xref: /linux/drivers/dma/at_hdmac.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		memset(desc, 0, sizeof(struct at_desc));
117 		INIT_LIST_HEAD(&desc->tx_list);
118 		dma_async_tx_descriptor_init(&desc->txd, chan);
119 		/* txd.flags will be overwritten in prep functions */
120 		desc->txd.flags = DMA_CTRL_ACK;
121 		desc->txd.tx_submit = atc_tx_submit;
122 		desc->txd.phys = phys;
123 	}
124 
125 	return desc;
126 }
127 
128 /**
129  * atc_desc_get - get an unused descriptor from free_list
130  * @atchan: channel we want a new descriptor for
131  */
132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133 {
134 	struct at_desc *desc, *_desc;
135 	struct at_desc *ret = NULL;
136 	unsigned long flags;
137 	unsigned int i = 0;
138 	LIST_HEAD(tmp_list);
139 
140 	spin_lock_irqsave(&atchan->lock, flags);
141 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 		i++;
143 		if (async_tx_test_ack(&desc->txd)) {
144 			list_del(&desc->desc_node);
145 			ret = desc;
146 			break;
147 		}
148 		dev_dbg(chan2dev(&atchan->chan_common),
149 				"desc %p not ACKed\n", desc);
150 	}
151 	spin_unlock_irqrestore(&atchan->lock, flags);
152 	dev_vdbg(chan2dev(&atchan->chan_common),
153 		"scanned %u descriptors on freelist\n", i);
154 
155 	/* no more descriptor available in initial pool: create one more */
156 	if (!ret) {
157 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 		if (ret) {
159 			spin_lock_irqsave(&atchan->lock, flags);
160 			atchan->descs_allocated++;
161 			spin_unlock_irqrestore(&atchan->lock, flags);
162 		} else {
163 			dev_err(chan2dev(&atchan->chan_common),
164 					"not enough descriptors available\n");
165 		}
166 	}
167 
168 	return ret;
169 }
170 
171 /**
172  * atc_desc_put - move a descriptor, including any children, to the free list
173  * @atchan: channel we work on
174  * @desc: descriptor, at the head of a chain, to move to free list
175  */
176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177 {
178 	if (desc) {
179 		struct at_desc *child;
180 		unsigned long flags;
181 
182 		spin_lock_irqsave(&atchan->lock, flags);
183 		list_for_each_entry(child, &desc->tx_list, desc_node)
184 			dev_vdbg(chan2dev(&atchan->chan_common),
185 					"moving child desc %p to freelist\n",
186 					child);
187 		list_splice_init(&desc->tx_list, &atchan->free_list);
188 		dev_vdbg(chan2dev(&atchan->chan_common),
189 			 "moving desc %p to freelist\n", desc);
190 		list_add(&desc->desc_node, &atchan->free_list);
191 		spin_unlock_irqrestore(&atchan->lock, flags);
192 	}
193 }
194 
195 /**
196  * atc_desc_chain - build chain adding a descriptor
197  * @first: address of first descriptor of the chain
198  * @prev: address of previous descriptor of the chain
199  * @desc: descriptor to queue
200  *
201  * Called from prep_* functions
202  */
203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 			   struct at_desc *desc)
205 {
206 	if (!(*first)) {
207 		*first = desc;
208 	} else {
209 		/* inform the HW lli about chaining */
210 		(*prev)->lli.dscr = desc->txd.phys;
211 		/* insert the link descriptor to the LD ring */
212 		list_add_tail(&desc->desc_node,
213 				&(*first)->tx_list);
214 	}
215 	*prev = desc;
216 }
217 
218 /**
219  * atc_dostart - starts the DMA engine for real
220  * @atchan: the channel we want to start
221  * @first: first descriptor in the list we want to begin with
222  *
223  * Called with atchan->lock held and bh disabled
224  */
225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226 {
227 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
228 
229 	/* ASSERT:  channel is idle */
230 	if (atc_chan_is_enabled(atchan)) {
231 		dev_err(chan2dev(&atchan->chan_common),
232 			"BUG: Attempted to start non-idle channel\n");
233 		dev_err(chan2dev(&atchan->chan_common),
234 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 			channel_readl(atchan, SADDR),
236 			channel_readl(atchan, DADDR),
237 			channel_readl(atchan, CTRLA),
238 			channel_readl(atchan, CTRLB),
239 			channel_readl(atchan, DSCR));
240 
241 		/* The tasklet will hopefully advance the queue... */
242 		return;
243 	}
244 
245 	vdbg_dump_regs(atchan);
246 
247 	channel_writel(atchan, SADDR, 0);
248 	channel_writel(atchan, DADDR, 0);
249 	channel_writel(atchan, CTRLA, 0);
250 	channel_writel(atchan, CTRLB, 0);
251 	channel_writel(atchan, DSCR, first->txd.phys);
252 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 		       ATC_SPIP_BOUNDARY(first->boundary));
254 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 		       ATC_DPIP_BOUNDARY(first->boundary));
256 	dma_writel(atdma, CHER, atchan->mask);
257 
258 	vdbg_dump_regs(atchan);
259 }
260 
261 /*
262  * atc_get_desc_by_cookie - get the descriptor of a cookie
263  * @atchan: the DMA channel
264  * @cookie: the cookie to get the descriptor for
265  */
266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 						dma_cookie_t cookie)
268 {
269 	struct at_desc *desc, *_desc;
270 
271 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 		if (desc->txd.cookie == cookie)
273 			return desc;
274 	}
275 
276 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 		if (desc->txd.cookie == cookie)
278 			return desc;
279 	}
280 
281 	return NULL;
282 }
283 
284 /**
285  * atc_calc_bytes_left - calculates the number of bytes left according to the
286  * value read from CTRLA.
287  *
288  * @current_len: the number of bytes left before reading CTRLA
289  * @ctrla: the value of CTRLA
290  */
291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292 {
293 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295 
296 	/*
297 	 * According to the datasheet, when reading the Control A Register
298 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 	 * number of transfers completed on the Source Interface.
300 	 * So btsize is always a number of source width transfers.
301 	 */
302 	return current_len - (btsize << src_width);
303 }
304 
305 /**
306  * atc_get_bytes_left - get the number of bytes residue for a cookie
307  * @chan: DMA channel
308  * @cookie: transaction identifier to check status of
309  */
310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311 {
312 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
313 	struct at_desc *desc_first = atc_first_active(atchan);
314 	struct at_desc *desc;
315 	int ret;
316 	u32 ctrla, dscr, trials;
317 
318 	/*
319 	 * If the cookie doesn't match to the currently running transfer then
320 	 * we can return the total length of the associated DMA transfer,
321 	 * because it is still queued.
322 	 */
323 	desc = atc_get_desc_by_cookie(atchan, cookie);
324 	if (desc == NULL)
325 		return -EINVAL;
326 	else if (desc != desc_first)
327 		return desc->total_len;
328 
329 	/* cookie matches to the currently running transfer */
330 	ret = desc_first->total_len;
331 
332 	if (desc_first->lli.dscr) {
333 		/* hardware linked list transfer */
334 
335 		/*
336 		 * Calculate the residue by removing the length of the child
337 		 * descriptors already transferred from the total length.
338 		 * To get the current child descriptor we can use the value of
339 		 * the channel's DSCR register and compare it against the value
340 		 * of the hardware linked list structure of each child
341 		 * descriptor.
342 		 *
343 		 * The CTRLA register provides us with the amount of data
344 		 * already read from the source for the current child
345 		 * descriptor. So we can compute a more accurate residue by also
346 		 * removing the number of bytes corresponding to this amount of
347 		 * data.
348 		 *
349 		 * However, the DSCR and CTRLA registers cannot be read both
350 		 * atomically. Hence a race condition may occur: the first read
351 		 * register may refer to one child descriptor whereas the second
352 		 * read may refer to a later child descriptor in the list
353 		 * because of the DMA transfer progression inbetween the two
354 		 * reads.
355 		 *
356 		 * One solution could have been to pause the DMA transfer, read
357 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 		 * this approach presents some drawbacks:
359 		 * - If the DMA transfer is paused, RX overruns or TX underruns
360 		 *   are more likey to occur depending on the system latency.
361 		 *   Taking the USART driver as an example, it uses a cyclic DMA
362 		 *   transfer to read data from the Receive Holding Register
363 		 *   (RHR) to avoid RX overruns since the RHR is not protected
364 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 		 *   to compute the residue would break the USART driver design.
366 		 * - The atc_pause() function masks interrupts but we'd rather
367 		 *   avoid to do so for system latency purpose.
368 		 *
369 		 * Then we'd rather use another solution: the DSCR is read a
370 		 * first time, the CTRLA is read in turn, next the DSCR is read
371 		 * a second time. If the two consecutive read values of the DSCR
372 		 * are the same then we assume both refers to the very same
373 		 * child descriptor as well as the CTRLA value read inbetween
374 		 * does. For cyclic tranfers, the assumption is that a full loop
375 		 * is "not so fast".
376 		 * If the two DSCR values are different, we read again the CTRLA
377 		 * then the DSCR till two consecutive read values from DSCR are
378 		 * equal or till the maxium trials is reach.
379 		 * This algorithm is very unlikely not to find a stable value for
380 		 * DSCR.
381 		 */
382 
383 		dscr = channel_readl(atchan, DSCR);
384 		rmb(); /* ensure DSCR is read before CTRLA */
385 		ctrla = channel_readl(atchan, CTRLA);
386 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 			u32 new_dscr;
388 
389 			rmb(); /* ensure DSCR is read after CTRLA */
390 			new_dscr = channel_readl(atchan, DSCR);
391 
392 			/*
393 			 * If the DSCR register value has not changed inside the
394 			 * DMA controller since the previous read, we assume
395 			 * that both the dscr and ctrla values refers to the
396 			 * very same descriptor.
397 			 */
398 			if (likely(new_dscr == dscr))
399 				break;
400 
401 			/*
402 			 * DSCR has changed inside the DMA controller, so the
403 			 * previouly read value of CTRLA may refer to an already
404 			 * processed descriptor hence could be outdated.
405 			 * We need to update ctrla to match the current
406 			 * descriptor.
407 			 */
408 			dscr = new_dscr;
409 			rmb(); /* ensure DSCR is read before CTRLA */
410 			ctrla = channel_readl(atchan, CTRLA);
411 		}
412 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 			return -ETIMEDOUT;
414 
415 		/* for the first descriptor we can be more accurate */
416 		if (desc_first->lli.dscr == dscr)
417 			return atc_calc_bytes_left(ret, ctrla);
418 
419 		ret -= desc_first->len;
420 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 			if (desc->lli.dscr == dscr)
422 				break;
423 
424 			ret -= desc->len;
425 		}
426 
427 		/*
428 		 * For the current descriptor in the chain we can calculate
429 		 * the remaining bytes using the channel's register.
430 		 */
431 		ret = atc_calc_bytes_left(ret, ctrla);
432 	} else {
433 		/* single transfer */
434 		ctrla = channel_readl(atchan, CTRLA);
435 		ret = atc_calc_bytes_left(ret, ctrla);
436 	}
437 
438 	return ret;
439 }
440 
441 /**
442  * atc_chain_complete - finish work for one transaction chain
443  * @atchan: channel we work on
444  * @desc: descriptor at the head of the chain we want do complete
445  *
446  * Called with atchan->lock held and bh disabled */
447 static void
448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449 {
450 	struct dma_async_tx_descriptor	*txd = &desc->txd;
451 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
452 
453 	dev_vdbg(chan2dev(&atchan->chan_common),
454 		"descriptor %u complete\n", txd->cookie);
455 
456 	/* mark the descriptor as complete for non cyclic cases only */
457 	if (!atc_chan_is_cyclic(atchan))
458 		dma_cookie_complete(txd);
459 
460 	/* If the transfer was a memset, free our temporary buffer */
461 	if (desc->memset) {
462 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463 			      desc->memset_paddr);
464 		desc->memset = false;
465 	}
466 
467 	/* move children to free_list */
468 	list_splice_init(&desc->tx_list, &atchan->free_list);
469 	/* move myself to free_list */
470 	list_move(&desc->desc_node, &atchan->free_list);
471 
472 	dma_descriptor_unmap(txd);
473 	/* for cyclic transfers,
474 	 * no need to replay callback function while stopping */
475 	if (!atc_chan_is_cyclic(atchan)) {
476 		dma_async_tx_callback	callback = txd->callback;
477 		void			*param = txd->callback_param;
478 
479 		/*
480 		 * The API requires that no submissions are done from a
481 		 * callback, so we don't need to drop the lock here
482 		 */
483 		if (callback)
484 			callback(param);
485 	}
486 
487 	dma_run_dependencies(txd);
488 }
489 
490 /**
491  * atc_complete_all - finish work for all transactions
492  * @atchan: channel to complete transactions for
493  *
494  * Eventually submit queued descriptors if any
495  *
496  * Assume channel is idle while calling this function
497  * Called with atchan->lock held and bh disabled
498  */
499 static void atc_complete_all(struct at_dma_chan *atchan)
500 {
501 	struct at_desc *desc, *_desc;
502 	LIST_HEAD(list);
503 
504 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
505 
506 	/*
507 	 * Submit queued descriptors ASAP, i.e. before we go through
508 	 * the completed ones.
509 	 */
510 	if (!list_empty(&atchan->queue))
511 		atc_dostart(atchan, atc_first_queued(atchan));
512 	/* empty active_list now it is completed */
513 	list_splice_init(&atchan->active_list, &list);
514 	/* empty queue list by moving descriptors (if any) to active_list */
515 	list_splice_init(&atchan->queue, &atchan->active_list);
516 
517 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
518 		atc_chain_complete(atchan, desc);
519 }
520 
521 /**
522  * atc_advance_work - at the end of a transaction, move forward
523  * @atchan: channel where the transaction ended
524  *
525  * Called with atchan->lock held and bh disabled
526  */
527 static void atc_advance_work(struct at_dma_chan *atchan)
528 {
529 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
530 
531 	if (atc_chan_is_enabled(atchan))
532 		return;
533 
534 	if (list_empty(&atchan->active_list) ||
535 	    list_is_singular(&atchan->active_list)) {
536 		atc_complete_all(atchan);
537 	} else {
538 		atc_chain_complete(atchan, atc_first_active(atchan));
539 		/* advance work */
540 		atc_dostart(atchan, atc_first_active(atchan));
541 	}
542 }
543 
544 
545 /**
546  * atc_handle_error - handle errors reported by DMA controller
547  * @atchan: channel where error occurs
548  *
549  * Called with atchan->lock held and bh disabled
550  */
551 static void atc_handle_error(struct at_dma_chan *atchan)
552 {
553 	struct at_desc *bad_desc;
554 	struct at_desc *child;
555 
556 	/*
557 	 * The descriptor currently at the head of the active list is
558 	 * broked. Since we don't have any way to report errors, we'll
559 	 * just have to scream loudly and try to carry on.
560 	 */
561 	bad_desc = atc_first_active(atchan);
562 	list_del_init(&bad_desc->desc_node);
563 
564 	/* As we are stopped, take advantage to push queued descriptors
565 	 * in active_list */
566 	list_splice_init(&atchan->queue, atchan->active_list.prev);
567 
568 	/* Try to restart the controller */
569 	if (!list_empty(&atchan->active_list))
570 		atc_dostart(atchan, atc_first_active(atchan));
571 
572 	/*
573 	 * KERN_CRITICAL may seem harsh, but since this only happens
574 	 * when someone submits a bad physical address in a
575 	 * descriptor, we should consider ourselves lucky that the
576 	 * controller flagged an error instead of scribbling over
577 	 * random memory locations.
578 	 */
579 	dev_crit(chan2dev(&atchan->chan_common),
580 			"Bad descriptor submitted for DMA!\n");
581 	dev_crit(chan2dev(&atchan->chan_common),
582 			"  cookie: %d\n", bad_desc->txd.cookie);
583 	atc_dump_lli(atchan, &bad_desc->lli);
584 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
585 		atc_dump_lli(atchan, &child->lli);
586 
587 	/* Pretend the descriptor completed successfully */
588 	atc_chain_complete(atchan, bad_desc);
589 }
590 
591 /**
592  * atc_handle_cyclic - at the end of a period, run callback function
593  * @atchan: channel used for cyclic operations
594  *
595  * Called with atchan->lock held and bh disabled
596  */
597 static void atc_handle_cyclic(struct at_dma_chan *atchan)
598 {
599 	struct at_desc			*first = atc_first_active(atchan);
600 	struct dma_async_tx_descriptor	*txd = &first->txd;
601 	dma_async_tx_callback		callback = txd->callback;
602 	void				*param = txd->callback_param;
603 
604 	dev_vdbg(chan2dev(&atchan->chan_common),
605 			"new cyclic period llp 0x%08x\n",
606 			channel_readl(atchan, DSCR));
607 
608 	if (callback)
609 		callback(param);
610 }
611 
612 /*--  IRQ & Tasklet  ---------------------------------------------------*/
613 
614 static void atc_tasklet(unsigned long data)
615 {
616 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&atchan->lock, flags);
620 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
621 		atc_handle_error(atchan);
622 	else if (atc_chan_is_cyclic(atchan))
623 		atc_handle_cyclic(atchan);
624 	else
625 		atc_advance_work(atchan);
626 
627 	spin_unlock_irqrestore(&atchan->lock, flags);
628 }
629 
630 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
631 {
632 	struct at_dma		*atdma = (struct at_dma *)dev_id;
633 	struct at_dma_chan	*atchan;
634 	int			i;
635 	u32			status, pending, imr;
636 	int			ret = IRQ_NONE;
637 
638 	do {
639 		imr = dma_readl(atdma, EBCIMR);
640 		status = dma_readl(atdma, EBCISR);
641 		pending = status & imr;
642 
643 		if (!pending)
644 			break;
645 
646 		dev_vdbg(atdma->dma_common.dev,
647 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
648 			 status, imr, pending);
649 
650 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
651 			atchan = &atdma->chan[i];
652 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
653 				if (pending & AT_DMA_ERR(i)) {
654 					/* Disable channel on AHB error */
655 					dma_writel(atdma, CHDR,
656 						AT_DMA_RES(i) | atchan->mask);
657 					/* Give information to tasklet */
658 					set_bit(ATC_IS_ERROR, &atchan->status);
659 				}
660 				tasklet_schedule(&atchan->tasklet);
661 				ret = IRQ_HANDLED;
662 			}
663 		}
664 
665 	} while (pending);
666 
667 	return ret;
668 }
669 
670 
671 /*--  DMA Engine API  --------------------------------------------------*/
672 
673 /**
674  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
675  * @desc: descriptor at the head of the transaction chain
676  *
677  * Queue chain if DMA engine is working already
678  *
679  * Cookie increment and adding to active_list or queue must be atomic
680  */
681 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
682 {
683 	struct at_desc		*desc = txd_to_at_desc(tx);
684 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
685 	dma_cookie_t		cookie;
686 	unsigned long		flags;
687 
688 	spin_lock_irqsave(&atchan->lock, flags);
689 	cookie = dma_cookie_assign(tx);
690 
691 	if (list_empty(&atchan->active_list)) {
692 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
693 				desc->txd.cookie);
694 		atc_dostart(atchan, desc);
695 		list_add_tail(&desc->desc_node, &atchan->active_list);
696 	} else {
697 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
698 				desc->txd.cookie);
699 		list_add_tail(&desc->desc_node, &atchan->queue);
700 	}
701 
702 	spin_unlock_irqrestore(&atchan->lock, flags);
703 
704 	return cookie;
705 }
706 
707 /**
708  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
709  * @chan: the channel to prepare operation on
710  * @xt: Interleaved transfer template
711  * @flags: tx descriptor status flags
712  */
713 static struct dma_async_tx_descriptor *
714 atc_prep_dma_interleaved(struct dma_chan *chan,
715 			 struct dma_interleaved_template *xt,
716 			 unsigned long flags)
717 {
718 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
719 	struct data_chunk	*first = xt->sgl;
720 	struct at_desc		*desc = NULL;
721 	size_t			xfer_count;
722 	unsigned int		dwidth;
723 	u32			ctrla;
724 	u32			ctrlb;
725 	size_t			len = 0;
726 	int			i;
727 
728 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
729 		return NULL;
730 
731 	dev_info(chan2dev(chan),
732 		 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n",
733 		__func__, xt->src_start, xt->dst_start, xt->numf,
734 		xt->frame_size, flags);
735 
736 	/*
737 	 * The controller can only "skip" X bytes every Y bytes, so we
738 	 * need to make sure we are given a template that fit that
739 	 * description, ie a template with chunks that always have the
740 	 * same size, with the same ICGs.
741 	 */
742 	for (i = 0; i < xt->frame_size; i++) {
743 		struct data_chunk *chunk = xt->sgl + i;
744 
745 		if ((chunk->size != xt->sgl->size) ||
746 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
747 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
748 			dev_err(chan2dev(chan),
749 				"%s: the controller can transfer only identical chunks\n",
750 				__func__);
751 			return NULL;
752 		}
753 
754 		len += chunk->size;
755 	}
756 
757 	dwidth = atc_get_xfer_width(xt->src_start,
758 				    xt->dst_start, len);
759 
760 	xfer_count = len >> dwidth;
761 	if (xfer_count > ATC_BTSIZE_MAX) {
762 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
763 		return NULL;
764 	}
765 
766 	ctrla = ATC_SRC_WIDTH(dwidth) |
767 		ATC_DST_WIDTH(dwidth);
768 
769 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
770 		| ATC_SRC_ADDR_MODE_INCR
771 		| ATC_DST_ADDR_MODE_INCR
772 		| ATC_SRC_PIP
773 		| ATC_DST_PIP
774 		| ATC_FC_MEM2MEM;
775 
776 	/* create the transfer */
777 	desc = atc_desc_get(atchan);
778 	if (!desc) {
779 		dev_err(chan2dev(chan),
780 			"%s: couldn't allocate our descriptor\n", __func__);
781 		return NULL;
782 	}
783 
784 	desc->lli.saddr = xt->src_start;
785 	desc->lli.daddr = xt->dst_start;
786 	desc->lli.ctrla = ctrla | xfer_count;
787 	desc->lli.ctrlb = ctrlb;
788 
789 	desc->boundary = first->size >> dwidth;
790 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
791 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
792 
793 	desc->txd.cookie = -EBUSY;
794 	desc->total_len = desc->len = len;
795 
796 	/* set end-of-link to the last link descriptor of list*/
797 	set_desc_eol(desc);
798 
799 	desc->txd.flags = flags; /* client is in control of this ack */
800 
801 	return &desc->txd;
802 }
803 
804 /**
805  * atc_prep_dma_memcpy - prepare a memcpy operation
806  * @chan: the channel to prepare operation on
807  * @dest: operation virtual destination address
808  * @src: operation virtual source address
809  * @len: operation length
810  * @flags: tx descriptor status flags
811  */
812 static struct dma_async_tx_descriptor *
813 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
814 		size_t len, unsigned long flags)
815 {
816 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
817 	struct at_desc		*desc = NULL;
818 	struct at_desc		*first = NULL;
819 	struct at_desc		*prev = NULL;
820 	size_t			xfer_count;
821 	size_t			offset;
822 	unsigned int		src_width;
823 	unsigned int		dst_width;
824 	u32			ctrla;
825 	u32			ctrlb;
826 
827 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n",
828 			dest, src, len, flags);
829 
830 	if (unlikely(!len)) {
831 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
832 		return NULL;
833 	}
834 
835 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
836 		| ATC_SRC_ADDR_MODE_INCR
837 		| ATC_DST_ADDR_MODE_INCR
838 		| ATC_FC_MEM2MEM;
839 
840 	/*
841 	 * We can be a lot more clever here, but this should take care
842 	 * of the most common optimization.
843 	 */
844 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
845 
846 	ctrla = ATC_SRC_WIDTH(src_width) |
847 		ATC_DST_WIDTH(dst_width);
848 
849 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
850 		xfer_count = min_t(size_t, (len - offset) >> src_width,
851 				ATC_BTSIZE_MAX);
852 
853 		desc = atc_desc_get(atchan);
854 		if (!desc)
855 			goto err_desc_get;
856 
857 		desc->lli.saddr = src + offset;
858 		desc->lli.daddr = dest + offset;
859 		desc->lli.ctrla = ctrla | xfer_count;
860 		desc->lli.ctrlb = ctrlb;
861 
862 		desc->txd.cookie = 0;
863 		desc->len = xfer_count << src_width;
864 
865 		atc_desc_chain(&first, &prev, desc);
866 	}
867 
868 	/* First descriptor of the chain embedds additional information */
869 	first->txd.cookie = -EBUSY;
870 	first->total_len = len;
871 
872 	/* set end-of-link to the last link descriptor of list*/
873 	set_desc_eol(desc);
874 
875 	first->txd.flags = flags; /* client is in control of this ack */
876 
877 	return &first->txd;
878 
879 err_desc_get:
880 	atc_desc_put(atchan, first);
881 	return NULL;
882 }
883 
884 /**
885  * atc_prep_dma_memset - prepare a memcpy operation
886  * @chan: the channel to prepare operation on
887  * @dest: operation virtual destination address
888  * @value: value to set memory buffer to
889  * @len: operation length
890  * @flags: tx descriptor status flags
891  */
892 static struct dma_async_tx_descriptor *
893 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
894 		    size_t len, unsigned long flags)
895 {
896 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
897 	struct at_dma		*atdma = to_at_dma(chan->device);
898 	struct at_desc		*desc = NULL;
899 	size_t			xfer_count;
900 	u32			ctrla;
901 	u32			ctrlb;
902 
903 	dev_vdbg(chan2dev(chan), "%s: d0x%x v0x%x l0x%zx f0x%lx\n", __func__,
904 		dest, value, len, flags);
905 
906 	if (unlikely(!len)) {
907 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
908 		return NULL;
909 	}
910 
911 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
912 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
913 			__func__);
914 		return NULL;
915 	}
916 
917 	xfer_count = len >> 2;
918 	if (xfer_count > ATC_BTSIZE_MAX) {
919 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
920 			__func__);
921 		return NULL;
922 	}
923 
924 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
925 		| ATC_SRC_ADDR_MODE_FIXED
926 		| ATC_DST_ADDR_MODE_INCR
927 		| ATC_FC_MEM2MEM;
928 
929 	ctrla = ATC_SRC_WIDTH(2) |
930 		ATC_DST_WIDTH(2);
931 
932 	desc = atc_desc_get(atchan);
933 	if (!desc) {
934 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
935 			__func__);
936 		return NULL;
937 	}
938 
939 	desc->memset_vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC,
940 					    &desc->memset_paddr);
941 	if (!desc->memset_vaddr) {
942 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
943 			__func__);
944 		goto err_put_desc;
945 	}
946 
947 	*desc->memset_vaddr = value;
948 	desc->memset = true;
949 
950 	desc->lli.saddr = desc->memset_paddr;
951 	desc->lli.daddr = dest;
952 	desc->lli.ctrla = ctrla | xfer_count;
953 	desc->lli.ctrlb = ctrlb;
954 
955 	desc->txd.cookie = -EBUSY;
956 	desc->len = len;
957 	desc->total_len = len;
958 
959 	/* set end-of-link on the descriptor */
960 	set_desc_eol(desc);
961 
962 	desc->txd.flags = flags;
963 
964 	return &desc->txd;
965 
966 err_put_desc:
967 	atc_desc_put(atchan, desc);
968 	return NULL;
969 }
970 
971 
972 /**
973  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
974  * @chan: DMA channel
975  * @sgl: scatterlist to transfer to/from
976  * @sg_len: number of entries in @scatterlist
977  * @direction: DMA direction
978  * @flags: tx descriptor status flags
979  * @context: transaction context (ignored)
980  */
981 static struct dma_async_tx_descriptor *
982 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
983 		unsigned int sg_len, enum dma_transfer_direction direction,
984 		unsigned long flags, void *context)
985 {
986 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
987 	struct at_dma_slave	*atslave = chan->private;
988 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
989 	struct at_desc		*first = NULL;
990 	struct at_desc		*prev = NULL;
991 	u32			ctrla;
992 	u32			ctrlb;
993 	dma_addr_t		reg;
994 	unsigned int		reg_width;
995 	unsigned int		mem_width;
996 	unsigned int		i;
997 	struct scatterlist	*sg;
998 	size_t			total_len = 0;
999 
1000 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1001 			sg_len,
1002 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1003 			flags);
1004 
1005 	if (unlikely(!atslave || !sg_len)) {
1006 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1007 		return NULL;
1008 	}
1009 
1010 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1011 		| ATC_DCSIZE(sconfig->dst_maxburst);
1012 	ctrlb = ATC_IEN;
1013 
1014 	switch (direction) {
1015 	case DMA_MEM_TO_DEV:
1016 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1017 		ctrla |=  ATC_DST_WIDTH(reg_width);
1018 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1019 			| ATC_SRC_ADDR_MODE_INCR
1020 			| ATC_FC_MEM2PER
1021 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1022 		reg = sconfig->dst_addr;
1023 		for_each_sg(sgl, sg, sg_len, i) {
1024 			struct at_desc	*desc;
1025 			u32		len;
1026 			u32		mem;
1027 
1028 			desc = atc_desc_get(atchan);
1029 			if (!desc)
1030 				goto err_desc_get;
1031 
1032 			mem = sg_dma_address(sg);
1033 			len = sg_dma_len(sg);
1034 			if (unlikely(!len)) {
1035 				dev_dbg(chan2dev(chan),
1036 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1037 				goto err;
1038 			}
1039 			mem_width = 2;
1040 			if (unlikely(mem & 3 || len & 3))
1041 				mem_width = 0;
1042 
1043 			desc->lli.saddr = mem;
1044 			desc->lli.daddr = reg;
1045 			desc->lli.ctrla = ctrla
1046 					| ATC_SRC_WIDTH(mem_width)
1047 					| len >> mem_width;
1048 			desc->lli.ctrlb = ctrlb;
1049 			desc->len = len;
1050 
1051 			atc_desc_chain(&first, &prev, desc);
1052 			total_len += len;
1053 		}
1054 		break;
1055 	case DMA_DEV_TO_MEM:
1056 		reg_width = convert_buswidth(sconfig->src_addr_width);
1057 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1058 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1059 			| ATC_SRC_ADDR_MODE_FIXED
1060 			| ATC_FC_PER2MEM
1061 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1062 
1063 		reg = sconfig->src_addr;
1064 		for_each_sg(sgl, sg, sg_len, i) {
1065 			struct at_desc	*desc;
1066 			u32		len;
1067 			u32		mem;
1068 
1069 			desc = atc_desc_get(atchan);
1070 			if (!desc)
1071 				goto err_desc_get;
1072 
1073 			mem = sg_dma_address(sg);
1074 			len = sg_dma_len(sg);
1075 			if (unlikely(!len)) {
1076 				dev_dbg(chan2dev(chan),
1077 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1078 				goto err;
1079 			}
1080 			mem_width = 2;
1081 			if (unlikely(mem & 3 || len & 3))
1082 				mem_width = 0;
1083 
1084 			desc->lli.saddr = reg;
1085 			desc->lli.daddr = mem;
1086 			desc->lli.ctrla = ctrla
1087 					| ATC_DST_WIDTH(mem_width)
1088 					| len >> reg_width;
1089 			desc->lli.ctrlb = ctrlb;
1090 			desc->len = len;
1091 
1092 			atc_desc_chain(&first, &prev, desc);
1093 			total_len += len;
1094 		}
1095 		break;
1096 	default:
1097 		return NULL;
1098 	}
1099 
1100 	/* set end-of-link to the last link descriptor of list*/
1101 	set_desc_eol(prev);
1102 
1103 	/* First descriptor of the chain embedds additional information */
1104 	first->txd.cookie = -EBUSY;
1105 	first->total_len = total_len;
1106 
1107 	/* first link descriptor of list is responsible of flags */
1108 	first->txd.flags = flags; /* client is in control of this ack */
1109 
1110 	return &first->txd;
1111 
1112 err_desc_get:
1113 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1114 err:
1115 	atc_desc_put(atchan, first);
1116 	return NULL;
1117 }
1118 
1119 /**
1120  * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1121  * @chan: the channel to prepare operation on
1122  * @dst_sg: destination scatterlist
1123  * @dst_nents: number of destination scatterlist entries
1124  * @src_sg: source scatterlist
1125  * @src_nents: number of source scatterlist entries
1126  * @flags: tx descriptor status flags
1127  */
1128 static struct dma_async_tx_descriptor *
1129 atc_prep_dma_sg(struct dma_chan *chan,
1130 		struct scatterlist *dst_sg, unsigned int dst_nents,
1131 		struct scatterlist *src_sg, unsigned int src_nents,
1132 		unsigned long flags)
1133 {
1134 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1135 	struct at_desc		*desc = NULL;
1136 	struct at_desc		*first = NULL;
1137 	struct at_desc		*prev = NULL;
1138 	unsigned int		src_width;
1139 	unsigned int		dst_width;
1140 	size_t			xfer_count;
1141 	u32			ctrla;
1142 	u32			ctrlb;
1143 	size_t			dst_len = 0, src_len = 0;
1144 	dma_addr_t		dst = 0, src = 0;
1145 	size_t			len = 0, total_len = 0;
1146 
1147 	if (unlikely(dst_nents == 0 || src_nents == 0))
1148 		return NULL;
1149 
1150 	if (unlikely(dst_sg == NULL || src_sg == NULL))
1151 		return NULL;
1152 
1153 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1154 		| ATC_SRC_ADDR_MODE_INCR
1155 		| ATC_DST_ADDR_MODE_INCR
1156 		| ATC_FC_MEM2MEM;
1157 
1158 	/*
1159 	 * loop until there is either no more source or no more destination
1160 	 * scatterlist entry
1161 	 */
1162 	while (true) {
1163 
1164 		/* prepare the next transfer */
1165 		if (dst_len == 0) {
1166 
1167 			/* no more destination scatterlist entries */
1168 			if (!dst_sg || !dst_nents)
1169 				break;
1170 
1171 			dst = sg_dma_address(dst_sg);
1172 			dst_len = sg_dma_len(dst_sg);
1173 
1174 			dst_sg = sg_next(dst_sg);
1175 			dst_nents--;
1176 		}
1177 
1178 		if (src_len == 0) {
1179 
1180 			/* no more source scatterlist entries */
1181 			if (!src_sg || !src_nents)
1182 				break;
1183 
1184 			src = sg_dma_address(src_sg);
1185 			src_len = sg_dma_len(src_sg);
1186 
1187 			src_sg = sg_next(src_sg);
1188 			src_nents--;
1189 		}
1190 
1191 		len = min_t(size_t, src_len, dst_len);
1192 		if (len == 0)
1193 			continue;
1194 
1195 		/* take care for the alignment */
1196 		src_width = dst_width = atc_get_xfer_width(src, dst, len);
1197 
1198 		ctrla = ATC_SRC_WIDTH(src_width) |
1199 			ATC_DST_WIDTH(dst_width);
1200 
1201 		/*
1202 		 * The number of transfers to set up refer to the source width
1203 		 * that depends on the alignment.
1204 		 */
1205 		xfer_count = len >> src_width;
1206 		if (xfer_count > ATC_BTSIZE_MAX) {
1207 			xfer_count = ATC_BTSIZE_MAX;
1208 			len = ATC_BTSIZE_MAX << src_width;
1209 		}
1210 
1211 		/* create the transfer */
1212 		desc = atc_desc_get(atchan);
1213 		if (!desc)
1214 			goto err_desc_get;
1215 
1216 		desc->lli.saddr = src;
1217 		desc->lli.daddr = dst;
1218 		desc->lli.ctrla = ctrla | xfer_count;
1219 		desc->lli.ctrlb = ctrlb;
1220 
1221 		desc->txd.cookie = 0;
1222 		desc->len = len;
1223 
1224 		atc_desc_chain(&first, &prev, desc);
1225 
1226 		/* update the lengths and addresses for the next loop cycle */
1227 		dst_len -= len;
1228 		src_len -= len;
1229 		dst += len;
1230 		src += len;
1231 
1232 		total_len += len;
1233 	}
1234 
1235 	/* First descriptor of the chain embedds additional information */
1236 	first->txd.cookie = -EBUSY;
1237 	first->total_len = total_len;
1238 
1239 	/* set end-of-link to the last link descriptor of list*/
1240 	set_desc_eol(desc);
1241 
1242 	first->txd.flags = flags; /* client is in control of this ack */
1243 
1244 	return &first->txd;
1245 
1246 err_desc_get:
1247 	atc_desc_put(atchan, first);
1248 	return NULL;
1249 }
1250 
1251 /**
1252  * atc_dma_cyclic_check_values
1253  * Check for too big/unaligned periods and unaligned DMA buffer
1254  */
1255 static int
1256 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1257 		size_t period_len)
1258 {
1259 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1260 		goto err_out;
1261 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1262 		goto err_out;
1263 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1264 		goto err_out;
1265 
1266 	return 0;
1267 
1268 err_out:
1269 	return -EINVAL;
1270 }
1271 
1272 /**
1273  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1274  */
1275 static int
1276 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1277 		unsigned int period_index, dma_addr_t buf_addr,
1278 		unsigned int reg_width, size_t period_len,
1279 		enum dma_transfer_direction direction)
1280 {
1281 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1282 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1283 	u32			ctrla;
1284 
1285 	/* prepare common CRTLA value */
1286 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1287 		| ATC_DCSIZE(sconfig->dst_maxburst)
1288 		| ATC_DST_WIDTH(reg_width)
1289 		| ATC_SRC_WIDTH(reg_width)
1290 		| period_len >> reg_width;
1291 
1292 	switch (direction) {
1293 	case DMA_MEM_TO_DEV:
1294 		desc->lli.saddr = buf_addr + (period_len * period_index);
1295 		desc->lli.daddr = sconfig->dst_addr;
1296 		desc->lli.ctrla = ctrla;
1297 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1298 				| ATC_SRC_ADDR_MODE_INCR
1299 				| ATC_FC_MEM2PER
1300 				| ATC_SIF(atchan->mem_if)
1301 				| ATC_DIF(atchan->per_if);
1302 		desc->len = period_len;
1303 		break;
1304 
1305 	case DMA_DEV_TO_MEM:
1306 		desc->lli.saddr = sconfig->src_addr;
1307 		desc->lli.daddr = buf_addr + (period_len * period_index);
1308 		desc->lli.ctrla = ctrla;
1309 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1310 				| ATC_SRC_ADDR_MODE_FIXED
1311 				| ATC_FC_PER2MEM
1312 				| ATC_SIF(atchan->per_if)
1313 				| ATC_DIF(atchan->mem_if);
1314 		desc->len = period_len;
1315 		break;
1316 
1317 	default:
1318 		return -EINVAL;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1326  * @chan: the DMA channel to prepare
1327  * @buf_addr: physical DMA address where the buffer starts
1328  * @buf_len: total number of bytes for the entire buffer
1329  * @period_len: number of bytes for each period
1330  * @direction: transfer direction, to or from device
1331  * @flags: tx descriptor status flags
1332  */
1333 static struct dma_async_tx_descriptor *
1334 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1335 		size_t period_len, enum dma_transfer_direction direction,
1336 		unsigned long flags)
1337 {
1338 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1339 	struct at_dma_slave	*atslave = chan->private;
1340 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1341 	struct at_desc		*first = NULL;
1342 	struct at_desc		*prev = NULL;
1343 	unsigned long		was_cyclic;
1344 	unsigned int		reg_width;
1345 	unsigned int		periods = buf_len / period_len;
1346 	unsigned int		i;
1347 
1348 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n",
1349 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1350 			buf_addr,
1351 			periods, buf_len, period_len);
1352 
1353 	if (unlikely(!atslave || !buf_len || !period_len)) {
1354 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1355 		return NULL;
1356 	}
1357 
1358 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1359 	if (was_cyclic) {
1360 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1361 		return NULL;
1362 	}
1363 
1364 	if (unlikely(!is_slave_direction(direction)))
1365 		goto err_out;
1366 
1367 	if (sconfig->direction == DMA_MEM_TO_DEV)
1368 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1369 	else
1370 		reg_width = convert_buswidth(sconfig->src_addr_width);
1371 
1372 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1373 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1374 		goto err_out;
1375 
1376 	/* build cyclic linked list */
1377 	for (i = 0; i < periods; i++) {
1378 		struct at_desc	*desc;
1379 
1380 		desc = atc_desc_get(atchan);
1381 		if (!desc)
1382 			goto err_desc_get;
1383 
1384 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1385 					     reg_width, period_len, direction))
1386 			goto err_desc_get;
1387 
1388 		atc_desc_chain(&first, &prev, desc);
1389 	}
1390 
1391 	/* lets make a cyclic list */
1392 	prev->lli.dscr = first->txd.phys;
1393 
1394 	/* First descriptor of the chain embedds additional information */
1395 	first->txd.cookie = -EBUSY;
1396 	first->total_len = buf_len;
1397 
1398 	return &first->txd;
1399 
1400 err_desc_get:
1401 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1402 	atc_desc_put(atchan, first);
1403 err_out:
1404 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1405 	return NULL;
1406 }
1407 
1408 static int atc_config(struct dma_chan *chan,
1409 		      struct dma_slave_config *sconfig)
1410 {
1411 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1412 
1413 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1414 
1415 	/* Check if it is chan is configured for slave transfers */
1416 	if (!chan->private)
1417 		return -EINVAL;
1418 
1419 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1420 
1421 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1422 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1423 
1424 	return 0;
1425 }
1426 
1427 static int atc_pause(struct dma_chan *chan)
1428 {
1429 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1430 	struct at_dma		*atdma = to_at_dma(chan->device);
1431 	int			chan_id = atchan->chan_common.chan_id;
1432 	unsigned long		flags;
1433 
1434 	LIST_HEAD(list);
1435 
1436 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1437 
1438 	spin_lock_irqsave(&atchan->lock, flags);
1439 
1440 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1441 	set_bit(ATC_IS_PAUSED, &atchan->status);
1442 
1443 	spin_unlock_irqrestore(&atchan->lock, flags);
1444 
1445 	return 0;
1446 }
1447 
1448 static int atc_resume(struct dma_chan *chan)
1449 {
1450 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1451 	struct at_dma		*atdma = to_at_dma(chan->device);
1452 	int			chan_id = atchan->chan_common.chan_id;
1453 	unsigned long		flags;
1454 
1455 	LIST_HEAD(list);
1456 
1457 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1458 
1459 	if (!atc_chan_is_paused(atchan))
1460 		return 0;
1461 
1462 	spin_lock_irqsave(&atchan->lock, flags);
1463 
1464 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1465 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1466 
1467 	spin_unlock_irqrestore(&atchan->lock, flags);
1468 
1469 	return 0;
1470 }
1471 
1472 static int atc_terminate_all(struct dma_chan *chan)
1473 {
1474 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1475 	struct at_dma		*atdma = to_at_dma(chan->device);
1476 	int			chan_id = atchan->chan_common.chan_id;
1477 	struct at_desc		*desc, *_desc;
1478 	unsigned long		flags;
1479 
1480 	LIST_HEAD(list);
1481 
1482 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1483 
1484 	/*
1485 	 * This is only called when something went wrong elsewhere, so
1486 	 * we don't really care about the data. Just disable the
1487 	 * channel. We still have to poll the channel enable bit due
1488 	 * to AHB/HSB limitations.
1489 	 */
1490 	spin_lock_irqsave(&atchan->lock, flags);
1491 
1492 	/* disabling channel: must also remove suspend state */
1493 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1494 
1495 	/* confirm that this channel is disabled */
1496 	while (dma_readl(atdma, CHSR) & atchan->mask)
1497 		cpu_relax();
1498 
1499 	/* active_list entries will end up before queued entries */
1500 	list_splice_init(&atchan->queue, &list);
1501 	list_splice_init(&atchan->active_list, &list);
1502 
1503 	/* Flush all pending and queued descriptors */
1504 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1505 		atc_chain_complete(atchan, desc);
1506 
1507 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1508 	/* if channel dedicated to cyclic operations, free it */
1509 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1510 
1511 	spin_unlock_irqrestore(&atchan->lock, flags);
1512 
1513 	return 0;
1514 }
1515 
1516 /**
1517  * atc_tx_status - poll for transaction completion
1518  * @chan: DMA channel
1519  * @cookie: transaction identifier to check status of
1520  * @txstate: if not %NULL updated with transaction state
1521  *
1522  * If @txstate is passed in, upon return it reflect the driver
1523  * internal state and can be used with dma_async_is_complete() to check
1524  * the status of multiple cookies without re-checking hardware state.
1525  */
1526 static enum dma_status
1527 atc_tx_status(struct dma_chan *chan,
1528 		dma_cookie_t cookie,
1529 		struct dma_tx_state *txstate)
1530 {
1531 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1532 	unsigned long		flags;
1533 	enum dma_status		ret;
1534 	int bytes = 0;
1535 
1536 	ret = dma_cookie_status(chan, cookie, txstate);
1537 	if (ret == DMA_COMPLETE)
1538 		return ret;
1539 	/*
1540 	 * There's no point calculating the residue if there's
1541 	 * no txstate to store the value.
1542 	 */
1543 	if (!txstate)
1544 		return DMA_ERROR;
1545 
1546 	spin_lock_irqsave(&atchan->lock, flags);
1547 
1548 	/*  Get number of bytes left in the active transactions */
1549 	bytes = atc_get_bytes_left(chan, cookie);
1550 
1551 	spin_unlock_irqrestore(&atchan->lock, flags);
1552 
1553 	if (unlikely(bytes < 0)) {
1554 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1555 		return DMA_ERROR;
1556 	} else {
1557 		dma_set_residue(txstate, bytes);
1558 	}
1559 
1560 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1561 		 ret, cookie, bytes);
1562 
1563 	return ret;
1564 }
1565 
1566 /**
1567  * atc_issue_pending - try to finish work
1568  * @chan: target DMA channel
1569  */
1570 static void atc_issue_pending(struct dma_chan *chan)
1571 {
1572 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1573 	unsigned long		flags;
1574 
1575 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1576 
1577 	/* Not needed for cyclic transfers */
1578 	if (atc_chan_is_cyclic(atchan))
1579 		return;
1580 
1581 	spin_lock_irqsave(&atchan->lock, flags);
1582 	atc_advance_work(atchan);
1583 	spin_unlock_irqrestore(&atchan->lock, flags);
1584 }
1585 
1586 /**
1587  * atc_alloc_chan_resources - allocate resources for DMA channel
1588  * @chan: allocate descriptor resources for this channel
1589  * @client: current client requesting the channel be ready for requests
1590  *
1591  * return - the number of allocated descriptors
1592  */
1593 static int atc_alloc_chan_resources(struct dma_chan *chan)
1594 {
1595 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1596 	struct at_dma		*atdma = to_at_dma(chan->device);
1597 	struct at_desc		*desc;
1598 	struct at_dma_slave	*atslave;
1599 	unsigned long		flags;
1600 	int			i;
1601 	u32			cfg;
1602 	LIST_HEAD(tmp_list);
1603 
1604 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1605 
1606 	/* ASSERT:  channel is idle */
1607 	if (atc_chan_is_enabled(atchan)) {
1608 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1609 		return -EIO;
1610 	}
1611 
1612 	cfg = ATC_DEFAULT_CFG;
1613 
1614 	atslave = chan->private;
1615 	if (atslave) {
1616 		/*
1617 		 * We need controller-specific data to set up slave
1618 		 * transfers.
1619 		 */
1620 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1621 
1622 		/* if cfg configuration specified take it instead of default */
1623 		if (atslave->cfg)
1624 			cfg = atslave->cfg;
1625 	}
1626 
1627 	/* have we already been set up?
1628 	 * reconfigure channel but no need to reallocate descriptors */
1629 	if (!list_empty(&atchan->free_list))
1630 		return atchan->descs_allocated;
1631 
1632 	/* Allocate initial pool of descriptors */
1633 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1634 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1635 		if (!desc) {
1636 			dev_err(atdma->dma_common.dev,
1637 				"Only %d initial descriptors\n", i);
1638 			break;
1639 		}
1640 		list_add_tail(&desc->desc_node, &tmp_list);
1641 	}
1642 
1643 	spin_lock_irqsave(&atchan->lock, flags);
1644 	atchan->descs_allocated = i;
1645 	list_splice(&tmp_list, &atchan->free_list);
1646 	dma_cookie_init(chan);
1647 	spin_unlock_irqrestore(&atchan->lock, flags);
1648 
1649 	/* channel parameters */
1650 	channel_writel(atchan, CFG, cfg);
1651 
1652 	dev_dbg(chan2dev(chan),
1653 		"alloc_chan_resources: allocated %d descriptors\n",
1654 		atchan->descs_allocated);
1655 
1656 	return atchan->descs_allocated;
1657 }
1658 
1659 /**
1660  * atc_free_chan_resources - free all channel resources
1661  * @chan: DMA channel
1662  */
1663 static void atc_free_chan_resources(struct dma_chan *chan)
1664 {
1665 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1666 	struct at_dma		*atdma = to_at_dma(chan->device);
1667 	struct at_desc		*desc, *_desc;
1668 	LIST_HEAD(list);
1669 
1670 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1671 		atchan->descs_allocated);
1672 
1673 	/* ASSERT:  channel is idle */
1674 	BUG_ON(!list_empty(&atchan->active_list));
1675 	BUG_ON(!list_empty(&atchan->queue));
1676 	BUG_ON(atc_chan_is_enabled(atchan));
1677 
1678 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1679 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1680 		list_del(&desc->desc_node);
1681 		/* free link descriptor */
1682 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1683 	}
1684 	list_splice_init(&atchan->free_list, &list);
1685 	atchan->descs_allocated = 0;
1686 	atchan->status = 0;
1687 
1688 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1689 }
1690 
1691 #ifdef CONFIG_OF
1692 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1693 {
1694 	struct at_dma_slave *atslave = slave;
1695 
1696 	if (atslave->dma_dev == chan->device->dev) {
1697 		chan->private = atslave;
1698 		return true;
1699 	} else {
1700 		return false;
1701 	}
1702 }
1703 
1704 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1705 				     struct of_dma *of_dma)
1706 {
1707 	struct dma_chan *chan;
1708 	struct at_dma_chan *atchan;
1709 	struct at_dma_slave *atslave;
1710 	dma_cap_mask_t mask;
1711 	unsigned int per_id;
1712 	struct platform_device *dmac_pdev;
1713 
1714 	if (dma_spec->args_count != 2)
1715 		return NULL;
1716 
1717 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1718 
1719 	dma_cap_zero(mask);
1720 	dma_cap_set(DMA_SLAVE, mask);
1721 
1722 	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1723 	if (!atslave)
1724 		return NULL;
1725 
1726 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1727 	/*
1728 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1729 	 * ignored depending on DMA transfer direction.
1730 	 */
1731 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1732 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1733 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1734 	/*
1735 	 * We have to translate the value we get from the device tree since
1736 	 * the half FIFO configuration value had to be 0 to keep backward
1737 	 * compatibility.
1738 	 */
1739 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1740 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1741 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1742 		break;
1743 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1744 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1745 		break;
1746 	case AT91_DMA_CFG_FIFOCFG_HALF:
1747 	default:
1748 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1749 	}
1750 	atslave->dma_dev = &dmac_pdev->dev;
1751 
1752 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1753 	if (!chan)
1754 		return NULL;
1755 
1756 	atchan = to_at_dma_chan(chan);
1757 	atchan->per_if = dma_spec->args[0] & 0xff;
1758 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1759 
1760 	return chan;
1761 }
1762 #else
1763 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1764 				     struct of_dma *of_dma)
1765 {
1766 	return NULL;
1767 }
1768 #endif
1769 
1770 /*--  Module Management  -----------------------------------------------*/
1771 
1772 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1773 static struct at_dma_platform_data at91sam9rl_config = {
1774 	.nr_channels = 2,
1775 };
1776 static struct at_dma_platform_data at91sam9g45_config = {
1777 	.nr_channels = 8,
1778 };
1779 
1780 #if defined(CONFIG_OF)
1781 static const struct of_device_id atmel_dma_dt_ids[] = {
1782 	{
1783 		.compatible = "atmel,at91sam9rl-dma",
1784 		.data = &at91sam9rl_config,
1785 	}, {
1786 		.compatible = "atmel,at91sam9g45-dma",
1787 		.data = &at91sam9g45_config,
1788 	}, {
1789 		/* sentinel */
1790 	}
1791 };
1792 
1793 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1794 #endif
1795 
1796 static const struct platform_device_id atdma_devtypes[] = {
1797 	{
1798 		.name = "at91sam9rl_dma",
1799 		.driver_data = (unsigned long) &at91sam9rl_config,
1800 	}, {
1801 		.name = "at91sam9g45_dma",
1802 		.driver_data = (unsigned long) &at91sam9g45_config,
1803 	}, {
1804 		/* sentinel */
1805 	}
1806 };
1807 
1808 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1809 						struct platform_device *pdev)
1810 {
1811 	if (pdev->dev.of_node) {
1812 		const struct of_device_id *match;
1813 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1814 		if (match == NULL)
1815 			return NULL;
1816 		return match->data;
1817 	}
1818 	return (struct at_dma_platform_data *)
1819 			platform_get_device_id(pdev)->driver_data;
1820 }
1821 
1822 /**
1823  * at_dma_off - disable DMA controller
1824  * @atdma: the Atmel HDAMC device
1825  */
1826 static void at_dma_off(struct at_dma *atdma)
1827 {
1828 	dma_writel(atdma, EN, 0);
1829 
1830 	/* disable all interrupts */
1831 	dma_writel(atdma, EBCIDR, -1L);
1832 
1833 	/* confirm that all channels are disabled */
1834 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1835 		cpu_relax();
1836 }
1837 
1838 static int __init at_dma_probe(struct platform_device *pdev)
1839 {
1840 	struct resource		*io;
1841 	struct at_dma		*atdma;
1842 	size_t			size;
1843 	int			irq;
1844 	int			err;
1845 	int			i;
1846 	const struct at_dma_platform_data *plat_dat;
1847 
1848 	/* setup platform data for each SoC */
1849 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1850 	dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1851 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1852 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1853 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1854 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1855 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1856 	dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1857 
1858 	/* get DMA parameters from controller type */
1859 	plat_dat = at_dma_get_driver_data(pdev);
1860 	if (!plat_dat)
1861 		return -ENODEV;
1862 
1863 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1864 	if (!io)
1865 		return -EINVAL;
1866 
1867 	irq = platform_get_irq(pdev, 0);
1868 	if (irq < 0)
1869 		return irq;
1870 
1871 	size = sizeof(struct at_dma);
1872 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1873 	atdma = kzalloc(size, GFP_KERNEL);
1874 	if (!atdma)
1875 		return -ENOMEM;
1876 
1877 	/* discover transaction capabilities */
1878 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1879 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1880 
1881 	size = resource_size(io);
1882 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1883 		err = -EBUSY;
1884 		goto err_kfree;
1885 	}
1886 
1887 	atdma->regs = ioremap(io->start, size);
1888 	if (!atdma->regs) {
1889 		err = -ENOMEM;
1890 		goto err_release_r;
1891 	}
1892 
1893 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1894 	if (IS_ERR(atdma->clk)) {
1895 		err = PTR_ERR(atdma->clk);
1896 		goto err_clk;
1897 	}
1898 	err = clk_prepare_enable(atdma->clk);
1899 	if (err)
1900 		goto err_clk_prepare;
1901 
1902 	/* force dma off, just in case */
1903 	at_dma_off(atdma);
1904 
1905 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1906 	if (err)
1907 		goto err_irq;
1908 
1909 	platform_set_drvdata(pdev, atdma);
1910 
1911 	/* create a pool of consistent memory blocks for hardware descriptors */
1912 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1913 			&pdev->dev, sizeof(struct at_desc),
1914 			4 /* word alignment */, 0);
1915 	if (!atdma->dma_desc_pool) {
1916 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1917 		err = -ENOMEM;
1918 		goto err_desc_pool_create;
1919 	}
1920 
1921 	/* create a pool of consistent memory blocks for memset blocks */
1922 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1923 					     &pdev->dev, sizeof(int), 4, 0);
1924 	if (!atdma->memset_pool) {
1925 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1926 		err = -ENOMEM;
1927 		goto err_memset_pool_create;
1928 	}
1929 
1930 	/* clear any pending interrupt */
1931 	while (dma_readl(atdma, EBCISR))
1932 		cpu_relax();
1933 
1934 	/* initialize channels related values */
1935 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1936 	for (i = 0; i < plat_dat->nr_channels; i++) {
1937 		struct at_dma_chan	*atchan = &atdma->chan[i];
1938 
1939 		atchan->mem_if = AT_DMA_MEM_IF;
1940 		atchan->per_if = AT_DMA_PER_IF;
1941 		atchan->chan_common.device = &atdma->dma_common;
1942 		dma_cookie_init(&atchan->chan_common);
1943 		list_add_tail(&atchan->chan_common.device_node,
1944 				&atdma->dma_common.channels);
1945 
1946 		atchan->ch_regs = atdma->regs + ch_regs(i);
1947 		spin_lock_init(&atchan->lock);
1948 		atchan->mask = 1 << i;
1949 
1950 		INIT_LIST_HEAD(&atchan->active_list);
1951 		INIT_LIST_HEAD(&atchan->queue);
1952 		INIT_LIST_HEAD(&atchan->free_list);
1953 
1954 		tasklet_init(&atchan->tasklet, atc_tasklet,
1955 				(unsigned long)atchan);
1956 		atc_enable_chan_irq(atdma, i);
1957 	}
1958 
1959 	/* set base routines */
1960 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1961 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1962 	atdma->dma_common.device_tx_status = atc_tx_status;
1963 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1964 	atdma->dma_common.dev = &pdev->dev;
1965 
1966 	/* set prep routines based on capability */
1967 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1968 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1969 
1970 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1971 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1972 
1973 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1974 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1975 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1976 	}
1977 
1978 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1979 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1980 		/* controller can do slave DMA: can trigger cyclic transfers */
1981 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1982 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1983 		atdma->dma_common.device_config = atc_config;
1984 		atdma->dma_common.device_pause = atc_pause;
1985 		atdma->dma_common.device_resume = atc_resume;
1986 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1987 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1988 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1989 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1990 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1991 	}
1992 
1993 	if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
1994 		atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
1995 
1996 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1997 
1998 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
1999 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2000 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2001 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
2002 	  dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
2003 	  plat_dat->nr_channels);
2004 
2005 	dma_async_device_register(&atdma->dma_common);
2006 
2007 	/*
2008 	 * Do not return an error if the dmac node is not present in order to
2009 	 * not break the existing way of requesting channel with
2010 	 * dma_request_channel().
2011 	 */
2012 	if (pdev->dev.of_node) {
2013 		err = of_dma_controller_register(pdev->dev.of_node,
2014 						 at_dma_xlate, atdma);
2015 		if (err) {
2016 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2017 			goto err_of_dma_controller_register;
2018 		}
2019 	}
2020 
2021 	return 0;
2022 
2023 err_of_dma_controller_register:
2024 	dma_async_device_unregister(&atdma->dma_common);
2025 	dma_pool_destroy(atdma->memset_pool);
2026 err_memset_pool_create:
2027 	dma_pool_destroy(atdma->dma_desc_pool);
2028 err_desc_pool_create:
2029 	free_irq(platform_get_irq(pdev, 0), atdma);
2030 err_irq:
2031 	clk_disable_unprepare(atdma->clk);
2032 err_clk_prepare:
2033 	clk_put(atdma->clk);
2034 err_clk:
2035 	iounmap(atdma->regs);
2036 	atdma->regs = NULL;
2037 err_release_r:
2038 	release_mem_region(io->start, size);
2039 err_kfree:
2040 	kfree(atdma);
2041 	return err;
2042 }
2043 
2044 static int at_dma_remove(struct platform_device *pdev)
2045 {
2046 	struct at_dma		*atdma = platform_get_drvdata(pdev);
2047 	struct dma_chan		*chan, *_chan;
2048 	struct resource		*io;
2049 
2050 	at_dma_off(atdma);
2051 	dma_async_device_unregister(&atdma->dma_common);
2052 
2053 	dma_pool_destroy(atdma->memset_pool);
2054 	dma_pool_destroy(atdma->dma_desc_pool);
2055 	free_irq(platform_get_irq(pdev, 0), atdma);
2056 
2057 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2058 			device_node) {
2059 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2060 
2061 		/* Disable interrupts */
2062 		atc_disable_chan_irq(atdma, chan->chan_id);
2063 
2064 		tasklet_kill(&atchan->tasklet);
2065 		list_del(&chan->device_node);
2066 	}
2067 
2068 	clk_disable_unprepare(atdma->clk);
2069 	clk_put(atdma->clk);
2070 
2071 	iounmap(atdma->regs);
2072 	atdma->regs = NULL;
2073 
2074 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2075 	release_mem_region(io->start, resource_size(io));
2076 
2077 	kfree(atdma);
2078 
2079 	return 0;
2080 }
2081 
2082 static void at_dma_shutdown(struct platform_device *pdev)
2083 {
2084 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2085 
2086 	at_dma_off(platform_get_drvdata(pdev));
2087 	clk_disable_unprepare(atdma->clk);
2088 }
2089 
2090 static int at_dma_prepare(struct device *dev)
2091 {
2092 	struct platform_device *pdev = to_platform_device(dev);
2093 	struct at_dma *atdma = platform_get_drvdata(pdev);
2094 	struct dma_chan *chan, *_chan;
2095 
2096 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2097 			device_node) {
2098 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2099 		/* wait for transaction completion (except in cyclic case) */
2100 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2101 			return -EAGAIN;
2102 	}
2103 	return 0;
2104 }
2105 
2106 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2107 {
2108 	struct dma_chan	*chan = &atchan->chan_common;
2109 
2110 	/* Channel should be paused by user
2111 	 * do it anyway even if it is not done already */
2112 	if (!atc_chan_is_paused(atchan)) {
2113 		dev_warn(chan2dev(chan),
2114 		"cyclic channel not paused, should be done by channel user\n");
2115 		atc_pause(chan);
2116 	}
2117 
2118 	/* now preserve additional data for cyclic operations */
2119 	/* next descriptor address in the cyclic list */
2120 	atchan->save_dscr = channel_readl(atchan, DSCR);
2121 
2122 	vdbg_dump_regs(atchan);
2123 }
2124 
2125 static int at_dma_suspend_noirq(struct device *dev)
2126 {
2127 	struct platform_device *pdev = to_platform_device(dev);
2128 	struct at_dma *atdma = platform_get_drvdata(pdev);
2129 	struct dma_chan *chan, *_chan;
2130 
2131 	/* preserve data */
2132 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2133 			device_node) {
2134 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2135 
2136 		if (atc_chan_is_cyclic(atchan))
2137 			atc_suspend_cyclic(atchan);
2138 		atchan->save_cfg = channel_readl(atchan, CFG);
2139 	}
2140 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2141 
2142 	/* disable DMA controller */
2143 	at_dma_off(atdma);
2144 	clk_disable_unprepare(atdma->clk);
2145 	return 0;
2146 }
2147 
2148 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2149 {
2150 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2151 
2152 	/* restore channel status for cyclic descriptors list:
2153 	 * next descriptor in the cyclic list at the time of suspend */
2154 	channel_writel(atchan, SADDR, 0);
2155 	channel_writel(atchan, DADDR, 0);
2156 	channel_writel(atchan, CTRLA, 0);
2157 	channel_writel(atchan, CTRLB, 0);
2158 	channel_writel(atchan, DSCR, atchan->save_dscr);
2159 	dma_writel(atdma, CHER, atchan->mask);
2160 
2161 	/* channel pause status should be removed by channel user
2162 	 * We cannot take the initiative to do it here */
2163 
2164 	vdbg_dump_regs(atchan);
2165 }
2166 
2167 static int at_dma_resume_noirq(struct device *dev)
2168 {
2169 	struct platform_device *pdev = to_platform_device(dev);
2170 	struct at_dma *atdma = platform_get_drvdata(pdev);
2171 	struct dma_chan *chan, *_chan;
2172 
2173 	/* bring back DMA controller */
2174 	clk_prepare_enable(atdma->clk);
2175 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2176 
2177 	/* clear any pending interrupt */
2178 	while (dma_readl(atdma, EBCISR))
2179 		cpu_relax();
2180 
2181 	/* restore saved data */
2182 	dma_writel(atdma, EBCIER, atdma->save_imr);
2183 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2184 			device_node) {
2185 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2186 
2187 		channel_writel(atchan, CFG, atchan->save_cfg);
2188 		if (atc_chan_is_cyclic(atchan))
2189 			atc_resume_cyclic(atchan);
2190 	}
2191 	return 0;
2192 }
2193 
2194 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2195 	.prepare = at_dma_prepare,
2196 	.suspend_noirq = at_dma_suspend_noirq,
2197 	.resume_noirq = at_dma_resume_noirq,
2198 };
2199 
2200 static struct platform_driver at_dma_driver = {
2201 	.remove		= at_dma_remove,
2202 	.shutdown	= at_dma_shutdown,
2203 	.id_table	= atdma_devtypes,
2204 	.driver = {
2205 		.name	= "at_hdmac",
2206 		.pm	= &at_dma_dev_pm_ops,
2207 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2208 	},
2209 };
2210 
2211 static int __init at_dma_init(void)
2212 {
2213 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2214 }
2215 subsys_initcall(at_dma_init);
2216 
2217 static void __exit at_dma_exit(void)
2218 {
2219 	platform_driver_unregister(&at_dma_driver);
2220 }
2221 module_exit(at_dma_exit);
2222 
2223 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2224 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2225 MODULE_LICENSE("GPL");
2226 MODULE_ALIAS("platform:at_hdmac");
2227