xref: /linux/drivers/dma/at_xdmac.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4  *
5  * Copyright (C) 2014 Atmel Corporation
6  *
7  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8  */
9 
10 #include <asm/barrier.h>
11 #include <dt-bindings/dma/at91.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 
26 #include "dmaengine.h"
27 
28 /* Global registers */
29 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
30 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
31 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
32 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
33 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
34 #define		AT_XDMAC_WRHP(i)		(((i) & 0xF) << 4)
35 #define		AT_XDMAC_WRMP(i)		(((i) & 0xF) << 8)
36 #define		AT_XDMAC_WRLP(i)		(((i) & 0xF) << 12)
37 #define		AT_XDMAC_RDHP(i)		(((i) & 0xF) << 16)
38 #define		AT_XDMAC_RDMP(i)		(((i) & 0xF) << 20)
39 #define		AT_XDMAC_RDLP(i)		(((i) & 0xF) << 24)
40 #define		AT_XDMAC_RDSG(i)		(((i) & 0xF) << 28)
41 #define AT_XDMAC_GCFG_M2M	(AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF))
42 #define AT_XDMAC_GCFG_P2M	(AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \
43 				AT_XDMAC_WRHP(0x5))
44 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
45 #define		AT_XDMAC_PW0(i)		(((i) & 0xF) << 0)
46 #define		AT_XDMAC_PW1(i)		(((i) & 0xF) << 4)
47 #define		AT_XDMAC_PW2(i)		(((i) & 0xF) << 8)
48 #define		AT_XDMAC_PW3(i)		(((i) & 0xF) << 12)
49 #define AT_XDMAC_GWAC_M2M	0
50 #define AT_XDMAC_GWAC_P2M	(AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF))
51 
52 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
53 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
54 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
55 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
56 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
57 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
58 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
59 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
60 
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
63 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
69 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
71 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
77 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
79 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
85 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
87 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
93 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
95 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
97 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
98 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
100 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
101 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
102 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
103 #define		AT_XDMAC_CNDC_NDVIEW_MASK	GENMASK(28, 27)
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
106 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
107 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
108 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
109 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
110 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
111 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
112 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
113 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
114 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
117 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
118 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
119 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
120 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
121 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
122 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
123 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
124 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
125 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
126 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
127 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
128 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
129 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
130 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
131 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
132 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
133 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
134 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
135 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
136 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
137 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
138 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
139 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
140 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
141 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
142 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
143 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
144 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
145 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
146 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
147 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
148 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
149 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
150 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
151 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
152 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
153 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
154 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
155 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
156 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
157 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
158 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
159 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
160 #define		AT_XDMAC_CC_PERID(i)	((0x7f & (i)) << 24)	/* Channel Peripheral Identifier */
161 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
162 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
163 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
164 
165 /* Microblock control members */
166 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
167 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
168 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
169 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
170 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
171 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
172 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
173 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
174 
175 #define AT_XDMAC_MAX_CHAN	0x20
176 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
177 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
178 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
179 
180 #define AT_XDMAC_DMA_BUSWIDTHS\
181 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
182 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
184 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
185 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
186 
187 enum atc_status {
188 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
189 	AT_XDMAC_CHAN_IS_PAUSED,
190 	AT_XDMAC_CHAN_IS_PAUSED_INTERNAL,
191 };
192 
193 struct at_xdmac_layout {
194 	/* Global Channel Read Suspend Register */
195 	u8				grs;
196 	/* Global Write Suspend Register */
197 	u8				gws;
198 	/* Global Channel Read Write Suspend Register */
199 	u8				grws;
200 	/* Global Channel Read Write Resume Register */
201 	u8				grwr;
202 	/* Global Channel Software Request Register */
203 	u8				gswr;
204 	/* Global channel Software Request Status Register */
205 	u8				gsws;
206 	/* Global Channel Software Flush Request Register */
207 	u8				gswf;
208 	/* Channel reg base */
209 	u8				chan_cc_reg_base;
210 	/* Source/Destination Interface must be specified or not */
211 	bool				sdif;
212 	/* AXI queue priority configuration supported */
213 	bool				axi_config;
214 };
215 
216 /* ----- Channels ----- */
217 struct at_xdmac_chan {
218 	struct dma_chan			chan;
219 	void __iomem			*ch_regs;
220 	u32				mask;		/* Channel Mask */
221 	u32				cfg;		/* Channel Configuration Register */
222 	u8				perid;		/* Peripheral ID */
223 	u8				perif;		/* Peripheral Interface */
224 	u8				memif;		/* Memory Interface */
225 	u32				save_cc;
226 	u32				save_cim;
227 	u32				save_cnda;
228 	u32				save_cndc;
229 	u32				irq_status;
230 	unsigned long			status;
231 	struct tasklet_struct		tasklet;
232 	struct dma_slave_config		sconfig;
233 
234 	spinlock_t			lock;
235 
236 	struct list_head		xfers_list;
237 	struct list_head		free_descs_list;
238 };
239 
240 
241 /* ----- Controller ----- */
242 struct at_xdmac {
243 	struct dma_device	dma;
244 	void __iomem		*regs;
245 	struct device		*dev;
246 	int			irq;
247 	struct clk		*clk;
248 	u32			save_gim;
249 	u32			save_gs;
250 	struct dma_pool		*at_xdmac_desc_pool;
251 	const struct at_xdmac_layout	*layout;
252 	struct at_xdmac_chan	chan[];
253 };
254 
255 
256 /* ----- Descriptors ----- */
257 
258 /* Linked List Descriptor */
259 struct at_xdmac_lld {
260 	u32 mbr_nda;	/* Next Descriptor Member */
261 	u32 mbr_ubc;	/* Microblock Control Member */
262 	u32 mbr_sa;	/* Source Address Member */
263 	u32 mbr_da;	/* Destination Address Member */
264 	u32 mbr_cfg;	/* Configuration Register */
265 	u32 mbr_bc;	/* Block Control Register */
266 	u32 mbr_ds;	/* Data Stride Register */
267 	u32 mbr_sus;	/* Source Microblock Stride Register */
268 	u32 mbr_dus;	/* Destination Microblock Stride Register */
269 };
270 
271 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
272 struct at_xdmac_desc {
273 	struct at_xdmac_lld		lld;
274 	enum dma_transfer_direction	direction;
275 	struct dma_async_tx_descriptor	tx_dma_desc;
276 	struct list_head		desc_node;
277 	/* Following members are only used by the first descriptor */
278 	bool				active_xfer;
279 	unsigned int			xfer_size;
280 	struct list_head		descs_list;
281 	struct list_head		xfer_node;
282 } __aligned(sizeof(u64));
283 
284 static const struct at_xdmac_layout at_xdmac_sama5d4_layout = {
285 	.grs = 0x28,
286 	.gws = 0x2C,
287 	.grws = 0x30,
288 	.grwr = 0x34,
289 	.gswr = 0x38,
290 	.gsws = 0x3C,
291 	.gswf = 0x40,
292 	.chan_cc_reg_base = 0x50,
293 	.sdif = true,
294 	.axi_config = false,
295 };
296 
297 static const struct at_xdmac_layout at_xdmac_sama7g5_layout = {
298 	.grs = 0x30,
299 	.gws = 0x38,
300 	.grws = 0x40,
301 	.grwr = 0x44,
302 	.gswr = 0x48,
303 	.gsws = 0x4C,
304 	.gswf = 0x50,
305 	.chan_cc_reg_base = 0x60,
306 	.sdif = false,
307 	.axi_config = true,
308 };
309 
310 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
311 {
312 	return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40);
313 }
314 
315 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
316 #define at_xdmac_write(atxdmac, reg, value) \
317 	writel_relaxed((value), (atxdmac)->regs + (reg))
318 
319 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
320 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
321 
322 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
323 {
324 	return container_of(dchan, struct at_xdmac_chan, chan);
325 }
326 
327 static struct device *chan2dev(struct dma_chan *chan)
328 {
329 	return &chan->dev->device;
330 }
331 
332 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
333 {
334 	return container_of(ddev, struct at_xdmac, dma);
335 }
336 
337 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
338 {
339 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
340 }
341 
342 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
343 {
344 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
345 }
346 
347 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
348 {
349 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
350 }
351 
352 static inline int at_xdmac_chan_is_paused_internal(struct at_xdmac_chan *atchan)
353 {
354 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED_INTERNAL, &atchan->status);
355 }
356 
357 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
358 {
359 	return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
360 }
361 
362 static inline u8 at_xdmac_get_dwidth(u32 cfg)
363 {
364 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
365 };
366 
367 static unsigned int init_nr_desc_per_channel = 64;
368 module_param(init_nr_desc_per_channel, uint, 0644);
369 MODULE_PARM_DESC(init_nr_desc_per_channel,
370 		 "initial descriptors per channel (default: 64)");
371 
372 
373 static void at_xdmac_runtime_suspend_descriptors(struct at_xdmac_chan *atchan)
374 {
375 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
376 	struct at_xdmac_desc	*desc, *_desc;
377 
378 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
379 		if (!desc->active_xfer)
380 			continue;
381 
382 		pm_runtime_put_autosuspend(atxdmac->dev);
383 	}
384 }
385 
386 static int at_xdmac_runtime_resume_descriptors(struct at_xdmac_chan *atchan)
387 {
388 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
389 	struct at_xdmac_desc	*desc, *_desc;
390 	int			ret;
391 
392 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
393 		if (!desc->active_xfer)
394 			continue;
395 
396 		ret = pm_runtime_resume_and_get(atxdmac->dev);
397 		if (ret < 0)
398 			return ret;
399 	}
400 
401 	return 0;
402 }
403 
404 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
405 {
406 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
407 	int			ret;
408 
409 	ret = pm_runtime_resume_and_get(atxdmac->dev);
410 	if (ret < 0)
411 		return false;
412 
413 	ret = !!(at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask);
414 
415 	pm_runtime_put_autosuspend(atxdmac->dev);
416 
417 	return ret;
418 }
419 
420 static void at_xdmac_off(struct at_xdmac *atxdmac, bool suspend_descriptors)
421 {
422 	struct dma_chan		*chan, *_chan;
423 	struct at_xdmac_chan	*atchan;
424 	int			ret;
425 
426 	ret = pm_runtime_resume_and_get(atxdmac->dev);
427 	if (ret < 0)
428 		return;
429 
430 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
431 
432 	/* Wait that all chans are disabled. */
433 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
434 		cpu_relax();
435 
436 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
437 
438 	/* Decrement runtime PM ref counter for each active descriptor. */
439 	if (!list_empty(&atxdmac->dma.channels) && suspend_descriptors) {
440 		list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels,
441 					 device_node) {
442 			atchan = to_at_xdmac_chan(chan);
443 			at_xdmac_runtime_suspend_descriptors(atchan);
444 		}
445 	}
446 
447 	pm_runtime_put_autosuspend(atxdmac->dev);
448 }
449 
450 /* Call with lock hold. */
451 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
452 				struct at_xdmac_desc *first)
453 {
454 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
455 	u32		reg;
456 	int		ret;
457 
458 	ret = pm_runtime_resume_and_get(atxdmac->dev);
459 	if (ret < 0)
460 		return;
461 
462 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
463 
464 	/* Set transfer as active to not try to start it again. */
465 	first->active_xfer = true;
466 
467 	/* Tell xdmac where to get the first descriptor. */
468 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys);
469 	if (atxdmac->layout->sdif)
470 		reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif);
471 
472 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
473 
474 	/*
475 	 * When doing non cyclic transfer we need to use the next
476 	 * descriptor view 2 since some fields of the configuration register
477 	 * depend on transfer size and src/dest addresses.
478 	 */
479 	if (at_xdmac_chan_is_cyclic(atchan))
480 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
481 	else if ((first->lld.mbr_ubc &
482 		  AT_XDMAC_CNDC_NDVIEW_MASK) == AT_XDMAC_MBR_UBC_NDV3)
483 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
484 	else
485 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
486 	/*
487 	 * Even if the register will be updated from the configuration in the
488 	 * descriptor when using view 2 or higher, the PROT bit won't be set
489 	 * properly. This bit can be modified only by using the channel
490 	 * configuration register.
491 	 */
492 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
493 
494 	reg |= AT_XDMAC_CNDC_NDDUP
495 	       | AT_XDMAC_CNDC_NDSUP
496 	       | AT_XDMAC_CNDC_NDE;
497 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
498 
499 	dev_vdbg(chan2dev(&atchan->chan),
500 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
501 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
502 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
503 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
504 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
505 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
506 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
507 
508 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
509 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
510 	/*
511 	 * Request Overflow Error is only for peripheral synchronized transfers
512 	 */
513 	if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
514 		reg |= AT_XDMAC_CIE_ROIE;
515 
516 	/*
517 	 * There is no end of list when doing cyclic dma, we need to get
518 	 * an interrupt after each periods.
519 	 */
520 	if (at_xdmac_chan_is_cyclic(atchan))
521 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
522 				    reg | AT_XDMAC_CIE_BIE);
523 	else
524 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
525 				    reg | AT_XDMAC_CIE_LIE);
526 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
527 	dev_vdbg(chan2dev(&atchan->chan),
528 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
529 	wmb();
530 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
531 
532 	dev_vdbg(chan2dev(&atchan->chan),
533 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
534 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
535 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
536 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
537 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
538 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
539 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
540 }
541 
542 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
543 {
544 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
545 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
546 	dma_cookie_t		cookie;
547 	unsigned long		irqflags;
548 
549 	spin_lock_irqsave(&atchan->lock, irqflags);
550 	cookie = dma_cookie_assign(tx);
551 
552 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
553 	spin_unlock_irqrestore(&atchan->lock, irqflags);
554 
555 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
556 		 __func__, atchan, desc);
557 
558 	return cookie;
559 }
560 
561 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
562 						 gfp_t gfp_flags)
563 {
564 	struct at_xdmac_desc	*desc;
565 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
566 	dma_addr_t		phys;
567 
568 	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
569 	if (desc) {
570 		INIT_LIST_HEAD(&desc->descs_list);
571 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
572 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
573 		desc->tx_dma_desc.phys = phys;
574 	}
575 
576 	return desc;
577 }
578 
579 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
580 {
581 	memset(&desc->lld, 0, sizeof(desc->lld));
582 	INIT_LIST_HEAD(&desc->descs_list);
583 	desc->direction = DMA_TRANS_NONE;
584 	desc->xfer_size = 0;
585 	desc->active_xfer = false;
586 }
587 
588 /* Call must be protected by lock. */
589 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
590 {
591 	struct at_xdmac_desc *desc;
592 
593 	if (list_empty(&atchan->free_descs_list)) {
594 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
595 	} else {
596 		desc = list_first_entry(&atchan->free_descs_list,
597 					struct at_xdmac_desc, desc_node);
598 		list_del(&desc->desc_node);
599 		at_xdmac_init_used_desc(desc);
600 	}
601 
602 	return desc;
603 }
604 
605 static void at_xdmac_queue_desc(struct dma_chan *chan,
606 				struct at_xdmac_desc *prev,
607 				struct at_xdmac_desc *desc)
608 {
609 	if (!prev || !desc)
610 		return;
611 
612 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
613 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
614 
615 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
616 		__func__, prev, &prev->lld.mbr_nda);
617 }
618 
619 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
620 						  struct at_xdmac_desc *desc)
621 {
622 	if (!desc)
623 		return;
624 
625 	desc->lld.mbr_bc++;
626 
627 	dev_dbg(chan2dev(chan),
628 		"%s: incrementing the block count of the desc 0x%p\n",
629 		__func__, desc);
630 }
631 
632 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
633 				       struct of_dma *of_dma)
634 {
635 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
636 	struct at_xdmac_chan	*atchan;
637 	struct dma_chan		*chan;
638 	struct device		*dev = atxdmac->dma.dev;
639 
640 	if (dma_spec->args_count != 1) {
641 		dev_err(dev, "dma phandler args: bad number of args\n");
642 		return NULL;
643 	}
644 
645 	chan = dma_get_any_slave_channel(&atxdmac->dma);
646 	if (!chan) {
647 		dev_err(dev, "can't get a dma channel\n");
648 		return NULL;
649 	}
650 
651 	atchan = to_at_xdmac_chan(chan);
652 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
653 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
654 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
655 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
656 		 atchan->memif, atchan->perif, atchan->perid);
657 
658 	return chan;
659 }
660 
661 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
662 				      enum dma_transfer_direction direction)
663 {
664 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
665 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
666 	int			csize, dwidth;
667 
668 	if (direction == DMA_DEV_TO_MEM) {
669 		atchan->cfg =
670 			AT91_XDMAC_DT_PERID(atchan->perid)
671 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
672 			| AT_XDMAC_CC_SAM_FIXED_AM
673 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
674 			| AT_XDMAC_CC_DSYNC_PER2MEM
675 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
676 			| AT_XDMAC_CC_TYPE_PER_TRAN;
677 		if (atxdmac->layout->sdif)
678 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) |
679 				       AT_XDMAC_CC_SIF(atchan->perif);
680 
681 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
682 		if (csize < 0) {
683 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
684 			return -EINVAL;
685 		}
686 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
687 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
688 		if (dwidth < 0) {
689 			dev_err(chan2dev(chan), "invalid src addr width value\n");
690 			return -EINVAL;
691 		}
692 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
693 	} else if (direction == DMA_MEM_TO_DEV) {
694 		atchan->cfg =
695 			AT91_XDMAC_DT_PERID(atchan->perid)
696 			| AT_XDMAC_CC_DAM_FIXED_AM
697 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
698 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
699 			| AT_XDMAC_CC_DSYNC_MEM2PER
700 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
701 			| AT_XDMAC_CC_TYPE_PER_TRAN;
702 		if (atxdmac->layout->sdif)
703 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) |
704 				       AT_XDMAC_CC_SIF(atchan->memif);
705 
706 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
707 		if (csize < 0) {
708 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
709 			return -EINVAL;
710 		}
711 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
712 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
713 		if (dwidth < 0) {
714 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
715 			return -EINVAL;
716 		}
717 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
718 	}
719 
720 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
721 
722 	return 0;
723 }
724 
725 /*
726  * Only check that maxburst and addr width values are supported by
727  * the controller but not that the configuration is good to perform the
728  * transfer since we don't know the direction at this stage.
729  */
730 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
731 {
732 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
733 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
734 		return -EINVAL;
735 
736 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
737 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
738 		return -EINVAL;
739 
740 	return 0;
741 }
742 
743 static int at_xdmac_set_slave_config(struct dma_chan *chan,
744 				      struct dma_slave_config *sconfig)
745 {
746 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
747 
748 	if (at_xdmac_check_slave_config(sconfig)) {
749 		dev_err(chan2dev(chan), "invalid slave configuration\n");
750 		return -EINVAL;
751 	}
752 
753 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
754 
755 	return 0;
756 }
757 
758 static struct dma_async_tx_descriptor *
759 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
760 		       unsigned int sg_len, enum dma_transfer_direction direction,
761 		       unsigned long flags, void *context)
762 {
763 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
764 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
765 	struct scatterlist		*sg;
766 	int				i;
767 	unsigned int			xfer_size = 0;
768 	unsigned long			irqflags;
769 	struct dma_async_tx_descriptor	*ret = NULL;
770 
771 	if (!sgl)
772 		return NULL;
773 
774 	if (!is_slave_direction(direction)) {
775 		dev_err(chan2dev(chan), "invalid DMA direction\n");
776 		return NULL;
777 	}
778 
779 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
780 		 __func__, sg_len,
781 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
782 		 flags);
783 
784 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
785 	spin_lock_irqsave(&atchan->lock, irqflags);
786 
787 	if (at_xdmac_compute_chan_conf(chan, direction))
788 		goto spin_unlock;
789 
790 	/* Prepare descriptors. */
791 	for_each_sg(sgl, sg, sg_len, i) {
792 		struct at_xdmac_desc	*desc = NULL;
793 		u32			len, mem, dwidth, fixed_dwidth;
794 
795 		len = sg_dma_len(sg);
796 		mem = sg_dma_address(sg);
797 		if (unlikely(!len)) {
798 			dev_err(chan2dev(chan), "sg data length is zero\n");
799 			goto spin_unlock;
800 		}
801 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
802 			 __func__, i, len, mem);
803 
804 		desc = at_xdmac_get_desc(atchan);
805 		if (!desc) {
806 			dev_err(chan2dev(chan), "can't get descriptor\n");
807 			if (first)
808 				list_splice_tail_init(&first->descs_list,
809 						      &atchan->free_descs_list);
810 			goto spin_unlock;
811 		}
812 
813 		/* Linked list descriptor setup. */
814 		if (direction == DMA_DEV_TO_MEM) {
815 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
816 			desc->lld.mbr_da = mem;
817 		} else {
818 			desc->lld.mbr_sa = mem;
819 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
820 		}
821 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
822 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
823 			       ? dwidth
824 			       : AT_XDMAC_CC_DWIDTH_BYTE;
825 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
826 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
827 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
828 			| (len >> fixed_dwidth);				/* microblock length */
829 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
830 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
831 		dev_dbg(chan2dev(chan),
832 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
833 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
834 
835 		/* Chain lld. */
836 		if (prev)
837 			at_xdmac_queue_desc(chan, prev, desc);
838 
839 		prev = desc;
840 		if (!first)
841 			first = desc;
842 
843 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
844 			 __func__, desc, first);
845 		list_add_tail(&desc->desc_node, &first->descs_list);
846 		xfer_size += len;
847 	}
848 
849 
850 	first->tx_dma_desc.flags = flags;
851 	first->xfer_size = xfer_size;
852 	first->direction = direction;
853 	ret = &first->tx_dma_desc;
854 
855 spin_unlock:
856 	spin_unlock_irqrestore(&atchan->lock, irqflags);
857 	return ret;
858 }
859 
860 static struct dma_async_tx_descriptor *
861 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
862 			 size_t buf_len, size_t period_len,
863 			 enum dma_transfer_direction direction,
864 			 unsigned long flags)
865 {
866 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
867 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
868 	unsigned int		periods = buf_len / period_len;
869 	int			i;
870 	unsigned long		irqflags;
871 
872 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
873 		__func__, &buf_addr, buf_len, period_len,
874 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
875 
876 	if (!is_slave_direction(direction)) {
877 		dev_err(chan2dev(chan), "invalid DMA direction\n");
878 		return NULL;
879 	}
880 
881 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
882 		dev_err(chan2dev(chan), "channel currently used\n");
883 		return NULL;
884 	}
885 
886 	if (at_xdmac_compute_chan_conf(chan, direction))
887 		return NULL;
888 
889 	for (i = 0; i < periods; i++) {
890 		struct at_xdmac_desc	*desc = NULL;
891 
892 		spin_lock_irqsave(&atchan->lock, irqflags);
893 		desc = at_xdmac_get_desc(atchan);
894 		if (!desc) {
895 			dev_err(chan2dev(chan), "can't get descriptor\n");
896 			if (first)
897 				list_splice_tail_init(&first->descs_list,
898 						      &atchan->free_descs_list);
899 			spin_unlock_irqrestore(&atchan->lock, irqflags);
900 			return NULL;
901 		}
902 		spin_unlock_irqrestore(&atchan->lock, irqflags);
903 		dev_dbg(chan2dev(chan),
904 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
905 			__func__, desc, &desc->tx_dma_desc.phys);
906 
907 		if (direction == DMA_DEV_TO_MEM) {
908 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
909 			desc->lld.mbr_da = buf_addr + i * period_len;
910 		} else {
911 			desc->lld.mbr_sa = buf_addr + i * period_len;
912 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
913 		}
914 		desc->lld.mbr_cfg = atchan->cfg;
915 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
916 			| AT_XDMAC_MBR_UBC_NDEN
917 			| AT_XDMAC_MBR_UBC_NSEN
918 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
919 
920 		dev_dbg(chan2dev(chan),
921 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
922 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
923 
924 		/* Chain lld. */
925 		if (prev)
926 			at_xdmac_queue_desc(chan, prev, desc);
927 
928 		prev = desc;
929 		if (!first)
930 			first = desc;
931 
932 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
933 			 __func__, desc, first);
934 		list_add_tail(&desc->desc_node, &first->descs_list);
935 	}
936 
937 	at_xdmac_queue_desc(chan, prev, first);
938 	first->tx_dma_desc.flags = flags;
939 	first->xfer_size = buf_len;
940 	first->direction = direction;
941 
942 	return &first->tx_dma_desc;
943 }
944 
945 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
946 {
947 	u32 width;
948 
949 	/*
950 	 * Check address alignment to select the greater data width we
951 	 * can use.
952 	 *
953 	 * Some XDMAC implementations don't provide dword transfer, in
954 	 * this case selecting dword has the same behavior as
955 	 * selecting word transfers.
956 	 */
957 	if (!(addr & 7)) {
958 		width = AT_XDMAC_CC_DWIDTH_DWORD;
959 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
960 	} else if (!(addr & 3)) {
961 		width = AT_XDMAC_CC_DWIDTH_WORD;
962 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
963 	} else if (!(addr & 1)) {
964 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
965 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
966 	} else {
967 		width = AT_XDMAC_CC_DWIDTH_BYTE;
968 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
969 	}
970 
971 	return width;
972 }
973 
974 static struct at_xdmac_desc *
975 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
976 				struct at_xdmac_chan *atchan,
977 				struct at_xdmac_desc *prev,
978 				dma_addr_t src, dma_addr_t dst,
979 				struct dma_interleaved_template *xt,
980 				struct data_chunk *chunk)
981 {
982 	struct at_xdmac_desc	*desc;
983 	u32			dwidth;
984 	unsigned long		flags;
985 	size_t			ublen;
986 	/*
987 	 * WARNING: The channel configuration is set here since there is no
988 	 * dmaengine_slave_config call in this case. Moreover we don't know the
989 	 * direction, it involves we can't dynamically set the source and dest
990 	 * interface so we have to use the same one. Only interface 0 allows EBI
991 	 * access. Hopefully we can access DDR through both ports (at least on
992 	 * SAMA5D4x), so we can use the same interface for source and dest,
993 	 * that solves the fact we don't know the direction.
994 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
995 	 * match the one of another channel. If not, it could lead to spurious
996 	 * flag status.
997 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
998 	 * Thus, no need to have the SIF/DIF interfaces here.
999 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1000 	 * zero.
1001 	 */
1002 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1003 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1004 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1005 
1006 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
1007 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1008 		dev_dbg(chan2dev(chan),
1009 			"%s: chunk too big (%zu, max size %lu)...\n",
1010 			__func__, chunk->size,
1011 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
1012 		return NULL;
1013 	}
1014 
1015 	if (prev)
1016 		dev_dbg(chan2dev(chan),
1017 			"Adding items at the end of desc 0x%p\n", prev);
1018 
1019 	if (xt->src_inc) {
1020 		if (xt->src_sgl)
1021 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
1022 		else
1023 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
1024 	}
1025 
1026 	if (xt->dst_inc) {
1027 		if (xt->dst_sgl)
1028 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
1029 		else
1030 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
1031 	}
1032 
1033 	spin_lock_irqsave(&atchan->lock, flags);
1034 	desc = at_xdmac_get_desc(atchan);
1035 	spin_unlock_irqrestore(&atchan->lock, flags);
1036 	if (!desc) {
1037 		dev_err(chan2dev(chan), "can't get descriptor\n");
1038 		return NULL;
1039 	}
1040 
1041 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1042 
1043 	ublen = chunk->size >> dwidth;
1044 
1045 	desc->lld.mbr_sa = src;
1046 	desc->lld.mbr_da = dst;
1047 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
1048 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
1049 
1050 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1051 		| AT_XDMAC_MBR_UBC_NDEN
1052 		| AT_XDMAC_MBR_UBC_NSEN
1053 		| ublen;
1054 	desc->lld.mbr_cfg = chan_cc;
1055 
1056 	dev_dbg(chan2dev(chan),
1057 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1058 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
1059 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1060 
1061 	/* Chain lld. */
1062 	if (prev)
1063 		at_xdmac_queue_desc(chan, prev, desc);
1064 
1065 	return desc;
1066 }
1067 
1068 static struct dma_async_tx_descriptor *
1069 at_xdmac_prep_interleaved(struct dma_chan *chan,
1070 			  struct dma_interleaved_template *xt,
1071 			  unsigned long flags)
1072 {
1073 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1074 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
1075 	dma_addr_t		dst_addr, src_addr;
1076 	size_t			src_skip = 0, dst_skip = 0, len = 0;
1077 	struct data_chunk	*chunk;
1078 	int			i;
1079 
1080 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
1081 		return NULL;
1082 
1083 	/*
1084 	 * TODO: Handle the case where we have to repeat a chain of
1085 	 * descriptors...
1086 	 */
1087 	if ((xt->numf > 1) && (xt->frame_size > 1))
1088 		return NULL;
1089 
1090 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
1091 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
1092 		xt->frame_size, flags);
1093 
1094 	src_addr = xt->src_start;
1095 	dst_addr = xt->dst_start;
1096 
1097 	if (xt->numf > 1) {
1098 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
1099 							NULL,
1100 							src_addr, dst_addr,
1101 							xt, xt->sgl);
1102 		if (!first)
1103 			return NULL;
1104 
1105 		/* Length of the block is (BLEN+1) microblocks. */
1106 		for (i = 0; i < xt->numf - 1; i++)
1107 			at_xdmac_increment_block_count(chan, first);
1108 
1109 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1110 			__func__, first, first);
1111 		list_add_tail(&first->desc_node, &first->descs_list);
1112 	} else {
1113 		for (i = 0; i < xt->frame_size; i++) {
1114 			size_t src_icg = 0, dst_icg = 0;
1115 			struct at_xdmac_desc *desc;
1116 
1117 			chunk = xt->sgl + i;
1118 
1119 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
1120 			src_icg = dmaengine_get_src_icg(xt, chunk);
1121 
1122 			src_skip = chunk->size + src_icg;
1123 			dst_skip = chunk->size + dst_icg;
1124 
1125 			dev_dbg(chan2dev(chan),
1126 				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
1127 				__func__, chunk->size, src_icg, dst_icg);
1128 
1129 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
1130 							       prev,
1131 							       src_addr, dst_addr,
1132 							       xt, chunk);
1133 			if (!desc) {
1134 				if (first)
1135 					list_splice_tail_init(&first->descs_list,
1136 							      &atchan->free_descs_list);
1137 				return NULL;
1138 			}
1139 
1140 			if (!first)
1141 				first = desc;
1142 
1143 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1144 				__func__, desc, first);
1145 			list_add_tail(&desc->desc_node, &first->descs_list);
1146 
1147 			if (xt->src_sgl)
1148 				src_addr += src_skip;
1149 
1150 			if (xt->dst_sgl)
1151 				dst_addr += dst_skip;
1152 
1153 			len += chunk->size;
1154 			prev = desc;
1155 		}
1156 	}
1157 
1158 	first->tx_dma_desc.cookie = -EBUSY;
1159 	first->tx_dma_desc.flags = flags;
1160 	first->xfer_size = len;
1161 
1162 	return &first->tx_dma_desc;
1163 }
1164 
1165 static struct dma_async_tx_descriptor *
1166 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1167 			 size_t len, unsigned long flags)
1168 {
1169 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1170 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1171 	size_t			remaining_size = len, xfer_size = 0, ublen;
1172 	dma_addr_t		src_addr = src, dst_addr = dest;
1173 	u32			dwidth;
1174 	/*
1175 	 * WARNING: We don't know the direction, it involves we can't
1176 	 * dynamically set the source and dest interface so we have to use the
1177 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1178 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1179 	 * the same interface for source and dest, that solves the fact we
1180 	 * don't know the direction.
1181 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1182 	 * match the one of another channel. If not, it could lead to spurious
1183 	 * flag status.
1184 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1185 	 * Thus, no need to have the SIF/DIF interfaces here.
1186 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1187 	 * zero.
1188 	 */
1189 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1190 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1191 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1192 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1193 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1194 	unsigned long		irqflags;
1195 
1196 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1197 		__func__, &src, &dest, len, flags);
1198 
1199 	if (unlikely(!len))
1200 		return NULL;
1201 
1202 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1203 
1204 	/* Prepare descriptors. */
1205 	while (remaining_size) {
1206 		struct at_xdmac_desc	*desc = NULL;
1207 
1208 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1209 
1210 		spin_lock_irqsave(&atchan->lock, irqflags);
1211 		desc = at_xdmac_get_desc(atchan);
1212 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1213 		if (!desc) {
1214 			dev_err(chan2dev(chan), "can't get descriptor\n");
1215 			if (first)
1216 				list_splice_tail_init(&first->descs_list,
1217 						      &atchan->free_descs_list);
1218 			return NULL;
1219 		}
1220 
1221 		/* Update src and dest addresses. */
1222 		src_addr += xfer_size;
1223 		dst_addr += xfer_size;
1224 
1225 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1226 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1227 		else
1228 			xfer_size = remaining_size;
1229 
1230 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1231 
1232 		/* Check remaining length and change data width if needed. */
1233 		dwidth = at_xdmac_align_width(chan,
1234 					      src_addr | dst_addr | xfer_size);
1235 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1236 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1237 
1238 		ublen = xfer_size >> dwidth;
1239 		remaining_size -= xfer_size;
1240 
1241 		desc->lld.mbr_sa = src_addr;
1242 		desc->lld.mbr_da = dst_addr;
1243 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1244 			| AT_XDMAC_MBR_UBC_NDEN
1245 			| AT_XDMAC_MBR_UBC_NSEN
1246 			| ublen;
1247 		desc->lld.mbr_cfg = chan_cc;
1248 
1249 		dev_dbg(chan2dev(chan),
1250 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1251 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1252 
1253 		/* Chain lld. */
1254 		if (prev)
1255 			at_xdmac_queue_desc(chan, prev, desc);
1256 
1257 		prev = desc;
1258 		if (!first)
1259 			first = desc;
1260 
1261 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1262 			 __func__, desc, first);
1263 		list_add_tail(&desc->desc_node, &first->descs_list);
1264 	}
1265 
1266 	first->tx_dma_desc.flags = flags;
1267 	first->xfer_size = len;
1268 
1269 	return &first->tx_dma_desc;
1270 }
1271 
1272 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1273 							 struct at_xdmac_chan *atchan,
1274 							 dma_addr_t dst_addr,
1275 							 size_t len,
1276 							 int value)
1277 {
1278 	struct at_xdmac_desc	*desc;
1279 	unsigned long		flags;
1280 	size_t			ublen;
1281 	u32			dwidth;
1282 	char			pattern;
1283 	/*
1284 	 * WARNING: The channel configuration is set here since there is no
1285 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1286 	 * direction, it involves we can't dynamically set the source and dest
1287 	 * interface so we have to use the same one. Only interface 0 allows EBI
1288 	 * access. Hopefully we can access DDR through both ports (at least on
1289 	 * SAMA5D4x), so we can use the same interface for source and dest,
1290 	 * that solves the fact we don't know the direction.
1291 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1292 	 * match the one of another channel. If not, it could lead to spurious
1293 	 * flag status.
1294 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1295 	 * Thus, no need to have the SIF/DIF interfaces here.
1296 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1297 	 * zero.
1298 	 */
1299 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1300 					| AT_XDMAC_CC_DAM_UBS_AM
1301 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1302 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1303 					| AT_XDMAC_CC_MEMSET_HW_MODE
1304 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1305 
1306 	dwidth = at_xdmac_align_width(chan, dst_addr);
1307 
1308 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1309 		dev_err(chan2dev(chan),
1310 			"%s: Transfer too large, aborting...\n",
1311 			__func__);
1312 		return NULL;
1313 	}
1314 
1315 	spin_lock_irqsave(&atchan->lock, flags);
1316 	desc = at_xdmac_get_desc(atchan);
1317 	spin_unlock_irqrestore(&atchan->lock, flags);
1318 	if (!desc) {
1319 		dev_err(chan2dev(chan), "can't get descriptor\n");
1320 		return NULL;
1321 	}
1322 
1323 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1324 
1325 	/* Only the first byte of value is to be used according to dmaengine */
1326 	pattern = (char)value;
1327 
1328 	ublen = len >> dwidth;
1329 
1330 	desc->lld.mbr_da = dst_addr;
1331 	desc->lld.mbr_ds = (pattern << 24) |
1332 			   (pattern << 16) |
1333 			   (pattern << 8) |
1334 			   pattern;
1335 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1336 		| AT_XDMAC_MBR_UBC_NDEN
1337 		| AT_XDMAC_MBR_UBC_NSEN
1338 		| ublen;
1339 	desc->lld.mbr_cfg = chan_cc;
1340 
1341 	dev_dbg(chan2dev(chan),
1342 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1343 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1344 		desc->lld.mbr_cfg);
1345 
1346 	return desc;
1347 }
1348 
1349 static struct dma_async_tx_descriptor *
1350 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1351 			 size_t len, unsigned long flags)
1352 {
1353 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1354 	struct at_xdmac_desc	*desc;
1355 
1356 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1357 		__func__, &dest, len, value, flags);
1358 
1359 	if (unlikely(!len))
1360 		return NULL;
1361 
1362 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1363 	if (!desc)
1364 		return NULL;
1365 	list_add_tail(&desc->desc_node, &desc->descs_list);
1366 
1367 	desc->tx_dma_desc.cookie = -EBUSY;
1368 	desc->tx_dma_desc.flags = flags;
1369 	desc->xfer_size = len;
1370 
1371 	return &desc->tx_dma_desc;
1372 }
1373 
1374 static struct dma_async_tx_descriptor *
1375 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1376 			    unsigned int sg_len, int value,
1377 			    unsigned long flags)
1378 {
1379 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1380 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1381 				*ppdesc = NULL, *first = NULL;
1382 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1383 	size_t			stride = 0, pstride = 0, len = 0;
1384 	int			i;
1385 
1386 	if (!sgl)
1387 		return NULL;
1388 
1389 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1390 		__func__, sg_len, value, flags);
1391 
1392 	/* Prepare descriptors. */
1393 	for_each_sg(sgl, sg, sg_len, i) {
1394 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1395 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1396 			value, flags);
1397 		desc = at_xdmac_memset_create_desc(chan, atchan,
1398 						   sg_dma_address(sg),
1399 						   sg_dma_len(sg),
1400 						   value);
1401 		if (!desc && first)
1402 			list_splice_tail_init(&first->descs_list,
1403 					      &atchan->free_descs_list);
1404 
1405 		if (!first)
1406 			first = desc;
1407 
1408 		/* Update our strides */
1409 		pstride = stride;
1410 		if (psg)
1411 			stride = sg_dma_address(sg) -
1412 				(sg_dma_address(psg) + sg_dma_len(psg));
1413 
1414 		/*
1415 		 * The scatterlist API gives us only the address and
1416 		 * length of each elements.
1417 		 *
1418 		 * Unfortunately, we don't have the stride, which we
1419 		 * will need to compute.
1420 		 *
1421 		 * That make us end up in a situation like this one:
1422 		 *    len    stride    len    stride    len
1423 		 * +-------+        +-------+        +-------+
1424 		 * |  N-2  |        |  N-1  |        |   N   |
1425 		 * +-------+        +-------+        +-------+
1426 		 *
1427 		 * We need all these three elements (N-2, N-1 and N)
1428 		 * to actually take the decision on whether we need to
1429 		 * queue N-1 or reuse N-2.
1430 		 *
1431 		 * We will only consider N if it is the last element.
1432 		 */
1433 		if (ppdesc && pdesc) {
1434 			if ((stride == pstride) &&
1435 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1436 				dev_dbg(chan2dev(chan),
1437 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1438 					__func__, pdesc, ppdesc);
1439 
1440 				/*
1441 				 * Increment the block count of the
1442 				 * N-2 descriptor
1443 				 */
1444 				at_xdmac_increment_block_count(chan, ppdesc);
1445 				ppdesc->lld.mbr_dus = stride;
1446 
1447 				/*
1448 				 * Put back the N-1 descriptor in the
1449 				 * free descriptor list
1450 				 */
1451 				list_add_tail(&pdesc->desc_node,
1452 					      &atchan->free_descs_list);
1453 
1454 				/*
1455 				 * Make our N-1 descriptor pointer
1456 				 * point to the N-2 since they were
1457 				 * actually merged.
1458 				 */
1459 				pdesc = ppdesc;
1460 
1461 			/*
1462 			 * Rule out the case where we don't have
1463 			 * pstride computed yet (our second sg
1464 			 * element)
1465 			 *
1466 			 * We also want to catch the case where there
1467 			 * would be a negative stride,
1468 			 */
1469 			} else if (pstride ||
1470 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1471 				/*
1472 				 * Queue the N-1 descriptor after the
1473 				 * N-2
1474 				 */
1475 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1476 
1477 				/*
1478 				 * Add the N-1 descriptor to the list
1479 				 * of the descriptors used for this
1480 				 * transfer
1481 				 */
1482 				list_add_tail(&desc->desc_node,
1483 					      &first->descs_list);
1484 				dev_dbg(chan2dev(chan),
1485 					"%s: add desc 0x%p to descs_list 0x%p\n",
1486 					__func__, desc, first);
1487 			}
1488 		}
1489 
1490 		/*
1491 		 * If we are the last element, just see if we have the
1492 		 * same size than the previous element.
1493 		 *
1494 		 * If so, we can merge it with the previous descriptor
1495 		 * since we don't care about the stride anymore.
1496 		 */
1497 		if ((i == (sg_len - 1)) &&
1498 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1499 			dev_dbg(chan2dev(chan),
1500 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1501 				__func__, desc, pdesc);
1502 
1503 			/*
1504 			 * Increment the block count of the N-1
1505 			 * descriptor
1506 			 */
1507 			at_xdmac_increment_block_count(chan, pdesc);
1508 			pdesc->lld.mbr_dus = stride;
1509 
1510 			/*
1511 			 * Put back the N descriptor in the free
1512 			 * descriptor list
1513 			 */
1514 			list_add_tail(&desc->desc_node,
1515 				      &atchan->free_descs_list);
1516 		}
1517 
1518 		/* Update our descriptors */
1519 		ppdesc = pdesc;
1520 		pdesc = desc;
1521 
1522 		/* Update our scatter pointers */
1523 		ppsg = psg;
1524 		psg = sg;
1525 
1526 		len += sg_dma_len(sg);
1527 	}
1528 
1529 	first->tx_dma_desc.cookie = -EBUSY;
1530 	first->tx_dma_desc.flags = flags;
1531 	first->xfer_size = len;
1532 
1533 	return &first->tx_dma_desc;
1534 }
1535 
1536 static enum dma_status
1537 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1538 		   struct dma_tx_state *txstate)
1539 {
1540 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1541 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1542 	struct at_xdmac_desc	*desc, *_desc, *iter;
1543 	struct list_head	*descs_list;
1544 	enum dma_status		ret;
1545 	int			residue, retry, pm_status;
1546 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1547 	u8			dwidth = 0;
1548 	unsigned long		flags;
1549 	bool			initd;
1550 
1551 	ret = dma_cookie_status(chan, cookie, txstate);
1552 	if (ret == DMA_COMPLETE || !txstate)
1553 		return ret;
1554 
1555 	pm_status = pm_runtime_resume_and_get(atxdmac->dev);
1556 	if (pm_status < 0)
1557 		return DMA_ERROR;
1558 
1559 	spin_lock_irqsave(&atchan->lock, flags);
1560 
1561 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1562 
1563 	/*
1564 	 * If the transfer has not been started yet, don't need to compute the
1565 	 * residue, it's the transfer length.
1566 	 */
1567 	if (!desc->active_xfer) {
1568 		dma_set_residue(txstate, desc->xfer_size);
1569 		goto spin_unlock;
1570 	}
1571 
1572 	residue = desc->xfer_size;
1573 	/*
1574 	 * Flush FIFO: only relevant when the transfer is source peripheral
1575 	 * synchronized. Flush is needed before reading CUBC because data in
1576 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1577 	 * transfer length while we have data in FIFO can cause issue.
1578 	 * Usecase: atmel USART has a timeout which means I have received
1579 	 * characters but there is no more character received for a while. On
1580 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1581 	 * we will return a residue of the transfer length. It means no data
1582 	 * received. If an application is waiting for these data, it will hang
1583 	 * since we won't have another USART timeout without receiving new
1584 	 * data.
1585 	 */
1586 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1587 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1588 	if ((desc->lld.mbr_cfg & mask) == value) {
1589 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1590 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1591 			cpu_relax();
1592 	}
1593 
1594 	/*
1595 	 * The easiest way to compute the residue should be to pause the DMA
1596 	 * but doing this can lead to miss some data as some devices don't
1597 	 * have FIFO.
1598 	 * We need to read several registers because:
1599 	 * - DMA is running therefore a descriptor change is possible while
1600 	 * reading these registers
1601 	 * - When the block transfer is done, the value of the CUBC register
1602 	 * is set to its initial value until the fetch of the next descriptor.
1603 	 * This value will corrupt the residue calculation so we have to skip
1604 	 * it.
1605 	 *
1606 	 * INITD --------                    ------------
1607 	 *              |____________________|
1608 	 *       _______________________  _______________
1609 	 * NDA       @desc2             \/   @desc3
1610 	 *       _______________________/\_______________
1611 	 *       __________  ___________  _______________
1612 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1613 	 *       __________/\___________/\_______________
1614 	 *
1615 	 * Since descriptors are aligned on 64 bits, we can assume that
1616 	 * the update of NDA and CUBC is atomic.
1617 	 * Memory barriers are used to ensure the read order of the registers.
1618 	 * A max number of retries is set because unlikely it could never ends.
1619 	 */
1620 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1621 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1622 		rmb();
1623 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1624 		rmb();
1625 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1626 		rmb();
1627 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1628 		rmb();
1629 
1630 		if ((check_nda == cur_nda) && initd)
1631 			break;
1632 	}
1633 
1634 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1635 		ret = DMA_ERROR;
1636 		goto spin_unlock;
1637 	}
1638 
1639 	/*
1640 	 * Flush FIFO: only relevant when the transfer is source peripheral
1641 	 * synchronized. Another flush is needed here because CUBC is updated
1642 	 * when the controller sends the data write command. It can lead to
1643 	 * report data that are not written in the memory or the device. The
1644 	 * FIFO flush ensures that data are really written.
1645 	 */
1646 	if ((desc->lld.mbr_cfg & mask) == value) {
1647 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1648 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1649 			cpu_relax();
1650 	}
1651 
1652 	/*
1653 	 * Remove size of all microblocks already transferred and the current
1654 	 * one. Then add the remaining size to transfer of the current
1655 	 * microblock.
1656 	 */
1657 	descs_list = &desc->descs_list;
1658 	list_for_each_entry_safe(iter, _desc, descs_list, desc_node) {
1659 		dwidth = at_xdmac_get_dwidth(iter->lld.mbr_cfg);
1660 		residue -= (iter->lld.mbr_ubc & 0xffffff) << dwidth;
1661 		if ((iter->lld.mbr_nda & 0xfffffffc) == cur_nda) {
1662 			desc = iter;
1663 			break;
1664 		}
1665 	}
1666 	residue += cur_ubc << dwidth;
1667 
1668 	dma_set_residue(txstate, residue);
1669 
1670 	dev_dbg(chan2dev(chan),
1671 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1672 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1673 
1674 spin_unlock:
1675 	spin_unlock_irqrestore(&atchan->lock, flags);
1676 	pm_runtime_put_autosuspend(atxdmac->dev);
1677 	return ret;
1678 }
1679 
1680 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1681 {
1682 	struct at_xdmac_desc	*desc;
1683 
1684 	/*
1685 	 * If channel is enabled, do nothing, advance_work will be triggered
1686 	 * after the interruption.
1687 	 */
1688 	if (at_xdmac_chan_is_enabled(atchan) || list_empty(&atchan->xfers_list))
1689 		return;
1690 
1691 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1692 				xfer_node);
1693 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1694 	if (!desc->active_xfer)
1695 		at_xdmac_start_xfer(atchan, desc);
1696 }
1697 
1698 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1699 {
1700 	struct at_xdmac_desc		*desc;
1701 	struct dma_async_tx_descriptor	*txd;
1702 
1703 	spin_lock_irq(&atchan->lock);
1704 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1705 		__func__, atchan->irq_status);
1706 	if (list_empty(&atchan->xfers_list)) {
1707 		spin_unlock_irq(&atchan->lock);
1708 		return;
1709 	}
1710 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1711 				xfer_node);
1712 	spin_unlock_irq(&atchan->lock);
1713 	txd = &desc->tx_dma_desc;
1714 	if (txd->flags & DMA_PREP_INTERRUPT)
1715 		dmaengine_desc_get_callback_invoke(txd, NULL);
1716 }
1717 
1718 /* Called with atchan->lock held. */
1719 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1720 {
1721 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1722 	struct at_xdmac_desc	*bad_desc;
1723 	int			ret;
1724 
1725 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1726 	if (ret < 0)
1727 		return;
1728 
1729 	/*
1730 	 * The descriptor currently at the head of the active list is
1731 	 * broken. Since we don't have any way to report errors, we'll
1732 	 * just have to scream loudly and try to continue with other
1733 	 * descriptors queued (if any).
1734 	 */
1735 	if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1736 		dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1737 	if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1738 		dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1739 	if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1740 		dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1741 
1742 	/* Channel must be disabled first as it's not done automatically */
1743 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1744 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1745 		cpu_relax();
1746 
1747 	bad_desc = list_first_entry(&atchan->xfers_list,
1748 				    struct at_xdmac_desc,
1749 				    xfer_node);
1750 
1751 	/* Print bad descriptor's details if needed */
1752 	dev_dbg(chan2dev(&atchan->chan),
1753 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1754 		__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1755 		bad_desc->lld.mbr_ubc);
1756 
1757 	pm_runtime_put_autosuspend(atxdmac->dev);
1758 
1759 	/* Then continue with usual descriptor management */
1760 }
1761 
1762 static void at_xdmac_tasklet(struct tasklet_struct *t)
1763 {
1764 	struct at_xdmac_chan	*atchan = from_tasklet(atchan, t, tasklet);
1765 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1766 	struct at_xdmac_desc	*desc;
1767 	struct dma_async_tx_descriptor *txd;
1768 	u32			error_mask;
1769 
1770 	if (at_xdmac_chan_is_cyclic(atchan))
1771 		return at_xdmac_handle_cyclic(atchan);
1772 
1773 	error_mask = AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS |
1774 		AT_XDMAC_CIS_ROIS;
1775 
1776 	spin_lock_irq(&atchan->lock);
1777 
1778 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1779 		__func__, atchan->irq_status);
1780 
1781 	if (!(atchan->irq_status & AT_XDMAC_CIS_LIS) &&
1782 	    !(atchan->irq_status & error_mask)) {
1783 		spin_unlock_irq(&atchan->lock);
1784 		return;
1785 	}
1786 
1787 	if (atchan->irq_status & error_mask)
1788 		at_xdmac_handle_error(atchan);
1789 
1790 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1791 				xfer_node);
1792 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1793 	if (!desc->active_xfer) {
1794 		dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1795 		spin_unlock_irq(&atchan->lock);
1796 		return;
1797 	}
1798 
1799 	txd = &desc->tx_dma_desc;
1800 	dma_cookie_complete(txd);
1801 	/* Remove the transfer from the transfer list. */
1802 	list_del(&desc->xfer_node);
1803 	spin_unlock_irq(&atchan->lock);
1804 
1805 	if (txd->flags & DMA_PREP_INTERRUPT)
1806 		dmaengine_desc_get_callback_invoke(txd, NULL);
1807 
1808 	dma_run_dependencies(txd);
1809 
1810 	spin_lock_irq(&atchan->lock);
1811 	/* Move the xfer descriptors into the free descriptors list. */
1812 	list_splice_tail_init(&desc->descs_list, &atchan->free_descs_list);
1813 	at_xdmac_advance_work(atchan);
1814 	spin_unlock_irq(&atchan->lock);
1815 
1816 	/*
1817 	 * Decrement runtime PM ref counter incremented in
1818 	 * at_xdmac_start_xfer().
1819 	 */
1820 	pm_runtime_put_autosuspend(atxdmac->dev);
1821 }
1822 
1823 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1824 {
1825 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1826 	struct at_xdmac_chan	*atchan;
1827 	u32			imr, status, pending;
1828 	u32			chan_imr, chan_status;
1829 	int			i, ret = IRQ_NONE;
1830 
1831 	do {
1832 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1833 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1834 		pending = status & imr;
1835 
1836 		dev_vdbg(atxdmac->dma.dev,
1837 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1838 			 __func__, status, imr, pending);
1839 
1840 		if (!pending)
1841 			break;
1842 
1843 		/* We have to find which channel has generated the interrupt. */
1844 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1845 			if (!((1 << i) & pending))
1846 				continue;
1847 
1848 			atchan = &atxdmac->chan[i];
1849 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1850 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1851 			atchan->irq_status = chan_status & chan_imr;
1852 			dev_vdbg(atxdmac->dma.dev,
1853 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1854 				 __func__, i, chan_imr, chan_status);
1855 			dev_vdbg(chan2dev(&atchan->chan),
1856 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1857 				 __func__,
1858 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1859 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1860 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1861 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1862 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1863 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1864 
1865 			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1866 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1867 
1868 			tasklet_schedule(&atchan->tasklet);
1869 			ret = IRQ_HANDLED;
1870 		}
1871 
1872 	} while (pending);
1873 
1874 	return ret;
1875 }
1876 
1877 static void at_xdmac_issue_pending(struct dma_chan *chan)
1878 {
1879 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1880 	unsigned long flags;
1881 
1882 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1883 
1884 	spin_lock_irqsave(&atchan->lock, flags);
1885 	at_xdmac_advance_work(atchan);
1886 	spin_unlock_irqrestore(&atchan->lock, flags);
1887 
1888 	return;
1889 }
1890 
1891 static int at_xdmac_device_config(struct dma_chan *chan,
1892 				  struct dma_slave_config *config)
1893 {
1894 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1895 	int ret;
1896 	unsigned long		flags;
1897 
1898 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1899 
1900 	spin_lock_irqsave(&atchan->lock, flags);
1901 	ret = at_xdmac_set_slave_config(chan, config);
1902 	spin_unlock_irqrestore(&atchan->lock, flags);
1903 
1904 	return ret;
1905 }
1906 
1907 static void at_xdmac_device_pause_set(struct at_xdmac *atxdmac,
1908 				      struct at_xdmac_chan *atchan)
1909 {
1910 	at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask);
1911 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) &
1912 	       (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1913 		cpu_relax();
1914 }
1915 
1916 static void at_xdmac_device_pause_internal(struct at_xdmac_chan *atchan)
1917 {
1918 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1919 	unsigned long		flags;
1920 
1921 	spin_lock_irqsave(&atchan->lock, flags);
1922 	set_bit(AT_XDMAC_CHAN_IS_PAUSED_INTERNAL, &atchan->status);
1923 	at_xdmac_device_pause_set(atxdmac, atchan);
1924 	spin_unlock_irqrestore(&atchan->lock, flags);
1925 }
1926 
1927 static int at_xdmac_device_pause(struct dma_chan *chan)
1928 {
1929 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1930 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1931 	unsigned long		flags;
1932 	int			ret;
1933 
1934 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1935 
1936 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1937 		return 0;
1938 
1939 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1940 	if (ret < 0)
1941 		return ret;
1942 
1943 	spin_lock_irqsave(&atchan->lock, flags);
1944 
1945 	at_xdmac_device_pause_set(atxdmac, atchan);
1946 	/* Decrement runtime PM ref counter for each active descriptor. */
1947 	at_xdmac_runtime_suspend_descriptors(atchan);
1948 
1949 	spin_unlock_irqrestore(&atchan->lock, flags);
1950 
1951 	pm_runtime_put_autosuspend(atxdmac->dev);
1952 
1953 	return 0;
1954 }
1955 
1956 static void at_xdmac_device_resume_internal(struct at_xdmac_chan *atchan)
1957 {
1958 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1959 	unsigned long		flags;
1960 
1961 	spin_lock_irqsave(&atchan->lock, flags);
1962 	at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1963 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED_INTERNAL, &atchan->status);
1964 	spin_unlock_irqrestore(&atchan->lock, flags);
1965 }
1966 
1967 static int at_xdmac_device_resume(struct dma_chan *chan)
1968 {
1969 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1970 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1971 	unsigned long		flags;
1972 	int			ret;
1973 
1974 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1975 
1976 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1977 	if (ret < 0)
1978 		return ret;
1979 
1980 	spin_lock_irqsave(&atchan->lock, flags);
1981 	if (!at_xdmac_chan_is_paused(atchan))
1982 		goto unlock;
1983 
1984 	/* Increment runtime PM ref counter for each active descriptor. */
1985 	ret = at_xdmac_runtime_resume_descriptors(atchan);
1986 	if (ret < 0)
1987 		goto unlock;
1988 
1989 	at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1990 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1991 
1992 unlock:
1993 	spin_unlock_irqrestore(&atchan->lock, flags);
1994 	pm_runtime_put_autosuspend(atxdmac->dev);
1995 
1996 	return ret;
1997 }
1998 
1999 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
2000 {
2001 	struct at_xdmac_desc	*desc, *_desc;
2002 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2003 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
2004 	unsigned long		flags;
2005 	int			ret;
2006 
2007 	dev_dbg(chan2dev(chan), "%s\n", __func__);
2008 
2009 	ret = pm_runtime_resume_and_get(atxdmac->dev);
2010 	if (ret < 0)
2011 		return ret;
2012 
2013 	spin_lock_irqsave(&atchan->lock, flags);
2014 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
2015 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
2016 		cpu_relax();
2017 
2018 	/* Cancel all pending transfers. */
2019 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
2020 		list_del(&desc->xfer_node);
2021 		list_splice_tail_init(&desc->descs_list,
2022 				      &atchan->free_descs_list);
2023 		/*
2024 		 * We incremented the runtime PM reference count on
2025 		 * at_xdmac_start_xfer() for this descriptor. Now it's time
2026 		 * to release it.
2027 		 */
2028 		if (desc->active_xfer)
2029 			pm_runtime_put_noidle(atxdmac->dev);
2030 	}
2031 
2032 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
2033 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
2034 	spin_unlock_irqrestore(&atchan->lock, flags);
2035 
2036 	pm_runtime_put_autosuspend(atxdmac->dev);
2037 
2038 	return 0;
2039 }
2040 
2041 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
2042 {
2043 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2044 	struct at_xdmac_desc	*desc;
2045 	int			i;
2046 
2047 	if (at_xdmac_chan_is_enabled(atchan)) {
2048 		dev_err(chan2dev(chan),
2049 			"can't allocate channel resources (channel enabled)\n");
2050 		return -EIO;
2051 	}
2052 
2053 	if (!list_empty(&atchan->free_descs_list)) {
2054 		dev_err(chan2dev(chan),
2055 			"can't allocate channel resources (channel not free from a previous use)\n");
2056 		return -EIO;
2057 	}
2058 
2059 	for (i = 0; i < init_nr_desc_per_channel; i++) {
2060 		desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
2061 		if (!desc) {
2062 			if (i == 0) {
2063 				dev_warn(chan2dev(chan),
2064 					 "can't allocate any descriptors\n");
2065 				return -EIO;
2066 			}
2067 			dev_warn(chan2dev(chan),
2068 				"only %d descriptors have been allocated\n", i);
2069 			break;
2070 		}
2071 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
2072 	}
2073 
2074 	dma_cookie_init(chan);
2075 
2076 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
2077 
2078 	return i;
2079 }
2080 
2081 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
2082 {
2083 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2084 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
2085 	struct at_xdmac_desc	*desc, *_desc;
2086 
2087 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
2088 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
2089 		list_del(&desc->desc_node);
2090 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
2091 	}
2092 
2093 	return;
2094 }
2095 
2096 static void at_xdmac_axi_config(struct platform_device *pdev)
2097 {
2098 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2099 	bool dev_m2m = false;
2100 	u32 dma_requests;
2101 
2102 	if (!atxdmac->layout->axi_config)
2103 		return; /* Not supported */
2104 
2105 	if (!of_property_read_u32(pdev->dev.of_node, "dma-requests",
2106 				  &dma_requests)) {
2107 		dev_info(&pdev->dev, "controller in mem2mem mode.\n");
2108 		dev_m2m = true;
2109 	}
2110 
2111 	if (dev_m2m) {
2112 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M);
2113 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M);
2114 	} else {
2115 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M);
2116 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M);
2117 	}
2118 }
2119 
2120 static int __maybe_unused atmel_xdmac_prepare(struct device *dev)
2121 {
2122 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2123 	struct dma_chan		*chan, *_chan;
2124 
2125 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2126 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2127 
2128 		/* Wait for transfer completion, except in cyclic case. */
2129 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
2130 			return -EAGAIN;
2131 	}
2132 	return 0;
2133 }
2134 
2135 static int __maybe_unused atmel_xdmac_suspend(struct device *dev)
2136 {
2137 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2138 	struct dma_chan		*chan, *_chan;
2139 	int			ret;
2140 
2141 	ret = pm_runtime_resume_and_get(atxdmac->dev);
2142 	if (ret < 0)
2143 		return ret;
2144 
2145 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2146 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2147 
2148 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
2149 		if (at_xdmac_chan_is_cyclic(atchan)) {
2150 			if (!at_xdmac_chan_is_paused(atchan)) {
2151 				dev_warn(chan2dev(chan), "%s: channel %d not paused\n",
2152 					 __func__, chan->chan_id);
2153 				at_xdmac_device_pause_internal(atchan);
2154 				at_xdmac_runtime_suspend_descriptors(atchan);
2155 			}
2156 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
2157 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
2158 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
2159 		}
2160 	}
2161 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
2162 	atxdmac->save_gs = at_xdmac_read(atxdmac, AT_XDMAC_GS);
2163 
2164 	at_xdmac_off(atxdmac, false);
2165 	pm_runtime_mark_last_busy(atxdmac->dev);
2166 	pm_runtime_put_noidle(atxdmac->dev);
2167 	clk_disable_unprepare(atxdmac->clk);
2168 
2169 	return 0;
2170 }
2171 
2172 static int __maybe_unused atmel_xdmac_resume(struct device *dev)
2173 {
2174 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2175 	struct at_xdmac_chan	*atchan;
2176 	struct dma_chan		*chan, *_chan;
2177 	struct platform_device	*pdev = container_of(dev, struct platform_device, dev);
2178 	int			i, ret;
2179 
2180 	ret = clk_prepare_enable(atxdmac->clk);
2181 	if (ret)
2182 		return ret;
2183 
2184 	pm_runtime_get_noresume(atxdmac->dev);
2185 
2186 	at_xdmac_axi_config(pdev);
2187 
2188 	/* Clear pending interrupts. */
2189 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2190 		atchan = &atxdmac->chan[i];
2191 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2192 			cpu_relax();
2193 	}
2194 
2195 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
2196 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2197 		atchan = to_at_xdmac_chan(chan);
2198 
2199 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
2200 		if (at_xdmac_chan_is_cyclic(atchan)) {
2201 			/*
2202 			 * Resume only channels not explicitly paused by
2203 			 * consumers.
2204 			 */
2205 			if (at_xdmac_chan_is_paused_internal(atchan)) {
2206 				ret = at_xdmac_runtime_resume_descriptors(atchan);
2207 				if (ret < 0)
2208 					return ret;
2209 				at_xdmac_device_resume_internal(atchan);
2210 			}
2211 
2212 			/*
2213 			 * We may resume from a deep sleep state where power
2214 			 * to DMA controller is cut-off. Thus, restore the
2215 			 * suspend state of channels set though dmaengine API.
2216 			 */
2217 			else if (at_xdmac_chan_is_paused(atchan))
2218 				at_xdmac_device_pause_set(atxdmac, atchan);
2219 
2220 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
2221 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
2222 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
2223 			wmb();
2224 			if (atxdmac->save_gs & atchan->mask)
2225 				at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
2226 		}
2227 	}
2228 
2229 	pm_runtime_put_autosuspend(atxdmac->dev);
2230 
2231 	return 0;
2232 }
2233 
2234 static int __maybe_unused atmel_xdmac_runtime_suspend(struct device *dev)
2235 {
2236 	struct at_xdmac *atxdmac = dev_get_drvdata(dev);
2237 
2238 	clk_disable(atxdmac->clk);
2239 
2240 	return 0;
2241 }
2242 
2243 static int __maybe_unused atmel_xdmac_runtime_resume(struct device *dev)
2244 {
2245 	struct at_xdmac *atxdmac = dev_get_drvdata(dev);
2246 
2247 	return clk_enable(atxdmac->clk);
2248 }
2249 
2250 static inline int at_xdmac_get_channel_number(struct platform_device *pdev,
2251 					      u32 reg, u32 *pchannels)
2252 {
2253 	int	ret;
2254 
2255 	if (reg) {
2256 		*pchannels = AT_XDMAC_NB_CH(reg);
2257 		return 0;
2258 	}
2259 
2260 	ret = of_property_read_u32(pdev->dev.of_node, "dma-channels", pchannels);
2261 	if (ret)
2262 		dev_err(&pdev->dev, "can't get number of channels\n");
2263 
2264 	return ret;
2265 }
2266 
2267 static int at_xdmac_probe(struct platform_device *pdev)
2268 {
2269 	struct at_xdmac	*atxdmac;
2270 	int		irq, ret;
2271 	void __iomem	*base;
2272 	u32		nr_channels, i, reg;
2273 
2274 	irq = platform_get_irq(pdev, 0);
2275 	if (irq < 0)
2276 		return irq;
2277 
2278 	base = devm_platform_ioremap_resource(pdev, 0);
2279 	if (IS_ERR(base))
2280 		return PTR_ERR(base);
2281 
2282 	/*
2283 	 * Read number of xdmac channels, read helper function can't be used
2284 	 * since atxdmac is not yet allocated and we need to know the number
2285 	 * of channels to do the allocation.
2286 	 */
2287 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
2288 	ret = at_xdmac_get_channel_number(pdev, reg, &nr_channels);
2289 	if (ret)
2290 		return ret;
2291 
2292 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
2293 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
2294 			nr_channels);
2295 		return -EINVAL;
2296 	}
2297 
2298 	atxdmac = devm_kzalloc(&pdev->dev,
2299 			       struct_size(atxdmac, chan, nr_channels),
2300 			       GFP_KERNEL);
2301 	if (!atxdmac) {
2302 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
2303 		return -ENOMEM;
2304 	}
2305 
2306 	atxdmac->regs = base;
2307 	atxdmac->irq = irq;
2308 	atxdmac->dev = &pdev->dev;
2309 
2310 	atxdmac->layout = of_device_get_match_data(&pdev->dev);
2311 	if (!atxdmac->layout)
2312 		return -ENODEV;
2313 
2314 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2315 	if (IS_ERR(atxdmac->clk)) {
2316 		dev_err(&pdev->dev, "can't get dma_clk\n");
2317 		return PTR_ERR(atxdmac->clk);
2318 	}
2319 
2320 	/* Do not use dev res to prevent races with tasklet */
2321 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2322 	if (ret) {
2323 		dev_err(&pdev->dev, "can't request irq\n");
2324 		return ret;
2325 	}
2326 
2327 	ret = clk_prepare_enable(atxdmac->clk);
2328 	if (ret) {
2329 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
2330 		goto err_free_irq;
2331 	}
2332 
2333 	atxdmac->at_xdmac_desc_pool =
2334 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2335 				sizeof(struct at_xdmac_desc), 4, 0);
2336 	if (!atxdmac->at_xdmac_desc_pool) {
2337 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2338 		ret = -ENOMEM;
2339 		goto err_clk_disable;
2340 	}
2341 
2342 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2343 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2344 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2345 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2346 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2347 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2348 	/*
2349 	 * Without DMA_PRIVATE the driver is not able to allocate more than
2350 	 * one channel, second allocation fails in private_candidate.
2351 	 */
2352 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2353 	atxdmac->dma.dev				= &pdev->dev;
2354 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2355 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2356 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2357 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2358 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2359 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2360 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2361 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2362 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2363 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2364 	atxdmac->dma.device_config			= at_xdmac_device_config;
2365 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2366 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2367 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2368 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2369 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2370 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2371 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2372 
2373 	platform_set_drvdata(pdev, atxdmac);
2374 
2375 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2376 	pm_runtime_use_autosuspend(&pdev->dev);
2377 	pm_runtime_set_active(&pdev->dev);
2378 	pm_runtime_enable(&pdev->dev);
2379 	pm_runtime_get_noresume(&pdev->dev);
2380 
2381 	/* Init channels. */
2382 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2383 
2384 	/* Disable all chans and interrupts. */
2385 	at_xdmac_off(atxdmac, true);
2386 
2387 	for (i = 0; i < nr_channels; i++) {
2388 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2389 
2390 		atchan->chan.device = &atxdmac->dma;
2391 		list_add_tail(&atchan->chan.device_node,
2392 			      &atxdmac->dma.channels);
2393 
2394 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2395 		atchan->mask = 1 << i;
2396 
2397 		spin_lock_init(&atchan->lock);
2398 		INIT_LIST_HEAD(&atchan->xfers_list);
2399 		INIT_LIST_HEAD(&atchan->free_descs_list);
2400 		tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
2401 
2402 		/* Clear pending interrupts. */
2403 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2404 			cpu_relax();
2405 	}
2406 
2407 	ret = dma_async_device_register(&atxdmac->dma);
2408 	if (ret) {
2409 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2410 		goto err_pm_disable;
2411 	}
2412 
2413 	ret = of_dma_controller_register(pdev->dev.of_node,
2414 					 at_xdmac_xlate, atxdmac);
2415 	if (ret) {
2416 		dev_err(&pdev->dev, "could not register of dma controller\n");
2417 		goto err_dma_unregister;
2418 	}
2419 
2420 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2421 		 nr_channels, atxdmac->regs);
2422 
2423 	at_xdmac_axi_config(pdev);
2424 
2425 	pm_runtime_put_autosuspend(&pdev->dev);
2426 
2427 	return 0;
2428 
2429 err_dma_unregister:
2430 	dma_async_device_unregister(&atxdmac->dma);
2431 err_pm_disable:
2432 	pm_runtime_put_noidle(&pdev->dev);
2433 	pm_runtime_disable(&pdev->dev);
2434 	pm_runtime_set_suspended(&pdev->dev);
2435 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2436 err_clk_disable:
2437 	clk_disable_unprepare(atxdmac->clk);
2438 err_free_irq:
2439 	free_irq(atxdmac->irq, atxdmac);
2440 	return ret;
2441 }
2442 
2443 static void at_xdmac_remove(struct platform_device *pdev)
2444 {
2445 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2446 	int		i;
2447 
2448 	at_xdmac_off(atxdmac, true);
2449 	of_dma_controller_free(pdev->dev.of_node);
2450 	dma_async_device_unregister(&atxdmac->dma);
2451 	pm_runtime_disable(atxdmac->dev);
2452 	pm_runtime_set_suspended(&pdev->dev);
2453 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2454 	clk_disable_unprepare(atxdmac->clk);
2455 
2456 	free_irq(atxdmac->irq, atxdmac);
2457 
2458 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2459 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2460 
2461 		tasklet_kill(&atchan->tasklet);
2462 		at_xdmac_free_chan_resources(&atchan->chan);
2463 	}
2464 }
2465 
2466 static const struct dev_pm_ops __maybe_unused atmel_xdmac_dev_pm_ops = {
2467 	.prepare	= atmel_xdmac_prepare,
2468 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2469 	SET_RUNTIME_PM_OPS(atmel_xdmac_runtime_suspend,
2470 			   atmel_xdmac_runtime_resume, NULL)
2471 };
2472 
2473 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2474 	{
2475 		.compatible = "atmel,sama5d4-dma",
2476 		.data = &at_xdmac_sama5d4_layout,
2477 	}, {
2478 		.compatible = "microchip,sama7g5-dma",
2479 		.data = &at_xdmac_sama7g5_layout,
2480 	}, {
2481 		/* sentinel */
2482 	}
2483 };
2484 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2485 
2486 static struct platform_driver at_xdmac_driver = {
2487 	.probe		= at_xdmac_probe,
2488 	.remove		= at_xdmac_remove,
2489 	.driver = {
2490 		.name		= "at_xdmac",
2491 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2492 		.pm		= pm_ptr(&atmel_xdmac_dev_pm_ops),
2493 	}
2494 };
2495 
2496 static int __init at_xdmac_init(void)
2497 {
2498 	return platform_driver_register(&at_xdmac_driver);
2499 }
2500 subsys_initcall(at_xdmac_init);
2501 
2502 static void __exit at_xdmac_exit(void)
2503 {
2504 	platform_driver_unregister(&at_xdmac_driver);
2505 }
2506 module_exit(at_xdmac_exit);
2507 
2508 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2509 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2510 MODULE_LICENSE("GPL");
2511