enabled(atchan)) 348 return; 349 350 /* Set transfer as active to not try to start it again. */ 351 first->active_xfer = true; 352 353 /* Tell xdmac where to get the first descriptor. */ 354 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys) 355 | AT_XDMAC_CNDA_NDAIF(atchan->memif); 356 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 357 358 /* 359 * When doing non cyclic transfer we need to use the next 360 * descriptor view 2 since some fields of the configuration register 361 * depend on transfer size and src/dest addresses. 362 */ 363 if (at_xdmac_chan_is_cyclic(atchan)) 364 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 365 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3) 366 reg = AT_XDMAC_CNDC_NDVIEW_NDV3; 367 else 368 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 369 /* 370 * Even if the register will be updated from the configuration in the 371 * descriptor when using view 2 or higher, the PROT bit won't be set 372 * properly. This bit can be modified only by using the channel 373 * configuration register. 374 */ 375 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 376 377 reg |= AT_XDMAC_CNDC_NDDUP 378 | AT_XDMAC_CNDC_NDSUP 379 | AT_XDMAC_CNDC_NDE; 380 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 381 382 dev_vdbg(chan2dev(&atchan->chan), 383 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 384 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 385 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 386 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 387 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 388 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 389 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 390 391 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 392 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE; 393 /* 394 * There is no end of list when doing cyclic dma, we need to get 395 * an interrupt after each periods. 396 */ 397 if (at_xdmac_chan_is_cyclic(atchan)) 398 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 399 reg | AT_XDMAC_CIE_BIE); 400 else 401 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 402 reg | AT_XDMAC_CIE_LIE); 403 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 404 dev_vdbg(chan2dev(&atchan->chan), 405 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 406 wmb(); 407 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 408 409 dev_vdbg(chan2dev(&atchan->chan), 410 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 411 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 413 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 414 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 415 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 416 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 417 418 } 419 420 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 421 { 422 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 423 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 424 dma_cookie_t cookie; 425 unsigned long irqflags; 426 427 spin_lock_irqsave(&atchan->lock, irqflags); 428 cookie = dma_cookie_assign(tx); 429 430 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 431 __func__, atchan, desc); 432 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 433 if (list_is_singular(&atchan->xfers_list)) 434 at_xdmac_start_xfer(atchan, desc); 435 436 spin_unlock_irqrestore(&atchan->lock, irqflags); 437 return cookie; 438 } 439 440 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 441 gfp_t gfp_flags) 442 { 443 struct at_xdmac_desc *desc; 444 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 445 dma_addr_t phys; 446 447 desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 448 if (desc) { 449 memset(desc, 0, sizeof(*desc)); 450 INIT_LIST_HEAD(&desc->descs_list); 451 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 452 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 453 desc->tx_dma_desc.phys = phys; 454 } 455 456 return desc; 457 } 458 459 void at_xdmac_init_used_desc(struct at_xdmac_desc *desc) 460 { 461 memset(&desc->lld, 0, sizeof(desc->lld)); 462 INIT_LIST_HEAD(&desc->descs_list); 463 desc->direction = DMA_TRANS_NONE; 464 desc->xfer_size = 0; 465 desc->active_xfer = false; 466 } 467 468 /* Call must be protected by lock. */ 469 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 470 { 471 struct at_xdmac_desc *desc; 472 473 if (list_empty(&atchan->free_descs_list)) { 474 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 475 } else { 476 desc = list_first_entry(&atchan->free_descs_list, 477 struct at_xdmac_desc, desc_node); 478 list_del(&desc->desc_node); 479 at_xdmac_init_used_desc(desc); 480 } 481 482 return desc; 483 } 484 485 static void at_xdmac_queue_desc(struct dma_chan *chan, 486 struct at_xdmac_desc *prev, 487 struct at_xdmac_desc *desc) 488 { 489 if (!prev || !desc) 490 return; 491 492 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 493 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE; 494 495 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 496 __func__, prev, &prev->lld.mbr_nda); 497 } 498 499 static inline void at_xdmac_increment_block_count(struct dma_chan *chan, 500 struct at_xdmac_desc *desc) 501 { 502 if (!desc) 503 return; 504 505 desc->lld.mbr_bc++; 506 507 dev_dbg(chan2dev(chan), 508 "%s: incrementing the block count of the desc 0x%p\n", 509 __func__, desc); 510 } 511 512 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 513 struct of_dma *of_dma) 514 { 515 struct at_xdmac *atxdmac = of_dma->of_dma_data; 516 struct at_xdmac_chan *atchan; 517 struct dma_chan *chan; 518 struct device *dev = atxdmac->dma.dev; 519 520 if (dma_spec->args_count != 1) { 521 dev_err(dev, "dma phandler args: bad number of args\n"); 522 return NULL; 523 } 524 525 chan = dma_get_any_slave_channel(&atxdmac->dma); 526 if (!chan) { 527 dev_err(dev, "can't get a dma channel\n"); 528 return NULL; 529 } 530 531 atchan = to_at_xdmac_chan(chan); 532 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 533 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 534 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 535 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 536 atchan->memif, atchan->perif, atchan->perid); 537 538 return chan; 539 } 540 541 static int at_xdmac_compute_chan_conf(struct dma_chan *chan, 542 enum dma_transfer_direction direction) 543 { 544 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 545 int csize, dwidth; 546 547 if (direction == DMA_DEV_TO_MEM) { 548 atchan->cfg = 549 AT91_XDMAC_DT_PERID(atchan->perid) 550 | AT_XDMAC_CC_DAM_INCREMENTED_AM 551 | AT_XDMAC_CC_SAM_FIXED_AM 552 | AT_XDMAC_CC_DIF(atchan->memif) 553 | AT_XDMAC_CC_SIF(atchan->perif) 554 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 555 | AT_XDMAC_CC_DSYNC_PER2MEM 556 | AT_XDMAC_CC_MBSIZE_SIXTEEN 557 | AT_XDMAC_CC_TYPE_PER_TRAN; 558 csize = ffs(atchan->sconfig.src_maxburst) - 1; 559 if (csize < 0) { 560 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 561 return -EINVAL; 562 } 563 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 564 dwidth = ffs(atchan->sconfig.src_addr_width) - 1; 565 if (dwidth < 0) { 566 dev_err(chan2dev(chan), "invalid src addr width value\n"); 567 return -EINVAL; 568 } 569 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 570 } else if (direction == DMA_MEM_TO_DEV) { 571 atchan->cfg = 572 AT91_XDMAC_DT_PERID(atchan->perid) 573 | AT_XDMAC_CC_DAM_FIXED_AM 574 | AT_XDMAC_CC_SAM_INCREMENTED_AM 575 | AT_XDMAC_CC_DIF(atchan->perif) 576 | AT_XDMAC_CC_SIF(atchan->memif) 577 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 578 | AT_XDMAC_CC_DSYNC_MEM2PER 579 | AT_XDMAC_CC_MBSIZE_SIXTEEN 580 | AT_XDMAC_CC_TYPE_PER_TRAN; 581 csize = ffs(atchan->sconfig.dst_maxburst) - 1; 582 if (csize < 0) { 583 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 584 return -EINVAL; 585 } 586 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 587 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1; 588 if (dwidth < 0) { 589 dev_err(chan2dev(chan), "invalid dst addr width value\n"); 590 return -EINVAL; 591 } 592 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 593 } 594 595 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg); 596 597 return 0; 598 } 599 600 /* 601 * Only check that maxburst and addr width values are supported by the 602 * the controller but not that the configuration is good to perform the 603 * transfer since we don't know the direction at this stage. 604 */ 605 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig) 606 { 607 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE) 608 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE)) 609 return -EINVAL; 610 611 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH) 612 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH)) 613 return -EINVAL; 614 615 return 0; 616 } 617 618 static int at_xdmac_set_slave_config(struct dma_chan *chan, 619 struct dma_slave_config *sconfig) 620 { 621 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 622 623 if (at_xdmac_check_slave_config(sconfig)) { 624 dev_err(chan2dev(chan), "invalid slave configuration\n"); 625 return -EINVAL; 626 } 627 628 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig)); 629 630 return 0; 631 } 632 633 static struct dma_async_tx_descriptor * 634 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 635 unsigned int sg_len, enum dma_transfer_direction direction, 636 unsigned long flags, void *context) 637 { 638 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 639 struct at_xdmac_desc *first = NULL, *prev = NULL; 640 struct scatterlist *sg; 641 int i; 642 unsigned int xfer_size = 0; 643 unsigned long irqflags; 644 struct dma_async_tx_descriptor *ret = NULL; 645 646 if (!sgl) 647 return NULL; 648 649 if (!is_slave_direction(direction)) { 650 dev_err(chan2dev(chan), "invalid DMA direction\n"); 651 return NULL; 652 } 653 654 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 655 __func__, sg_len, 656 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 657 flags); 658 659 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 660 spin_lock_irqsave(&atchan->lock, irqflags); 661 662 if (at_xdmac_compute_chan_conf(chan, direction)) 663 goto spin_unlock; 664 665 /* Prepare descriptors. */ 666 for_each_sg(sgl, sg, sg_len, i) { 667 struct at_xdmac_desc *desc = NULL; 668 u32 len, mem, dwidth, fixed_dwidth; 669 670 len = sg_dma_len(sg); 671 mem = sg_dma_address(sg); 672 if (unlikely(!len)) { 673 dev_err(chan2dev(chan), "sg data length is zero\n"); 674 goto spin_unlock; 675 } 676 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 677 __func__, i, len, mem); 678 679 desc = at_xdmac_get_desc(atchan); 680 if (!desc) { 681 dev_err(chan2dev(chan), "can't get descriptor\n"); 682 if (first) 683 list_splice_init(&first->descs_list, &atchan->free_descs_list); 684 goto spin_unlock; 685 } 686 687 /* Linked list descriptor setup. */ 688 if (direction == DMA_DEV_TO_MEM) { 689 desc->lld.mbr_sa = atchan->sconfig.src_addr; 690 desc->lld.mbr_da = mem; 691 } else { 692 desc->lld.mbr_sa = mem; 693 desc->lld.mbr_da = atchan->sconfig.dst_addr; 694 } 695 dwidth = at_xdmac_get_dwidth(atchan->cfg); 696 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 697 ? dwidth 698 : AT_XDMAC_CC_DWIDTH_BYTE; 699 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 700 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 701 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 702 | (len >> fixed_dwidth); /* microblock length */ 703 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) | 704 AT_XDMAC_CC_DWIDTH(fixed_dwidth); 705 dev_dbg(chan2dev(chan), 706 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 707 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 708 709 /* Chain lld. */ 710 if (prev) 711 at_xdmac_queue_desc(chan, prev, desc); 712 713 prev = desc; 714 if (!first) 715 first = desc; 716 717 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 718 __func__, desc, first); 719 list_add_tail(&desc->desc_node, &first->descs_list); 720 xfer_size += len; 721 } 722 723 724 first->tx_dma_desc.flags = flags; 725 first->xfer_size = xfer_size; 726 first->direction = direction; 727 ret = &first->tx_dma_desc; 728 729 spin_unlock: 730 spin_unlock_irqrestore(&atchan->lock, irqflags); 731 return ret; 732 } 733 734 static struct dma_async_tx_descriptor * 735 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 736 size_t buf_len, size_t period_len, 737 enum dma_transfer_direction direction, 738 unsigned long flags) 739 { 740 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 741 struct at_xdmac_desc *first = NULL, *prev = NULL; 742 unsigned int periods = buf_len / period_len; 743 int i; 744 unsigned long irqflags; 745 746 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 747 __func__, &buf_addr, buf_len, period_len, 748 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 749 750 if (!is_slave_direction(direction)) { 751 dev_err(chan2dev(chan), "invalid DMA direction\n"); 752 return NULL; 753 } 754 755 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 756 dev_err(chan2dev(chan), "channel currently used\n"); 757 return NULL; 758 } 759 760 if (at_xdmac_compute_chan_conf(chan, direction)) 761 return NULL; 762 763 for (i = 0; i < periods; i++) { 764 struct at_xdmac_desc *desc = NULL; 765 766 spin_lock_irqsave(&atchan->lock, irqflags); 767 desc = at_xdmac_get_desc(atchan); 768 if (!desc) { 769 dev_err(chan2dev(chan), "can't get descriptor\n"); 770 if (first) 771 list_splice_init(&first->descs_list, &atchan->free_descs_list); 772 spin_unlock_irqrestore(&atchan->lock, irqflags); 773 return NULL; 774 } 775 spin_unlock_irqrestore(&atchan->lock, irqflags); 776 dev_dbg(chan2dev(chan), 777 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 778 __func__, desc, &desc->tx_dma_desc.phys); 779 780 if (direction == DMA_DEV_TO_MEM) { 781 desc->lld.mbr_sa = atchan->sconfig.src_addr; 782 desc->lld.mbr_da = buf_addr + i * period_len; 783 } else { 784 desc->lld.mbr_sa = buf_addr + i * period_len; 785 desc->lld.mbr_da = atchan->sconfig.dst_addr; 786 } 787 desc->lld.mbr_cfg = atchan->cfg; 788 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 789 | AT_XDMAC_MBR_UBC_NDEN 790 | AT_XDMAC_MBR_UBC_NSEN 791 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 792 793 dev_dbg(chan2dev(chan), 794 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 795 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 796 797 /* Chain lld. */ 798 if (prev) 799 at_xdmac_queue_desc(chan, prev, desc); 800 801 prev = desc; 802 if (!first) 803 first = desc; 804 805 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 806 __func__, desc, first); 807 list_add_tail(&desc->desc_node, &first->descs_list); 808 } 809 810 at_xdmac_queue_desc(chan, prev, first); 811 first->tx_dma_desc.flags = flags; 812 first->xfer_size = buf_len; 813 first->direction = direction; 814 815 return &first->tx_dma_desc; 816 } 817 818 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr) 819 { 820 u32 width; 821 822 /* 823 * Check address alignment to select the greater data width we 824 * can use. 825 * 826 * Some XDMAC implementations don't provide dword transfer, in 827 * this case selecting dword has the same behavior as 828 * selecting word transfers. 829 */ 830 if (!(addr & 7)) { 831 width = AT_XDMAC_CC_DWIDTH_DWORD; 832 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 833 } else if (!(addr & 3)) { 834 width = AT_XDMAC_CC_DWIDTH_WORD; 835 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 836 } else if (!(addr & 1)) { 837 width = AT_XDMAC_CC_DWIDTH_HALFWORD; 838 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 839 } else { 840 width = AT_XDMAC_CC_DWIDTH_BYTE; 841 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 842 } 843 844 return width; 845 } 846 847 static struct at_xdmac_desc * 848 at_xdmac_interleaved_queue_desc(struct dma_chan *chan, 849 struct at_xdmac_chan *atchan, 850 struct at_xdmac_desc *prev, 851 dma_addr_t src, dma_addr_t dst, 852 struct dma_interleaved_template *xt, 853 struct data_chunk *chunk) 854 { 855 struct at_xdmac_desc *desc; 856 u32 dwidth; 857 unsigned long flags; 858 size_t ublen; 859 /* 860 * WARNING: The channel configuration is set here since there is no 861 * dmaengine_slave_config call in this case. Moreover we don't know the 862 * direction, it involves we can't dynamically set the source and dest 863 * interface so we have to use the same one. Only interface 0 allows EBI 864 * access. Hopefully we can access DDR through both ports (at least on 865 * SAMA5D4x), so we can use the same interface for source and dest, 866 * that solves the fact we don't know the direction. 867 * ERRATA: Even if useless for memory transfers, the PERID has to not 868 * match the one of another channel. If not, it could lead to spurious 869 * flag status. 870 */ 871 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 872 | AT_XDMAC_CC_DIF(0) 873 | AT_XDMAC_CC_SIF(0) 874 | AT_XDMAC_CC_MBSIZE_SIXTEEN 875 | AT_XDMAC_CC_TYPE_MEM_TRAN; 876 877 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size); 878 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 879 dev_dbg(chan2dev(chan), 880 "%s: chunk too big (%d, max size %lu)...\n", 881 __func__, chunk->size, 882 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth); 883 return NULL; 884 } 885 886 if (prev) 887 dev_dbg(chan2dev(chan), 888 "Adding items at the end of desc 0x%p\n", prev); 889 890 if (xt->src_inc) { 891 if (xt->src_sgl) 892 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM; 893 else 894 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM; 895 } 896 897 if (xt->dst_inc) { 898 if (xt->dst_sgl) 899 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM; 900 else 901 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM; 902 } 903 904 spin_lock_irqsave(&atchan->lock, flags); 905 desc = at_xdmac_get_desc(atchan); 906 spin_unlock_irqrestore(&atchan->lock, flags); 907 if (!desc) { 908 dev_err(chan2dev(chan), "can't get descriptor\n"); 909 return NULL; 910 } 911 912 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 913 914 ublen = chunk->size >> dwidth; 915 916 desc->lld.mbr_sa = src; 917 desc->lld.mbr_da = dst; 918 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk); 919 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk); 920 921 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 922 | AT_XDMAC_MBR_UBC_NDEN 923 | AT_XDMAC_MBR_UBC_NSEN 924 | ublen; 925 desc->lld.mbr_cfg = chan_cc; 926 927 dev_dbg(chan2dev(chan), 928 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 929 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, 930 desc->lld.mbr_ubc, desc->lld.mbr_cfg); 931 932 /* Chain lld. */ 933 if (prev) 934 at_xdmac_queue_desc(chan, prev, desc); 935 936 return desc; 937 } 938 939 static struct dma_async_tx_descriptor * 940 at_xdmac_prep_interleaved(struct dma_chan *chan, 941 struct dma_interleaved_template *xt, 942 unsigned long flags) 943 { 944 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 945 struct at_xdmac_desc *prev = NULL, *first = NULL; 946 dma_addr_t dst_addr, src_addr; 947 size_t src_skip = 0, dst_skip = 0, len = 0; 948 struct data_chunk *chunk; 949 int i; 950 951 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM)) 952 return NULL; 953 954 /* 955 * TODO: Handle the case where we have to repeat a chain of 956 * descriptors... 957 */ 958 if ((xt->numf > 1) && (xt->frame_size > 1)) 959 return NULL; 960 961 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 962 __func__, &xt->src_start, &xt->dst_start, xt->numf, 963 xt->frame_size, flags); 964 965 src_addr = xt->src_start; 966 dst_addr = xt->dst_start; 967 968 if (xt->numf > 1) { 969 first = at_xdmac_interleaved_queue_desc(chan, atchan, 970 NULL, 971 src_addr, dst_addr, 972 xt, xt->sgl); 973 974 /* Length of the block is (BLEN+1) microblocks. */ 975 for (i = 0; i < xt->numf - 1; i++) 976 at_xdmac_increment_block_count(chan, first); 977 978 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 979 __func__, first, first); 980 list_add_tail(&first->desc_node, &first->descs_list); 981 } else { 982 for (i = 0; i < xt->frame_size; i++) { 983 size_t src_icg = 0, dst_icg = 0; 984 struct at_xdmac_desc *desc; 985 986 chunk = xt->sgl + i; 987 988 dst_icg = dmaengine_get_dst_icg(xt, chunk); 989 src_icg = dmaengine_get_src_icg(xt, chunk); 990 991 src_skip = chunk->size + src_icg; 992 dst_skip = chunk->size + dst_icg; 993 994 dev_dbg(chan2dev(chan), 995 "%s: chunk size=%d, src icg=%d, dst icg=%d\n", 996 __func__, chunk->size, src_icg, dst_icg); 997 998 desc = at_xdmac_interleaved_queue_desc(chan, atchan, 999 prev, 1000 src_addr, dst_addr, 1001 xt, chunk); 1002 if (!desc) { 1003 list_splice_init(&first->descs_list, 1004 &atchan->free_descs_list); 1005 return NULL; 1006 } 1007 1008 if (!first) 1009 first = desc; 1010 1011 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1012 __func__, desc, first); 1013 list_add_tail(&desc->desc_node, &first->descs_list); 1014 1015 if (xt->src_sgl) 1016 src_addr += src_skip; 1017 1018 if (xt->dst_sgl) 1019 dst_addr += dst_skip; 1020 1021 len += chunk->size; 1022 prev = desc; 1023 } 1024 } 1025 1026 first->tx_dma_desc.cookie = -EBUSY; 1027 first->tx_dma_desc.flags = flags; 1028 first->xfer_size = len; 1029 1030 return &first->tx_dma_desc; 1031 } 1032 1033 static struct dma_async_tx_descriptor * 1034 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1035 size_t len, unsigned long flags) 1036 { 1037 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1038 struct at_xdmac_desc *first = NULL, *prev = NULL; 1039 size_t remaining_size = len, xfer_size = 0, ublen; 1040 dma_addr_t src_addr = src, dst_addr = dest; 1041 u32 dwidth; 1042 /* 1043 * WARNING: We don't know the direction, it involves we can't 1044 * dynamically set the source and dest interface so we have to use the 1045 * same one. Only interface 0 allows EBI access. Hopefully we can 1046 * access DDR through both ports (at least on SAMA5D4x), so we can use 1047 * the same interface for source and dest, that solves the fact we 1048 * don't know the direction. 1049 * ERRATA: Even if useless for memory transfers, the PERID has to not 1050 * match the one of another channel. If not, it could lead to spurious 1051 * flag status. 1052 */ 1053 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 1054 | AT_XDMAC_CC_DAM_INCREMENTED_AM 1055 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1056 | AT_XDMAC_CC_DIF(0) 1057 | AT_XDMAC_CC_SIF(0) 1058 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1059 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1060 unsigned long irqflags; 1061 1062 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 1063 __func__, &src, &dest, len, flags); 1064 1065 if (unlikely(!len)) 1066 return NULL; 1067 1068 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr); 1069 1070 /* Prepare descriptors. */ 1071 while (remaining_size) { 1072 struct at_xdmac_desc *desc = NULL; 1073 1074 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 1075 1076 spin_lock_irqsave(&atchan->lock, irqflags); 1077 desc = at_xdmac_get_desc(atchan); 1078 spin_unlock_irqrestore(&atchan->lock, irqflags); 1079 if (!desc) { 1080 dev_err(chan2dev(chan), "can't get descriptor\n"); 1081 if (first) 1082 list_splice_init(&first->descs_list, &atchan->free_descs_list); 1083 return NULL; 1084 } 1085 1086 /* Update src and dest addresses. */ 1087 src_addr += xfer_size; 1088 dst_addr += xfer_size; 1089 1090 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 1091 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 1092 else 1093 xfer_size = remaining_size; 1094 1095 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 1096 1097 /* Check remaining length and change data width if needed. */ 1098 dwidth = at_xdmac_align_width(chan, 1099 src_addr | dst_addr | xfer_size); 1100 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK; 1101 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1102 1103 ublen = xfer_size >> dwidth; 1104 remaining_size -= xfer_size; 1105 1106 desc->lld.mbr_sa = src_addr; 1107 desc->lld.mbr_da = dst_addr; 1108 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 1109 | AT_XDMAC_MBR_UBC_NDEN 1110 | AT_XDMAC_MBR_UBC_NSEN 1111 | ublen; 1112 desc->lld.mbr_cfg = chan_cc; 1113 1114 dev_dbg(chan2dev(chan), 1115 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1116 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 1117 1118 /* Chain lld. */ 1119 if (prev) 1120 at_xdmac_queue_desc(chan, prev, desc); 1121 1122 prev = desc; 1123 if (!first) 1124 first = desc; 1125 1126 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 1127 __func__, desc, first); 1128 list_add_tail(&desc->desc_node, &first->descs_list); 1129 } 1130 1131 first->tx_dma_desc.flags = flags; 1132 first->xfer_size = len; 1133 1134 return &first->tx_dma_desc; 1135 } 1136 1137 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan, 1138 struct at_xdmac_chan *atchan, 1139 dma_addr_t dst_addr, 1140 size_t len, 1141 int value) 1142 { 1143 struct at_xdmac_desc *desc; 1144 unsigned long flags; 1145 size_t ublen; 1146 u32 dwidth; 1147 /* 1148 * WARNING: The channel configuration is set here since there is no 1149 * dmaengine_slave_config call in this case. Moreover we don't know the 1150 * direction, it involves we can't dynamically set the source and dest 1151 * interface so we have to use the same one. Only interface 0 allows EBI 1152 * access. Hopefully we can access DDR through both ports (at least on 1153 * SAMA5D4x), so we can use the same interface for source and dest, 1154 * that solves the fact we don't know the direction. 1155 * ERRATA: Even if useless for memory transfers, the PERID has to not 1156 * match the one of another channel. If not, it could lead to spurious 1157 * flag status. 1158 */ 1159 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f) 1160 | AT_XDMAC_CC_DAM_UBS_AM 1161 | AT_XDMAC_CC_SAM_INCREMENTED_AM 1162 | AT_XDMAC_CC_DIF(0) 1163 | AT_XDMAC_CC_SIF(0) 1164 | AT_XDMAC_CC_MBSIZE_SIXTEEN 1165 | AT_XDMAC_CC_MEMSET_HW_MODE 1166 | AT_XDMAC_CC_TYPE_MEM_TRAN; 1167 1168 dwidth = at_xdmac_align_width(chan, dst_addr); 1169 1170 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) { 1171 dev_err(chan2dev(chan), 1172 "%s: Transfer too large, aborting...\n", 1173 __func__); 1174 return NULL; 1175 } 1176 1177 spin_lock_irqsave(&atchan->lock, flags); 1178 desc = at_xdmac_get_desc(atchan); 1179 spin_unlock_irqrestore(&atchan->lock, flags); 1180 if (!desc) { 1181 dev_err(chan2dev(chan), "can't get descriptor\n"); 1182 return NULL; 1183 } 1184 1185 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 1186 1187 ublen = len >> dwidth; 1188 1189 desc->lld.mbr_da = dst_addr; 1190 desc->lld.mbr_ds = value; 1191 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3 1192 | AT_XDMAC_MBR_UBC_NDEN 1193 | AT_XDMAC_MBR_UBC_NSEN 1194 | ublen; 1195 desc->lld.mbr_cfg = chan_cc; 1196 1197 dev_dbg(chan2dev(chan), 1198 "%s: lld: mbr_da=%pad, mbr_ds=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 1199 __func__, &desc->lld.mbr_da, &desc->lld.mbr_ds, desc->lld.mbr_ubc, 1200 desc->lld.mbr_cfg); 1201 1202 return desc; 1203 } 1204 1205 struct dma_async_tx_descriptor * 1206 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1207 size_t len, unsigned long flags) 1208 { 1209 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1210 struct at_xdmac_desc *desc; 1211 1212 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n", 1213 __func__, &dest, len, value, flags); 1214 1215 if (unlikely(!len)) 1216 return NULL; 1217 1218 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value); 1219 list_add_tail(&desc->desc_node, &desc->descs_list); 1220 1221 desc->tx_dma_desc.cookie = -EBUSY; 1222 desc->tx_dma_desc.flags = flags; 1223 desc->xfer_size = len; 1224 1225 return &desc->tx_dma_desc; 1226 } 1227 1228 static struct dma_async_tx_descriptor * 1229 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, 1230 unsigned int sg_len, int value, 1231 unsigned long flags) 1232 { 1233 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1234 struct at_xdmac_desc *desc, *pdesc = NULL, 1235 *ppdesc = NULL, *first = NULL; 1236 struct scatterlist *sg, *psg = NULL, *ppsg = NULL; 1237 size_t stride = 0, pstride = 0, len = 0; 1238 int i; 1239 1240 if (!sgl) 1241 return NULL; 1242 1243 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n", 1244 __func__, sg_len, value, flags); 1245 1246 /* Prepare descriptors. */ 1247 for_each_sg(sgl, sg, sg_len, i) { 1248 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n", 1249 __func__, &sg_dma_address(sg), sg_dma_len(sg), 1250 value, flags); 1251 desc = at_xdmac_memset_create_desc(chan, atchan, 1252 sg_dma_address(sg), 1253 sg_dma_len(sg), 1254 value); 1255 if (!desc && first) 1256 list_splice_init(&first->descs_list, 1257 &atchan->free_descs_list); 1258 1259 if (!first) 1260 first = desc; 1261 1262 /* Update our strides */ 1263 pstride = stride; 1264 if (psg) 1265 stride = sg_dma_address(sg) - 1266 (sg_dma_address(psg) + sg_dma_len(psg)); 1267 1268 /* 1269 * The scatterlist API gives us only the address and 1270 * length of each elements. 1271 * 1272 * Unfortunately, we don't have the stride, which we 1273 * will need to compute. 1274 * 1275 * That make us end up in a situation like this one: 1276 * len stride len stride len 1277 * +-------+ +-------+ +-------+ 1278 * | N-2 | | N-1 | | N | 1279 * +-------+ +-------+ +-------+ 1280 * 1281 * We need all these three elements (N-2, N-1 and N) 1282 * to actually take the decision on whether we need to 1283 * queue N-1 or reuse N-2. 1284 * 1285 * We will only consider N if it is the last element. 1286 */ 1287 if (ppdesc && pdesc) { 1288 if ((stride == pstride) && 1289 (sg_dma_len(ppsg) == sg_dma_len(psg))) { 1290 dev_dbg(chan2dev(chan), 1291 "%s: desc 0x%p can be merged with desc 0x%p\n", 1292 __func__, pdesc, ppdesc); 1293 1294 /* 1295 * Increment the block count of the 1296 * N-2 descriptor 1297 */ 1298 at_xdmac_increment_block_count(chan, ppdesc); 1299 ppdesc->lld.mbr_dus = stride; 1300 1301 /* 1302 * Put back the N-1 descriptor in the 1303 * free descriptor list 1304 */ 1305 list_add_tail(&pdesc->desc_node, 1306 &atchan->free_descs_list); 1307 1308 /* 1309 * Make our N-1 descriptor pointer 1310 * point to the N-2 since they were 1311 * actually merged. 1312 */ 1313 pdesc = ppdesc; 1314 1315 /* 1316 * Rule out the case where we don't have 1317 * pstride computed yet (our second sg 1318 * element) 1319 * 1320 * We also want to catch the case where there 1321 * would be a negative stride, 1322 */ 1323 } else if (pstride || 1324 sg_dma_address(sg) < sg_dma_address(psg)) { 1325 /* 1326 * Queue the N-1 descriptor after the 1327 * N-2 1328 */ 1329 at_xdmac_queue_desc(chan, ppdesc, pdesc); 1330 1331 /* 1332 * Add the N-1 descriptor to the list 1333 * of the descriptors used for this 1334 * transfer 1335 */ 1336 list_add_tail(&desc->desc_node, 1337 &first->descs_list); 1338 dev_dbg(chan2dev(chan), 1339 "%s: add desc 0x%p to descs_list 0x%p\n", 1340 __func__, desc, first); 1341 } 1342 } 1343 1344 /* 1345 * If we are the last element, just see if we have the 1346 * same size than the previous element. 1347 * 1348 * If so, we can merge it with the previous descriptor 1349 * since we don't care about the stride anymore. 1350 */ 1351 if ((i == (sg_len - 1)) && 1352 sg_dma_len(psg) == sg_dma_len(sg)) { 1353 dev_dbg(chan2dev(chan), 1354 "%s: desc 0x%p can be merged with desc 0x%p\n", 1355 __func__, desc, pdesc); 1356 1357 /* 1358 * Increment the block count of the N-1 1359 * descriptor 1360 */ 1361 at_xdmac_increment_block_count(chan, pdesc); 1362 pdesc->lld.mbr_dus = stride; 1363 1364 /* 1365 * Put back the N descriptor in the free 1366 * descriptor list 1367 */ 1368 list_add_tail(&desc->desc_node, 1369 &atchan->free_descs_list); 1370 } 1371 1372 /* Update our descriptors */ 1373 ppdesc = pdesc; 1374 pdesc = desc; 1375 1376 /* Update our scatter pointers */ 1377 ppsg = psg; 1378 psg = sg; 1379 1380 len += sg_dma_len(sg); 1381 } 1382 1383 first->tx_dma_desc.cookie = -EBUSY; 1384 first->tx_dma_desc.flags = flags; 1385 first->xfer_size = len; 1386 1387 return &first->tx_dma_desc; 1388 } 1389 1390 static enum dma_status 1391 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 1392 struct dma_tx_state *txstate) 1393 { 1394 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1395 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1396 struct at_xdmac_desc *desc, *_desc; 1397 struct list_head *descs_list; 1398 enum dma_status ret; 1399 int residue, retry; 1400 u32 cur_nda, check_nda, cur_ubc, mask, value; 1401 u8 dwidth = 0; 1402 unsigned long flags; 1403 1404 ret = dma_cookie_status(chan, cookie, txstate); 1405 if (ret == DMA_COMPLETE) 1406 return ret; 1407 1408 if (!txstate) 1409 return ret; 1410 1411 spin_lock_irqsave(&atchan->lock, flags); 1412 1413 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1414 1415 /* 1416 * If the transfer has not been started yet, don't need to compute the 1417 * residue, it's the transfer length. 1418 */ 1419 if (!desc->active_xfer) { 1420 dma_set_residue(txstate, desc->xfer_size); 1421 goto spin_unlock; 1422 } 1423 1424 residue = desc->xfer_size; 1425 /* 1426 * Flush FIFO: only relevant when the transfer is source peripheral 1427 * synchronized. 1428 */ 1429 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 1430 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 1431 if ((desc->lld.mbr_cfg & mask) == value) { 1432 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 1433 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 1434 cpu_relax(); 1435 } 1436 1437 /* 1438 * When processing the residue, we need to read two registers but we 1439 * can't do it in an atomic way. AT_XDMAC_CNDA is used to find where 1440 * we stand in the descriptor list and AT_XDMAC_CUBC is used 1441 * to know how many data are remaining for the current descriptor. 1442 * Since the dma channel is not paused to not loose data, between the 1443 * AT_XDMAC_CNDA and AT_XDMAC_CUBC read, we may have change of 1444 * descriptor. 1445 * For that reason, after reading AT_XDMAC_CUBC, we check if we are 1446 * still using the same descriptor by reading a second time 1447 * AT_XDMAC_CNDA. If AT_XDMAC_CNDA has changed, it means we have to 1448 * read again AT_XDMAC_CUBC. 1449 * Memory barriers are used to ensure the read order of the registers. 1450 * A max number of retries is set because unlikely it can never ends if 1451 * we are transferring a lot of data with small buffers. 1452 */ 1453 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1454 rmb(); 1455 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC); 1456 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) { 1457 rmb(); 1458 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 1459 1460 if (likely(cur_nda == check_nda)) 1461 break; 1462 1463 cur_nda = check_nda; 1464 rmb(); 1465 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC); 1466 } 1467 1468 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) { 1469 ret = DMA_ERROR; 1470 goto spin_unlock; 1471 } 1472 1473 /* 1474 * Remove size of all microblocks already transferred and the current 1475 * one. Then add the remaining size to transfer of the current 1476 * microblock. 1477 */ 1478 descs_list = &desc->descs_list; 1479 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 1480 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 1481 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 1482 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 1483 break; 1484 } 1485 residue += cur_ubc << dwidth; 1486 1487 dma_set_residue(txstate, residue); 1488 1489 dev_dbg(chan2dev(chan), 1490 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 1491 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 1492 1493 spin_unlock: 1494 spin_unlock_irqrestore(&atchan->lock, flags); 1495 return ret; 1496 } 1497 1498 /* Call must be protected by lock. */ 1499 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 1500 struct at_xdmac_desc *desc) 1501 { 1502 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1503 1504 /* 1505 * Remove the transfer from the transfer list then move the transfer 1506 * descriptors into the free descriptors list. 1507 */ 1508 list_del(&desc->xfer_node); 1509 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 1510 } 1511 1512 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 1513 { 1514 struct at_xdmac_desc *desc; 1515 unsigned long flags; 1516 1517 spin_lock_irqsave(&atchan->lock, flags); 1518 1519 /* 1520 * If channel is enabled, do nothing, advance_work will be triggered 1521 * after the interruption. 1522 */ 1523 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 1524 desc = list_first_entry(&atchan->xfers_list, 1525 struct at_xdmac_desc, 1526 xfer_node); 1527 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1528 if (!desc->active_xfer) 1529 at_xdmac_start_xfer(atchan, desc); 1530 } 1531 1532 spin_unlock_irqrestore(&atchan->lock, flags); 1533 } 1534 1535 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 1536 { 1537 struct at_xdmac_desc *desc; 1538 struct dma_async_tx_descriptor *txd; 1539 1540 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1541 txd = &desc->tx_dma_desc; 1542 1543 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1544 txd->callback(txd->callback_param); 1545 } 1546 1547 static void at_xdmac_tasklet(unsigned long data) 1548 { 1549 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data; 1550 struct at_xdmac_desc *desc; 1551 u32 error_mask; 1552 1553 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n", 1554 __func__, atchan->status); 1555 1556 error_mask = AT_XDMAC_CIS_RBEIS 1557 | AT_XDMAC_CIS_WBEIS 1558 | AT_XDMAC_CIS_ROIS; 1559 1560 if (at_xdmac_chan_is_cyclic(atchan)) { 1561 at_xdmac_handle_cyclic(atchan); 1562 } else if ((atchan->status & AT_XDMAC_CIS_LIS) 1563 || (atchan->status & error_mask)) { 1564 struct dma_async_tx_descriptor *txd; 1565 1566 if (atchan->status & AT_XDMAC_CIS_RBEIS) 1567 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1568 if (atchan->status & AT_XDMAC_CIS_WBEIS) 1569 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1570 if (atchan->status & AT_XDMAC_CIS_ROIS) 1571 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1572 1573 spin_lock_bh(&atchan->lock); 1574 desc = list_first_entry(&atchan->xfers_list, 1575 struct at_xdmac_desc, 1576 xfer_node); 1577 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1578 BUG_ON(!desc->active_xfer); 1579 1580 txd = &desc->tx_dma_desc; 1581 1582 at_xdmac_remove_xfer(atchan, desc); 1583 spin_unlock_bh(&atchan->lock); 1584 1585 if (!at_xdmac_chan_is_cyclic(atchan)) { 1586 dma_cookie_complete(txd); 1587 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1588 txd->callback(txd->callback_param); 1589 } 1590 1591 dma_run_dependencies(txd); 1592 1593 at_xdmac_advance_work(atchan); 1594 } 1595 } 1596 1597 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1598 { 1599 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1600 struct at_xdmac_chan *atchan; 1601 u32 imr, status, pending; 1602 u32 chan_imr, chan_status; 1603 int i, ret = IRQ_NONE; 1604 1605 do { 1606 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1607 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1608 pending = status & imr; 1609 1610 dev_vdbg(atxdmac->dma.dev, 1611 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1612 __func__, status, imr, pending); 1613 1614 if (!pending) 1615 break; 1616 1617 /* We have to find which channel has generated the interrupt. */ 1618 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1619 if (!((1 << i) & pending)) 1620 continue; 1621 1622 atchan = &atxdmac->chan[i]; 1623 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1624 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1625 atchan->status = chan_status & chan_imr; 1626 dev_vdbg(atxdmac->dma.dev, 1627 "%s: chan%d: imr=0x%x, status=0x%x\n", 1628 __func__, i, chan_imr, chan_status); 1629 dev_vdbg(chan2dev(&atchan->chan), 1630 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1631 __func__, 1632 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1633 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1634 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1635 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1636 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1637 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1638 1639 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1640 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1641 1642 tasklet_schedule(&atchan->tasklet); 1643 ret = IRQ_HANDLED; 1644 } 1645 1646 } while (pending); 1647 1648 return ret; 1649 } 1650 1651 static void at_xdmac_issue_pending(struct dma_chan *chan) 1652 { 1653 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1654 1655 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1656 1657 if (!at_xdmac_chan_is_cyclic(atchan)) 1658 at_xdmac_advance_work(atchan); 1659 1660 return; 1661 } 1662 1663 static int at_xdmac_device_config(struct dma_chan *chan, 1664 struct dma_slave_config *config) 1665 { 1666 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1667 int ret; 1668 unsigned long flags; 1669 1670 dev_dbg(chan2dev(chan), "%s\n", __func__); 1671 1672 spin_lock_irqsave(&atchan->lock, flags); 1673 ret = at_xdmac_set_slave_config(chan, config); 1674 spin_unlock_irqrestore(&atchan->lock, flags); 1675 1676 return ret; 1677 } 1678 1679 static int at_xdmac_device_pause(struct dma_chan *chan) 1680 { 1681 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1682 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1683 unsigned long flags; 1684 1685 dev_dbg(chan2dev(chan), "%s\n", __func__); 1686 1687 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1688 return 0; 1689 1690 spin_lock_irqsave(&atchan->lock, flags); 1691 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask); 1692 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1693 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1694 cpu_relax(); 1695 spin_unlock_irqrestore(&atchan->lock, flags); 1696 1697 return 0; 1698 } 1699 1700 static int at_xdmac_device_resume(struct dma_chan *chan) 1701 { 1702 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1703 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1704 unsigned long flags; 1705 1706 dev_dbg(chan2dev(chan), "%s\n", __func__); 1707 1708 spin_lock_irqsave(&atchan->lock, flags); 1709 if (!at_xdmac_chan_is_paused(atchan)) { 1710 spin_unlock_irqrestore(&atchan->lock, flags); 1711 return 0; 1712 } 1713 1714 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask); 1715 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1716 spin_unlock_irqrestore(&atchan->lock, flags); 1717 1718 return 0; 1719 } 1720 1721 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1722 { 1723 struct at_xdmac_desc *desc, *_desc; 1724 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1725 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1726 unsigned long flags; 1727 1728 dev_dbg(chan2dev(chan), "%s\n", __func__); 1729 1730 spin_lock_irqsave(&atchan->lock, flags); 1731 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1732 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1733 cpu_relax(); 1734 1735 /* Cancel all pending transfers. */ 1736 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1737 at_xdmac_remove_xfer(atchan, desc); 1738 1739 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1740 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1741 spin_unlock_irqrestore(&atchan->lock, flags); 1742 1743 return 0; 1744 } 1745 1746 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1747 { 1748 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1749 struct at_xdmac_desc *desc; 1750 int i; 1751 unsigned long flags; 1752 1753 spin_lock_irqsave(&atchan->lock, flags); 1754 1755 if (at_xdmac_chan_is_enabled(atchan)) { 1756 dev_err(chan2dev(chan), 1757 "can't allocate channel resources (channel enabled)\n"); 1758 i = -EIO; 1759 goto spin_unlock; 1760 } 1761 1762 if (!list_empty(&atchan->free_descs_list)) { 1763 dev_err(chan2dev(chan), 1764 "can't allocate channel resources (channel not free from a previous use)\n"); 1765 i = -EIO; 1766 goto spin_unlock; 1767 } 1768 1769 for (i = 0; i < init_nr_desc_per_channel; i++) { 1770 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC); 1771 if (!desc) { 1772 dev_warn(chan2dev(chan), 1773 "only %d descriptors have been allocated\n", i); 1774 break; 1775 } 1776 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1777 } 1778 1779 dma_cookie_init(chan); 1780 1781 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1782 1783 spin_unlock: 1784 spin_unlock_irqrestore(&atchan->lock, flags); 1785 return i; 1786 } 1787 1788 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1789 { 1790 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1791 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1792 struct at_xdmac_desc *desc, *_desc; 1793 1794 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1795 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1796 list_del(&desc->desc_node); 1797 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1798 } 1799 1800 return; 1801 } 1802 1803 #ifdef CONFIG_PM 1804 static int atmel_xdmac_prepare(struct device *dev) 1805 { 1806 struct platform_device *pdev = to_platform_device(dev); 1807 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1808 struct dma_chan *chan, *_chan; 1809 1810 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1811 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1812 1813 /* Wait for transfer completion, except in cyclic case. */ 1814 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1815 return -EAGAIN; 1816 } 1817 return 0; 1818 } 1819 #else 1820 # define atmel_xdmac_prepare NULL 1821 #endif 1822 1823 #ifdef CONFIG_PM_SLEEP 1824 static int atmel_xdmac_suspend(struct device *dev) 1825 { 1826 struct platform_device *pdev = to_platform_device(dev); 1827 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1828 struct dma_chan *chan, *_chan; 1829 1830 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1831 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1832 1833 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1834 if (at_xdmac_chan_is_cyclic(atchan)) { 1835 if (!at_xdmac_chan_is_paused(atchan)) 1836 at_xdmac_device_pause(chan); 1837 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1838 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1839 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1840 } 1841 } 1842 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1843 1844 at_xdmac_off(atxdmac); 1845 clk_disable_unprepare(atxdmac->clk); 1846 return 0; 1847 } 1848 1849 static int atmel_xdmac_resume(struct device *dev) 1850 { 1851 struct platform_device *pdev = to_platform_device(dev); 1852 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1853 struct at_xdmac_chan *atchan; 1854 struct dma_chan *chan, *_chan; 1855 int i; 1856 1857 clk_prepare_enable(atxdmac->clk); 1858 1859 /* Clear pending interrupts. */ 1860 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1861 atchan = &atxdmac->chan[i]; 1862 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1863 cpu_relax(); 1864 } 1865 1866 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 1867 at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs); 1868 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1869 atchan = to_at_xdmac_chan(chan); 1870 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 1871 if (at_xdmac_chan_is_cyclic(atchan)) { 1872 if (at_xdmac_chan_is_paused(atchan)) 1873 at_xdmac_device_resume(chan); 1874 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 1875 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 1876 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 1877 wmb(); 1878 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 1879 } 1880 } 1881 return 0; 1882 } 1883 #endif /* CONFIG_PM_SLEEP */ 1884 1885 static int at_xdmac_probe(struct platform_device *pdev) 1886 { 1887 struct resource *res; 1888 struct at_xdmac *atxdmac; 1889 int irq, size, nr_channels, i, ret; 1890 void __iomem *base; 1891 u32 reg; 1892 1893 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1894 if (!res) 1895 return -EINVAL; 1896 1897 irq = platform_get_irq(pdev, 0); 1898 if (irq < 0) 1899 return irq; 1900 1901 base = devm_ioremap_resource(&pdev->dev, res); 1902 if (IS_ERR(base)) 1903 return PTR_ERR(base); 1904 1905 /* 1906 * Read number of xdmac channels, read helper function can't be used 1907 * since atxdmac is not yet allocated and we need to know the number 1908 * of channels to do the allocation. 1909 */ 1910 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 1911 nr_channels = AT_XDMAC_NB_CH(reg); 1912 if (nr_channels > AT_XDMAC_MAX_CHAN) { 1913 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 1914 nr_channels); 1915 return -EINVAL; 1916 } 1917 1918 size = sizeof(*atxdmac); 1919 size += nr_channels * sizeof(struct at_xdmac_chan); 1920 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1921 if (!atxdmac) { 1922 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 1923 return -ENOMEM; 1924 } 1925 1926 atxdmac->regs = base; 1927 atxdmac->irq = irq; 1928 1929 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1930 if (IS_ERR(atxdmac->clk)) { 1931 dev_err(&pdev->dev, "can't get dma_clk\n"); 1932 return PTR_ERR(atxdmac->clk); 1933 } 1934 1935 /* Do not use dev res to prevent races with tasklet */ 1936 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 1937 if (ret) { 1938 dev_err(&pdev->dev, "can't request irq\n"); 1939 return ret; 1940 } 1941 1942 ret = clk_prepare_enable(atxdmac->clk); 1943 if (ret) { 1944 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 1945 goto err_free_irq; 1946 } 1947 1948 atxdmac->at_xdmac_desc_pool = 1949 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 1950 sizeof(struct at_xdmac_desc), 4, 0); 1951 if (!atxdmac->at_xdmac_desc_pool) { 1952 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 1953 ret = -ENOMEM; 1954 goto err_clk_disable; 1955 } 1956 1957 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 1958 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask); 1959 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 1960 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask); 1961 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask); 1962 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 1963 /* 1964 * Without DMA_PRIVATE the driver is not able to allocate more than 1965 * one channel, second allocation fails in private_candidate. 1966 */ 1967 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 1968 atxdmac->dma.dev = &pdev->dev; 1969 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 1970 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 1971 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 1972 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 1973 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 1974 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved; 1975 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 1976 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset; 1977 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg; 1978 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 1979 atxdmac->dma.device_config = at_xdmac_device_config; 1980 atxdmac->dma.device_pause = at_xdmac_device_pause; 1981 atxdmac->dma.device_resume = at_xdmac_device_resume; 1982 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 1983 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1984 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1985 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1986 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1987 1988 /* Disable all chans and interrupts. */ 1989 at_xdmac_off(atxdmac); 1990 1991 /* Init channels. */ 1992 INIT_LIST_HEAD(&atxdmac->dma.channels); 1993 for (i = 0; i < nr_channels; i++) { 1994 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 1995 1996 atchan->chan.device = &atxdmac->dma; 1997 list_add_tail(&atchan->chan.device_node, 1998 &atxdmac->dma.channels); 1999 2000 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 2001 atchan->mask = 1 << i; 2002 2003 spin_lock_init(&atchan->lock); 2004 INIT_LIST_HEAD(&atchan->xfers_list); 2005 INIT_LIST_HEAD(&atchan->free_descs_list); 2006 tasklet_init(&atchan->tasklet, at_xdmac_tasklet, 2007 (unsigned long)atchan); 2008 2009 /* Clear pending interrupts. */ 2010 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 2011 cpu_relax(); 2012 } 2013 platform_set_drvdata(pdev, atxdmac); 2014 2015 ret = dma_async_device_register(&atxdmac->dma); 2016 if (ret) { 2017 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 2018 goto err_clk_disable; 2019 } 2020 2021 ret = of_dma_controller_register(pdev->dev.of_node, 2022 at_xdmac_xlate, atxdmac); 2023 if (ret) { 2024 dev_err(&pdev->dev, "could not register of dma controller\n"); 2025 goto err_dma_unregister; 2026 } 2027 2028 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 2029 nr_channels, atxdmac->regs); 2030 2031 return 0; 2032 2033 err_dma_unregister: 2034 dma_async_device_unregister(&atxdmac->dma); 2035 err_clk_disable: 2036 clk_disable_unprepare(atxdmac->clk); 2037 err_free_irq: 2038 free_irq(atxdmac->irq, atxdmac->dma.dev); 2039 return ret; 2040 } 2041 2042 static int at_xdmac_remove(struct platform_device *pdev) 2043 { 2044 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 2045 int i; 2046 2047 at_xdmac_off(atxdmac); 2048 of_dma_controller_free(pdev->dev.of_node); 2049 dma_async_device_unregister(&atxdmac->dma); 2050 clk_disable_unprepare(atxdmac->clk); 2051 2052 free_irq(atxdmac->irq, atxdmac->dma.dev); 2053 2054 for (i = 0; i < atxdmac->dma.chancnt; i++) { 2055 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 2056 2057 tasklet_kill(&atchan->tasklet); 2058 at_xdmac_free_chan_resources(&atchan->chan); 2059 } 2060 2061 return 0; 2062 } 2063 2064 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = { 2065 .prepare = atmel_xdmac_prepare, 2066 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 2067 }; 2068 2069 static const struct of_device_id atmel_xdmac_dt_ids[] = { 2070 { 2071 .compatible = "atmel,sama5d4-dma", 2072 }, { 2073 /* sentinel */ 2074 } 2075 }; 2076 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 2077 2078 static struct platform_driver at_xdmac_driver = { 2079 .probe = at_xdmac_probe, 2080 .remove = at_xdmac_remove, 2081 .driver = { 2082 .name = "at_xdmac", 2083 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 2084 .pm = &atmel_xdmac_dev_pm_ops, 2085 } 2086 }; 2087 2088 static int __init at_xdmac_init(void) 2089 { 2090 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe); 2091 } 2092 subsys_initcall(at_xdmac_init); 2093 2094 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 2095 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 2096 MODULE_LICENSE("GPL"); 2097