1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 #define ATC_MAX_DSCR_TRIALS 10 52 53 /* 54 * Initial number of descriptors to allocate for each channel. This could 55 * be increased during dma usage. 56 */ 57 static unsigned int init_nr_desc_per_channel = 64; 58 module_param(init_nr_desc_per_channel, uint, 0644); 59 MODULE_PARM_DESC(init_nr_desc_per_channel, 60 "initial descriptors per channel (default: 64)"); 61 62 63 /* prototypes */ 64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 65 static void atc_issue_pending(struct dma_chan *chan); 66 67 68 /*----------------------------------------------------------------------*/ 69 70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 71 size_t len) 72 { 73 unsigned int width; 74 75 if (!((src | dst | len) & 3)) 76 width = 2; 77 else if (!((src | dst | len) & 1)) 78 width = 1; 79 else 80 width = 0; 81 82 return width; 83 } 84 85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 86 { 87 return list_first_entry(&atchan->active_list, 88 struct at_desc, desc_node); 89 } 90 91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 92 { 93 return list_first_entry(&atchan->queue, 94 struct at_desc, desc_node); 95 } 96 97 /** 98 * atc_alloc_descriptor - allocate and return an initialized descriptor 99 * @chan: the channel to allocate descriptors for 100 * @gfp_flags: GFP allocation flags 101 * 102 * Note: The ack-bit is positioned in the descriptor flag at creation time 103 * to make initial allocation more convenient. This bit will be cleared 104 * and control will be given to client at usage time (during 105 * preparation functions). 106 */ 107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 108 gfp_t gfp_flags) 109 { 110 struct at_desc *desc = NULL; 111 struct at_dma *atdma = to_at_dma(chan->device); 112 dma_addr_t phys; 113 114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys); 115 if (desc) { 116 memset(desc, 0, sizeof(struct at_desc)); 117 INIT_LIST_HEAD(&desc->tx_list); 118 dma_async_tx_descriptor_init(&desc->txd, chan); 119 /* txd.flags will be overwritten in prep functions */ 120 desc->txd.flags = DMA_CTRL_ACK; 121 desc->txd.tx_submit = atc_tx_submit; 122 desc->txd.phys = phys; 123 } 124 125 return desc; 126 } 127 128 /** 129 * atc_desc_get - get an unused descriptor from free_list 130 * @atchan: channel we want a new descriptor for 131 */ 132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 133 { 134 struct at_desc *desc, *_desc; 135 struct at_desc *ret = NULL; 136 unsigned long flags; 137 unsigned int i = 0; 138 LIST_HEAD(tmp_list); 139 140 spin_lock_irqsave(&atchan->lock, flags); 141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 142 i++; 143 if (async_tx_test_ack(&desc->txd)) { 144 list_del(&desc->desc_node); 145 ret = desc; 146 break; 147 } 148 dev_dbg(chan2dev(&atchan->chan_common), 149 "desc %p not ACKed\n", desc); 150 } 151 spin_unlock_irqrestore(&atchan->lock, flags); 152 dev_vdbg(chan2dev(&atchan->chan_common), 153 "scanned %u descriptors on freelist\n", i); 154 155 /* no more descriptor available in initial pool: create one more */ 156 if (!ret) { 157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 158 if (ret) { 159 spin_lock_irqsave(&atchan->lock, flags); 160 atchan->descs_allocated++; 161 spin_unlock_irqrestore(&atchan->lock, flags); 162 } else { 163 dev_err(chan2dev(&atchan->chan_common), 164 "not enough descriptors available\n"); 165 } 166 } 167 168 return ret; 169 } 170 171 /** 172 * atc_desc_put - move a descriptor, including any children, to the free list 173 * @atchan: channel we work on 174 * @desc: descriptor, at the head of a chain, to move to free list 175 */ 176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 177 { 178 if (desc) { 179 struct at_desc *child; 180 unsigned long flags; 181 182 spin_lock_irqsave(&atchan->lock, flags); 183 list_for_each_entry(child, &desc->tx_list, desc_node) 184 dev_vdbg(chan2dev(&atchan->chan_common), 185 "moving child desc %p to freelist\n", 186 child); 187 list_splice_init(&desc->tx_list, &atchan->free_list); 188 dev_vdbg(chan2dev(&atchan->chan_common), 189 "moving desc %p to freelist\n", desc); 190 list_add(&desc->desc_node, &atchan->free_list); 191 spin_unlock_irqrestore(&atchan->lock, flags); 192 } 193 } 194 195 /** 196 * atc_desc_chain - build chain adding a descriptor 197 * @first: address of first descriptor of the chain 198 * @prev: address of previous descriptor of the chain 199 * @desc: descriptor to queue 200 * 201 * Called from prep_* functions 202 */ 203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 204 struct at_desc *desc) 205 { 206 if (!(*first)) { 207 *first = desc; 208 } else { 209 /* inform the HW lli about chaining */ 210 (*prev)->lli.dscr = desc->txd.phys; 211 /* insert the link descriptor to the LD ring */ 212 list_add_tail(&desc->desc_node, 213 &(*first)->tx_list); 214 } 215 *prev = desc; 216 } 217 218 /** 219 * atc_dostart - starts the DMA engine for real 220 * @atchan: the channel we want to start 221 * @first: first descriptor in the list we want to begin with 222 * 223 * Called with atchan->lock held and bh disabled 224 */ 225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 226 { 227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 228 229 /* ASSERT: channel is idle */ 230 if (atc_chan_is_enabled(atchan)) { 231 dev_err(chan2dev(&atchan->chan_common), 232 "BUG: Attempted to start non-idle channel\n"); 233 dev_err(chan2dev(&atchan->chan_common), 234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 235 channel_readl(atchan, SADDR), 236 channel_readl(atchan, DADDR), 237 channel_readl(atchan, CTRLA), 238 channel_readl(atchan, CTRLB), 239 channel_readl(atchan, DSCR)); 240 241 /* The tasklet will hopefully advance the queue... */ 242 return; 243 } 244 245 vdbg_dump_regs(atchan); 246 247 channel_writel(atchan, SADDR, 0); 248 channel_writel(atchan, DADDR, 0); 249 channel_writel(atchan, CTRLA, 0); 250 channel_writel(atchan, CTRLB, 0); 251 channel_writel(atchan, DSCR, first->txd.phys); 252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 253 ATC_SPIP_BOUNDARY(first->boundary)); 254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 255 ATC_DPIP_BOUNDARY(first->boundary)); 256 dma_writel(atdma, CHER, atchan->mask); 257 258 vdbg_dump_regs(atchan); 259 } 260 261 /* 262 * atc_get_desc_by_cookie - get the descriptor of a cookie 263 * @atchan: the DMA channel 264 * @cookie: the cookie to get the descriptor for 265 */ 266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 267 dma_cookie_t cookie) 268 { 269 struct at_desc *desc, *_desc; 270 271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 272 if (desc->txd.cookie == cookie) 273 return desc; 274 } 275 276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 277 if (desc->txd.cookie == cookie) 278 return desc; 279 } 280 281 return NULL; 282 } 283 284 /** 285 * atc_calc_bytes_left - calculates the number of bytes left according to the 286 * value read from CTRLA. 287 * 288 * @current_len: the number of bytes left before reading CTRLA 289 * @ctrla: the value of CTRLA 290 */ 291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 292 { 293 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 295 296 /* 297 * According to the datasheet, when reading the Control A Register 298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 299 * number of transfers completed on the Source Interface. 300 * So btsize is always a number of source width transfers. 301 */ 302 return current_len - (btsize << src_width); 303 } 304 305 /** 306 * atc_get_bytes_left - get the number of bytes residue for a cookie 307 * @chan: DMA channel 308 * @cookie: transaction identifier to check status of 309 */ 310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 311 { 312 struct at_dma_chan *atchan = to_at_dma_chan(chan); 313 struct at_desc *desc_first = atc_first_active(atchan); 314 struct at_desc *desc; 315 int ret; 316 u32 ctrla, dscr, trials; 317 318 /* 319 * If the cookie doesn't match to the currently running transfer then 320 * we can return the total length of the associated DMA transfer, 321 * because it is still queued. 322 */ 323 desc = atc_get_desc_by_cookie(atchan, cookie); 324 if (desc == NULL) 325 return -EINVAL; 326 else if (desc != desc_first) 327 return desc->total_len; 328 329 /* cookie matches to the currently running transfer */ 330 ret = desc_first->total_len; 331 332 if (desc_first->lli.dscr) { 333 /* hardware linked list transfer */ 334 335 /* 336 * Calculate the residue by removing the length of the child 337 * descriptors already transferred from the total length. 338 * To get the current child descriptor we can use the value of 339 * the channel's DSCR register and compare it against the value 340 * of the hardware linked list structure of each child 341 * descriptor. 342 * 343 * The CTRLA register provides us with the amount of data 344 * already read from the source for the current child 345 * descriptor. So we can compute a more accurate residue by also 346 * removing the number of bytes corresponding to this amount of 347 * data. 348 * 349 * However, the DSCR and CTRLA registers cannot be read both 350 * atomically. Hence a race condition may occur: the first read 351 * register may refer to one child descriptor whereas the second 352 * read may refer to a later child descriptor in the list 353 * because of the DMA transfer progression inbetween the two 354 * reads. 355 * 356 * One solution could have been to pause the DMA transfer, read 357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 358 * this approach presents some drawbacks: 359 * - If the DMA transfer is paused, RX overruns or TX underruns 360 * are more likey to occur depending on the system latency. 361 * Taking the USART driver as an example, it uses a cyclic DMA 362 * transfer to read data from the Receive Holding Register 363 * (RHR) to avoid RX overruns since the RHR is not protected 364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 365 * to compute the residue would break the USART driver design. 366 * - The atc_pause() function masks interrupts but we'd rather 367 * avoid to do so for system latency purpose. 368 * 369 * Then we'd rather use another solution: the DSCR is read a 370 * first time, the CTRLA is read in turn, next the DSCR is read 371 * a second time. If the two consecutive read values of the DSCR 372 * are the same then we assume both refers to the very same 373 * child descriptor as well as the CTRLA value read inbetween 374 * does. For cyclic tranfers, the assumption is that a full loop 375 * is "not so fast". 376 * If the two DSCR values are different, we read again the CTRLA 377 * then the DSCR till two consecutive read values from DSCR are 378 * equal or till the maxium trials is reach. 379 * This algorithm is very unlikely not to find a stable value for 380 * DSCR. 381 */ 382 383 dscr = channel_readl(atchan, DSCR); 384 rmb(); /* ensure DSCR is read before CTRLA */ 385 ctrla = channel_readl(atchan, CTRLA); 386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 387 u32 new_dscr; 388 389 rmb(); /* ensure DSCR is read after CTRLA */ 390 new_dscr = channel_readl(atchan, DSCR); 391 392 /* 393 * If the DSCR register value has not changed inside the 394 * DMA controller since the previous read, we assume 395 * that both the dscr and ctrla values refers to the 396 * very same descriptor. 397 */ 398 if (likely(new_dscr == dscr)) 399 break; 400 401 /* 402 * DSCR has changed inside the DMA controller, so the 403 * previouly read value of CTRLA may refer to an already 404 * processed descriptor hence could be outdated. 405 * We need to update ctrla to match the current 406 * descriptor. 407 */ 408 dscr = new_dscr; 409 rmb(); /* ensure DSCR is read before CTRLA */ 410 ctrla = channel_readl(atchan, CTRLA); 411 } 412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 413 return -ETIMEDOUT; 414 415 /* for the first descriptor we can be more accurate */ 416 if (desc_first->lli.dscr == dscr) 417 return atc_calc_bytes_left(ret, ctrla); 418 419 ret -= desc_first->len; 420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 421 if (desc->lli.dscr == dscr) 422 break; 423 424 ret -= desc->len; 425 } 426 427 /* 428 * For the current descriptor in the chain we can calculate 429 * the remaining bytes using the channel's register. 430 */ 431 ret = atc_calc_bytes_left(ret, ctrla); 432 } else { 433 /* single transfer */ 434 ctrla = channel_readl(atchan, CTRLA); 435 ret = atc_calc_bytes_left(ret, ctrla); 436 } 437 438 return ret; 439 } 440 441 /** 442 * atc_chain_complete - finish work for one transaction chain 443 * @atchan: channel we work on 444 * @desc: descriptor at the head of the chain we want do complete 445 * 446 * Called with atchan->lock held and bh disabled */ 447 static void 448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 449 { 450 struct dma_async_tx_descriptor *txd = &desc->txd; 451 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 452 453 dev_vdbg(chan2dev(&atchan->chan_common), 454 "descriptor %u complete\n", txd->cookie); 455 456 /* mark the descriptor as complete for non cyclic cases only */ 457 if (!atc_chan_is_cyclic(atchan)) 458 dma_cookie_complete(txd); 459 460 /* If the transfer was a memset, free our temporary buffer */ 461 if (desc->memset) { 462 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 463 desc->memset_paddr); 464 desc->memset = false; 465 } 466 467 /* move children to free_list */ 468 list_splice_init(&desc->tx_list, &atchan->free_list); 469 /* move myself to free_list */ 470 list_move(&desc->desc_node, &atchan->free_list); 471 472 dma_descriptor_unmap(txd); 473 /* for cyclic transfers, 474 * no need to replay callback function while stopping */ 475 if (!atc_chan_is_cyclic(atchan)) { 476 dma_async_tx_callback callback = txd->callback; 477 void *param = txd->callback_param; 478 479 /* 480 * The API requires that no submissions are done from a 481 * callback, so we don't need to drop the lock here 482 */ 483 if (callback) 484 callback(param); 485 } 486 487 dma_run_dependencies(txd); 488 } 489 490 /** 491 * atc_complete_all - finish work for all transactions 492 * @atchan: channel to complete transactions for 493 * 494 * Eventually submit queued descriptors if any 495 * 496 * Assume channel is idle while calling this function 497 * Called with atchan->lock held and bh disabled 498 */ 499 static void atc_complete_all(struct at_dma_chan *atchan) 500 { 501 struct at_desc *desc, *_desc; 502 LIST_HEAD(list); 503 504 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 505 506 /* 507 * Submit queued descriptors ASAP, i.e. before we go through 508 * the completed ones. 509 */ 510 if (!list_empty(&atchan->queue)) 511 atc_dostart(atchan, atc_first_queued(atchan)); 512 /* empty active_list now it is completed */ 513 list_splice_init(&atchan->active_list, &list); 514 /* empty queue list by moving descriptors (if any) to active_list */ 515 list_splice_init(&atchan->queue, &atchan->active_list); 516 517 list_for_each_entry_safe(desc, _desc, &list, desc_node) 518 atc_chain_complete(atchan, desc); 519 } 520 521 /** 522 * atc_advance_work - at the end of a transaction, move forward 523 * @atchan: channel where the transaction ended 524 * 525 * Called with atchan->lock held and bh disabled 526 */ 527 static void atc_advance_work(struct at_dma_chan *atchan) 528 { 529 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 530 531 if (atc_chan_is_enabled(atchan)) 532 return; 533 534 if (list_empty(&atchan->active_list) || 535 list_is_singular(&atchan->active_list)) { 536 atc_complete_all(atchan); 537 } else { 538 atc_chain_complete(atchan, atc_first_active(atchan)); 539 /* advance work */ 540 atc_dostart(atchan, atc_first_active(atchan)); 541 } 542 } 543 544 545 /** 546 * atc_handle_error - handle errors reported by DMA controller 547 * @atchan: channel where error occurs 548 * 549 * Called with atchan->lock held and bh disabled 550 */ 551 static void atc_handle_error(struct at_dma_chan *atchan) 552 { 553 struct at_desc *bad_desc; 554 struct at_desc *child; 555 556 /* 557 * The descriptor currently at the head of the active list is 558 * broked. Since we don't have any way to report errors, we'll 559 * just have to scream loudly and try to carry on. 560 */ 561 bad_desc = atc_first_active(atchan); 562 list_del_init(&bad_desc->desc_node); 563 564 /* As we are stopped, take advantage to push queued descriptors 565 * in active_list */ 566 list_splice_init(&atchan->queue, atchan->active_list.prev); 567 568 /* Try to restart the controller */ 569 if (!list_empty(&atchan->active_list)) 570 atc_dostart(atchan, atc_first_active(atchan)); 571 572 /* 573 * KERN_CRITICAL may seem harsh, but since this only happens 574 * when someone submits a bad physical address in a 575 * descriptor, we should consider ourselves lucky that the 576 * controller flagged an error instead of scribbling over 577 * random memory locations. 578 */ 579 dev_crit(chan2dev(&atchan->chan_common), 580 "Bad descriptor submitted for DMA!\n"); 581 dev_crit(chan2dev(&atchan->chan_common), 582 " cookie: %d\n", bad_desc->txd.cookie); 583 atc_dump_lli(atchan, &bad_desc->lli); 584 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 585 atc_dump_lli(atchan, &child->lli); 586 587 /* Pretend the descriptor completed successfully */ 588 atc_chain_complete(atchan, bad_desc); 589 } 590 591 /** 592 * atc_handle_cyclic - at the end of a period, run callback function 593 * @atchan: channel used for cyclic operations 594 * 595 * Called with atchan->lock held and bh disabled 596 */ 597 static void atc_handle_cyclic(struct at_dma_chan *atchan) 598 { 599 struct at_desc *first = atc_first_active(atchan); 600 struct dma_async_tx_descriptor *txd = &first->txd; 601 dma_async_tx_callback callback = txd->callback; 602 void *param = txd->callback_param; 603 604 dev_vdbg(chan2dev(&atchan->chan_common), 605 "new cyclic period llp 0x%08x\n", 606 channel_readl(atchan, DSCR)); 607 608 if (callback) 609 callback(param); 610 } 611 612 /*-- IRQ & Tasklet ---------------------------------------------------*/ 613 614 static void atc_tasklet(unsigned long data) 615 { 616 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 617 unsigned long flags; 618 619 spin_lock_irqsave(&atchan->lock, flags); 620 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 621 atc_handle_error(atchan); 622 else if (atc_chan_is_cyclic(atchan)) 623 atc_handle_cyclic(atchan); 624 else 625 atc_advance_work(atchan); 626 627 spin_unlock_irqrestore(&atchan->lock, flags); 628 } 629 630 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 631 { 632 struct at_dma *atdma = (struct at_dma *)dev_id; 633 struct at_dma_chan *atchan; 634 int i; 635 u32 status, pending, imr; 636 int ret = IRQ_NONE; 637 638 do { 639 imr = dma_readl(atdma, EBCIMR); 640 status = dma_readl(atdma, EBCISR); 641 pending = status & imr; 642 643 if (!pending) 644 break; 645 646 dev_vdbg(atdma->dma_common.dev, 647 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 648 status, imr, pending); 649 650 for (i = 0; i < atdma->dma_common.chancnt; i++) { 651 atchan = &atdma->chan[i]; 652 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 653 if (pending & AT_DMA_ERR(i)) { 654 /* Disable channel on AHB error */ 655 dma_writel(atdma, CHDR, 656 AT_DMA_RES(i) | atchan->mask); 657 /* Give information to tasklet */ 658 set_bit(ATC_IS_ERROR, &atchan->status); 659 } 660 tasklet_schedule(&atchan->tasklet); 661 ret = IRQ_HANDLED; 662 } 663 } 664 665 } while (pending); 666 667 return ret; 668 } 669 670 671 /*-- DMA Engine API --------------------------------------------------*/ 672 673 /** 674 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 675 * @desc: descriptor at the head of the transaction chain 676 * 677 * Queue chain if DMA engine is working already 678 * 679 * Cookie increment and adding to active_list or queue must be atomic 680 */ 681 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 682 { 683 struct at_desc *desc = txd_to_at_desc(tx); 684 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 685 dma_cookie_t cookie; 686 unsigned long flags; 687 688 spin_lock_irqsave(&atchan->lock, flags); 689 cookie = dma_cookie_assign(tx); 690 691 if (list_empty(&atchan->active_list)) { 692 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 693 desc->txd.cookie); 694 atc_dostart(atchan, desc); 695 list_add_tail(&desc->desc_node, &atchan->active_list); 696 } else { 697 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 698 desc->txd.cookie); 699 list_add_tail(&desc->desc_node, &atchan->queue); 700 } 701 702 spin_unlock_irqrestore(&atchan->lock, flags); 703 704 return cookie; 705 } 706 707 /** 708 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 709 * @chan: the channel to prepare operation on 710 * @xt: Interleaved transfer template 711 * @flags: tx descriptor status flags 712 */ 713 static struct dma_async_tx_descriptor * 714 atc_prep_dma_interleaved(struct dma_chan *chan, 715 struct dma_interleaved_template *xt, 716 unsigned long flags) 717 { 718 struct at_dma_chan *atchan = to_at_dma_chan(chan); 719 struct data_chunk *first = xt->sgl; 720 struct at_desc *desc = NULL; 721 size_t xfer_count; 722 unsigned int dwidth; 723 u32 ctrla; 724 u32 ctrlb; 725 size_t len = 0; 726 int i; 727 728 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 729 return NULL; 730 731 dev_info(chan2dev(chan), 732 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n", 733 __func__, xt->src_start, xt->dst_start, xt->numf, 734 xt->frame_size, flags); 735 736 /* 737 * The controller can only "skip" X bytes every Y bytes, so we 738 * need to make sure we are given a template that fit that 739 * description, ie a template with chunks that always have the 740 * same size, with the same ICGs. 741 */ 742 for (i = 0; i < xt->frame_size; i++) { 743 struct data_chunk *chunk = xt->sgl + i; 744 745 if ((chunk->size != xt->sgl->size) || 746 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 747 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 748 dev_err(chan2dev(chan), 749 "%s: the controller can transfer only identical chunks\n", 750 __func__); 751 return NULL; 752 } 753 754 len += chunk->size; 755 } 756 757 dwidth = atc_get_xfer_width(xt->src_start, 758 xt->dst_start, len); 759 760 xfer_count = len >> dwidth; 761 if (xfer_count > ATC_BTSIZE_MAX) { 762 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 763 return NULL; 764 } 765 766 ctrla = ATC_SRC_WIDTH(dwidth) | 767 ATC_DST_WIDTH(dwidth); 768 769 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 770 | ATC_SRC_ADDR_MODE_INCR 771 | ATC_DST_ADDR_MODE_INCR 772 | ATC_SRC_PIP 773 | ATC_DST_PIP 774 | ATC_FC_MEM2MEM; 775 776 /* create the transfer */ 777 desc = atc_desc_get(atchan); 778 if (!desc) { 779 dev_err(chan2dev(chan), 780 "%s: couldn't allocate our descriptor\n", __func__); 781 return NULL; 782 } 783 784 desc->lli.saddr = xt->src_start; 785 desc->lli.daddr = xt->dst_start; 786 desc->lli.ctrla = ctrla | xfer_count; 787 desc->lli.ctrlb = ctrlb; 788 789 desc->boundary = first->size >> dwidth; 790 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 791 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 792 793 desc->txd.cookie = -EBUSY; 794 desc->total_len = desc->len = len; 795 796 /* set end-of-link to the last link descriptor of list*/ 797 set_desc_eol(desc); 798 799 desc->txd.flags = flags; /* client is in control of this ack */ 800 801 return &desc->txd; 802 } 803 804 /** 805 * atc_prep_dma_memcpy - prepare a memcpy operation 806 * @chan: the channel to prepare operation on 807 * @dest: operation virtual destination address 808 * @src: operation virtual source address 809 * @len: operation length 810 * @flags: tx descriptor status flags 811 */ 812 static struct dma_async_tx_descriptor * 813 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 814 size_t len, unsigned long flags) 815 { 816 struct at_dma_chan *atchan = to_at_dma_chan(chan); 817 struct at_desc *desc = NULL; 818 struct at_desc *first = NULL; 819 struct at_desc *prev = NULL; 820 size_t xfer_count; 821 size_t offset; 822 unsigned int src_width; 823 unsigned int dst_width; 824 u32 ctrla; 825 u32 ctrlb; 826 827 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n", 828 dest, src, len, flags); 829 830 if (unlikely(!len)) { 831 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 832 return NULL; 833 } 834 835 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 836 | ATC_SRC_ADDR_MODE_INCR 837 | ATC_DST_ADDR_MODE_INCR 838 | ATC_FC_MEM2MEM; 839 840 /* 841 * We can be a lot more clever here, but this should take care 842 * of the most common optimization. 843 */ 844 src_width = dst_width = atc_get_xfer_width(src, dest, len); 845 846 ctrla = ATC_SRC_WIDTH(src_width) | 847 ATC_DST_WIDTH(dst_width); 848 849 for (offset = 0; offset < len; offset += xfer_count << src_width) { 850 xfer_count = min_t(size_t, (len - offset) >> src_width, 851 ATC_BTSIZE_MAX); 852 853 desc = atc_desc_get(atchan); 854 if (!desc) 855 goto err_desc_get; 856 857 desc->lli.saddr = src + offset; 858 desc->lli.daddr = dest + offset; 859 desc->lli.ctrla = ctrla | xfer_count; 860 desc->lli.ctrlb = ctrlb; 861 862 desc->txd.cookie = 0; 863 desc->len = xfer_count << src_width; 864 865 atc_desc_chain(&first, &prev, desc); 866 } 867 868 /* First descriptor of the chain embedds additional information */ 869 first->txd.cookie = -EBUSY; 870 first->total_len = len; 871 872 /* set end-of-link to the last link descriptor of list*/ 873 set_desc_eol(desc); 874 875 first->txd.flags = flags; /* client is in control of this ack */ 876 877 return &first->txd; 878 879 err_desc_get: 880 atc_desc_put(atchan, first); 881 return NULL; 882 } 883 884 /** 885 * atc_prep_dma_memset - prepare a memcpy operation 886 * @chan: the channel to prepare operation on 887 * @dest: operation virtual destination address 888 * @value: value to set memory buffer to 889 * @len: operation length 890 * @flags: tx descriptor status flags 891 */ 892 static struct dma_async_tx_descriptor * 893 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 894 size_t len, unsigned long flags) 895 { 896 struct at_dma_chan *atchan = to_at_dma_chan(chan); 897 struct at_dma *atdma = to_at_dma(chan->device); 898 struct at_desc *desc = NULL; 899 size_t xfer_count; 900 u32 ctrla; 901 u32 ctrlb; 902 903 dev_vdbg(chan2dev(chan), "%s: d0x%x v0x%x l0x%zx f0x%lx\n", __func__, 904 dest, value, len, flags); 905 906 if (unlikely(!len)) { 907 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 908 return NULL; 909 } 910 911 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 912 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 913 __func__); 914 return NULL; 915 } 916 917 xfer_count = len >> 2; 918 if (xfer_count > ATC_BTSIZE_MAX) { 919 dev_err(chan2dev(chan), "%s: buffer is too big\n", 920 __func__); 921 return NULL; 922 } 923 924 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 925 | ATC_SRC_ADDR_MODE_FIXED 926 | ATC_DST_ADDR_MODE_INCR 927 | ATC_FC_MEM2MEM; 928 929 ctrla = ATC_SRC_WIDTH(2) | 930 ATC_DST_WIDTH(2); 931 932 desc = atc_desc_get(atchan); 933 if (!desc) { 934 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 935 __func__); 936 return NULL; 937 } 938 939 desc->memset_vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, 940 &desc->memset_paddr); 941 if (!desc->memset_vaddr) { 942 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 943 __func__); 944 goto err_put_desc; 945 } 946 947 *desc->memset_vaddr = value; 948 desc->memset = true; 949 950 desc->lli.saddr = desc->memset_paddr; 951 desc->lli.daddr = dest; 952 desc->lli.ctrla = ctrla | xfer_count; 953 desc->lli.ctrlb = ctrlb; 954 955 desc->txd.cookie = -EBUSY; 956 desc->len = len; 957 desc->total_len = len; 958 959 /* set end-of-link on the descriptor */ 960 set_desc_eol(desc); 961 962 desc->txd.flags = flags; 963 964 return &desc->txd; 965 966 err_put_desc: 967 atc_desc_put(atchan, desc); 968 return NULL; 969 } 970 971 972 /** 973 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 974 * @chan: DMA channel 975 * @sgl: scatterlist to transfer to/from 976 * @sg_len: number of entries in @scatterlist 977 * @direction: DMA direction 978 * @flags: tx descriptor status flags 979 * @context: transaction context (ignored) 980 */ 981 static struct dma_async_tx_descriptor * 982 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 983 unsigned int sg_len, enum dma_transfer_direction direction, 984 unsigned long flags, void *context) 985 { 986 struct at_dma_chan *atchan = to_at_dma_chan(chan); 987 struct at_dma_slave *atslave = chan->private; 988 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 989 struct at_desc *first = NULL; 990 struct at_desc *prev = NULL; 991 u32 ctrla; 992 u32 ctrlb; 993 dma_addr_t reg; 994 unsigned int reg_width; 995 unsigned int mem_width; 996 unsigned int i; 997 struct scatterlist *sg; 998 size_t total_len = 0; 999 1000 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1001 sg_len, 1002 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1003 flags); 1004 1005 if (unlikely(!atslave || !sg_len)) { 1006 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1007 return NULL; 1008 } 1009 1010 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1011 | ATC_DCSIZE(sconfig->dst_maxburst); 1012 ctrlb = ATC_IEN; 1013 1014 switch (direction) { 1015 case DMA_MEM_TO_DEV: 1016 reg_width = convert_buswidth(sconfig->dst_addr_width); 1017 ctrla |= ATC_DST_WIDTH(reg_width); 1018 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1019 | ATC_SRC_ADDR_MODE_INCR 1020 | ATC_FC_MEM2PER 1021 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1022 reg = sconfig->dst_addr; 1023 for_each_sg(sgl, sg, sg_len, i) { 1024 struct at_desc *desc; 1025 u32 len; 1026 u32 mem; 1027 1028 desc = atc_desc_get(atchan); 1029 if (!desc) 1030 goto err_desc_get; 1031 1032 mem = sg_dma_address(sg); 1033 len = sg_dma_len(sg); 1034 if (unlikely(!len)) { 1035 dev_dbg(chan2dev(chan), 1036 "prep_slave_sg: sg(%d) data length is zero\n", i); 1037 goto err; 1038 } 1039 mem_width = 2; 1040 if (unlikely(mem & 3 || len & 3)) 1041 mem_width = 0; 1042 1043 desc->lli.saddr = mem; 1044 desc->lli.daddr = reg; 1045 desc->lli.ctrla = ctrla 1046 | ATC_SRC_WIDTH(mem_width) 1047 | len >> mem_width; 1048 desc->lli.ctrlb = ctrlb; 1049 desc->len = len; 1050 1051 atc_desc_chain(&first, &prev, desc); 1052 total_len += len; 1053 } 1054 break; 1055 case DMA_DEV_TO_MEM: 1056 reg_width = convert_buswidth(sconfig->src_addr_width); 1057 ctrla |= ATC_SRC_WIDTH(reg_width); 1058 ctrlb |= ATC_DST_ADDR_MODE_INCR 1059 | ATC_SRC_ADDR_MODE_FIXED 1060 | ATC_FC_PER2MEM 1061 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1062 1063 reg = sconfig->src_addr; 1064 for_each_sg(sgl, sg, sg_len, i) { 1065 struct at_desc *desc; 1066 u32 len; 1067 u32 mem; 1068 1069 desc = atc_desc_get(atchan); 1070 if (!desc) 1071 goto err_desc_get; 1072 1073 mem = sg_dma_address(sg); 1074 len = sg_dma_len(sg); 1075 if (unlikely(!len)) { 1076 dev_dbg(chan2dev(chan), 1077 "prep_slave_sg: sg(%d) data length is zero\n", i); 1078 goto err; 1079 } 1080 mem_width = 2; 1081 if (unlikely(mem & 3 || len & 3)) 1082 mem_width = 0; 1083 1084 desc->lli.saddr = reg; 1085 desc->lli.daddr = mem; 1086 desc->lli.ctrla = ctrla 1087 | ATC_DST_WIDTH(mem_width) 1088 | len >> reg_width; 1089 desc->lli.ctrlb = ctrlb; 1090 desc->len = len; 1091 1092 atc_desc_chain(&first, &prev, desc); 1093 total_len += len; 1094 } 1095 break; 1096 default: 1097 return NULL; 1098 } 1099 1100 /* set end-of-link to the last link descriptor of list*/ 1101 set_desc_eol(prev); 1102 1103 /* First descriptor of the chain embedds additional information */ 1104 first->txd.cookie = -EBUSY; 1105 first->total_len = total_len; 1106 1107 /* first link descriptor of list is responsible of flags */ 1108 first->txd.flags = flags; /* client is in control of this ack */ 1109 1110 return &first->txd; 1111 1112 err_desc_get: 1113 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1114 err: 1115 atc_desc_put(atchan, first); 1116 return NULL; 1117 } 1118 1119 /** 1120 * atc_prep_dma_sg - prepare memory to memory scather-gather operation 1121 * @chan: the channel to prepare operation on 1122 * @dst_sg: destination scatterlist 1123 * @dst_nents: number of destination scatterlist entries 1124 * @src_sg: source scatterlist 1125 * @src_nents: number of source scatterlist entries 1126 * @flags: tx descriptor status flags 1127 */ 1128 static struct dma_async_tx_descriptor * 1129 atc_prep_dma_sg(struct dma_chan *chan, 1130 struct scatterlist *dst_sg, unsigned int dst_nents, 1131 struct scatterlist *src_sg, unsigned int src_nents, 1132 unsigned long flags) 1133 { 1134 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1135 struct at_desc *desc = NULL; 1136 struct at_desc *first = NULL; 1137 struct at_desc *prev = NULL; 1138 unsigned int src_width; 1139 unsigned int dst_width; 1140 size_t xfer_count; 1141 u32 ctrla; 1142 u32 ctrlb; 1143 size_t dst_len = 0, src_len = 0; 1144 dma_addr_t dst = 0, src = 0; 1145 size_t len = 0, total_len = 0; 1146 1147 if (unlikely(dst_nents == 0 || src_nents == 0)) 1148 return NULL; 1149 1150 if (unlikely(dst_sg == NULL || src_sg == NULL)) 1151 return NULL; 1152 1153 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 1154 | ATC_SRC_ADDR_MODE_INCR 1155 | ATC_DST_ADDR_MODE_INCR 1156 | ATC_FC_MEM2MEM; 1157 1158 /* 1159 * loop until there is either no more source or no more destination 1160 * scatterlist entry 1161 */ 1162 while (true) { 1163 1164 /* prepare the next transfer */ 1165 if (dst_len == 0) { 1166 1167 /* no more destination scatterlist entries */ 1168 if (!dst_sg || !dst_nents) 1169 break; 1170 1171 dst = sg_dma_address(dst_sg); 1172 dst_len = sg_dma_len(dst_sg); 1173 1174 dst_sg = sg_next(dst_sg); 1175 dst_nents--; 1176 } 1177 1178 if (src_len == 0) { 1179 1180 /* no more source scatterlist entries */ 1181 if (!src_sg || !src_nents) 1182 break; 1183 1184 src = sg_dma_address(src_sg); 1185 src_len = sg_dma_len(src_sg); 1186 1187 src_sg = sg_next(src_sg); 1188 src_nents--; 1189 } 1190 1191 len = min_t(size_t, src_len, dst_len); 1192 if (len == 0) 1193 continue; 1194 1195 /* take care for the alignment */ 1196 src_width = dst_width = atc_get_xfer_width(src, dst, len); 1197 1198 ctrla = ATC_SRC_WIDTH(src_width) | 1199 ATC_DST_WIDTH(dst_width); 1200 1201 /* 1202 * The number of transfers to set up refer to the source width 1203 * that depends on the alignment. 1204 */ 1205 xfer_count = len >> src_width; 1206 if (xfer_count > ATC_BTSIZE_MAX) { 1207 xfer_count = ATC_BTSIZE_MAX; 1208 len = ATC_BTSIZE_MAX << src_width; 1209 } 1210 1211 /* create the transfer */ 1212 desc = atc_desc_get(atchan); 1213 if (!desc) 1214 goto err_desc_get; 1215 1216 desc->lli.saddr = src; 1217 desc->lli.daddr = dst; 1218 desc->lli.ctrla = ctrla | xfer_count; 1219 desc->lli.ctrlb = ctrlb; 1220 1221 desc->txd.cookie = 0; 1222 desc->len = len; 1223 1224 atc_desc_chain(&first, &prev, desc); 1225 1226 /* update the lengths and addresses for the next loop cycle */ 1227 dst_len -= len; 1228 src_len -= len; 1229 dst += len; 1230 src += len; 1231 1232 total_len += len; 1233 } 1234 1235 /* First descriptor of the chain embedds additional information */ 1236 first->txd.cookie = -EBUSY; 1237 first->total_len = total_len; 1238 1239 /* set end-of-link to the last link descriptor of list*/ 1240 set_desc_eol(desc); 1241 1242 first->txd.flags = flags; /* client is in control of this ack */ 1243 1244 return &first->txd; 1245 1246 err_desc_get: 1247 atc_desc_put(atchan, first); 1248 return NULL; 1249 } 1250 1251 /** 1252 * atc_dma_cyclic_check_values 1253 * Check for too big/unaligned periods and unaligned DMA buffer 1254 */ 1255 static int 1256 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1257 size_t period_len) 1258 { 1259 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1260 goto err_out; 1261 if (unlikely(period_len & ((1 << reg_width) - 1))) 1262 goto err_out; 1263 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1264 goto err_out; 1265 1266 return 0; 1267 1268 err_out: 1269 return -EINVAL; 1270 } 1271 1272 /** 1273 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1274 */ 1275 static int 1276 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1277 unsigned int period_index, dma_addr_t buf_addr, 1278 unsigned int reg_width, size_t period_len, 1279 enum dma_transfer_direction direction) 1280 { 1281 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1282 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1283 u32 ctrla; 1284 1285 /* prepare common CRTLA value */ 1286 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1287 | ATC_DCSIZE(sconfig->dst_maxburst) 1288 | ATC_DST_WIDTH(reg_width) 1289 | ATC_SRC_WIDTH(reg_width) 1290 | period_len >> reg_width; 1291 1292 switch (direction) { 1293 case DMA_MEM_TO_DEV: 1294 desc->lli.saddr = buf_addr + (period_len * period_index); 1295 desc->lli.daddr = sconfig->dst_addr; 1296 desc->lli.ctrla = ctrla; 1297 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1298 | ATC_SRC_ADDR_MODE_INCR 1299 | ATC_FC_MEM2PER 1300 | ATC_SIF(atchan->mem_if) 1301 | ATC_DIF(atchan->per_if); 1302 desc->len = period_len; 1303 break; 1304 1305 case DMA_DEV_TO_MEM: 1306 desc->lli.saddr = sconfig->src_addr; 1307 desc->lli.daddr = buf_addr + (period_len * period_index); 1308 desc->lli.ctrla = ctrla; 1309 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1310 | ATC_SRC_ADDR_MODE_FIXED 1311 | ATC_FC_PER2MEM 1312 | ATC_SIF(atchan->per_if) 1313 | ATC_DIF(atchan->mem_if); 1314 desc->len = period_len; 1315 break; 1316 1317 default: 1318 return -EINVAL; 1319 } 1320 1321 return 0; 1322 } 1323 1324 /** 1325 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1326 * @chan: the DMA channel to prepare 1327 * @buf_addr: physical DMA address where the buffer starts 1328 * @buf_len: total number of bytes for the entire buffer 1329 * @period_len: number of bytes for each period 1330 * @direction: transfer direction, to or from device 1331 * @flags: tx descriptor status flags 1332 */ 1333 static struct dma_async_tx_descriptor * 1334 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1335 size_t period_len, enum dma_transfer_direction direction, 1336 unsigned long flags) 1337 { 1338 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1339 struct at_dma_slave *atslave = chan->private; 1340 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1341 struct at_desc *first = NULL; 1342 struct at_desc *prev = NULL; 1343 unsigned long was_cyclic; 1344 unsigned int reg_width; 1345 unsigned int periods = buf_len / period_len; 1346 unsigned int i; 1347 1348 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n", 1349 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1350 buf_addr, 1351 periods, buf_len, period_len); 1352 1353 if (unlikely(!atslave || !buf_len || !period_len)) { 1354 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1355 return NULL; 1356 } 1357 1358 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1359 if (was_cyclic) { 1360 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1361 return NULL; 1362 } 1363 1364 if (unlikely(!is_slave_direction(direction))) 1365 goto err_out; 1366 1367 if (sconfig->direction == DMA_MEM_TO_DEV) 1368 reg_width = convert_buswidth(sconfig->dst_addr_width); 1369 else 1370 reg_width = convert_buswidth(sconfig->src_addr_width); 1371 1372 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1373 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1374 goto err_out; 1375 1376 /* build cyclic linked list */ 1377 for (i = 0; i < periods; i++) { 1378 struct at_desc *desc; 1379 1380 desc = atc_desc_get(atchan); 1381 if (!desc) 1382 goto err_desc_get; 1383 1384 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1385 reg_width, period_len, direction)) 1386 goto err_desc_get; 1387 1388 atc_desc_chain(&first, &prev, desc); 1389 } 1390 1391 /* lets make a cyclic list */ 1392 prev->lli.dscr = first->txd.phys; 1393 1394 /* First descriptor of the chain embedds additional information */ 1395 first->txd.cookie = -EBUSY; 1396 first->total_len = buf_len; 1397 1398 return &first->txd; 1399 1400 err_desc_get: 1401 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1402 atc_desc_put(atchan, first); 1403 err_out: 1404 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1405 return NULL; 1406 } 1407 1408 static int atc_config(struct dma_chan *chan, 1409 struct dma_slave_config *sconfig) 1410 { 1411 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1412 1413 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1414 1415 /* Check if it is chan is configured for slave transfers */ 1416 if (!chan->private) 1417 return -EINVAL; 1418 1419 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1420 1421 convert_burst(&atchan->dma_sconfig.src_maxburst); 1422 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1423 1424 return 0; 1425 } 1426 1427 static int atc_pause(struct dma_chan *chan) 1428 { 1429 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1430 struct at_dma *atdma = to_at_dma(chan->device); 1431 int chan_id = atchan->chan_common.chan_id; 1432 unsigned long flags; 1433 1434 LIST_HEAD(list); 1435 1436 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1437 1438 spin_lock_irqsave(&atchan->lock, flags); 1439 1440 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1441 set_bit(ATC_IS_PAUSED, &atchan->status); 1442 1443 spin_unlock_irqrestore(&atchan->lock, flags); 1444 1445 return 0; 1446 } 1447 1448 static int atc_resume(struct dma_chan *chan) 1449 { 1450 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1451 struct at_dma *atdma = to_at_dma(chan->device); 1452 int chan_id = atchan->chan_common.chan_id; 1453 unsigned long flags; 1454 1455 LIST_HEAD(list); 1456 1457 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1458 1459 if (!atc_chan_is_paused(atchan)) 1460 return 0; 1461 1462 spin_lock_irqsave(&atchan->lock, flags); 1463 1464 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1465 clear_bit(ATC_IS_PAUSED, &atchan->status); 1466 1467 spin_unlock_irqrestore(&atchan->lock, flags); 1468 1469 return 0; 1470 } 1471 1472 static int atc_terminate_all(struct dma_chan *chan) 1473 { 1474 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1475 struct at_dma *atdma = to_at_dma(chan->device); 1476 int chan_id = atchan->chan_common.chan_id; 1477 struct at_desc *desc, *_desc; 1478 unsigned long flags; 1479 1480 LIST_HEAD(list); 1481 1482 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1483 1484 /* 1485 * This is only called when something went wrong elsewhere, so 1486 * we don't really care about the data. Just disable the 1487 * channel. We still have to poll the channel enable bit due 1488 * to AHB/HSB limitations. 1489 */ 1490 spin_lock_irqsave(&atchan->lock, flags); 1491 1492 /* disabling channel: must also remove suspend state */ 1493 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1494 1495 /* confirm that this channel is disabled */ 1496 while (dma_readl(atdma, CHSR) & atchan->mask) 1497 cpu_relax(); 1498 1499 /* active_list entries will end up before queued entries */ 1500 list_splice_init(&atchan->queue, &list); 1501 list_splice_init(&atchan->active_list, &list); 1502 1503 /* Flush all pending and queued descriptors */ 1504 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1505 atc_chain_complete(atchan, desc); 1506 1507 clear_bit(ATC_IS_PAUSED, &atchan->status); 1508 /* if channel dedicated to cyclic operations, free it */ 1509 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1510 1511 spin_unlock_irqrestore(&atchan->lock, flags); 1512 1513 return 0; 1514 } 1515 1516 /** 1517 * atc_tx_status - poll for transaction completion 1518 * @chan: DMA channel 1519 * @cookie: transaction identifier to check status of 1520 * @txstate: if not %NULL updated with transaction state 1521 * 1522 * If @txstate is passed in, upon return it reflect the driver 1523 * internal state and can be used with dma_async_is_complete() to check 1524 * the status of multiple cookies without re-checking hardware state. 1525 */ 1526 static enum dma_status 1527 atc_tx_status(struct dma_chan *chan, 1528 dma_cookie_t cookie, 1529 struct dma_tx_state *txstate) 1530 { 1531 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1532 unsigned long flags; 1533 enum dma_status ret; 1534 int bytes = 0; 1535 1536 ret = dma_cookie_status(chan, cookie, txstate); 1537 if (ret == DMA_COMPLETE) 1538 return ret; 1539 /* 1540 * There's no point calculating the residue if there's 1541 * no txstate to store the value. 1542 */ 1543 if (!txstate) 1544 return DMA_ERROR; 1545 1546 spin_lock_irqsave(&atchan->lock, flags); 1547 1548 /* Get number of bytes left in the active transactions */ 1549 bytes = atc_get_bytes_left(chan, cookie); 1550 1551 spin_unlock_irqrestore(&atchan->lock, flags); 1552 1553 if (unlikely(bytes < 0)) { 1554 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1555 return DMA_ERROR; 1556 } else { 1557 dma_set_residue(txstate, bytes); 1558 } 1559 1560 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1561 ret, cookie, bytes); 1562 1563 return ret; 1564 } 1565 1566 /** 1567 * atc_issue_pending - try to finish work 1568 * @chan: target DMA channel 1569 */ 1570 static void atc_issue_pending(struct dma_chan *chan) 1571 { 1572 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1573 unsigned long flags; 1574 1575 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1576 1577 /* Not needed for cyclic transfers */ 1578 if (atc_chan_is_cyclic(atchan)) 1579 return; 1580 1581 spin_lock_irqsave(&atchan->lock, flags); 1582 atc_advance_work(atchan); 1583 spin_unlock_irqrestore(&atchan->lock, flags); 1584 } 1585 1586 /** 1587 * atc_alloc_chan_resources - allocate resources for DMA channel 1588 * @chan: allocate descriptor resources for this channel 1589 * @client: current client requesting the channel be ready for requests 1590 * 1591 * return - the number of allocated descriptors 1592 */ 1593 static int atc_alloc_chan_resources(struct dma_chan *chan) 1594 { 1595 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1596 struct at_dma *atdma = to_at_dma(chan->device); 1597 struct at_desc *desc; 1598 struct at_dma_slave *atslave; 1599 unsigned long flags; 1600 int i; 1601 u32 cfg; 1602 LIST_HEAD(tmp_list); 1603 1604 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1605 1606 /* ASSERT: channel is idle */ 1607 if (atc_chan_is_enabled(atchan)) { 1608 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1609 return -EIO; 1610 } 1611 1612 cfg = ATC_DEFAULT_CFG; 1613 1614 atslave = chan->private; 1615 if (atslave) { 1616 /* 1617 * We need controller-specific data to set up slave 1618 * transfers. 1619 */ 1620 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1621 1622 /* if cfg configuration specified take it instead of default */ 1623 if (atslave->cfg) 1624 cfg = atslave->cfg; 1625 } 1626 1627 /* have we already been set up? 1628 * reconfigure channel but no need to reallocate descriptors */ 1629 if (!list_empty(&atchan->free_list)) 1630 return atchan->descs_allocated; 1631 1632 /* Allocate initial pool of descriptors */ 1633 for (i = 0; i < init_nr_desc_per_channel; i++) { 1634 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1635 if (!desc) { 1636 dev_err(atdma->dma_common.dev, 1637 "Only %d initial descriptors\n", i); 1638 break; 1639 } 1640 list_add_tail(&desc->desc_node, &tmp_list); 1641 } 1642 1643 spin_lock_irqsave(&atchan->lock, flags); 1644 atchan->descs_allocated = i; 1645 list_splice(&tmp_list, &atchan->free_list); 1646 dma_cookie_init(chan); 1647 spin_unlock_irqrestore(&atchan->lock, flags); 1648 1649 /* channel parameters */ 1650 channel_writel(atchan, CFG, cfg); 1651 1652 dev_dbg(chan2dev(chan), 1653 "alloc_chan_resources: allocated %d descriptors\n", 1654 atchan->descs_allocated); 1655 1656 return atchan->descs_allocated; 1657 } 1658 1659 /** 1660 * atc_free_chan_resources - free all channel resources 1661 * @chan: DMA channel 1662 */ 1663 static void atc_free_chan_resources(struct dma_chan *chan) 1664 { 1665 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1666 struct at_dma *atdma = to_at_dma(chan->device); 1667 struct at_desc *desc, *_desc; 1668 LIST_HEAD(list); 1669 1670 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1671 atchan->descs_allocated); 1672 1673 /* ASSERT: channel is idle */ 1674 BUG_ON(!list_empty(&atchan->active_list)); 1675 BUG_ON(!list_empty(&atchan->queue)); 1676 BUG_ON(atc_chan_is_enabled(atchan)); 1677 1678 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1679 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1680 list_del(&desc->desc_node); 1681 /* free link descriptor */ 1682 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1683 } 1684 list_splice_init(&atchan->free_list, &list); 1685 atchan->descs_allocated = 0; 1686 atchan->status = 0; 1687 1688 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1689 } 1690 1691 #ifdef CONFIG_OF 1692 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1693 { 1694 struct at_dma_slave *atslave = slave; 1695 1696 if (atslave->dma_dev == chan->device->dev) { 1697 chan->private = atslave; 1698 return true; 1699 } else { 1700 return false; 1701 } 1702 } 1703 1704 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1705 struct of_dma *of_dma) 1706 { 1707 struct dma_chan *chan; 1708 struct at_dma_chan *atchan; 1709 struct at_dma_slave *atslave; 1710 dma_cap_mask_t mask; 1711 unsigned int per_id; 1712 struct platform_device *dmac_pdev; 1713 1714 if (dma_spec->args_count != 2) 1715 return NULL; 1716 1717 dmac_pdev = of_find_device_by_node(dma_spec->np); 1718 1719 dma_cap_zero(mask); 1720 dma_cap_set(DMA_SLAVE, mask); 1721 1722 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL); 1723 if (!atslave) 1724 return NULL; 1725 1726 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1727 /* 1728 * We can fill both SRC_PER and DST_PER, one of these fields will be 1729 * ignored depending on DMA transfer direction. 1730 */ 1731 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1732 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1733 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1734 /* 1735 * We have to translate the value we get from the device tree since 1736 * the half FIFO configuration value had to be 0 to keep backward 1737 * compatibility. 1738 */ 1739 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1740 case AT91_DMA_CFG_FIFOCFG_ALAP: 1741 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1742 break; 1743 case AT91_DMA_CFG_FIFOCFG_ASAP: 1744 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1745 break; 1746 case AT91_DMA_CFG_FIFOCFG_HALF: 1747 default: 1748 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1749 } 1750 atslave->dma_dev = &dmac_pdev->dev; 1751 1752 chan = dma_request_channel(mask, at_dma_filter, atslave); 1753 if (!chan) 1754 return NULL; 1755 1756 atchan = to_at_dma_chan(chan); 1757 atchan->per_if = dma_spec->args[0] & 0xff; 1758 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1759 1760 return chan; 1761 } 1762 #else 1763 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1764 struct of_dma *of_dma) 1765 { 1766 return NULL; 1767 } 1768 #endif 1769 1770 /*-- Module Management -----------------------------------------------*/ 1771 1772 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1773 static struct at_dma_platform_data at91sam9rl_config = { 1774 .nr_channels = 2, 1775 }; 1776 static struct at_dma_platform_data at91sam9g45_config = { 1777 .nr_channels = 8, 1778 }; 1779 1780 #if defined(CONFIG_OF) 1781 static const struct of_device_id atmel_dma_dt_ids[] = { 1782 { 1783 .compatible = "atmel,at91sam9rl-dma", 1784 .data = &at91sam9rl_config, 1785 }, { 1786 .compatible = "atmel,at91sam9g45-dma", 1787 .data = &at91sam9g45_config, 1788 }, { 1789 /* sentinel */ 1790 } 1791 }; 1792 1793 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1794 #endif 1795 1796 static const struct platform_device_id atdma_devtypes[] = { 1797 { 1798 .name = "at91sam9rl_dma", 1799 .driver_data = (unsigned long) &at91sam9rl_config, 1800 }, { 1801 .name = "at91sam9g45_dma", 1802 .driver_data = (unsigned long) &at91sam9g45_config, 1803 }, { 1804 /* sentinel */ 1805 } 1806 }; 1807 1808 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1809 struct platform_device *pdev) 1810 { 1811 if (pdev->dev.of_node) { 1812 const struct of_device_id *match; 1813 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1814 if (match == NULL) 1815 return NULL; 1816 return match->data; 1817 } 1818 return (struct at_dma_platform_data *) 1819 platform_get_device_id(pdev)->driver_data; 1820 } 1821 1822 /** 1823 * at_dma_off - disable DMA controller 1824 * @atdma: the Atmel HDAMC device 1825 */ 1826 static void at_dma_off(struct at_dma *atdma) 1827 { 1828 dma_writel(atdma, EN, 0); 1829 1830 /* disable all interrupts */ 1831 dma_writel(atdma, EBCIDR, -1L); 1832 1833 /* confirm that all channels are disabled */ 1834 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1835 cpu_relax(); 1836 } 1837 1838 static int __init at_dma_probe(struct platform_device *pdev) 1839 { 1840 struct resource *io; 1841 struct at_dma *atdma; 1842 size_t size; 1843 int irq; 1844 int err; 1845 int i; 1846 const struct at_dma_platform_data *plat_dat; 1847 1848 /* setup platform data for each SoC */ 1849 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1850 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask); 1851 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1852 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1853 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1854 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1855 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1856 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask); 1857 1858 /* get DMA parameters from controller type */ 1859 plat_dat = at_dma_get_driver_data(pdev); 1860 if (!plat_dat) 1861 return -ENODEV; 1862 1863 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1864 if (!io) 1865 return -EINVAL; 1866 1867 irq = platform_get_irq(pdev, 0); 1868 if (irq < 0) 1869 return irq; 1870 1871 size = sizeof(struct at_dma); 1872 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1873 atdma = kzalloc(size, GFP_KERNEL); 1874 if (!atdma) 1875 return -ENOMEM; 1876 1877 /* discover transaction capabilities */ 1878 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1879 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1880 1881 size = resource_size(io); 1882 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1883 err = -EBUSY; 1884 goto err_kfree; 1885 } 1886 1887 atdma->regs = ioremap(io->start, size); 1888 if (!atdma->regs) { 1889 err = -ENOMEM; 1890 goto err_release_r; 1891 } 1892 1893 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1894 if (IS_ERR(atdma->clk)) { 1895 err = PTR_ERR(atdma->clk); 1896 goto err_clk; 1897 } 1898 err = clk_prepare_enable(atdma->clk); 1899 if (err) 1900 goto err_clk_prepare; 1901 1902 /* force dma off, just in case */ 1903 at_dma_off(atdma); 1904 1905 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1906 if (err) 1907 goto err_irq; 1908 1909 platform_set_drvdata(pdev, atdma); 1910 1911 /* create a pool of consistent memory blocks for hardware descriptors */ 1912 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1913 &pdev->dev, sizeof(struct at_desc), 1914 4 /* word alignment */, 0); 1915 if (!atdma->dma_desc_pool) { 1916 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1917 err = -ENOMEM; 1918 goto err_desc_pool_create; 1919 } 1920 1921 /* create a pool of consistent memory blocks for memset blocks */ 1922 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1923 &pdev->dev, sizeof(int), 4, 0); 1924 if (!atdma->memset_pool) { 1925 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1926 err = -ENOMEM; 1927 goto err_memset_pool_create; 1928 } 1929 1930 /* clear any pending interrupt */ 1931 while (dma_readl(atdma, EBCISR)) 1932 cpu_relax(); 1933 1934 /* initialize channels related values */ 1935 INIT_LIST_HEAD(&atdma->dma_common.channels); 1936 for (i = 0; i < plat_dat->nr_channels; i++) { 1937 struct at_dma_chan *atchan = &atdma->chan[i]; 1938 1939 atchan->mem_if = AT_DMA_MEM_IF; 1940 atchan->per_if = AT_DMA_PER_IF; 1941 atchan->chan_common.device = &atdma->dma_common; 1942 dma_cookie_init(&atchan->chan_common); 1943 list_add_tail(&atchan->chan_common.device_node, 1944 &atdma->dma_common.channels); 1945 1946 atchan->ch_regs = atdma->regs + ch_regs(i); 1947 spin_lock_init(&atchan->lock); 1948 atchan->mask = 1 << i; 1949 1950 INIT_LIST_HEAD(&atchan->active_list); 1951 INIT_LIST_HEAD(&atchan->queue); 1952 INIT_LIST_HEAD(&atchan->free_list); 1953 1954 tasklet_init(&atchan->tasklet, atc_tasklet, 1955 (unsigned long)atchan); 1956 atc_enable_chan_irq(atdma, i); 1957 } 1958 1959 /* set base routines */ 1960 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1961 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1962 atdma->dma_common.device_tx_status = atc_tx_status; 1963 atdma->dma_common.device_issue_pending = atc_issue_pending; 1964 atdma->dma_common.dev = &pdev->dev; 1965 1966 /* set prep routines based on capability */ 1967 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1968 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1969 1970 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1971 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1972 1973 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 1974 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 1975 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 1976 } 1977 1978 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1979 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1980 /* controller can do slave DMA: can trigger cyclic transfers */ 1981 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1982 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1983 atdma->dma_common.device_config = atc_config; 1984 atdma->dma_common.device_pause = atc_pause; 1985 atdma->dma_common.device_resume = atc_resume; 1986 atdma->dma_common.device_terminate_all = atc_terminate_all; 1987 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1988 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1989 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1990 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1991 } 1992 1993 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)) 1994 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg; 1995 1996 dma_writel(atdma, EN, AT_DMA_ENABLE); 1997 1998 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n", 1999 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 2000 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 2001 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 2002 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "", 2003 plat_dat->nr_channels); 2004 2005 dma_async_device_register(&atdma->dma_common); 2006 2007 /* 2008 * Do not return an error if the dmac node is not present in order to 2009 * not break the existing way of requesting channel with 2010 * dma_request_channel(). 2011 */ 2012 if (pdev->dev.of_node) { 2013 err = of_dma_controller_register(pdev->dev.of_node, 2014 at_dma_xlate, atdma); 2015 if (err) { 2016 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 2017 goto err_of_dma_controller_register; 2018 } 2019 } 2020 2021 return 0; 2022 2023 err_of_dma_controller_register: 2024 dma_async_device_unregister(&atdma->dma_common); 2025 dma_pool_destroy(atdma->memset_pool); 2026 err_memset_pool_create: 2027 dma_pool_destroy(atdma->dma_desc_pool); 2028 err_desc_pool_create: 2029 free_irq(platform_get_irq(pdev, 0), atdma); 2030 err_irq: 2031 clk_disable_unprepare(atdma->clk); 2032 err_clk_prepare: 2033 clk_put(atdma->clk); 2034 err_clk: 2035 iounmap(atdma->regs); 2036 atdma->regs = NULL; 2037 err_release_r: 2038 release_mem_region(io->start, size); 2039 err_kfree: 2040 kfree(atdma); 2041 return err; 2042 } 2043 2044 static int at_dma_remove(struct platform_device *pdev) 2045 { 2046 struct at_dma *atdma = platform_get_drvdata(pdev); 2047 struct dma_chan *chan, *_chan; 2048 struct resource *io; 2049 2050 at_dma_off(atdma); 2051 dma_async_device_unregister(&atdma->dma_common); 2052 2053 dma_pool_destroy(atdma->memset_pool); 2054 dma_pool_destroy(atdma->dma_desc_pool); 2055 free_irq(platform_get_irq(pdev, 0), atdma); 2056 2057 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2058 device_node) { 2059 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2060 2061 /* Disable interrupts */ 2062 atc_disable_chan_irq(atdma, chan->chan_id); 2063 2064 tasklet_kill(&atchan->tasklet); 2065 list_del(&chan->device_node); 2066 } 2067 2068 clk_disable_unprepare(atdma->clk); 2069 clk_put(atdma->clk); 2070 2071 iounmap(atdma->regs); 2072 atdma->regs = NULL; 2073 2074 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2075 release_mem_region(io->start, resource_size(io)); 2076 2077 kfree(atdma); 2078 2079 return 0; 2080 } 2081 2082 static void at_dma_shutdown(struct platform_device *pdev) 2083 { 2084 struct at_dma *atdma = platform_get_drvdata(pdev); 2085 2086 at_dma_off(platform_get_drvdata(pdev)); 2087 clk_disable_unprepare(atdma->clk); 2088 } 2089 2090 static int at_dma_prepare(struct device *dev) 2091 { 2092 struct platform_device *pdev = to_platform_device(dev); 2093 struct at_dma *atdma = platform_get_drvdata(pdev); 2094 struct dma_chan *chan, *_chan; 2095 2096 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2097 device_node) { 2098 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2099 /* wait for transaction completion (except in cyclic case) */ 2100 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2101 return -EAGAIN; 2102 } 2103 return 0; 2104 } 2105 2106 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2107 { 2108 struct dma_chan *chan = &atchan->chan_common; 2109 2110 /* Channel should be paused by user 2111 * do it anyway even if it is not done already */ 2112 if (!atc_chan_is_paused(atchan)) { 2113 dev_warn(chan2dev(chan), 2114 "cyclic channel not paused, should be done by channel user\n"); 2115 atc_pause(chan); 2116 } 2117 2118 /* now preserve additional data for cyclic operations */ 2119 /* next descriptor address in the cyclic list */ 2120 atchan->save_dscr = channel_readl(atchan, DSCR); 2121 2122 vdbg_dump_regs(atchan); 2123 } 2124 2125 static int at_dma_suspend_noirq(struct device *dev) 2126 { 2127 struct platform_device *pdev = to_platform_device(dev); 2128 struct at_dma *atdma = platform_get_drvdata(pdev); 2129 struct dma_chan *chan, *_chan; 2130 2131 /* preserve data */ 2132 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2133 device_node) { 2134 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2135 2136 if (atc_chan_is_cyclic(atchan)) 2137 atc_suspend_cyclic(atchan); 2138 atchan->save_cfg = channel_readl(atchan, CFG); 2139 } 2140 atdma->save_imr = dma_readl(atdma, EBCIMR); 2141 2142 /* disable DMA controller */ 2143 at_dma_off(atdma); 2144 clk_disable_unprepare(atdma->clk); 2145 return 0; 2146 } 2147 2148 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2149 { 2150 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2151 2152 /* restore channel status for cyclic descriptors list: 2153 * next descriptor in the cyclic list at the time of suspend */ 2154 channel_writel(atchan, SADDR, 0); 2155 channel_writel(atchan, DADDR, 0); 2156 channel_writel(atchan, CTRLA, 0); 2157 channel_writel(atchan, CTRLB, 0); 2158 channel_writel(atchan, DSCR, atchan->save_dscr); 2159 dma_writel(atdma, CHER, atchan->mask); 2160 2161 /* channel pause status should be removed by channel user 2162 * We cannot take the initiative to do it here */ 2163 2164 vdbg_dump_regs(atchan); 2165 } 2166 2167 static int at_dma_resume_noirq(struct device *dev) 2168 { 2169 struct platform_device *pdev = to_platform_device(dev); 2170 struct at_dma *atdma = platform_get_drvdata(pdev); 2171 struct dma_chan *chan, *_chan; 2172 2173 /* bring back DMA controller */ 2174 clk_prepare_enable(atdma->clk); 2175 dma_writel(atdma, EN, AT_DMA_ENABLE); 2176 2177 /* clear any pending interrupt */ 2178 while (dma_readl(atdma, EBCISR)) 2179 cpu_relax(); 2180 2181 /* restore saved data */ 2182 dma_writel(atdma, EBCIER, atdma->save_imr); 2183 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2184 device_node) { 2185 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2186 2187 channel_writel(atchan, CFG, atchan->save_cfg); 2188 if (atc_chan_is_cyclic(atchan)) 2189 atc_resume_cyclic(atchan); 2190 } 2191 return 0; 2192 } 2193 2194 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2195 .prepare = at_dma_prepare, 2196 .suspend_noirq = at_dma_suspend_noirq, 2197 .resume_noirq = at_dma_resume_noirq, 2198 }; 2199 2200 static struct platform_driver at_dma_driver = { 2201 .remove = at_dma_remove, 2202 .shutdown = at_dma_shutdown, 2203 .id_table = atdma_devtypes, 2204 .driver = { 2205 .name = "at_hdmac", 2206 .pm = &at_dma_dev_pm_ops, 2207 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2208 }, 2209 }; 2210 2211 static int __init at_dma_init(void) 2212 { 2213 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2214 } 2215 subsys_initcall(at_dma_init); 2216 2217 static void __exit at_dma_exit(void) 2218 { 2219 platform_driver_unregister(&at_dma_driver); 2220 } 2221 module_exit(at_dma_exit); 2222 2223 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2224 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2225 MODULE_LICENSE("GPL"); 2226 MODULE_ALIAS("platform:at_hdmac"); 2227