1 /* 2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems) 3 * 4 * Copyright (C) 2014 Atmel Corporation 5 * 6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <asm/barrier.h> 22 #include <dt-bindings/dma/at91.h> 23 #include <linux/clk.h> 24 #include <linux/dmaengine.h> 25 #include <linux/dmapool.h> 26 #include <linux/interrupt.h> 27 #include <linux/irq.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of_dma.h> 32 #include <linux/of_platform.h> 33 #include <linux/platform_device.h> 34 #include <linux/pm.h> 35 36 #include "dmaengine.h" 37 38 /* Global registers */ 39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */ 40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */ 41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */ 42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */ 43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */ 44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */ 45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */ 46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */ 47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */ 48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */ 49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */ 50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */ 51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */ 52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */ 53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */ 54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */ 55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */ 56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */ 57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */ 58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */ 59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */ 60 61 /* Channel relative registers offsets */ 62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */ 63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */ 64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */ 65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */ 66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */ 67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */ 68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */ 69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */ 70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */ 71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */ 72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */ 73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */ 74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */ 75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */ 76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */ 77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */ 78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */ 79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */ 80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */ 81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */ 82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */ 83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */ 84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */ 85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */ 86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */ 87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */ 88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */ 89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */ 90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */ 91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */ 92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */ 93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */ 94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */ 95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */ 96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */ 97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */ 98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */ 99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */ 100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */ 101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */ 102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */ 103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */ 104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */ 105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */ 106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */ 107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */ 108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */ 109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */ 110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */ 111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */ 112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */ 113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1) 114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1) 115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1) 116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1) 117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1) 118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */ 119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4) 120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4) 121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */ 122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5) 123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5) 124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */ 125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6) 126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6) 127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */ 128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7) 129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7) 130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */ 131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11 132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET) 133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */ 134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0 135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1 136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2 137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3 138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */ 139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */ 140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */ 141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16) 142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16) 143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16) 144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16) 145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */ 146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18) 147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18) 148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18) 149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18) 150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */ 151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21) 152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21) 153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */ 154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22) 155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22) 156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ 157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) 158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) 159 #define AT_XDMAC_CC_PERID(i) (0x7f & (h) << 24) /* Channel Peripheral Identifier */ 160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ 161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ 162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ 163 164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */ 165 166 /* Microblock control members */ 167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */ 168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */ 169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */ 170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */ 171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */ 172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */ 173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */ 174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */ 175 176 #define AT_XDMAC_MAX_CHAN 0x20 177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */ 178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */ 179 180 #define AT_XDMAC_DMA_BUSWIDTHS\ 181 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 182 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 183 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 184 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\ 185 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 186 187 enum atc_status { 188 AT_XDMAC_CHAN_IS_CYCLIC = 0, 189 AT_XDMAC_CHAN_IS_PAUSED, 190 }; 191 192 /* ----- Channels ----- */ 193 struct at_xdmac_chan { 194 struct dma_chan chan; 195 void __iomem *ch_regs; 196 u32 mask; /* Channel Mask */ 197 u32 cfg; /* Channel Configuration Register */ 198 u8 perid; /* Peripheral ID */ 199 u8 perif; /* Peripheral Interface */ 200 u8 memif; /* Memory Interface */ 201 u32 save_cc; 202 u32 save_cim; 203 u32 save_cnda; 204 u32 save_cndc; 205 unsigned long status; 206 struct tasklet_struct tasklet; 207 struct dma_slave_config sconfig; 208 209 spinlock_t lock; 210 211 struct list_head xfers_list; 212 struct list_head free_descs_list; 213 }; 214 215 216 /* ----- Controller ----- */ 217 struct at_xdmac { 218 struct dma_device dma; 219 void __iomem *regs; 220 int irq; 221 struct clk *clk; 222 u32 save_gim; 223 u32 save_gs; 224 struct dma_pool *at_xdmac_desc_pool; 225 struct at_xdmac_chan chan[0]; 226 }; 227 228 229 /* ----- Descriptors ----- */ 230 231 /* Linked List Descriptor */ 232 struct at_xdmac_lld { 233 dma_addr_t mbr_nda; /* Next Descriptor Member */ 234 u32 mbr_ubc; /* Microblock Control Member */ 235 dma_addr_t mbr_sa; /* Source Address Member */ 236 dma_addr_t mbr_da; /* Destination Address Member */ 237 u32 mbr_cfg; /* Configuration Register */ 238 }; 239 240 241 struct at_xdmac_desc { 242 struct at_xdmac_lld lld; 243 enum dma_transfer_direction direction; 244 struct dma_async_tx_descriptor tx_dma_desc; 245 struct list_head desc_node; 246 /* Following members are only used by the first descriptor */ 247 bool active_xfer; 248 unsigned int xfer_size; 249 struct list_head descs_list; 250 struct list_head xfer_node; 251 }; 252 253 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb) 254 { 255 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40); 256 } 257 258 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg)) 259 #define at_xdmac_write(atxdmac, reg, value) \ 260 writel_relaxed((value), (atxdmac)->regs + (reg)) 261 262 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg)) 263 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg)) 264 265 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan) 266 { 267 return container_of(dchan, struct at_xdmac_chan, chan); 268 } 269 270 static struct device *chan2dev(struct dma_chan *chan) 271 { 272 return &chan->dev->device; 273 } 274 275 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev) 276 { 277 return container_of(ddev, struct at_xdmac, dma); 278 } 279 280 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd) 281 { 282 return container_of(txd, struct at_xdmac_desc, tx_dma_desc); 283 } 284 285 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan) 286 { 287 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 288 } 289 290 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan) 291 { 292 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 293 } 294 295 static inline int at_xdmac_csize(u32 maxburst) 296 { 297 int csize; 298 299 csize = ffs(maxburst) - 1; 300 if (csize > 4) 301 csize = -EINVAL; 302 303 return csize; 304 }; 305 306 static inline u8 at_xdmac_get_dwidth(u32 cfg) 307 { 308 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET; 309 }; 310 311 static unsigned int init_nr_desc_per_channel = 64; 312 module_param(init_nr_desc_per_channel, uint, 0644); 313 MODULE_PARM_DESC(init_nr_desc_per_channel, 314 "initial descriptors per channel (default: 64)"); 315 316 317 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan) 318 { 319 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask; 320 } 321 322 static void at_xdmac_off(struct at_xdmac *atxdmac) 323 { 324 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L); 325 326 /* Wait that all chans are disabled. */ 327 while (at_xdmac_read(atxdmac, AT_XDMAC_GS)) 328 cpu_relax(); 329 330 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L); 331 } 332 333 /* Call with lock hold. */ 334 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan, 335 struct at_xdmac_desc *first) 336 { 337 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 338 u32 reg; 339 340 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first); 341 342 if (at_xdmac_chan_is_enabled(atchan)) 343 return; 344 345 /* Set transfer as active to not try to start it again. */ 346 first->active_xfer = true; 347 348 /* Tell xdmac where to get the first descriptor. */ 349 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys) 350 | AT_XDMAC_CNDA_NDAIF(atchan->memif); 351 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg); 352 353 /* 354 * When doing non cyclic transfer we need to use the next 355 * descriptor view 2 since some fields of the configuration register 356 * depend on transfer size and src/dest addresses. 357 */ 358 if (at_xdmac_chan_is_cyclic(atchan)) { 359 reg = AT_XDMAC_CNDC_NDVIEW_NDV1; 360 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg); 361 } else { 362 /* 363 * No need to write AT_XDMAC_CC reg, it will be done when the 364 * descriptor is fecthed. 365 */ 366 reg = AT_XDMAC_CNDC_NDVIEW_NDV2; 367 } 368 369 reg |= AT_XDMAC_CNDC_NDDUP 370 | AT_XDMAC_CNDC_NDSUP 371 | AT_XDMAC_CNDC_NDE; 372 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg); 373 374 dev_vdbg(chan2dev(&atchan->chan), 375 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 376 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 377 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 378 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 379 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 380 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 381 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 382 383 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff); 384 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE; 385 /* 386 * There is no end of list when doing cyclic dma, we need to get 387 * an interrupt after each periods. 388 */ 389 if (at_xdmac_chan_is_cyclic(atchan)) 390 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 391 reg | AT_XDMAC_CIE_BIE); 392 else 393 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, 394 reg | AT_XDMAC_CIE_LIE); 395 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask); 396 dev_vdbg(chan2dev(&atchan->chan), 397 "%s: enable channel (0x%08x)\n", __func__, atchan->mask); 398 wmb(); 399 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 400 401 dev_vdbg(chan2dev(&atchan->chan), 402 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 403 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC), 404 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 405 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 406 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 407 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 408 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 409 410 } 411 412 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx) 413 { 414 struct at_xdmac_desc *desc = txd_to_at_desc(tx); 415 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan); 416 dma_cookie_t cookie; 417 unsigned long irqflags; 418 419 spin_lock_irqsave(&atchan->lock, irqflags); 420 cookie = dma_cookie_assign(tx); 421 422 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n", 423 __func__, atchan, desc); 424 list_add_tail(&desc->xfer_node, &atchan->xfers_list); 425 if (list_is_singular(&atchan->xfers_list)) 426 at_xdmac_start_xfer(atchan, desc); 427 428 spin_unlock_irqrestore(&atchan->lock, irqflags); 429 return cookie; 430 } 431 432 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan, 433 gfp_t gfp_flags) 434 { 435 struct at_xdmac_desc *desc; 436 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 437 dma_addr_t phys; 438 439 desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys); 440 if (desc) { 441 memset(desc, 0, sizeof(*desc)); 442 INIT_LIST_HEAD(&desc->descs_list); 443 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan); 444 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit; 445 desc->tx_dma_desc.phys = phys; 446 } 447 448 return desc; 449 } 450 451 /* Call must be protected by lock. */ 452 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan) 453 { 454 struct at_xdmac_desc *desc; 455 456 if (list_empty(&atchan->free_descs_list)) { 457 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT); 458 } else { 459 desc = list_first_entry(&atchan->free_descs_list, 460 struct at_xdmac_desc, desc_node); 461 list_del(&desc->desc_node); 462 desc->active_xfer = false; 463 } 464 465 return desc; 466 } 467 468 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec, 469 struct of_dma *of_dma) 470 { 471 struct at_xdmac *atxdmac = of_dma->of_dma_data; 472 struct at_xdmac_chan *atchan; 473 struct dma_chan *chan; 474 struct device *dev = atxdmac->dma.dev; 475 476 if (dma_spec->args_count != 1) { 477 dev_err(dev, "dma phandler args: bad number of args\n"); 478 return NULL; 479 } 480 481 chan = dma_get_any_slave_channel(&atxdmac->dma); 482 if (!chan) { 483 dev_err(dev, "can't get a dma channel\n"); 484 return NULL; 485 } 486 487 atchan = to_at_xdmac_chan(chan); 488 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]); 489 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]); 490 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]); 491 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n", 492 atchan->memif, atchan->perif, atchan->perid); 493 494 return chan; 495 } 496 497 static int at_xdmac_compute_chan_conf(struct dma_chan *chan, 498 enum dma_transfer_direction direction) 499 { 500 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 501 int csize, dwidth; 502 503 if (direction == DMA_DEV_TO_MEM) { 504 atchan->cfg = 505 AT91_XDMAC_DT_PERID(atchan->perid) 506 | AT_XDMAC_CC_DAM_INCREMENTED_AM 507 | AT_XDMAC_CC_SAM_FIXED_AM 508 | AT_XDMAC_CC_DIF(atchan->memif) 509 | AT_XDMAC_CC_SIF(atchan->perif) 510 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 511 | AT_XDMAC_CC_DSYNC_PER2MEM 512 | AT_XDMAC_CC_MBSIZE_SIXTEEN 513 | AT_XDMAC_CC_TYPE_PER_TRAN; 514 csize = ffs(atchan->sconfig.src_maxburst) - 1; 515 if (csize < 0) { 516 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 517 return -EINVAL; 518 } 519 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 520 dwidth = ffs(atchan->sconfig.src_addr_width) - 1; 521 if (dwidth < 0) { 522 dev_err(chan2dev(chan), "invalid src addr width value\n"); 523 return -EINVAL; 524 } 525 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 526 } else if (direction == DMA_MEM_TO_DEV) { 527 atchan->cfg = 528 AT91_XDMAC_DT_PERID(atchan->perid) 529 | AT_XDMAC_CC_DAM_FIXED_AM 530 | AT_XDMAC_CC_SAM_INCREMENTED_AM 531 | AT_XDMAC_CC_DIF(atchan->perif) 532 | AT_XDMAC_CC_SIF(atchan->memif) 533 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED 534 | AT_XDMAC_CC_DSYNC_MEM2PER 535 | AT_XDMAC_CC_MBSIZE_SIXTEEN 536 | AT_XDMAC_CC_TYPE_PER_TRAN; 537 csize = ffs(atchan->sconfig.dst_maxburst) - 1; 538 if (csize < 0) { 539 dev_err(chan2dev(chan), "invalid src maxburst value\n"); 540 return -EINVAL; 541 } 542 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize); 543 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1; 544 if (dwidth < 0) { 545 dev_err(chan2dev(chan), "invalid dst addr width value\n"); 546 return -EINVAL; 547 } 548 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth); 549 } 550 551 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg); 552 553 return 0; 554 } 555 556 /* 557 * Only check that maxburst and addr width values are supported by the 558 * the controller but not that the configuration is good to perform the 559 * transfer since we don't know the direction at this stage. 560 */ 561 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig) 562 { 563 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE) 564 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE)) 565 return -EINVAL; 566 567 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH) 568 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH)) 569 return -EINVAL; 570 571 return 0; 572 } 573 574 static int at_xdmac_set_slave_config(struct dma_chan *chan, 575 struct dma_slave_config *sconfig) 576 { 577 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 578 579 if (at_xdmac_check_slave_config(sconfig)) { 580 dev_err(chan2dev(chan), "invalid slave configuration\n"); 581 return -EINVAL; 582 } 583 584 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig)); 585 586 return 0; 587 } 588 589 static struct dma_async_tx_descriptor * 590 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 591 unsigned int sg_len, enum dma_transfer_direction direction, 592 unsigned long flags, void *context) 593 { 594 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 595 struct at_xdmac_desc *first = NULL, *prev = NULL; 596 struct scatterlist *sg; 597 int i; 598 unsigned int xfer_size = 0; 599 unsigned long irqflags; 600 struct dma_async_tx_descriptor *ret = NULL; 601 602 if (!sgl) 603 return NULL; 604 605 if (!is_slave_direction(direction)) { 606 dev_err(chan2dev(chan), "invalid DMA direction\n"); 607 return NULL; 608 } 609 610 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n", 611 __func__, sg_len, 612 direction == DMA_MEM_TO_DEV ? "to device" : "from device", 613 flags); 614 615 /* Protect dma_sconfig field that can be modified by set_slave_conf. */ 616 spin_lock_irqsave(&atchan->lock, irqflags); 617 618 if (at_xdmac_compute_chan_conf(chan, direction)) 619 goto spin_unlock; 620 621 /* Prepare descriptors. */ 622 for_each_sg(sgl, sg, sg_len, i) { 623 struct at_xdmac_desc *desc = NULL; 624 u32 len, mem, dwidth, fixed_dwidth; 625 626 len = sg_dma_len(sg); 627 mem = sg_dma_address(sg); 628 if (unlikely(!len)) { 629 dev_err(chan2dev(chan), "sg data length is zero\n"); 630 goto spin_unlock; 631 } 632 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n", 633 __func__, i, len, mem); 634 635 desc = at_xdmac_get_desc(atchan); 636 if (!desc) { 637 dev_err(chan2dev(chan), "can't get descriptor\n"); 638 if (first) 639 list_splice_init(&first->descs_list, &atchan->free_descs_list); 640 goto spin_unlock; 641 } 642 643 /* Linked list descriptor setup. */ 644 if (direction == DMA_DEV_TO_MEM) { 645 desc->lld.mbr_sa = atchan->sconfig.src_addr; 646 desc->lld.mbr_da = mem; 647 } else { 648 desc->lld.mbr_sa = mem; 649 desc->lld.mbr_da = atchan->sconfig.dst_addr; 650 } 651 desc->lld.mbr_cfg = atchan->cfg; 652 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 653 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth) 654 ? at_xdmac_get_dwidth(desc->lld.mbr_cfg) 655 : AT_XDMAC_CC_DWIDTH_BYTE; 656 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */ 657 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */ 658 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */ 659 | (i == sg_len - 1 ? 0 : AT_XDMAC_MBR_UBC_NDE) /* descriptor fetch */ 660 | (len >> fixed_dwidth); /* microblock length */ 661 dev_dbg(chan2dev(chan), 662 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 663 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 664 665 /* Chain lld. */ 666 if (prev) { 667 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 668 dev_dbg(chan2dev(chan), 669 "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 670 __func__, prev, &prev->lld.mbr_nda); 671 } 672 673 prev = desc; 674 if (!first) 675 first = desc; 676 677 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 678 __func__, desc, first); 679 list_add_tail(&desc->desc_node, &first->descs_list); 680 xfer_size += len; 681 } 682 683 684 first->tx_dma_desc.flags = flags; 685 first->xfer_size = xfer_size; 686 first->direction = direction; 687 ret = &first->tx_dma_desc; 688 689 spin_unlock: 690 spin_unlock_irqrestore(&atchan->lock, irqflags); 691 return ret; 692 } 693 694 static struct dma_async_tx_descriptor * 695 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 696 size_t buf_len, size_t period_len, 697 enum dma_transfer_direction direction, 698 unsigned long flags) 699 { 700 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 701 struct at_xdmac_desc *first = NULL, *prev = NULL; 702 unsigned int periods = buf_len / period_len; 703 int i; 704 unsigned long irqflags; 705 706 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n", 707 __func__, &buf_addr, buf_len, period_len, 708 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags); 709 710 if (!is_slave_direction(direction)) { 711 dev_err(chan2dev(chan), "invalid DMA direction\n"); 712 return NULL; 713 } 714 715 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) { 716 dev_err(chan2dev(chan), "channel currently used\n"); 717 return NULL; 718 } 719 720 if (at_xdmac_compute_chan_conf(chan, direction)) 721 return NULL; 722 723 for (i = 0; i < periods; i++) { 724 struct at_xdmac_desc *desc = NULL; 725 726 spin_lock_irqsave(&atchan->lock, irqflags); 727 desc = at_xdmac_get_desc(atchan); 728 if (!desc) { 729 dev_err(chan2dev(chan), "can't get descriptor\n"); 730 if (first) 731 list_splice_init(&first->descs_list, &atchan->free_descs_list); 732 spin_unlock_irqrestore(&atchan->lock, irqflags); 733 return NULL; 734 } 735 spin_unlock_irqrestore(&atchan->lock, irqflags); 736 dev_dbg(chan2dev(chan), 737 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n", 738 __func__, desc, &desc->tx_dma_desc.phys); 739 740 if (direction == DMA_DEV_TO_MEM) { 741 desc->lld.mbr_sa = atchan->sconfig.src_addr; 742 desc->lld.mbr_da = buf_addr + i * period_len; 743 } else { 744 desc->lld.mbr_sa = buf_addr + i * period_len; 745 desc->lld.mbr_da = atchan->sconfig.dst_addr; 746 } 747 desc->lld.mbr_cfg = atchan->cfg; 748 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1 749 | AT_XDMAC_MBR_UBC_NDEN 750 | AT_XDMAC_MBR_UBC_NSEN 751 | AT_XDMAC_MBR_UBC_NDE 752 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg); 753 754 dev_dbg(chan2dev(chan), 755 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n", 756 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc); 757 758 /* Chain lld. */ 759 if (prev) { 760 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 761 dev_dbg(chan2dev(chan), 762 "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 763 __func__, prev, &prev->lld.mbr_nda); 764 } 765 766 prev = desc; 767 if (!first) 768 first = desc; 769 770 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 771 __func__, desc, first); 772 list_add_tail(&desc->desc_node, &first->descs_list); 773 } 774 775 prev->lld.mbr_nda = first->tx_dma_desc.phys; 776 dev_dbg(chan2dev(chan), 777 "%s: chain lld: prev=0x%p, mbr_nda=%pad\n", 778 __func__, prev, &prev->lld.mbr_nda); 779 first->tx_dma_desc.flags = flags; 780 first->xfer_size = buf_len; 781 first->direction = direction; 782 783 return &first->tx_dma_desc; 784 } 785 786 static struct dma_async_tx_descriptor * 787 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 788 size_t len, unsigned long flags) 789 { 790 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 791 struct at_xdmac_desc *first = NULL, *prev = NULL; 792 size_t remaining_size = len, xfer_size = 0, ublen; 793 dma_addr_t src_addr = src, dst_addr = dest; 794 u32 dwidth; 795 /* 796 * WARNING: We don't know the direction, it involves we can't 797 * dynamically set the source and dest interface so we have to use the 798 * same one. Only interface 0 allows EBI access. Hopefully we can 799 * access DDR through both ports (at least on SAMA5D4x), so we can use 800 * the same interface for source and dest, that solves the fact we 801 * don't know the direction. 802 */ 803 u32 chan_cc = AT_XDMAC_CC_DAM_INCREMENTED_AM 804 | AT_XDMAC_CC_SAM_INCREMENTED_AM 805 | AT_XDMAC_CC_DIF(0) 806 | AT_XDMAC_CC_SIF(0) 807 | AT_XDMAC_CC_MBSIZE_SIXTEEN 808 | AT_XDMAC_CC_TYPE_MEM_TRAN; 809 unsigned long irqflags; 810 811 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n", 812 __func__, &src, &dest, len, flags); 813 814 if (unlikely(!len)) 815 return NULL; 816 817 /* 818 * Check address alignment to select the greater data width we can use. 819 * Some XDMAC implementations don't provide dword transfer, in this 820 * case selecting dword has the same behavior as selecting word transfers. 821 */ 822 if (!((src_addr | dst_addr) & 7)) { 823 dwidth = AT_XDMAC_CC_DWIDTH_DWORD; 824 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 825 } else if (!((src_addr | dst_addr) & 3)) { 826 dwidth = AT_XDMAC_CC_DWIDTH_WORD; 827 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 828 } else if (!((src_addr | dst_addr) & 1)) { 829 dwidth = AT_XDMAC_CC_DWIDTH_HALFWORD; 830 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 831 } else { 832 dwidth = AT_XDMAC_CC_DWIDTH_BYTE; 833 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 834 } 835 836 /* Prepare descriptors. */ 837 while (remaining_size) { 838 struct at_xdmac_desc *desc = NULL; 839 840 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size); 841 842 spin_lock_irqsave(&atchan->lock, irqflags); 843 desc = at_xdmac_get_desc(atchan); 844 spin_unlock_irqrestore(&atchan->lock, irqflags); 845 if (!desc) { 846 dev_err(chan2dev(chan), "can't get descriptor\n"); 847 if (first) 848 list_splice_init(&first->descs_list, &atchan->free_descs_list); 849 return NULL; 850 } 851 852 /* Update src and dest addresses. */ 853 src_addr += xfer_size; 854 dst_addr += xfer_size; 855 856 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth) 857 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth; 858 else 859 xfer_size = remaining_size; 860 861 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size); 862 863 /* Check remaining length and change data width if needed. */ 864 if (!((src_addr | dst_addr | xfer_size) & 7)) { 865 dwidth = AT_XDMAC_CC_DWIDTH_DWORD; 866 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__); 867 } else if (!((src_addr | dst_addr | xfer_size) & 3)) { 868 dwidth = AT_XDMAC_CC_DWIDTH_WORD; 869 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__); 870 } else if (!((src_addr | dst_addr | xfer_size) & 1)) { 871 dwidth = AT_XDMAC_CC_DWIDTH_HALFWORD; 872 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__); 873 } else if ((src_addr | dst_addr | xfer_size) & 1) { 874 dwidth = AT_XDMAC_CC_DWIDTH_BYTE; 875 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__); 876 } 877 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); 878 879 ublen = xfer_size >> dwidth; 880 remaining_size -= xfer_size; 881 882 desc->lld.mbr_sa = src_addr; 883 desc->lld.mbr_da = dst_addr; 884 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 885 | AT_XDMAC_MBR_UBC_NDEN 886 | AT_XDMAC_MBR_UBC_NSEN 887 | (remaining_size ? AT_XDMAC_MBR_UBC_NDE : 0) 888 | ublen; 889 desc->lld.mbr_cfg = chan_cc; 890 891 dev_dbg(chan2dev(chan), 892 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n", 893 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg); 894 895 /* Chain lld. */ 896 if (prev) { 897 prev->lld.mbr_nda = desc->tx_dma_desc.phys; 898 dev_dbg(chan2dev(chan), 899 "%s: chain lld: prev=0x%p, mbr_nda=0x%08x\n", 900 __func__, prev, prev->lld.mbr_nda); 901 } 902 903 prev = desc; 904 if (!first) 905 first = desc; 906 907 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", 908 __func__, desc, first); 909 list_add_tail(&desc->desc_node, &first->descs_list); 910 } 911 912 first->tx_dma_desc.flags = flags; 913 first->xfer_size = len; 914 915 return &first->tx_dma_desc; 916 } 917 918 static enum dma_status 919 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 920 struct dma_tx_state *txstate) 921 { 922 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 923 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 924 struct at_xdmac_desc *desc, *_desc; 925 struct list_head *descs_list; 926 enum dma_status ret; 927 int residue; 928 u32 cur_nda, mask, value; 929 u8 dwidth = 0; 930 unsigned long flags; 931 932 ret = dma_cookie_status(chan, cookie, txstate); 933 if (ret == DMA_COMPLETE) 934 return ret; 935 936 if (!txstate) 937 return ret; 938 939 spin_lock_irqsave(&atchan->lock, flags); 940 941 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 942 943 /* 944 * If the transfer has not been started yet, don't need to compute the 945 * residue, it's the transfer length. 946 */ 947 if (!desc->active_xfer) { 948 dma_set_residue(txstate, desc->xfer_size); 949 goto spin_unlock; 950 } 951 952 residue = desc->xfer_size; 953 /* 954 * Flush FIFO: only relevant when the transfer is source peripheral 955 * synchronized. 956 */ 957 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC; 958 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM; 959 if ((desc->lld.mbr_cfg & mask) == value) { 960 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask); 961 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS)) 962 cpu_relax(); 963 } 964 965 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc; 966 /* 967 * Remove size of all microblocks already transferred and the current 968 * one. Then add the remaining size to transfer of the current 969 * microblock. 970 */ 971 descs_list = &desc->descs_list; 972 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) { 973 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg); 974 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth; 975 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda) 976 break; 977 } 978 residue += at_xdmac_chan_read(atchan, AT_XDMAC_CUBC) << dwidth; 979 980 dma_set_residue(txstate, residue); 981 982 dev_dbg(chan2dev(chan), 983 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n", 984 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue); 985 986 spin_unlock: 987 spin_unlock_irqrestore(&atchan->lock, flags); 988 return ret; 989 } 990 991 /* Call must be protected by lock. */ 992 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan, 993 struct at_xdmac_desc *desc) 994 { 995 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 996 997 /* 998 * Remove the transfer from the transfer list then move the transfer 999 * descriptors into the free descriptors list. 1000 */ 1001 list_del(&desc->xfer_node); 1002 list_splice_init(&desc->descs_list, &atchan->free_descs_list); 1003 } 1004 1005 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan) 1006 { 1007 struct at_xdmac_desc *desc; 1008 unsigned long flags; 1009 1010 spin_lock_irqsave(&atchan->lock, flags); 1011 1012 /* 1013 * If channel is enabled, do nothing, advance_work will be triggered 1014 * after the interruption. 1015 */ 1016 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) { 1017 desc = list_first_entry(&atchan->xfers_list, 1018 struct at_xdmac_desc, 1019 xfer_node); 1020 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1021 if (!desc->active_xfer) 1022 at_xdmac_start_xfer(atchan, desc); 1023 } 1024 1025 spin_unlock_irqrestore(&atchan->lock, flags); 1026 } 1027 1028 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan) 1029 { 1030 struct at_xdmac_desc *desc; 1031 struct dma_async_tx_descriptor *txd; 1032 1033 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node); 1034 txd = &desc->tx_dma_desc; 1035 1036 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1037 txd->callback(txd->callback_param); 1038 } 1039 1040 static void at_xdmac_tasklet(unsigned long data) 1041 { 1042 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data; 1043 struct at_xdmac_desc *desc; 1044 u32 error_mask; 1045 1046 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n", 1047 __func__, atchan->status); 1048 1049 error_mask = AT_XDMAC_CIS_RBEIS 1050 | AT_XDMAC_CIS_WBEIS 1051 | AT_XDMAC_CIS_ROIS; 1052 1053 if (at_xdmac_chan_is_cyclic(atchan)) { 1054 at_xdmac_handle_cyclic(atchan); 1055 } else if ((atchan->status & AT_XDMAC_CIS_LIS) 1056 || (atchan->status & error_mask)) { 1057 struct dma_async_tx_descriptor *txd; 1058 1059 if (atchan->status & AT_XDMAC_CIS_RBEIS) 1060 dev_err(chan2dev(&atchan->chan), "read bus error!!!"); 1061 if (atchan->status & AT_XDMAC_CIS_WBEIS) 1062 dev_err(chan2dev(&atchan->chan), "write bus error!!!"); 1063 if (atchan->status & AT_XDMAC_CIS_ROIS) 1064 dev_err(chan2dev(&atchan->chan), "request overflow error!!!"); 1065 1066 spin_lock_bh(&atchan->lock); 1067 desc = list_first_entry(&atchan->xfers_list, 1068 struct at_xdmac_desc, 1069 xfer_node); 1070 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc); 1071 BUG_ON(!desc->active_xfer); 1072 1073 txd = &desc->tx_dma_desc; 1074 1075 at_xdmac_remove_xfer(atchan, desc); 1076 spin_unlock_bh(&atchan->lock); 1077 1078 if (!at_xdmac_chan_is_cyclic(atchan)) { 1079 dma_cookie_complete(txd); 1080 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT)) 1081 txd->callback(txd->callback_param); 1082 } 1083 1084 dma_run_dependencies(txd); 1085 1086 at_xdmac_advance_work(atchan); 1087 } 1088 } 1089 1090 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id) 1091 { 1092 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id; 1093 struct at_xdmac_chan *atchan; 1094 u32 imr, status, pending; 1095 u32 chan_imr, chan_status; 1096 int i, ret = IRQ_NONE; 1097 1098 do { 1099 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1100 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS); 1101 pending = status & imr; 1102 1103 dev_vdbg(atxdmac->dma.dev, 1104 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n", 1105 __func__, status, imr, pending); 1106 1107 if (!pending) 1108 break; 1109 1110 /* We have to find which channel has generated the interrupt. */ 1111 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1112 if (!((1 << i) & pending)) 1113 continue; 1114 1115 atchan = &atxdmac->chan[i]; 1116 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1117 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS); 1118 atchan->status = chan_status & chan_imr; 1119 dev_vdbg(atxdmac->dma.dev, 1120 "%s: chan%d: imr=0x%x, status=0x%x\n", 1121 __func__, i, chan_imr, chan_status); 1122 dev_vdbg(chan2dev(&atchan->chan), 1123 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n", 1124 __func__, 1125 at_xdmac_chan_read(atchan, AT_XDMAC_CC), 1126 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA), 1127 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC), 1128 at_xdmac_chan_read(atchan, AT_XDMAC_CSA), 1129 at_xdmac_chan_read(atchan, AT_XDMAC_CDA), 1130 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC)); 1131 1132 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS)) 1133 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1134 1135 tasklet_schedule(&atchan->tasklet); 1136 ret = IRQ_HANDLED; 1137 } 1138 1139 } while (pending); 1140 1141 return ret; 1142 } 1143 1144 static void at_xdmac_issue_pending(struct dma_chan *chan) 1145 { 1146 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1147 1148 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__); 1149 1150 if (!at_xdmac_chan_is_cyclic(atchan)) 1151 at_xdmac_advance_work(atchan); 1152 1153 return; 1154 } 1155 1156 static int at_xdmac_device_config(struct dma_chan *chan, 1157 struct dma_slave_config *config) 1158 { 1159 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1160 int ret; 1161 unsigned long flags; 1162 1163 dev_dbg(chan2dev(chan), "%s\n", __func__); 1164 1165 spin_lock_irqsave(&atchan->lock, flags); 1166 ret = at_xdmac_set_slave_config(chan, config); 1167 spin_unlock_irqrestore(&atchan->lock, flags); 1168 1169 return ret; 1170 } 1171 1172 static int at_xdmac_device_pause(struct dma_chan *chan) 1173 { 1174 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1175 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1176 unsigned long flags; 1177 1178 dev_dbg(chan2dev(chan), "%s\n", __func__); 1179 1180 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status)) 1181 return 0; 1182 1183 spin_lock_irqsave(&atchan->lock, flags); 1184 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask); 1185 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) 1186 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP)) 1187 cpu_relax(); 1188 spin_unlock_irqrestore(&atchan->lock, flags); 1189 1190 return 0; 1191 } 1192 1193 static int at_xdmac_device_resume(struct dma_chan *chan) 1194 { 1195 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1196 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1197 unsigned long flags; 1198 1199 dev_dbg(chan2dev(chan), "%s\n", __func__); 1200 1201 spin_lock_irqsave(&atchan->lock, flags); 1202 if (!at_xdmac_chan_is_paused(atchan)) { 1203 spin_unlock_irqrestore(&atchan->lock, flags); 1204 return 0; 1205 } 1206 1207 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask); 1208 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status); 1209 spin_unlock_irqrestore(&atchan->lock, flags); 1210 1211 return 0; 1212 } 1213 1214 static int at_xdmac_device_terminate_all(struct dma_chan *chan) 1215 { 1216 struct at_xdmac_desc *desc, *_desc; 1217 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1218 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device); 1219 unsigned long flags; 1220 1221 dev_dbg(chan2dev(chan), "%s\n", __func__); 1222 1223 spin_lock_irqsave(&atchan->lock, flags); 1224 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask); 1225 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask) 1226 cpu_relax(); 1227 1228 /* Cancel all pending transfers. */ 1229 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) 1230 at_xdmac_remove_xfer(atchan, desc); 1231 1232 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status); 1233 spin_unlock_irqrestore(&atchan->lock, flags); 1234 1235 return 0; 1236 } 1237 1238 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan) 1239 { 1240 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1241 struct at_xdmac_desc *desc; 1242 int i; 1243 unsigned long flags; 1244 1245 spin_lock_irqsave(&atchan->lock, flags); 1246 1247 if (at_xdmac_chan_is_enabled(atchan)) { 1248 dev_err(chan2dev(chan), 1249 "can't allocate channel resources (channel enabled)\n"); 1250 i = -EIO; 1251 goto spin_unlock; 1252 } 1253 1254 if (!list_empty(&atchan->free_descs_list)) { 1255 dev_err(chan2dev(chan), 1256 "can't allocate channel resources (channel not free from a previous use)\n"); 1257 i = -EIO; 1258 goto spin_unlock; 1259 } 1260 1261 for (i = 0; i < init_nr_desc_per_channel; i++) { 1262 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC); 1263 if (!desc) { 1264 dev_warn(chan2dev(chan), 1265 "only %d descriptors have been allocated\n", i); 1266 break; 1267 } 1268 list_add_tail(&desc->desc_node, &atchan->free_descs_list); 1269 } 1270 1271 dma_cookie_init(chan); 1272 1273 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i); 1274 1275 spin_unlock: 1276 spin_unlock_irqrestore(&atchan->lock, flags); 1277 return i; 1278 } 1279 1280 static void at_xdmac_free_chan_resources(struct dma_chan *chan) 1281 { 1282 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1283 struct at_xdmac *atxdmac = to_at_xdmac(chan->device); 1284 struct at_xdmac_desc *desc, *_desc; 1285 1286 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) { 1287 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc); 1288 list_del(&desc->desc_node); 1289 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys); 1290 } 1291 1292 return; 1293 } 1294 1295 #ifdef CONFIG_PM 1296 static int atmel_xdmac_prepare(struct device *dev) 1297 { 1298 struct platform_device *pdev = to_platform_device(dev); 1299 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1300 struct dma_chan *chan, *_chan; 1301 1302 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1303 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1304 1305 /* Wait for transfer completion, except in cyclic case. */ 1306 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan)) 1307 return -EAGAIN; 1308 } 1309 return 0; 1310 } 1311 #else 1312 # define atmel_xdmac_prepare NULL 1313 #endif 1314 1315 #ifdef CONFIG_PM_SLEEP 1316 static int atmel_xdmac_suspend(struct device *dev) 1317 { 1318 struct platform_device *pdev = to_platform_device(dev); 1319 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1320 struct dma_chan *chan, *_chan; 1321 1322 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1323 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan); 1324 1325 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC); 1326 if (at_xdmac_chan_is_cyclic(atchan)) { 1327 if (!at_xdmac_chan_is_paused(atchan)) 1328 at_xdmac_device_pause(chan); 1329 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM); 1330 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA); 1331 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC); 1332 } 1333 } 1334 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM); 1335 1336 at_xdmac_off(atxdmac); 1337 clk_disable_unprepare(atxdmac->clk); 1338 return 0; 1339 } 1340 1341 static int atmel_xdmac_resume(struct device *dev) 1342 { 1343 struct platform_device *pdev = to_platform_device(dev); 1344 struct at_xdmac *atxdmac = platform_get_drvdata(pdev); 1345 struct at_xdmac_chan *atchan; 1346 struct dma_chan *chan, *_chan; 1347 int i; 1348 1349 clk_prepare_enable(atxdmac->clk); 1350 1351 /* Clear pending interrupts. */ 1352 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1353 atchan = &atxdmac->chan[i]; 1354 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1355 cpu_relax(); 1356 } 1357 1358 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim); 1359 at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs); 1360 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) { 1361 atchan = to_at_xdmac_chan(chan); 1362 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc); 1363 if (at_xdmac_chan_is_cyclic(atchan)) { 1364 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda); 1365 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc); 1366 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim); 1367 wmb(); 1368 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask); 1369 } 1370 } 1371 return 0; 1372 } 1373 #endif /* CONFIG_PM_SLEEP */ 1374 1375 static int at_xdmac_probe(struct platform_device *pdev) 1376 { 1377 struct resource *res; 1378 struct at_xdmac *atxdmac; 1379 int irq, size, nr_channels, i, ret; 1380 void __iomem *base; 1381 u32 reg; 1382 1383 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1384 if (!res) 1385 return -EINVAL; 1386 1387 irq = platform_get_irq(pdev, 0); 1388 if (irq < 0) 1389 return irq; 1390 1391 base = devm_ioremap_resource(&pdev->dev, res); 1392 if (IS_ERR(base)) 1393 return PTR_ERR(base); 1394 1395 /* 1396 * Read number of xdmac channels, read helper function can't be used 1397 * since atxdmac is not yet allocated and we need to know the number 1398 * of channels to do the allocation. 1399 */ 1400 reg = readl_relaxed(base + AT_XDMAC_GTYPE); 1401 nr_channels = AT_XDMAC_NB_CH(reg); 1402 if (nr_channels > AT_XDMAC_MAX_CHAN) { 1403 dev_err(&pdev->dev, "invalid number of channels (%u)\n", 1404 nr_channels); 1405 return -EINVAL; 1406 } 1407 1408 size = sizeof(*atxdmac); 1409 size += nr_channels * sizeof(struct at_xdmac_chan); 1410 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1411 if (!atxdmac) { 1412 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n"); 1413 return -ENOMEM; 1414 } 1415 1416 atxdmac->regs = base; 1417 atxdmac->irq = irq; 1418 1419 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1420 if (IS_ERR(atxdmac->clk)) { 1421 dev_err(&pdev->dev, "can't get dma_clk\n"); 1422 return PTR_ERR(atxdmac->clk); 1423 } 1424 1425 /* Do not use dev res to prevent races with tasklet */ 1426 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac); 1427 if (ret) { 1428 dev_err(&pdev->dev, "can't request irq\n"); 1429 return ret; 1430 } 1431 1432 ret = clk_prepare_enable(atxdmac->clk); 1433 if (ret) { 1434 dev_err(&pdev->dev, "can't prepare or enable clock\n"); 1435 goto err_free_irq; 1436 } 1437 1438 atxdmac->at_xdmac_desc_pool = 1439 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, 1440 sizeof(struct at_xdmac_desc), 4, 0); 1441 if (!atxdmac->at_xdmac_desc_pool) { 1442 dev_err(&pdev->dev, "no memory for descriptors dma pool\n"); 1443 ret = -ENOMEM; 1444 goto err_clk_disable; 1445 } 1446 1447 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask); 1448 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask); 1449 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask); 1450 /* 1451 * Without DMA_PRIVATE the driver is not able to allocate more than 1452 * one channel, second allocation fails in private_candidate. 1453 */ 1454 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask); 1455 atxdmac->dma.dev = &pdev->dev; 1456 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources; 1457 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources; 1458 atxdmac->dma.device_tx_status = at_xdmac_tx_status; 1459 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending; 1460 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic; 1461 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy; 1462 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg; 1463 atxdmac->dma.device_config = at_xdmac_device_config; 1464 atxdmac->dma.device_pause = at_xdmac_device_pause; 1465 atxdmac->dma.device_resume = at_xdmac_device_resume; 1466 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all; 1467 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1468 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS; 1469 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1470 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1471 1472 /* Disable all chans and interrupts. */ 1473 at_xdmac_off(atxdmac); 1474 1475 /* Init channels. */ 1476 INIT_LIST_HEAD(&atxdmac->dma.channels); 1477 for (i = 0; i < nr_channels; i++) { 1478 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 1479 1480 atchan->chan.device = &atxdmac->dma; 1481 list_add_tail(&atchan->chan.device_node, 1482 &atxdmac->dma.channels); 1483 1484 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i); 1485 atchan->mask = 1 << i; 1486 1487 spin_lock_init(&atchan->lock); 1488 INIT_LIST_HEAD(&atchan->xfers_list); 1489 INIT_LIST_HEAD(&atchan->free_descs_list); 1490 tasklet_init(&atchan->tasklet, at_xdmac_tasklet, 1491 (unsigned long)atchan); 1492 1493 /* Clear pending interrupts. */ 1494 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS)) 1495 cpu_relax(); 1496 } 1497 platform_set_drvdata(pdev, atxdmac); 1498 1499 ret = dma_async_device_register(&atxdmac->dma); 1500 if (ret) { 1501 dev_err(&pdev->dev, "fail to register DMA engine device\n"); 1502 goto err_clk_disable; 1503 } 1504 1505 ret = of_dma_controller_register(pdev->dev.of_node, 1506 at_xdmac_xlate, atxdmac); 1507 if (ret) { 1508 dev_err(&pdev->dev, "could not register of dma controller\n"); 1509 goto err_dma_unregister; 1510 } 1511 1512 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n", 1513 nr_channels, atxdmac->regs); 1514 1515 return 0; 1516 1517 err_dma_unregister: 1518 dma_async_device_unregister(&atxdmac->dma); 1519 err_clk_disable: 1520 clk_disable_unprepare(atxdmac->clk); 1521 err_free_irq: 1522 free_irq(atxdmac->irq, atxdmac->dma.dev); 1523 return ret; 1524 } 1525 1526 static int at_xdmac_remove(struct platform_device *pdev) 1527 { 1528 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev); 1529 int i; 1530 1531 at_xdmac_off(atxdmac); 1532 of_dma_controller_free(pdev->dev.of_node); 1533 dma_async_device_unregister(&atxdmac->dma); 1534 clk_disable_unprepare(atxdmac->clk); 1535 1536 synchronize_irq(atxdmac->irq); 1537 1538 free_irq(atxdmac->irq, atxdmac->dma.dev); 1539 1540 for (i = 0; i < atxdmac->dma.chancnt; i++) { 1541 struct at_xdmac_chan *atchan = &atxdmac->chan[i]; 1542 1543 tasklet_kill(&atchan->tasklet); 1544 at_xdmac_free_chan_resources(&atchan->chan); 1545 } 1546 1547 return 0; 1548 } 1549 1550 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = { 1551 .prepare = atmel_xdmac_prepare, 1552 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume) 1553 }; 1554 1555 static const struct of_device_id atmel_xdmac_dt_ids[] = { 1556 { 1557 .compatible = "atmel,sama5d4-dma", 1558 }, { 1559 /* sentinel */ 1560 } 1561 }; 1562 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids); 1563 1564 static struct platform_driver at_xdmac_driver = { 1565 .probe = at_xdmac_probe, 1566 .remove = at_xdmac_remove, 1567 .driver = { 1568 .name = "at_xdmac", 1569 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids), 1570 .pm = &atmel_xdmac_dev_pm_ops, 1571 } 1572 }; 1573 1574 static int __init at_xdmac_init(void) 1575 { 1576 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe); 1577 } 1578 subsys_initcall(at_xdmac_init); 1579 1580 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver"); 1581 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>"); 1582 MODULE_LICENSE("GPL"); 1583