xref: /linux/drivers/dma/at_xdmac.c (revision 61cb9ac66b30374c7fd8a8b2a3c4f8f432c72e36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4  *
5  * Copyright (C) 2014 Atmel Corporation
6  *
7  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8  */
9 
10 #include <asm/barrier.h>
11 #include <dt-bindings/dma/at91.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 
25 #include "dmaengine.h"
26 
27 /* Global registers */
28 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
29 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
30 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
31 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
32 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
33 #define		AT_XDMAC_WRHP(i)		(((i) & 0xF) << 4)
34 #define		AT_XDMAC_WRMP(i)		(((i) & 0xF) << 8)
35 #define		AT_XDMAC_WRLP(i)		(((i) & 0xF) << 12)
36 #define		AT_XDMAC_RDHP(i)		(((i) & 0xF) << 16)
37 #define		AT_XDMAC_RDMP(i)		(((i) & 0xF) << 20)
38 #define		AT_XDMAC_RDLP(i)		(((i) & 0xF) << 24)
39 #define		AT_XDMAC_RDSG(i)		(((i) & 0xF) << 28)
40 #define AT_XDMAC_GCFG_M2M	(AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF))
41 #define AT_XDMAC_GCFG_P2M	(AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \
42 				AT_XDMAC_WRHP(0x5))
43 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
44 #define		AT_XDMAC_PW0(i)		(((i) & 0xF) << 0)
45 #define		AT_XDMAC_PW1(i)		(((i) & 0xF) << 4)
46 #define		AT_XDMAC_PW2(i)		(((i) & 0xF) << 8)
47 #define		AT_XDMAC_PW3(i)		(((i) & 0xF) << 12)
48 #define AT_XDMAC_GWAC_M2M	0
49 #define AT_XDMAC_GWAC_P2M	(AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF))
50 
51 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
52 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
53 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
54 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
55 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
56 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
57 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
58 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
59 
60 /* Channel relative registers offsets */
61 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
62 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
63 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
69 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
70 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
71 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
77 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
78 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
79 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
85 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
86 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
87 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
93 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
94 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
95 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
96 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
97 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
98 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
99 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
100 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
101 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
102 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
103 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
106 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
107 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
108 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
109 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
110 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
111 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
112 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
113 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
114 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
117 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
118 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
119 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
120 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
121 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
122 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
123 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
124 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
125 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
126 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
127 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
128 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
129 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
130 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
131 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
132 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
133 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
134 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
135 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
136 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
137 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
138 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
139 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
140 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
141 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
142 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
143 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
144 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
145 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
146 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
147 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
148 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
149 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
150 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
151 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
152 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
153 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
154 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
155 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
156 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
157 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
158 #define		AT_XDMAC_CC_PERID(i)	(0x7f & (i) << 24)	/* Channel Peripheral Identifier */
159 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
160 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
161 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
162 
163 /* Microblock control members */
164 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
165 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
166 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
167 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
168 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
169 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
170 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
171 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
172 
173 #define AT_XDMAC_MAX_CHAN	0x20
174 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
175 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
176 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
177 
178 #define AT_XDMAC_DMA_BUSWIDTHS\
179 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
180 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
181 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
182 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
184 
185 enum atc_status {
186 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
187 	AT_XDMAC_CHAN_IS_PAUSED,
188 };
189 
190 struct at_xdmac_layout {
191 	/* Global Channel Read Suspend Register */
192 	u8				grs;
193 	/* Global Write Suspend Register */
194 	u8				gws;
195 	/* Global Channel Read Write Suspend Register */
196 	u8				grws;
197 	/* Global Channel Read Write Resume Register */
198 	u8				grwr;
199 	/* Global Channel Software Request Register */
200 	u8				gswr;
201 	/* Global channel Software Request Status Register */
202 	u8				gsws;
203 	/* Global Channel Software Flush Request Register */
204 	u8				gswf;
205 	/* Channel reg base */
206 	u8				chan_cc_reg_base;
207 	/* Source/Destination Interface must be specified or not */
208 	bool				sdif;
209 	/* AXI queue priority configuration supported */
210 	bool				axi_config;
211 };
212 
213 /* ----- Channels ----- */
214 struct at_xdmac_chan {
215 	struct dma_chan			chan;
216 	void __iomem			*ch_regs;
217 	u32				mask;		/* Channel Mask */
218 	u32				cfg;		/* Channel Configuration Register */
219 	u8				perid;		/* Peripheral ID */
220 	u8				perif;		/* Peripheral Interface */
221 	u8				memif;		/* Memory Interface */
222 	u32				save_cc;
223 	u32				save_cim;
224 	u32				save_cnda;
225 	u32				save_cndc;
226 	u32				irq_status;
227 	unsigned long			status;
228 	struct tasklet_struct		tasklet;
229 	struct dma_slave_config		sconfig;
230 
231 	spinlock_t			lock;
232 
233 	struct list_head		xfers_list;
234 	struct list_head		free_descs_list;
235 };
236 
237 
238 /* ----- Controller ----- */
239 struct at_xdmac {
240 	struct dma_device	dma;
241 	void __iomem		*regs;
242 	int			irq;
243 	struct clk		*clk;
244 	u32			save_gim;
245 	struct dma_pool		*at_xdmac_desc_pool;
246 	const struct at_xdmac_layout	*layout;
247 	struct at_xdmac_chan	chan[];
248 };
249 
250 
251 /* ----- Descriptors ----- */
252 
253 /* Linked List Descriptor */
254 struct at_xdmac_lld {
255 	dma_addr_t	mbr_nda;	/* Next Descriptor Member */
256 	u32		mbr_ubc;	/* Microblock Control Member */
257 	dma_addr_t	mbr_sa;		/* Source Address Member */
258 	dma_addr_t	mbr_da;		/* Destination Address Member */
259 	u32		mbr_cfg;	/* Configuration Register */
260 	u32		mbr_bc;		/* Block Control Register */
261 	u32		mbr_ds;		/* Data Stride Register */
262 	u32		mbr_sus;	/* Source Microblock Stride Register */
263 	u32		mbr_dus;	/* Destination Microblock Stride Register */
264 };
265 
266 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
267 struct at_xdmac_desc {
268 	struct at_xdmac_lld		lld;
269 	enum dma_transfer_direction	direction;
270 	struct dma_async_tx_descriptor	tx_dma_desc;
271 	struct list_head		desc_node;
272 	/* Following members are only used by the first descriptor */
273 	bool				active_xfer;
274 	unsigned int			xfer_size;
275 	struct list_head		descs_list;
276 	struct list_head		xfer_node;
277 } __aligned(sizeof(u64));
278 
279 static const struct at_xdmac_layout at_xdmac_sama5d4_layout = {
280 	.grs = 0x28,
281 	.gws = 0x2C,
282 	.grws = 0x30,
283 	.grwr = 0x34,
284 	.gswr = 0x38,
285 	.gsws = 0x3C,
286 	.gswf = 0x40,
287 	.chan_cc_reg_base = 0x50,
288 	.sdif = true,
289 	.axi_config = false,
290 };
291 
292 static const struct at_xdmac_layout at_xdmac_sama7g5_layout = {
293 	.grs = 0x30,
294 	.gws = 0x38,
295 	.grws = 0x40,
296 	.grwr = 0x44,
297 	.gswr = 0x48,
298 	.gsws = 0x4C,
299 	.gswf = 0x50,
300 	.chan_cc_reg_base = 0x60,
301 	.sdif = false,
302 	.axi_config = true,
303 };
304 
305 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
306 {
307 	return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40);
308 }
309 
310 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
311 #define at_xdmac_write(atxdmac, reg, value) \
312 	writel_relaxed((value), (atxdmac)->regs + (reg))
313 
314 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
315 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
316 
317 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
318 {
319 	return container_of(dchan, struct at_xdmac_chan, chan);
320 }
321 
322 static struct device *chan2dev(struct dma_chan *chan)
323 {
324 	return &chan->dev->device;
325 }
326 
327 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
328 {
329 	return container_of(ddev, struct at_xdmac, dma);
330 }
331 
332 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
333 {
334 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
335 }
336 
337 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
338 {
339 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
340 }
341 
342 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
343 {
344 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
345 }
346 
347 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
348 {
349 	return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
350 }
351 
352 static inline u8 at_xdmac_get_dwidth(u32 cfg)
353 {
354 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
355 };
356 
357 static unsigned int init_nr_desc_per_channel = 64;
358 module_param(init_nr_desc_per_channel, uint, 0644);
359 MODULE_PARM_DESC(init_nr_desc_per_channel,
360 		 "initial descriptors per channel (default: 64)");
361 
362 
363 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
364 {
365 	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
366 }
367 
368 static void at_xdmac_off(struct at_xdmac *atxdmac)
369 {
370 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
371 
372 	/* Wait that all chans are disabled. */
373 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
374 		cpu_relax();
375 
376 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
377 }
378 
379 /* Call with lock hold. */
380 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
381 				struct at_xdmac_desc *first)
382 {
383 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
384 	u32		reg;
385 
386 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
387 
388 	if (at_xdmac_chan_is_enabled(atchan))
389 		return;
390 
391 	/* Set transfer as active to not try to start it again. */
392 	first->active_xfer = true;
393 
394 	/* Tell xdmac where to get the first descriptor. */
395 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys);
396 	if (atxdmac->layout->sdif)
397 		reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif);
398 
399 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
400 
401 	/*
402 	 * When doing non cyclic transfer we need to use the next
403 	 * descriptor view 2 since some fields of the configuration register
404 	 * depend on transfer size and src/dest addresses.
405 	 */
406 	if (at_xdmac_chan_is_cyclic(atchan))
407 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
408 	else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
409 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
410 	else
411 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
412 	/*
413 	 * Even if the register will be updated from the configuration in the
414 	 * descriptor when using view 2 or higher, the PROT bit won't be set
415 	 * properly. This bit can be modified only by using the channel
416 	 * configuration register.
417 	 */
418 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
419 
420 	reg |= AT_XDMAC_CNDC_NDDUP
421 	       | AT_XDMAC_CNDC_NDSUP
422 	       | AT_XDMAC_CNDC_NDE;
423 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
424 
425 	dev_vdbg(chan2dev(&atchan->chan),
426 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
427 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
428 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
429 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
430 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
431 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
432 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
433 
434 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
435 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
436 	/*
437 	 * Request Overflow Error is only for peripheral synchronized transfers
438 	 */
439 	if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
440 		reg |= AT_XDMAC_CIE_ROIE;
441 
442 	/*
443 	 * There is no end of list when doing cyclic dma, we need to get
444 	 * an interrupt after each periods.
445 	 */
446 	if (at_xdmac_chan_is_cyclic(atchan))
447 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
448 				    reg | AT_XDMAC_CIE_BIE);
449 	else
450 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
451 				    reg | AT_XDMAC_CIE_LIE);
452 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
453 	dev_vdbg(chan2dev(&atchan->chan),
454 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
455 	wmb();
456 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
457 
458 	dev_vdbg(chan2dev(&atchan->chan),
459 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
460 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
461 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
462 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
463 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
464 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
465 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
466 
467 }
468 
469 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
470 {
471 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
472 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
473 	dma_cookie_t		cookie;
474 	unsigned long		irqflags;
475 
476 	spin_lock_irqsave(&atchan->lock, irqflags);
477 	cookie = dma_cookie_assign(tx);
478 
479 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
480 		 __func__, atchan, desc);
481 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
482 	if (list_is_singular(&atchan->xfers_list))
483 		at_xdmac_start_xfer(atchan, desc);
484 
485 	spin_unlock_irqrestore(&atchan->lock, irqflags);
486 	return cookie;
487 }
488 
489 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
490 						 gfp_t gfp_flags)
491 {
492 	struct at_xdmac_desc	*desc;
493 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
494 	dma_addr_t		phys;
495 
496 	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
497 	if (desc) {
498 		INIT_LIST_HEAD(&desc->descs_list);
499 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
500 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
501 		desc->tx_dma_desc.phys = phys;
502 	}
503 
504 	return desc;
505 }
506 
507 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
508 {
509 	memset(&desc->lld, 0, sizeof(desc->lld));
510 	INIT_LIST_HEAD(&desc->descs_list);
511 	desc->direction = DMA_TRANS_NONE;
512 	desc->xfer_size = 0;
513 	desc->active_xfer = false;
514 }
515 
516 /* Call must be protected by lock. */
517 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
518 {
519 	struct at_xdmac_desc *desc;
520 
521 	if (list_empty(&atchan->free_descs_list)) {
522 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
523 	} else {
524 		desc = list_first_entry(&atchan->free_descs_list,
525 					struct at_xdmac_desc, desc_node);
526 		list_del(&desc->desc_node);
527 		at_xdmac_init_used_desc(desc);
528 	}
529 
530 	return desc;
531 }
532 
533 static void at_xdmac_queue_desc(struct dma_chan *chan,
534 				struct at_xdmac_desc *prev,
535 				struct at_xdmac_desc *desc)
536 {
537 	if (!prev || !desc)
538 		return;
539 
540 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
541 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
542 
543 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
544 		__func__, prev, &prev->lld.mbr_nda);
545 }
546 
547 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
548 						  struct at_xdmac_desc *desc)
549 {
550 	if (!desc)
551 		return;
552 
553 	desc->lld.mbr_bc++;
554 
555 	dev_dbg(chan2dev(chan),
556 		"%s: incrementing the block count of the desc 0x%p\n",
557 		__func__, desc);
558 }
559 
560 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
561 				       struct of_dma *of_dma)
562 {
563 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
564 	struct at_xdmac_chan	*atchan;
565 	struct dma_chan		*chan;
566 	struct device		*dev = atxdmac->dma.dev;
567 
568 	if (dma_spec->args_count != 1) {
569 		dev_err(dev, "dma phandler args: bad number of args\n");
570 		return NULL;
571 	}
572 
573 	chan = dma_get_any_slave_channel(&atxdmac->dma);
574 	if (!chan) {
575 		dev_err(dev, "can't get a dma channel\n");
576 		return NULL;
577 	}
578 
579 	atchan = to_at_xdmac_chan(chan);
580 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
581 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
582 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
583 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
584 		 atchan->memif, atchan->perif, atchan->perid);
585 
586 	return chan;
587 }
588 
589 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
590 				      enum dma_transfer_direction direction)
591 {
592 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
593 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
594 	int			csize, dwidth;
595 
596 	if (direction == DMA_DEV_TO_MEM) {
597 		atchan->cfg =
598 			AT91_XDMAC_DT_PERID(atchan->perid)
599 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
600 			| AT_XDMAC_CC_SAM_FIXED_AM
601 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
602 			| AT_XDMAC_CC_DSYNC_PER2MEM
603 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
604 			| AT_XDMAC_CC_TYPE_PER_TRAN;
605 		if (atxdmac->layout->sdif)
606 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) |
607 				       AT_XDMAC_CC_SIF(atchan->perif);
608 
609 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
610 		if (csize < 0) {
611 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
612 			return -EINVAL;
613 		}
614 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
615 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
616 		if (dwidth < 0) {
617 			dev_err(chan2dev(chan), "invalid src addr width value\n");
618 			return -EINVAL;
619 		}
620 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
621 	} else if (direction == DMA_MEM_TO_DEV) {
622 		atchan->cfg =
623 			AT91_XDMAC_DT_PERID(atchan->perid)
624 			| AT_XDMAC_CC_DAM_FIXED_AM
625 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
626 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
627 			| AT_XDMAC_CC_DSYNC_MEM2PER
628 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
629 			| AT_XDMAC_CC_TYPE_PER_TRAN;
630 		if (atxdmac->layout->sdif)
631 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) |
632 				       AT_XDMAC_CC_SIF(atchan->memif);
633 
634 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
635 		if (csize < 0) {
636 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
637 			return -EINVAL;
638 		}
639 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
640 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
641 		if (dwidth < 0) {
642 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
643 			return -EINVAL;
644 		}
645 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
646 	}
647 
648 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
649 
650 	return 0;
651 }
652 
653 /*
654  * Only check that maxburst and addr width values are supported by the
655  * the controller but not that the configuration is good to perform the
656  * transfer since we don't know the direction at this stage.
657  */
658 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
659 {
660 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
661 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
662 		return -EINVAL;
663 
664 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
665 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
666 		return -EINVAL;
667 
668 	return 0;
669 }
670 
671 static int at_xdmac_set_slave_config(struct dma_chan *chan,
672 				      struct dma_slave_config *sconfig)
673 {
674 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
675 
676 	if (at_xdmac_check_slave_config(sconfig)) {
677 		dev_err(chan2dev(chan), "invalid slave configuration\n");
678 		return -EINVAL;
679 	}
680 
681 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
682 
683 	return 0;
684 }
685 
686 static struct dma_async_tx_descriptor *
687 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
688 		       unsigned int sg_len, enum dma_transfer_direction direction,
689 		       unsigned long flags, void *context)
690 {
691 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
692 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
693 	struct scatterlist		*sg;
694 	int				i;
695 	unsigned int			xfer_size = 0;
696 	unsigned long			irqflags;
697 	struct dma_async_tx_descriptor	*ret = NULL;
698 
699 	if (!sgl)
700 		return NULL;
701 
702 	if (!is_slave_direction(direction)) {
703 		dev_err(chan2dev(chan), "invalid DMA direction\n");
704 		return NULL;
705 	}
706 
707 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
708 		 __func__, sg_len,
709 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
710 		 flags);
711 
712 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
713 	spin_lock_irqsave(&atchan->lock, irqflags);
714 
715 	if (at_xdmac_compute_chan_conf(chan, direction))
716 		goto spin_unlock;
717 
718 	/* Prepare descriptors. */
719 	for_each_sg(sgl, sg, sg_len, i) {
720 		struct at_xdmac_desc	*desc = NULL;
721 		u32			len, mem, dwidth, fixed_dwidth;
722 
723 		len = sg_dma_len(sg);
724 		mem = sg_dma_address(sg);
725 		if (unlikely(!len)) {
726 			dev_err(chan2dev(chan), "sg data length is zero\n");
727 			goto spin_unlock;
728 		}
729 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
730 			 __func__, i, len, mem);
731 
732 		desc = at_xdmac_get_desc(atchan);
733 		if (!desc) {
734 			dev_err(chan2dev(chan), "can't get descriptor\n");
735 			if (first)
736 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
737 			goto spin_unlock;
738 		}
739 
740 		/* Linked list descriptor setup. */
741 		if (direction == DMA_DEV_TO_MEM) {
742 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
743 			desc->lld.mbr_da = mem;
744 		} else {
745 			desc->lld.mbr_sa = mem;
746 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
747 		}
748 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
749 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
750 			       ? dwidth
751 			       : AT_XDMAC_CC_DWIDTH_BYTE;
752 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
753 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
754 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
755 			| (len >> fixed_dwidth);				/* microblock length */
756 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
757 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
758 		dev_dbg(chan2dev(chan),
759 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
760 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
761 
762 		/* Chain lld. */
763 		if (prev)
764 			at_xdmac_queue_desc(chan, prev, desc);
765 
766 		prev = desc;
767 		if (!first)
768 			first = desc;
769 
770 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
771 			 __func__, desc, first);
772 		list_add_tail(&desc->desc_node, &first->descs_list);
773 		xfer_size += len;
774 	}
775 
776 
777 	first->tx_dma_desc.flags = flags;
778 	first->xfer_size = xfer_size;
779 	first->direction = direction;
780 	ret = &first->tx_dma_desc;
781 
782 spin_unlock:
783 	spin_unlock_irqrestore(&atchan->lock, irqflags);
784 	return ret;
785 }
786 
787 static struct dma_async_tx_descriptor *
788 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
789 			 size_t buf_len, size_t period_len,
790 			 enum dma_transfer_direction direction,
791 			 unsigned long flags)
792 {
793 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
794 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
795 	unsigned int		periods = buf_len / period_len;
796 	int			i;
797 	unsigned long		irqflags;
798 
799 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
800 		__func__, &buf_addr, buf_len, period_len,
801 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
802 
803 	if (!is_slave_direction(direction)) {
804 		dev_err(chan2dev(chan), "invalid DMA direction\n");
805 		return NULL;
806 	}
807 
808 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
809 		dev_err(chan2dev(chan), "channel currently used\n");
810 		return NULL;
811 	}
812 
813 	if (at_xdmac_compute_chan_conf(chan, direction))
814 		return NULL;
815 
816 	for (i = 0; i < periods; i++) {
817 		struct at_xdmac_desc	*desc = NULL;
818 
819 		spin_lock_irqsave(&atchan->lock, irqflags);
820 		desc = at_xdmac_get_desc(atchan);
821 		if (!desc) {
822 			dev_err(chan2dev(chan), "can't get descriptor\n");
823 			if (first)
824 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
825 			spin_unlock_irqrestore(&atchan->lock, irqflags);
826 			return NULL;
827 		}
828 		spin_unlock_irqrestore(&atchan->lock, irqflags);
829 		dev_dbg(chan2dev(chan),
830 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
831 			__func__, desc, &desc->tx_dma_desc.phys);
832 
833 		if (direction == DMA_DEV_TO_MEM) {
834 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
835 			desc->lld.mbr_da = buf_addr + i * period_len;
836 		} else {
837 			desc->lld.mbr_sa = buf_addr + i * period_len;
838 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
839 		}
840 		desc->lld.mbr_cfg = atchan->cfg;
841 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
842 			| AT_XDMAC_MBR_UBC_NDEN
843 			| AT_XDMAC_MBR_UBC_NSEN
844 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
845 
846 		dev_dbg(chan2dev(chan),
847 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
848 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
849 
850 		/* Chain lld. */
851 		if (prev)
852 			at_xdmac_queue_desc(chan, prev, desc);
853 
854 		prev = desc;
855 		if (!first)
856 			first = desc;
857 
858 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
859 			 __func__, desc, first);
860 		list_add_tail(&desc->desc_node, &first->descs_list);
861 	}
862 
863 	at_xdmac_queue_desc(chan, prev, first);
864 	first->tx_dma_desc.flags = flags;
865 	first->xfer_size = buf_len;
866 	first->direction = direction;
867 
868 	return &first->tx_dma_desc;
869 }
870 
871 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
872 {
873 	u32 width;
874 
875 	/*
876 	 * Check address alignment to select the greater data width we
877 	 * can use.
878 	 *
879 	 * Some XDMAC implementations don't provide dword transfer, in
880 	 * this case selecting dword has the same behavior as
881 	 * selecting word transfers.
882 	 */
883 	if (!(addr & 7)) {
884 		width = AT_XDMAC_CC_DWIDTH_DWORD;
885 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
886 	} else if (!(addr & 3)) {
887 		width = AT_XDMAC_CC_DWIDTH_WORD;
888 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
889 	} else if (!(addr & 1)) {
890 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
891 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
892 	} else {
893 		width = AT_XDMAC_CC_DWIDTH_BYTE;
894 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
895 	}
896 
897 	return width;
898 }
899 
900 static struct at_xdmac_desc *
901 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
902 				struct at_xdmac_chan *atchan,
903 				struct at_xdmac_desc *prev,
904 				dma_addr_t src, dma_addr_t dst,
905 				struct dma_interleaved_template *xt,
906 				struct data_chunk *chunk)
907 {
908 	struct at_xdmac_desc	*desc;
909 	u32			dwidth;
910 	unsigned long		flags;
911 	size_t			ublen;
912 	/*
913 	 * WARNING: The channel configuration is set here since there is no
914 	 * dmaengine_slave_config call in this case. Moreover we don't know the
915 	 * direction, it involves we can't dynamically set the source and dest
916 	 * interface so we have to use the same one. Only interface 0 allows EBI
917 	 * access. Hopefully we can access DDR through both ports (at least on
918 	 * SAMA5D4x), so we can use the same interface for source and dest,
919 	 * that solves the fact we don't know the direction.
920 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
921 	 * match the one of another channel. If not, it could lead to spurious
922 	 * flag status.
923 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
924 	 * Thus, no need to have the SIF/DIF interfaces here.
925 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
926 	 * zero.
927 	 */
928 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
929 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
930 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
931 
932 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
933 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
934 		dev_dbg(chan2dev(chan),
935 			"%s: chunk too big (%zu, max size %lu)...\n",
936 			__func__, chunk->size,
937 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
938 		return NULL;
939 	}
940 
941 	if (prev)
942 		dev_dbg(chan2dev(chan),
943 			"Adding items at the end of desc 0x%p\n", prev);
944 
945 	if (xt->src_inc) {
946 		if (xt->src_sgl)
947 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
948 		else
949 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
950 	}
951 
952 	if (xt->dst_inc) {
953 		if (xt->dst_sgl)
954 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
955 		else
956 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
957 	}
958 
959 	spin_lock_irqsave(&atchan->lock, flags);
960 	desc = at_xdmac_get_desc(atchan);
961 	spin_unlock_irqrestore(&atchan->lock, flags);
962 	if (!desc) {
963 		dev_err(chan2dev(chan), "can't get descriptor\n");
964 		return NULL;
965 	}
966 
967 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
968 
969 	ublen = chunk->size >> dwidth;
970 
971 	desc->lld.mbr_sa = src;
972 	desc->lld.mbr_da = dst;
973 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
974 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
975 
976 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
977 		| AT_XDMAC_MBR_UBC_NDEN
978 		| AT_XDMAC_MBR_UBC_NSEN
979 		| ublen;
980 	desc->lld.mbr_cfg = chan_cc;
981 
982 	dev_dbg(chan2dev(chan),
983 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
984 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
985 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
986 
987 	/* Chain lld. */
988 	if (prev)
989 		at_xdmac_queue_desc(chan, prev, desc);
990 
991 	return desc;
992 }
993 
994 static struct dma_async_tx_descriptor *
995 at_xdmac_prep_interleaved(struct dma_chan *chan,
996 			  struct dma_interleaved_template *xt,
997 			  unsigned long flags)
998 {
999 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1000 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
1001 	dma_addr_t		dst_addr, src_addr;
1002 	size_t			src_skip = 0, dst_skip = 0, len = 0;
1003 	struct data_chunk	*chunk;
1004 	int			i;
1005 
1006 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
1007 		return NULL;
1008 
1009 	/*
1010 	 * TODO: Handle the case where we have to repeat a chain of
1011 	 * descriptors...
1012 	 */
1013 	if ((xt->numf > 1) && (xt->frame_size > 1))
1014 		return NULL;
1015 
1016 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
1017 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
1018 		xt->frame_size, flags);
1019 
1020 	src_addr = xt->src_start;
1021 	dst_addr = xt->dst_start;
1022 
1023 	if (xt->numf > 1) {
1024 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
1025 							NULL,
1026 							src_addr, dst_addr,
1027 							xt, xt->sgl);
1028 
1029 		/* Length of the block is (BLEN+1) microblocks. */
1030 		for (i = 0; i < xt->numf - 1; i++)
1031 			at_xdmac_increment_block_count(chan, first);
1032 
1033 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1034 			__func__, first, first);
1035 		list_add_tail(&first->desc_node, &first->descs_list);
1036 	} else {
1037 		for (i = 0; i < xt->frame_size; i++) {
1038 			size_t src_icg = 0, dst_icg = 0;
1039 			struct at_xdmac_desc *desc;
1040 
1041 			chunk = xt->sgl + i;
1042 
1043 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
1044 			src_icg = dmaengine_get_src_icg(xt, chunk);
1045 
1046 			src_skip = chunk->size + src_icg;
1047 			dst_skip = chunk->size + dst_icg;
1048 
1049 			dev_dbg(chan2dev(chan),
1050 				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
1051 				__func__, chunk->size, src_icg, dst_icg);
1052 
1053 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
1054 							       prev,
1055 							       src_addr, dst_addr,
1056 							       xt, chunk);
1057 			if (!desc) {
1058 				list_splice_init(&first->descs_list,
1059 						 &atchan->free_descs_list);
1060 				return NULL;
1061 			}
1062 
1063 			if (!first)
1064 				first = desc;
1065 
1066 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1067 				__func__, desc, first);
1068 			list_add_tail(&desc->desc_node, &first->descs_list);
1069 
1070 			if (xt->src_sgl)
1071 				src_addr += src_skip;
1072 
1073 			if (xt->dst_sgl)
1074 				dst_addr += dst_skip;
1075 
1076 			len += chunk->size;
1077 			prev = desc;
1078 		}
1079 	}
1080 
1081 	first->tx_dma_desc.cookie = -EBUSY;
1082 	first->tx_dma_desc.flags = flags;
1083 	first->xfer_size = len;
1084 
1085 	return &first->tx_dma_desc;
1086 }
1087 
1088 static struct dma_async_tx_descriptor *
1089 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1090 			 size_t len, unsigned long flags)
1091 {
1092 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1093 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1094 	size_t			remaining_size = len, xfer_size = 0, ublen;
1095 	dma_addr_t		src_addr = src, dst_addr = dest;
1096 	u32			dwidth;
1097 	/*
1098 	 * WARNING: We don't know the direction, it involves we can't
1099 	 * dynamically set the source and dest interface so we have to use the
1100 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1101 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1102 	 * the same interface for source and dest, that solves the fact we
1103 	 * don't know the direction.
1104 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1105 	 * match the one of another channel. If not, it could lead to spurious
1106 	 * flag status.
1107 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1108 	 * Thus, no need to have the SIF/DIF interfaces here.
1109 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1110 	 * zero.
1111 	 */
1112 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1113 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1114 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1115 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1116 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1117 	unsigned long		irqflags;
1118 
1119 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1120 		__func__, &src, &dest, len, flags);
1121 
1122 	if (unlikely(!len))
1123 		return NULL;
1124 
1125 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1126 
1127 	/* Prepare descriptors. */
1128 	while (remaining_size) {
1129 		struct at_xdmac_desc	*desc = NULL;
1130 
1131 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1132 
1133 		spin_lock_irqsave(&atchan->lock, irqflags);
1134 		desc = at_xdmac_get_desc(atchan);
1135 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1136 		if (!desc) {
1137 			dev_err(chan2dev(chan), "can't get descriptor\n");
1138 			if (first)
1139 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
1140 			return NULL;
1141 		}
1142 
1143 		/* Update src and dest addresses. */
1144 		src_addr += xfer_size;
1145 		dst_addr += xfer_size;
1146 
1147 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1148 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1149 		else
1150 			xfer_size = remaining_size;
1151 
1152 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1153 
1154 		/* Check remaining length and change data width if needed. */
1155 		dwidth = at_xdmac_align_width(chan,
1156 					      src_addr | dst_addr | xfer_size);
1157 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1158 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1159 
1160 		ublen = xfer_size >> dwidth;
1161 		remaining_size -= xfer_size;
1162 
1163 		desc->lld.mbr_sa = src_addr;
1164 		desc->lld.mbr_da = dst_addr;
1165 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1166 			| AT_XDMAC_MBR_UBC_NDEN
1167 			| AT_XDMAC_MBR_UBC_NSEN
1168 			| ublen;
1169 		desc->lld.mbr_cfg = chan_cc;
1170 
1171 		dev_dbg(chan2dev(chan),
1172 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1173 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1174 
1175 		/* Chain lld. */
1176 		if (prev)
1177 			at_xdmac_queue_desc(chan, prev, desc);
1178 
1179 		prev = desc;
1180 		if (!first)
1181 			first = desc;
1182 
1183 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1184 			 __func__, desc, first);
1185 		list_add_tail(&desc->desc_node, &first->descs_list);
1186 	}
1187 
1188 	first->tx_dma_desc.flags = flags;
1189 	first->xfer_size = len;
1190 
1191 	return &first->tx_dma_desc;
1192 }
1193 
1194 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1195 							 struct at_xdmac_chan *atchan,
1196 							 dma_addr_t dst_addr,
1197 							 size_t len,
1198 							 int value)
1199 {
1200 	struct at_xdmac_desc	*desc;
1201 	unsigned long		flags;
1202 	size_t			ublen;
1203 	u32			dwidth;
1204 	/*
1205 	 * WARNING: The channel configuration is set here since there is no
1206 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1207 	 * direction, it involves we can't dynamically set the source and dest
1208 	 * interface so we have to use the same one. Only interface 0 allows EBI
1209 	 * access. Hopefully we can access DDR through both ports (at least on
1210 	 * SAMA5D4x), so we can use the same interface for source and dest,
1211 	 * that solves the fact we don't know the direction.
1212 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1213 	 * match the one of another channel. If not, it could lead to spurious
1214 	 * flag status.
1215 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1216 	 * Thus, no need to have the SIF/DIF interfaces here.
1217 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1218 	 * zero.
1219 	 */
1220 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1221 					| AT_XDMAC_CC_DAM_UBS_AM
1222 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1223 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1224 					| AT_XDMAC_CC_MEMSET_HW_MODE
1225 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1226 
1227 	dwidth = at_xdmac_align_width(chan, dst_addr);
1228 
1229 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1230 		dev_err(chan2dev(chan),
1231 			"%s: Transfer too large, aborting...\n",
1232 			__func__);
1233 		return NULL;
1234 	}
1235 
1236 	spin_lock_irqsave(&atchan->lock, flags);
1237 	desc = at_xdmac_get_desc(atchan);
1238 	spin_unlock_irqrestore(&atchan->lock, flags);
1239 	if (!desc) {
1240 		dev_err(chan2dev(chan), "can't get descriptor\n");
1241 		return NULL;
1242 	}
1243 
1244 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1245 
1246 	ublen = len >> dwidth;
1247 
1248 	desc->lld.mbr_da = dst_addr;
1249 	desc->lld.mbr_ds = value;
1250 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1251 		| AT_XDMAC_MBR_UBC_NDEN
1252 		| AT_XDMAC_MBR_UBC_NSEN
1253 		| ublen;
1254 	desc->lld.mbr_cfg = chan_cc;
1255 
1256 	dev_dbg(chan2dev(chan),
1257 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1258 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1259 		desc->lld.mbr_cfg);
1260 
1261 	return desc;
1262 }
1263 
1264 static struct dma_async_tx_descriptor *
1265 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1266 			 size_t len, unsigned long flags)
1267 {
1268 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1269 	struct at_xdmac_desc	*desc;
1270 
1271 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1272 		__func__, &dest, len, value, flags);
1273 
1274 	if (unlikely(!len))
1275 		return NULL;
1276 
1277 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1278 	list_add_tail(&desc->desc_node, &desc->descs_list);
1279 
1280 	desc->tx_dma_desc.cookie = -EBUSY;
1281 	desc->tx_dma_desc.flags = flags;
1282 	desc->xfer_size = len;
1283 
1284 	return &desc->tx_dma_desc;
1285 }
1286 
1287 static struct dma_async_tx_descriptor *
1288 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1289 			    unsigned int sg_len, int value,
1290 			    unsigned long flags)
1291 {
1292 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1293 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1294 				*ppdesc = NULL, *first = NULL;
1295 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1296 	size_t			stride = 0, pstride = 0, len = 0;
1297 	int			i;
1298 
1299 	if (!sgl)
1300 		return NULL;
1301 
1302 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1303 		__func__, sg_len, value, flags);
1304 
1305 	/* Prepare descriptors. */
1306 	for_each_sg(sgl, sg, sg_len, i) {
1307 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1308 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1309 			value, flags);
1310 		desc = at_xdmac_memset_create_desc(chan, atchan,
1311 						   sg_dma_address(sg),
1312 						   sg_dma_len(sg),
1313 						   value);
1314 		if (!desc && first)
1315 			list_splice_init(&first->descs_list,
1316 					 &atchan->free_descs_list);
1317 
1318 		if (!first)
1319 			first = desc;
1320 
1321 		/* Update our strides */
1322 		pstride = stride;
1323 		if (psg)
1324 			stride = sg_dma_address(sg) -
1325 				(sg_dma_address(psg) + sg_dma_len(psg));
1326 
1327 		/*
1328 		 * The scatterlist API gives us only the address and
1329 		 * length of each elements.
1330 		 *
1331 		 * Unfortunately, we don't have the stride, which we
1332 		 * will need to compute.
1333 		 *
1334 		 * That make us end up in a situation like this one:
1335 		 *    len    stride    len    stride    len
1336 		 * +-------+        +-------+        +-------+
1337 		 * |  N-2  |        |  N-1  |        |   N   |
1338 		 * +-------+        +-------+        +-------+
1339 		 *
1340 		 * We need all these three elements (N-2, N-1 and N)
1341 		 * to actually take the decision on whether we need to
1342 		 * queue N-1 or reuse N-2.
1343 		 *
1344 		 * We will only consider N if it is the last element.
1345 		 */
1346 		if (ppdesc && pdesc) {
1347 			if ((stride == pstride) &&
1348 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1349 				dev_dbg(chan2dev(chan),
1350 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1351 					__func__, pdesc, ppdesc);
1352 
1353 				/*
1354 				 * Increment the block count of the
1355 				 * N-2 descriptor
1356 				 */
1357 				at_xdmac_increment_block_count(chan, ppdesc);
1358 				ppdesc->lld.mbr_dus = stride;
1359 
1360 				/*
1361 				 * Put back the N-1 descriptor in the
1362 				 * free descriptor list
1363 				 */
1364 				list_add_tail(&pdesc->desc_node,
1365 					      &atchan->free_descs_list);
1366 
1367 				/*
1368 				 * Make our N-1 descriptor pointer
1369 				 * point to the N-2 since they were
1370 				 * actually merged.
1371 				 */
1372 				pdesc = ppdesc;
1373 
1374 			/*
1375 			 * Rule out the case where we don't have
1376 			 * pstride computed yet (our second sg
1377 			 * element)
1378 			 *
1379 			 * We also want to catch the case where there
1380 			 * would be a negative stride,
1381 			 */
1382 			} else if (pstride ||
1383 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1384 				/*
1385 				 * Queue the N-1 descriptor after the
1386 				 * N-2
1387 				 */
1388 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1389 
1390 				/*
1391 				 * Add the N-1 descriptor to the list
1392 				 * of the descriptors used for this
1393 				 * transfer
1394 				 */
1395 				list_add_tail(&desc->desc_node,
1396 					      &first->descs_list);
1397 				dev_dbg(chan2dev(chan),
1398 					"%s: add desc 0x%p to descs_list 0x%p\n",
1399 					__func__, desc, first);
1400 			}
1401 		}
1402 
1403 		/*
1404 		 * If we are the last element, just see if we have the
1405 		 * same size than the previous element.
1406 		 *
1407 		 * If so, we can merge it with the previous descriptor
1408 		 * since we don't care about the stride anymore.
1409 		 */
1410 		if ((i == (sg_len - 1)) &&
1411 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1412 			dev_dbg(chan2dev(chan),
1413 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1414 				__func__, desc, pdesc);
1415 
1416 			/*
1417 			 * Increment the block count of the N-1
1418 			 * descriptor
1419 			 */
1420 			at_xdmac_increment_block_count(chan, pdesc);
1421 			pdesc->lld.mbr_dus = stride;
1422 
1423 			/*
1424 			 * Put back the N descriptor in the free
1425 			 * descriptor list
1426 			 */
1427 			list_add_tail(&desc->desc_node,
1428 				      &atchan->free_descs_list);
1429 		}
1430 
1431 		/* Update our descriptors */
1432 		ppdesc = pdesc;
1433 		pdesc = desc;
1434 
1435 		/* Update our scatter pointers */
1436 		ppsg = psg;
1437 		psg = sg;
1438 
1439 		len += sg_dma_len(sg);
1440 	}
1441 
1442 	first->tx_dma_desc.cookie = -EBUSY;
1443 	first->tx_dma_desc.flags = flags;
1444 	first->xfer_size = len;
1445 
1446 	return &first->tx_dma_desc;
1447 }
1448 
1449 static enum dma_status
1450 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1451 		struct dma_tx_state *txstate)
1452 {
1453 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1454 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1455 	struct at_xdmac_desc	*desc, *_desc;
1456 	struct list_head	*descs_list;
1457 	enum dma_status		ret;
1458 	int			residue, retry;
1459 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1460 	u8			dwidth = 0;
1461 	unsigned long		flags;
1462 	bool			initd;
1463 
1464 	ret = dma_cookie_status(chan, cookie, txstate);
1465 	if (ret == DMA_COMPLETE)
1466 		return ret;
1467 
1468 	if (!txstate)
1469 		return ret;
1470 
1471 	spin_lock_irqsave(&atchan->lock, flags);
1472 
1473 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1474 
1475 	/*
1476 	 * If the transfer has not been started yet, don't need to compute the
1477 	 * residue, it's the transfer length.
1478 	 */
1479 	if (!desc->active_xfer) {
1480 		dma_set_residue(txstate, desc->xfer_size);
1481 		goto spin_unlock;
1482 	}
1483 
1484 	residue = desc->xfer_size;
1485 	/*
1486 	 * Flush FIFO: only relevant when the transfer is source peripheral
1487 	 * synchronized. Flush is needed before reading CUBC because data in
1488 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1489 	 * transfer length while we have data in FIFO can cause issue.
1490 	 * Usecase: atmel USART has a timeout which means I have received
1491 	 * characters but there is no more character received for a while. On
1492 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1493 	 * we will return a residue of the transfer length. It means no data
1494 	 * received. If an application is waiting for these data, it will hang
1495 	 * since we won't have another USART timeout without receiving new
1496 	 * data.
1497 	 */
1498 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1499 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1500 	if ((desc->lld.mbr_cfg & mask) == value) {
1501 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1502 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1503 			cpu_relax();
1504 	}
1505 
1506 	/*
1507 	 * The easiest way to compute the residue should be to pause the DMA
1508 	 * but doing this can lead to miss some data as some devices don't
1509 	 * have FIFO.
1510 	 * We need to read several registers because:
1511 	 * - DMA is running therefore a descriptor change is possible while
1512 	 * reading these registers
1513 	 * - When the block transfer is done, the value of the CUBC register
1514 	 * is set to its initial value until the fetch of the next descriptor.
1515 	 * This value will corrupt the residue calculation so we have to skip
1516 	 * it.
1517 	 *
1518 	 * INITD --------                    ------------
1519 	 *              |____________________|
1520 	 *       _______________________  _______________
1521 	 * NDA       @desc2             \/   @desc3
1522 	 *       _______________________/\_______________
1523 	 *       __________  ___________  _______________
1524 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1525 	 *       __________/\___________/\_______________
1526 	 *
1527 	 * Since descriptors are aligned on 64 bits, we can assume that
1528 	 * the update of NDA and CUBC is atomic.
1529 	 * Memory barriers are used to ensure the read order of the registers.
1530 	 * A max number of retries is set because unlikely it could never ends.
1531 	 */
1532 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1533 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1534 		rmb();
1535 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1536 		rmb();
1537 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1538 		rmb();
1539 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1540 		rmb();
1541 
1542 		if ((check_nda == cur_nda) && initd)
1543 			break;
1544 	}
1545 
1546 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1547 		ret = DMA_ERROR;
1548 		goto spin_unlock;
1549 	}
1550 
1551 	/*
1552 	 * Flush FIFO: only relevant when the transfer is source peripheral
1553 	 * synchronized. Another flush is needed here because CUBC is updated
1554 	 * when the controller sends the data write command. It can lead to
1555 	 * report data that are not written in the memory or the device. The
1556 	 * FIFO flush ensures that data are really written.
1557 	 */
1558 	if ((desc->lld.mbr_cfg & mask) == value) {
1559 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1560 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1561 			cpu_relax();
1562 	}
1563 
1564 	/*
1565 	 * Remove size of all microblocks already transferred and the current
1566 	 * one. Then add the remaining size to transfer of the current
1567 	 * microblock.
1568 	 */
1569 	descs_list = &desc->descs_list;
1570 	list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1571 		dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1572 		residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1573 		if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1574 			break;
1575 	}
1576 	residue += cur_ubc << dwidth;
1577 
1578 	dma_set_residue(txstate, residue);
1579 
1580 	dev_dbg(chan2dev(chan),
1581 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1582 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1583 
1584 spin_unlock:
1585 	spin_unlock_irqrestore(&atchan->lock, flags);
1586 	return ret;
1587 }
1588 
1589 /* Call must be protected by lock. */
1590 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1591 				    struct at_xdmac_desc *desc)
1592 {
1593 	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1594 
1595 	/*
1596 	 * Remove the transfer from the transfer list then move the transfer
1597 	 * descriptors into the free descriptors list.
1598 	 */
1599 	list_del(&desc->xfer_node);
1600 	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1601 }
1602 
1603 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1604 {
1605 	struct at_xdmac_desc	*desc;
1606 
1607 	/*
1608 	 * If channel is enabled, do nothing, advance_work will be triggered
1609 	 * after the interruption.
1610 	 */
1611 	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1612 		desc = list_first_entry(&atchan->xfers_list,
1613 					struct at_xdmac_desc,
1614 					xfer_node);
1615 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1616 		if (!desc->active_xfer)
1617 			at_xdmac_start_xfer(atchan, desc);
1618 	}
1619 }
1620 
1621 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1622 {
1623 	struct at_xdmac_desc		*desc;
1624 	struct dma_async_tx_descriptor	*txd;
1625 
1626 	if (!list_empty(&atchan->xfers_list)) {
1627 		desc = list_first_entry(&atchan->xfers_list,
1628 					struct at_xdmac_desc, xfer_node);
1629 		txd = &desc->tx_dma_desc;
1630 
1631 		if (txd->flags & DMA_PREP_INTERRUPT)
1632 			dmaengine_desc_get_callback_invoke(txd, NULL);
1633 	}
1634 }
1635 
1636 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1637 {
1638 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1639 	struct at_xdmac_desc	*bad_desc;
1640 
1641 	/*
1642 	 * The descriptor currently at the head of the active list is
1643 	 * broken. Since we don't have any way to report errors, we'll
1644 	 * just have to scream loudly and try to continue with other
1645 	 * descriptors queued (if any).
1646 	 */
1647 	if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1648 		dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1649 	if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1650 		dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1651 	if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1652 		dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1653 
1654 	spin_lock_irq(&atchan->lock);
1655 
1656 	/* Channel must be disabled first as it's not done automatically */
1657 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1658 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1659 		cpu_relax();
1660 
1661 	bad_desc = list_first_entry(&atchan->xfers_list,
1662 				    struct at_xdmac_desc,
1663 				    xfer_node);
1664 
1665 	spin_unlock_irq(&atchan->lock);
1666 
1667 	/* Print bad descriptor's details if needed */
1668 	dev_dbg(chan2dev(&atchan->chan),
1669 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1670 		__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1671 		bad_desc->lld.mbr_ubc);
1672 
1673 	/* Then continue with usual descriptor management */
1674 }
1675 
1676 static void at_xdmac_tasklet(struct tasklet_struct *t)
1677 {
1678 	struct at_xdmac_chan	*atchan = from_tasklet(atchan, t, tasklet);
1679 	struct at_xdmac_desc	*desc;
1680 	u32			error_mask;
1681 
1682 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1683 		__func__, atchan->irq_status);
1684 
1685 	error_mask = AT_XDMAC_CIS_RBEIS
1686 		     | AT_XDMAC_CIS_WBEIS
1687 		     | AT_XDMAC_CIS_ROIS;
1688 
1689 	if (at_xdmac_chan_is_cyclic(atchan)) {
1690 		at_xdmac_handle_cyclic(atchan);
1691 	} else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
1692 		   || (atchan->irq_status & error_mask)) {
1693 		struct dma_async_tx_descriptor  *txd;
1694 
1695 		if (atchan->irq_status & error_mask)
1696 			at_xdmac_handle_error(atchan);
1697 
1698 		spin_lock_irq(&atchan->lock);
1699 		desc = list_first_entry(&atchan->xfers_list,
1700 					struct at_xdmac_desc,
1701 					xfer_node);
1702 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1703 		if (!desc->active_xfer) {
1704 			dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1705 			spin_unlock_irq(&atchan->lock);
1706 			return;
1707 		}
1708 
1709 		txd = &desc->tx_dma_desc;
1710 
1711 		at_xdmac_remove_xfer(atchan, desc);
1712 		spin_unlock_irq(&atchan->lock);
1713 
1714 		dma_cookie_complete(txd);
1715 		if (txd->flags & DMA_PREP_INTERRUPT)
1716 			dmaengine_desc_get_callback_invoke(txd, NULL);
1717 
1718 		dma_run_dependencies(txd);
1719 
1720 		spin_lock_irq(&atchan->lock);
1721 		at_xdmac_advance_work(atchan);
1722 		spin_unlock_irq(&atchan->lock);
1723 	}
1724 }
1725 
1726 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1727 {
1728 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1729 	struct at_xdmac_chan	*atchan;
1730 	u32			imr, status, pending;
1731 	u32			chan_imr, chan_status;
1732 	int			i, ret = IRQ_NONE;
1733 
1734 	do {
1735 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1736 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1737 		pending = status & imr;
1738 
1739 		dev_vdbg(atxdmac->dma.dev,
1740 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1741 			 __func__, status, imr, pending);
1742 
1743 		if (!pending)
1744 			break;
1745 
1746 		/* We have to find which channel has generated the interrupt. */
1747 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1748 			if (!((1 << i) & pending))
1749 				continue;
1750 
1751 			atchan = &atxdmac->chan[i];
1752 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1753 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1754 			atchan->irq_status = chan_status & chan_imr;
1755 			dev_vdbg(atxdmac->dma.dev,
1756 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1757 				 __func__, i, chan_imr, chan_status);
1758 			dev_vdbg(chan2dev(&atchan->chan),
1759 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1760 				 __func__,
1761 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1762 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1763 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1764 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1765 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1766 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1767 
1768 			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1769 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1770 
1771 			tasklet_schedule(&atchan->tasklet);
1772 			ret = IRQ_HANDLED;
1773 		}
1774 
1775 	} while (pending);
1776 
1777 	return ret;
1778 }
1779 
1780 static void at_xdmac_issue_pending(struct dma_chan *chan)
1781 {
1782 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1783 	unsigned long flags;
1784 
1785 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1786 
1787 	if (!at_xdmac_chan_is_cyclic(atchan)) {
1788 		spin_lock_irqsave(&atchan->lock, flags);
1789 		at_xdmac_advance_work(atchan);
1790 		spin_unlock_irqrestore(&atchan->lock, flags);
1791 	}
1792 
1793 	return;
1794 }
1795 
1796 static int at_xdmac_device_config(struct dma_chan *chan,
1797 				  struct dma_slave_config *config)
1798 {
1799 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1800 	int ret;
1801 	unsigned long		flags;
1802 
1803 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1804 
1805 	spin_lock_irqsave(&atchan->lock, flags);
1806 	ret = at_xdmac_set_slave_config(chan, config);
1807 	spin_unlock_irqrestore(&atchan->lock, flags);
1808 
1809 	return ret;
1810 }
1811 
1812 static int at_xdmac_device_pause(struct dma_chan *chan)
1813 {
1814 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1815 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1816 	unsigned long		flags;
1817 
1818 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1819 
1820 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1821 		return 0;
1822 
1823 	spin_lock_irqsave(&atchan->lock, flags);
1824 	at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask);
1825 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1826 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1827 		cpu_relax();
1828 	spin_unlock_irqrestore(&atchan->lock, flags);
1829 
1830 	return 0;
1831 }
1832 
1833 static int at_xdmac_device_resume(struct dma_chan *chan)
1834 {
1835 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1836 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1837 	unsigned long		flags;
1838 
1839 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1840 
1841 	spin_lock_irqsave(&atchan->lock, flags);
1842 	if (!at_xdmac_chan_is_paused(atchan)) {
1843 		spin_unlock_irqrestore(&atchan->lock, flags);
1844 		return 0;
1845 	}
1846 
1847 	at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1848 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1849 	spin_unlock_irqrestore(&atchan->lock, flags);
1850 
1851 	return 0;
1852 }
1853 
1854 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1855 {
1856 	struct at_xdmac_desc	*desc, *_desc;
1857 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1858 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1859 	unsigned long		flags;
1860 
1861 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1862 
1863 	spin_lock_irqsave(&atchan->lock, flags);
1864 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1865 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1866 		cpu_relax();
1867 
1868 	/* Cancel all pending transfers. */
1869 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1870 		at_xdmac_remove_xfer(atchan, desc);
1871 
1872 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1873 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1874 	spin_unlock_irqrestore(&atchan->lock, flags);
1875 
1876 	return 0;
1877 }
1878 
1879 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1880 {
1881 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1882 	struct at_xdmac_desc	*desc;
1883 	int			i;
1884 
1885 	if (at_xdmac_chan_is_enabled(atchan)) {
1886 		dev_err(chan2dev(chan),
1887 			"can't allocate channel resources (channel enabled)\n");
1888 		return -EIO;
1889 	}
1890 
1891 	if (!list_empty(&atchan->free_descs_list)) {
1892 		dev_err(chan2dev(chan),
1893 			"can't allocate channel resources (channel not free from a previous use)\n");
1894 		return -EIO;
1895 	}
1896 
1897 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1898 		desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
1899 		if (!desc) {
1900 			dev_warn(chan2dev(chan),
1901 				"only %d descriptors have been allocated\n", i);
1902 			break;
1903 		}
1904 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1905 	}
1906 
1907 	dma_cookie_init(chan);
1908 
1909 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1910 
1911 	return i;
1912 }
1913 
1914 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1915 {
1916 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1917 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1918 	struct at_xdmac_desc	*desc, *_desc;
1919 
1920 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1921 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1922 		list_del(&desc->desc_node);
1923 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1924 	}
1925 
1926 	return;
1927 }
1928 
1929 #ifdef CONFIG_PM
1930 static int atmel_xdmac_prepare(struct device *dev)
1931 {
1932 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1933 	struct dma_chan		*chan, *_chan;
1934 
1935 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1936 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1937 
1938 		/* Wait for transfer completion, except in cyclic case. */
1939 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1940 			return -EAGAIN;
1941 	}
1942 	return 0;
1943 }
1944 #else
1945 #	define atmel_xdmac_prepare NULL
1946 #endif
1947 
1948 #ifdef CONFIG_PM_SLEEP
1949 static int atmel_xdmac_suspend(struct device *dev)
1950 {
1951 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1952 	struct dma_chan		*chan, *_chan;
1953 
1954 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1955 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1956 
1957 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1958 		if (at_xdmac_chan_is_cyclic(atchan)) {
1959 			if (!at_xdmac_chan_is_paused(atchan))
1960 				at_xdmac_device_pause(chan);
1961 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1962 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1963 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1964 		}
1965 	}
1966 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1967 
1968 	at_xdmac_off(atxdmac);
1969 	clk_disable_unprepare(atxdmac->clk);
1970 	return 0;
1971 }
1972 
1973 static int atmel_xdmac_resume(struct device *dev)
1974 {
1975 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1976 	struct at_xdmac_chan	*atchan;
1977 	struct dma_chan		*chan, *_chan;
1978 	int			i;
1979 	int ret;
1980 
1981 	ret = clk_prepare_enable(atxdmac->clk);
1982 	if (ret)
1983 		return ret;
1984 
1985 	/* Clear pending interrupts. */
1986 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1987 		atchan = &atxdmac->chan[i];
1988 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1989 			cpu_relax();
1990 	}
1991 
1992 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1993 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1994 		atchan = to_at_xdmac_chan(chan);
1995 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1996 		if (at_xdmac_chan_is_cyclic(atchan)) {
1997 			if (at_xdmac_chan_is_paused(atchan))
1998 				at_xdmac_device_resume(chan);
1999 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
2000 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
2001 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
2002 			wmb();
2003 			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
2004 		}
2005 	}
2006 	return 0;
2007 }
2008 #endif /* CONFIG_PM_SLEEP */
2009 
2010 static void at_xdmac_axi_config(struct platform_device *pdev)
2011 {
2012 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2013 	bool dev_m2m = false;
2014 	u32 dma_requests;
2015 
2016 	if (!atxdmac->layout->axi_config)
2017 		return; /* Not supported */
2018 
2019 	if (!of_property_read_u32(pdev->dev.of_node, "dma-requests",
2020 				  &dma_requests)) {
2021 		dev_info(&pdev->dev, "controller in mem2mem mode.\n");
2022 		dev_m2m = true;
2023 	}
2024 
2025 	if (dev_m2m) {
2026 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M);
2027 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M);
2028 	} else {
2029 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M);
2030 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M);
2031 	}
2032 }
2033 
2034 static int at_xdmac_probe(struct platform_device *pdev)
2035 {
2036 	struct at_xdmac	*atxdmac;
2037 	int		irq, size, nr_channels, i, ret;
2038 	void __iomem	*base;
2039 	u32		reg;
2040 
2041 	irq = platform_get_irq(pdev, 0);
2042 	if (irq < 0)
2043 		return irq;
2044 
2045 	base = devm_platform_ioremap_resource(pdev, 0);
2046 	if (IS_ERR(base))
2047 		return PTR_ERR(base);
2048 
2049 	/*
2050 	 * Read number of xdmac channels, read helper function can't be used
2051 	 * since atxdmac is not yet allocated and we need to know the number
2052 	 * of channels to do the allocation.
2053 	 */
2054 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
2055 	nr_channels = AT_XDMAC_NB_CH(reg);
2056 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
2057 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
2058 			nr_channels);
2059 		return -EINVAL;
2060 	}
2061 
2062 	size = sizeof(*atxdmac);
2063 	size += nr_channels * sizeof(struct at_xdmac_chan);
2064 	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2065 	if (!atxdmac) {
2066 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
2067 		return -ENOMEM;
2068 	}
2069 
2070 	atxdmac->regs = base;
2071 	atxdmac->irq = irq;
2072 
2073 	atxdmac->layout = of_device_get_match_data(&pdev->dev);
2074 	if (!atxdmac->layout)
2075 		return -ENODEV;
2076 
2077 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2078 	if (IS_ERR(atxdmac->clk)) {
2079 		dev_err(&pdev->dev, "can't get dma_clk\n");
2080 		return PTR_ERR(atxdmac->clk);
2081 	}
2082 
2083 	/* Do not use dev res to prevent races with tasklet */
2084 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2085 	if (ret) {
2086 		dev_err(&pdev->dev, "can't request irq\n");
2087 		return ret;
2088 	}
2089 
2090 	ret = clk_prepare_enable(atxdmac->clk);
2091 	if (ret) {
2092 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
2093 		goto err_free_irq;
2094 	}
2095 
2096 	atxdmac->at_xdmac_desc_pool =
2097 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2098 				sizeof(struct at_xdmac_desc), 4, 0);
2099 	if (!atxdmac->at_xdmac_desc_pool) {
2100 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2101 		ret = -ENOMEM;
2102 		goto err_clk_disable;
2103 	}
2104 
2105 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2106 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2107 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2108 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2109 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2110 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2111 	/*
2112 	 * Without DMA_PRIVATE the driver is not able to allocate more than
2113 	 * one channel, second allocation fails in private_candidate.
2114 	 */
2115 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2116 	atxdmac->dma.dev				= &pdev->dev;
2117 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2118 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2119 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2120 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2121 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2122 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2123 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2124 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2125 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2126 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2127 	atxdmac->dma.device_config			= at_xdmac_device_config;
2128 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2129 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2130 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2131 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2132 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2133 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2134 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2135 
2136 	/* Disable all chans and interrupts. */
2137 	at_xdmac_off(atxdmac);
2138 
2139 	/* Init channels. */
2140 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2141 	for (i = 0; i < nr_channels; i++) {
2142 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2143 
2144 		atchan->chan.device = &atxdmac->dma;
2145 		list_add_tail(&atchan->chan.device_node,
2146 			      &atxdmac->dma.channels);
2147 
2148 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2149 		atchan->mask = 1 << i;
2150 
2151 		spin_lock_init(&atchan->lock);
2152 		INIT_LIST_HEAD(&atchan->xfers_list);
2153 		INIT_LIST_HEAD(&atchan->free_descs_list);
2154 		tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
2155 
2156 		/* Clear pending interrupts. */
2157 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2158 			cpu_relax();
2159 	}
2160 	platform_set_drvdata(pdev, atxdmac);
2161 
2162 	ret = dma_async_device_register(&atxdmac->dma);
2163 	if (ret) {
2164 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2165 		goto err_clk_disable;
2166 	}
2167 
2168 	ret = of_dma_controller_register(pdev->dev.of_node,
2169 					 at_xdmac_xlate, atxdmac);
2170 	if (ret) {
2171 		dev_err(&pdev->dev, "could not register of dma controller\n");
2172 		goto err_dma_unregister;
2173 	}
2174 
2175 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2176 		 nr_channels, atxdmac->regs);
2177 
2178 	at_xdmac_axi_config(pdev);
2179 
2180 	return 0;
2181 
2182 err_dma_unregister:
2183 	dma_async_device_unregister(&atxdmac->dma);
2184 err_clk_disable:
2185 	clk_disable_unprepare(atxdmac->clk);
2186 err_free_irq:
2187 	free_irq(atxdmac->irq, atxdmac);
2188 	return ret;
2189 }
2190 
2191 static int at_xdmac_remove(struct platform_device *pdev)
2192 {
2193 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2194 	int		i;
2195 
2196 	at_xdmac_off(atxdmac);
2197 	of_dma_controller_free(pdev->dev.of_node);
2198 	dma_async_device_unregister(&atxdmac->dma);
2199 	clk_disable_unprepare(atxdmac->clk);
2200 
2201 	free_irq(atxdmac->irq, atxdmac);
2202 
2203 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2204 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2205 
2206 		tasklet_kill(&atchan->tasklet);
2207 		at_xdmac_free_chan_resources(&atchan->chan);
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2214 	.prepare	= atmel_xdmac_prepare,
2215 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2216 };
2217 
2218 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2219 	{
2220 		.compatible = "atmel,sama5d4-dma",
2221 		.data = &at_xdmac_sama5d4_layout,
2222 	}, {
2223 		.compatible = "microchip,sama7g5-dma",
2224 		.data = &at_xdmac_sama7g5_layout,
2225 	}, {
2226 		/* sentinel */
2227 	}
2228 };
2229 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2230 
2231 static struct platform_driver at_xdmac_driver = {
2232 	.probe		= at_xdmac_probe,
2233 	.remove		= at_xdmac_remove,
2234 	.driver = {
2235 		.name		= "at_xdmac",
2236 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2237 		.pm		= &atmel_xdmac_dev_pm_ops,
2238 	}
2239 };
2240 
2241 static int __init at_xdmac_init(void)
2242 {
2243 	return platform_driver_register(&at_xdmac_driver);
2244 }
2245 subsys_initcall(at_xdmac_init);
2246 
2247 static void __exit at_xdmac_exit(void)
2248 {
2249 	platform_driver_unregister(&at_xdmac_driver);
2250 }
2251 module_exit(at_xdmac_exit);
2252 
2253 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2254 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2255 MODULE_LICENSE("GPL");
2256