1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 4 * 5 * Copyright (C) 2008 Atmel Corporation 6 * 7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 8 * The only Atmel DMA Controller that is not covered by this driver is the one 9 * found on AT91SAM9263. 10 */ 11 12 #include <dt-bindings/dma/at91.h> 13 #include <linux/clk.h> 14 #include <linux/dmaengine.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/dmapool.h> 17 #include <linux/interrupt.h> 18 #include <linux/module.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/of_dma.h> 24 25 #include "at_hdmac_regs.h" 26 #include "dmaengine.h" 27 28 /* 29 * Glossary 30 * -------- 31 * 32 * at_hdmac : Name of the ATmel AHB DMA Controller 33 * at_dma_ / atdma : ATmel DMA controller entity related 34 * atc_ / atchan : ATmel DMA Channel entity related 35 */ 36 37 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 38 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 39 |ATC_DIF(AT_DMA_MEM_IF)) 40 #define ATC_DMA_BUSWIDTHS\ 41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 45 46 #define ATC_MAX_DSCR_TRIALS 10 47 48 /* 49 * Initial number of descriptors to allocate for each channel. This could 50 * be increased during dma usage. 51 */ 52 static unsigned int init_nr_desc_per_channel = 64; 53 module_param(init_nr_desc_per_channel, uint, 0644); 54 MODULE_PARM_DESC(init_nr_desc_per_channel, 55 "initial descriptors per channel (default: 64)"); 56 57 58 /* prototypes */ 59 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 60 static void atc_issue_pending(struct dma_chan *chan); 61 62 63 /*----------------------------------------------------------------------*/ 64 65 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 66 size_t len) 67 { 68 unsigned int width; 69 70 if (!((src | dst | len) & 3)) 71 width = 2; 72 else if (!((src | dst | len) & 1)) 73 width = 1; 74 else 75 width = 0; 76 77 return width; 78 } 79 80 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 81 { 82 return list_first_entry(&atchan->active_list, 83 struct at_desc, desc_node); 84 } 85 86 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 87 { 88 return list_first_entry(&atchan->queue, 89 struct at_desc, desc_node); 90 } 91 92 /** 93 * atc_alloc_descriptor - allocate and return an initialized descriptor 94 * @chan: the channel to allocate descriptors for 95 * @gfp_flags: GFP allocation flags 96 * 97 * Note: The ack-bit is positioned in the descriptor flag at creation time 98 * to make initial allocation more convenient. This bit will be cleared 99 * and control will be given to client at usage time (during 100 * preparation functions). 101 */ 102 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 103 gfp_t gfp_flags) 104 { 105 struct at_desc *desc = NULL; 106 struct at_dma *atdma = to_at_dma(chan->device); 107 dma_addr_t phys; 108 109 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); 110 if (desc) { 111 INIT_LIST_HEAD(&desc->tx_list); 112 dma_async_tx_descriptor_init(&desc->txd, chan); 113 /* txd.flags will be overwritten in prep functions */ 114 desc->txd.flags = DMA_CTRL_ACK; 115 desc->txd.tx_submit = atc_tx_submit; 116 desc->txd.phys = phys; 117 } 118 119 return desc; 120 } 121 122 /** 123 * atc_desc_get - get an unused descriptor from free_list 124 * @atchan: channel we want a new descriptor for 125 */ 126 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 127 { 128 struct at_desc *desc, *_desc; 129 struct at_desc *ret = NULL; 130 unsigned long flags; 131 unsigned int i = 0; 132 133 spin_lock_irqsave(&atchan->lock, flags); 134 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 135 i++; 136 if (async_tx_test_ack(&desc->txd)) { 137 list_del(&desc->desc_node); 138 ret = desc; 139 break; 140 } 141 dev_dbg(chan2dev(&atchan->chan_common), 142 "desc %p not ACKed\n", desc); 143 } 144 spin_unlock_irqrestore(&atchan->lock, flags); 145 dev_vdbg(chan2dev(&atchan->chan_common), 146 "scanned %u descriptors on freelist\n", i); 147 148 /* no more descriptor available in initial pool: create one more */ 149 if (!ret) { 150 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 151 if (ret) { 152 spin_lock_irqsave(&atchan->lock, flags); 153 atchan->descs_allocated++; 154 spin_unlock_irqrestore(&atchan->lock, flags); 155 } else { 156 dev_err(chan2dev(&atchan->chan_common), 157 "not enough descriptors available\n"); 158 } 159 } 160 161 return ret; 162 } 163 164 /** 165 * atc_desc_put - move a descriptor, including any children, to the free list 166 * @atchan: channel we work on 167 * @desc: descriptor, at the head of a chain, to move to free list 168 */ 169 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 170 { 171 if (desc) { 172 struct at_desc *child; 173 unsigned long flags; 174 175 spin_lock_irqsave(&atchan->lock, flags); 176 list_for_each_entry(child, &desc->tx_list, desc_node) 177 dev_vdbg(chan2dev(&atchan->chan_common), 178 "moving child desc %p to freelist\n", 179 child); 180 list_splice_init(&desc->tx_list, &atchan->free_list); 181 dev_vdbg(chan2dev(&atchan->chan_common), 182 "moving desc %p to freelist\n", desc); 183 list_add(&desc->desc_node, &atchan->free_list); 184 spin_unlock_irqrestore(&atchan->lock, flags); 185 } 186 } 187 188 /** 189 * atc_desc_chain - build chain adding a descriptor 190 * @first: address of first descriptor of the chain 191 * @prev: address of previous descriptor of the chain 192 * @desc: descriptor to queue 193 * 194 * Called from prep_* functions 195 */ 196 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 197 struct at_desc *desc) 198 { 199 if (!(*first)) { 200 *first = desc; 201 } else { 202 /* inform the HW lli about chaining */ 203 (*prev)->lli.dscr = desc->txd.phys; 204 /* insert the link descriptor to the LD ring */ 205 list_add_tail(&desc->desc_node, 206 &(*first)->tx_list); 207 } 208 *prev = desc; 209 } 210 211 /** 212 * atc_dostart - starts the DMA engine for real 213 * @atchan: the channel we want to start 214 * @first: first descriptor in the list we want to begin with 215 * 216 * Called with atchan->lock held and bh disabled 217 */ 218 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 219 { 220 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 221 222 /* ASSERT: channel is idle */ 223 if (atc_chan_is_enabled(atchan)) { 224 dev_err(chan2dev(&atchan->chan_common), 225 "BUG: Attempted to start non-idle channel\n"); 226 dev_err(chan2dev(&atchan->chan_common), 227 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 228 channel_readl(atchan, SADDR), 229 channel_readl(atchan, DADDR), 230 channel_readl(atchan, CTRLA), 231 channel_readl(atchan, CTRLB), 232 channel_readl(atchan, DSCR)); 233 234 /* The tasklet will hopefully advance the queue... */ 235 return; 236 } 237 238 vdbg_dump_regs(atchan); 239 240 channel_writel(atchan, SADDR, 0); 241 channel_writel(atchan, DADDR, 0); 242 channel_writel(atchan, CTRLA, 0); 243 channel_writel(atchan, CTRLB, 0); 244 channel_writel(atchan, DSCR, first->txd.phys); 245 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 246 ATC_SPIP_BOUNDARY(first->boundary)); 247 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 248 ATC_DPIP_BOUNDARY(first->boundary)); 249 dma_writel(atdma, CHER, atchan->mask); 250 251 vdbg_dump_regs(atchan); 252 } 253 254 /* 255 * atc_get_desc_by_cookie - get the descriptor of a cookie 256 * @atchan: the DMA channel 257 * @cookie: the cookie to get the descriptor for 258 */ 259 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 260 dma_cookie_t cookie) 261 { 262 struct at_desc *desc, *_desc; 263 264 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 265 if (desc->txd.cookie == cookie) 266 return desc; 267 } 268 269 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 270 if (desc->txd.cookie == cookie) 271 return desc; 272 } 273 274 return NULL; 275 } 276 277 /** 278 * atc_calc_bytes_left - calculates the number of bytes left according to the 279 * value read from CTRLA. 280 * 281 * @current_len: the number of bytes left before reading CTRLA 282 * @ctrla: the value of CTRLA 283 */ 284 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 285 { 286 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 287 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 288 289 /* 290 * According to the datasheet, when reading the Control A Register 291 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 292 * number of transfers completed on the Source Interface. 293 * So btsize is always a number of source width transfers. 294 */ 295 return current_len - (btsize << src_width); 296 } 297 298 /** 299 * atc_get_bytes_left - get the number of bytes residue for a cookie 300 * @chan: DMA channel 301 * @cookie: transaction identifier to check status of 302 */ 303 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 304 { 305 struct at_dma_chan *atchan = to_at_dma_chan(chan); 306 struct at_desc *desc_first = atc_first_active(atchan); 307 struct at_desc *desc; 308 int ret; 309 u32 ctrla, dscr, trials; 310 311 /* 312 * If the cookie doesn't match to the currently running transfer then 313 * we can return the total length of the associated DMA transfer, 314 * because it is still queued. 315 */ 316 desc = atc_get_desc_by_cookie(atchan, cookie); 317 if (desc == NULL) 318 return -EINVAL; 319 else if (desc != desc_first) 320 return desc->total_len; 321 322 /* cookie matches to the currently running transfer */ 323 ret = desc_first->total_len; 324 325 if (desc_first->lli.dscr) { 326 /* hardware linked list transfer */ 327 328 /* 329 * Calculate the residue by removing the length of the child 330 * descriptors already transferred from the total length. 331 * To get the current child descriptor we can use the value of 332 * the channel's DSCR register and compare it against the value 333 * of the hardware linked list structure of each child 334 * descriptor. 335 * 336 * The CTRLA register provides us with the amount of data 337 * already read from the source for the current child 338 * descriptor. So we can compute a more accurate residue by also 339 * removing the number of bytes corresponding to this amount of 340 * data. 341 * 342 * However, the DSCR and CTRLA registers cannot be read both 343 * atomically. Hence a race condition may occur: the first read 344 * register may refer to one child descriptor whereas the second 345 * read may refer to a later child descriptor in the list 346 * because of the DMA transfer progression inbetween the two 347 * reads. 348 * 349 * One solution could have been to pause the DMA transfer, read 350 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 351 * this approach presents some drawbacks: 352 * - If the DMA transfer is paused, RX overruns or TX underruns 353 * are more likey to occur depending on the system latency. 354 * Taking the USART driver as an example, it uses a cyclic DMA 355 * transfer to read data from the Receive Holding Register 356 * (RHR) to avoid RX overruns since the RHR is not protected 357 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 358 * to compute the residue would break the USART driver design. 359 * - The atc_pause() function masks interrupts but we'd rather 360 * avoid to do so for system latency purpose. 361 * 362 * Then we'd rather use another solution: the DSCR is read a 363 * first time, the CTRLA is read in turn, next the DSCR is read 364 * a second time. If the two consecutive read values of the DSCR 365 * are the same then we assume both refers to the very same 366 * child descriptor as well as the CTRLA value read inbetween 367 * does. For cyclic tranfers, the assumption is that a full loop 368 * is "not so fast". 369 * If the two DSCR values are different, we read again the CTRLA 370 * then the DSCR till two consecutive read values from DSCR are 371 * equal or till the maxium trials is reach. 372 * This algorithm is very unlikely not to find a stable value for 373 * DSCR. 374 */ 375 376 dscr = channel_readl(atchan, DSCR); 377 rmb(); /* ensure DSCR is read before CTRLA */ 378 ctrla = channel_readl(atchan, CTRLA); 379 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 380 u32 new_dscr; 381 382 rmb(); /* ensure DSCR is read after CTRLA */ 383 new_dscr = channel_readl(atchan, DSCR); 384 385 /* 386 * If the DSCR register value has not changed inside the 387 * DMA controller since the previous read, we assume 388 * that both the dscr and ctrla values refers to the 389 * very same descriptor. 390 */ 391 if (likely(new_dscr == dscr)) 392 break; 393 394 /* 395 * DSCR has changed inside the DMA controller, so the 396 * previouly read value of CTRLA may refer to an already 397 * processed descriptor hence could be outdated. 398 * We need to update ctrla to match the current 399 * descriptor. 400 */ 401 dscr = new_dscr; 402 rmb(); /* ensure DSCR is read before CTRLA */ 403 ctrla = channel_readl(atchan, CTRLA); 404 } 405 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 406 return -ETIMEDOUT; 407 408 /* for the first descriptor we can be more accurate */ 409 if (desc_first->lli.dscr == dscr) 410 return atc_calc_bytes_left(ret, ctrla); 411 412 ret -= desc_first->len; 413 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 414 if (desc->lli.dscr == dscr) 415 break; 416 417 ret -= desc->len; 418 } 419 420 /* 421 * For the current descriptor in the chain we can calculate 422 * the remaining bytes using the channel's register. 423 */ 424 ret = atc_calc_bytes_left(ret, ctrla); 425 } else { 426 /* single transfer */ 427 ctrla = channel_readl(atchan, CTRLA); 428 ret = atc_calc_bytes_left(ret, ctrla); 429 } 430 431 return ret; 432 } 433 434 /** 435 * atc_chain_complete - finish work for one transaction chain 436 * @atchan: channel we work on 437 * @desc: descriptor at the head of the chain we want do complete 438 * 439 * Called with atchan->lock held and bh disabled */ 440 static void 441 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 442 { 443 struct dma_async_tx_descriptor *txd = &desc->txd; 444 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 445 446 dev_vdbg(chan2dev(&atchan->chan_common), 447 "descriptor %u complete\n", txd->cookie); 448 449 /* mark the descriptor as complete for non cyclic cases only */ 450 if (!atc_chan_is_cyclic(atchan)) 451 dma_cookie_complete(txd); 452 453 /* If the transfer was a memset, free our temporary buffer */ 454 if (desc->memset_buffer) { 455 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 456 desc->memset_paddr); 457 desc->memset_buffer = false; 458 } 459 460 /* move children to free_list */ 461 list_splice_init(&desc->tx_list, &atchan->free_list); 462 /* move myself to free_list */ 463 list_move(&desc->desc_node, &atchan->free_list); 464 465 dma_descriptor_unmap(txd); 466 /* for cyclic transfers, 467 * no need to replay callback function while stopping */ 468 if (!atc_chan_is_cyclic(atchan)) { 469 /* 470 * The API requires that no submissions are done from a 471 * callback, so we don't need to drop the lock here 472 */ 473 dmaengine_desc_get_callback_invoke(txd, NULL); 474 } 475 476 dma_run_dependencies(txd); 477 } 478 479 /** 480 * atc_complete_all - finish work for all transactions 481 * @atchan: channel to complete transactions for 482 * 483 * Eventually submit queued descriptors if any 484 * 485 * Assume channel is idle while calling this function 486 * Called with atchan->lock held and bh disabled 487 */ 488 static void atc_complete_all(struct at_dma_chan *atchan) 489 { 490 struct at_desc *desc, *_desc; 491 LIST_HEAD(list); 492 493 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 494 495 /* 496 * Submit queued descriptors ASAP, i.e. before we go through 497 * the completed ones. 498 */ 499 if (!list_empty(&atchan->queue)) 500 atc_dostart(atchan, atc_first_queued(atchan)); 501 /* empty active_list now it is completed */ 502 list_splice_init(&atchan->active_list, &list); 503 /* empty queue list by moving descriptors (if any) to active_list */ 504 list_splice_init(&atchan->queue, &atchan->active_list); 505 506 list_for_each_entry_safe(desc, _desc, &list, desc_node) 507 atc_chain_complete(atchan, desc); 508 } 509 510 /** 511 * atc_advance_work - at the end of a transaction, move forward 512 * @atchan: channel where the transaction ended 513 * 514 * Called with atchan->lock held and bh disabled 515 */ 516 static void atc_advance_work(struct at_dma_chan *atchan) 517 { 518 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 519 520 if (atc_chan_is_enabled(atchan)) 521 return; 522 523 if (list_empty(&atchan->active_list) || 524 list_is_singular(&atchan->active_list)) { 525 atc_complete_all(atchan); 526 } else { 527 atc_chain_complete(atchan, atc_first_active(atchan)); 528 /* advance work */ 529 atc_dostart(atchan, atc_first_active(atchan)); 530 } 531 } 532 533 534 /** 535 * atc_handle_error - handle errors reported by DMA controller 536 * @atchan: channel where error occurs 537 * 538 * Called with atchan->lock held and bh disabled 539 */ 540 static void atc_handle_error(struct at_dma_chan *atchan) 541 { 542 struct at_desc *bad_desc; 543 struct at_desc *child; 544 545 /* 546 * The descriptor currently at the head of the active list is 547 * broked. Since we don't have any way to report errors, we'll 548 * just have to scream loudly and try to carry on. 549 */ 550 bad_desc = atc_first_active(atchan); 551 list_del_init(&bad_desc->desc_node); 552 553 /* As we are stopped, take advantage to push queued descriptors 554 * in active_list */ 555 list_splice_init(&atchan->queue, atchan->active_list.prev); 556 557 /* Try to restart the controller */ 558 if (!list_empty(&atchan->active_list)) 559 atc_dostart(atchan, atc_first_active(atchan)); 560 561 /* 562 * KERN_CRITICAL may seem harsh, but since this only happens 563 * when someone submits a bad physical address in a 564 * descriptor, we should consider ourselves lucky that the 565 * controller flagged an error instead of scribbling over 566 * random memory locations. 567 */ 568 dev_crit(chan2dev(&atchan->chan_common), 569 "Bad descriptor submitted for DMA!\n"); 570 dev_crit(chan2dev(&atchan->chan_common), 571 " cookie: %d\n", bad_desc->txd.cookie); 572 atc_dump_lli(atchan, &bad_desc->lli); 573 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 574 atc_dump_lli(atchan, &child->lli); 575 576 /* Pretend the descriptor completed successfully */ 577 atc_chain_complete(atchan, bad_desc); 578 } 579 580 /** 581 * atc_handle_cyclic - at the end of a period, run callback function 582 * @atchan: channel used for cyclic operations 583 * 584 * Called with atchan->lock held and bh disabled 585 */ 586 static void atc_handle_cyclic(struct at_dma_chan *atchan) 587 { 588 struct at_desc *first = atc_first_active(atchan); 589 struct dma_async_tx_descriptor *txd = &first->txd; 590 591 dev_vdbg(chan2dev(&atchan->chan_common), 592 "new cyclic period llp 0x%08x\n", 593 channel_readl(atchan, DSCR)); 594 595 dmaengine_desc_get_callback_invoke(txd, NULL); 596 } 597 598 /*-- IRQ & Tasklet ---------------------------------------------------*/ 599 600 static void atc_tasklet(unsigned long data) 601 { 602 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 603 unsigned long flags; 604 605 spin_lock_irqsave(&atchan->lock, flags); 606 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 607 atc_handle_error(atchan); 608 else if (atc_chan_is_cyclic(atchan)) 609 atc_handle_cyclic(atchan); 610 else 611 atc_advance_work(atchan); 612 613 spin_unlock_irqrestore(&atchan->lock, flags); 614 } 615 616 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 617 { 618 struct at_dma *atdma = (struct at_dma *)dev_id; 619 struct at_dma_chan *atchan; 620 int i; 621 u32 status, pending, imr; 622 int ret = IRQ_NONE; 623 624 do { 625 imr = dma_readl(atdma, EBCIMR); 626 status = dma_readl(atdma, EBCISR); 627 pending = status & imr; 628 629 if (!pending) 630 break; 631 632 dev_vdbg(atdma->dma_common.dev, 633 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 634 status, imr, pending); 635 636 for (i = 0; i < atdma->dma_common.chancnt; i++) { 637 atchan = &atdma->chan[i]; 638 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 639 if (pending & AT_DMA_ERR(i)) { 640 /* Disable channel on AHB error */ 641 dma_writel(atdma, CHDR, 642 AT_DMA_RES(i) | atchan->mask); 643 /* Give information to tasklet */ 644 set_bit(ATC_IS_ERROR, &atchan->status); 645 } 646 tasklet_schedule(&atchan->tasklet); 647 ret = IRQ_HANDLED; 648 } 649 } 650 651 } while (pending); 652 653 return ret; 654 } 655 656 657 /*-- DMA Engine API --------------------------------------------------*/ 658 659 /** 660 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 661 * @desc: descriptor at the head of the transaction chain 662 * 663 * Queue chain if DMA engine is working already 664 * 665 * Cookie increment and adding to active_list or queue must be atomic 666 */ 667 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 668 { 669 struct at_desc *desc = txd_to_at_desc(tx); 670 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 671 dma_cookie_t cookie; 672 unsigned long flags; 673 674 spin_lock_irqsave(&atchan->lock, flags); 675 cookie = dma_cookie_assign(tx); 676 677 if (list_empty(&atchan->active_list)) { 678 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 679 desc->txd.cookie); 680 atc_dostart(atchan, desc); 681 list_add_tail(&desc->desc_node, &atchan->active_list); 682 } else { 683 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 684 desc->txd.cookie); 685 list_add_tail(&desc->desc_node, &atchan->queue); 686 } 687 688 spin_unlock_irqrestore(&atchan->lock, flags); 689 690 return cookie; 691 } 692 693 /** 694 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 695 * @chan: the channel to prepare operation on 696 * @xt: Interleaved transfer template 697 * @flags: tx descriptor status flags 698 */ 699 static struct dma_async_tx_descriptor * 700 atc_prep_dma_interleaved(struct dma_chan *chan, 701 struct dma_interleaved_template *xt, 702 unsigned long flags) 703 { 704 struct at_dma_chan *atchan = to_at_dma_chan(chan); 705 struct data_chunk *first; 706 struct at_desc *desc = NULL; 707 size_t xfer_count; 708 unsigned int dwidth; 709 u32 ctrla; 710 u32 ctrlb; 711 size_t len = 0; 712 int i; 713 714 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 715 return NULL; 716 717 first = xt->sgl; 718 719 dev_info(chan2dev(chan), 720 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 721 __func__, &xt->src_start, &xt->dst_start, xt->numf, 722 xt->frame_size, flags); 723 724 /* 725 * The controller can only "skip" X bytes every Y bytes, so we 726 * need to make sure we are given a template that fit that 727 * description, ie a template with chunks that always have the 728 * same size, with the same ICGs. 729 */ 730 for (i = 0; i < xt->frame_size; i++) { 731 struct data_chunk *chunk = xt->sgl + i; 732 733 if ((chunk->size != xt->sgl->size) || 734 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 735 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 736 dev_err(chan2dev(chan), 737 "%s: the controller can transfer only identical chunks\n", 738 __func__); 739 return NULL; 740 } 741 742 len += chunk->size; 743 } 744 745 dwidth = atc_get_xfer_width(xt->src_start, 746 xt->dst_start, len); 747 748 xfer_count = len >> dwidth; 749 if (xfer_count > ATC_BTSIZE_MAX) { 750 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 751 return NULL; 752 } 753 754 ctrla = ATC_SRC_WIDTH(dwidth) | 755 ATC_DST_WIDTH(dwidth); 756 757 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 758 | ATC_SRC_ADDR_MODE_INCR 759 | ATC_DST_ADDR_MODE_INCR 760 | ATC_SRC_PIP 761 | ATC_DST_PIP 762 | ATC_FC_MEM2MEM; 763 764 /* create the transfer */ 765 desc = atc_desc_get(atchan); 766 if (!desc) { 767 dev_err(chan2dev(chan), 768 "%s: couldn't allocate our descriptor\n", __func__); 769 return NULL; 770 } 771 772 desc->lli.saddr = xt->src_start; 773 desc->lli.daddr = xt->dst_start; 774 desc->lli.ctrla = ctrla | xfer_count; 775 desc->lli.ctrlb = ctrlb; 776 777 desc->boundary = first->size >> dwidth; 778 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 779 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 780 781 desc->txd.cookie = -EBUSY; 782 desc->total_len = desc->len = len; 783 784 /* set end-of-link to the last link descriptor of list*/ 785 set_desc_eol(desc); 786 787 desc->txd.flags = flags; /* client is in control of this ack */ 788 789 return &desc->txd; 790 } 791 792 /** 793 * atc_prep_dma_memcpy - prepare a memcpy operation 794 * @chan: the channel to prepare operation on 795 * @dest: operation virtual destination address 796 * @src: operation virtual source address 797 * @len: operation length 798 * @flags: tx descriptor status flags 799 */ 800 static struct dma_async_tx_descriptor * 801 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 802 size_t len, unsigned long flags) 803 { 804 struct at_dma_chan *atchan = to_at_dma_chan(chan); 805 struct at_desc *desc = NULL; 806 struct at_desc *first = NULL; 807 struct at_desc *prev = NULL; 808 size_t xfer_count; 809 size_t offset; 810 unsigned int src_width; 811 unsigned int dst_width; 812 u32 ctrla; 813 u32 ctrlb; 814 815 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 816 &dest, &src, len, flags); 817 818 if (unlikely(!len)) { 819 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 820 return NULL; 821 } 822 823 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 824 | ATC_SRC_ADDR_MODE_INCR 825 | ATC_DST_ADDR_MODE_INCR 826 | ATC_FC_MEM2MEM; 827 828 /* 829 * We can be a lot more clever here, but this should take care 830 * of the most common optimization. 831 */ 832 src_width = dst_width = atc_get_xfer_width(src, dest, len); 833 834 ctrla = ATC_SRC_WIDTH(src_width) | 835 ATC_DST_WIDTH(dst_width); 836 837 for (offset = 0; offset < len; offset += xfer_count << src_width) { 838 xfer_count = min_t(size_t, (len - offset) >> src_width, 839 ATC_BTSIZE_MAX); 840 841 desc = atc_desc_get(atchan); 842 if (!desc) 843 goto err_desc_get; 844 845 desc->lli.saddr = src + offset; 846 desc->lli.daddr = dest + offset; 847 desc->lli.ctrla = ctrla | xfer_count; 848 desc->lli.ctrlb = ctrlb; 849 850 desc->txd.cookie = 0; 851 desc->len = xfer_count << src_width; 852 853 atc_desc_chain(&first, &prev, desc); 854 } 855 856 /* First descriptor of the chain embedds additional information */ 857 first->txd.cookie = -EBUSY; 858 first->total_len = len; 859 860 /* set end-of-link to the last link descriptor of list*/ 861 set_desc_eol(desc); 862 863 first->txd.flags = flags; /* client is in control of this ack */ 864 865 return &first->txd; 866 867 err_desc_get: 868 atc_desc_put(atchan, first); 869 return NULL; 870 } 871 872 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 873 dma_addr_t psrc, 874 dma_addr_t pdst, 875 size_t len) 876 { 877 struct at_dma_chan *atchan = to_at_dma_chan(chan); 878 struct at_desc *desc; 879 size_t xfer_count; 880 881 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 882 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 883 ATC_SRC_ADDR_MODE_FIXED | 884 ATC_DST_ADDR_MODE_INCR | 885 ATC_FC_MEM2MEM; 886 887 xfer_count = len >> 2; 888 if (xfer_count > ATC_BTSIZE_MAX) { 889 dev_err(chan2dev(chan), "%s: buffer is too big\n", 890 __func__); 891 return NULL; 892 } 893 894 desc = atc_desc_get(atchan); 895 if (!desc) { 896 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 897 __func__); 898 return NULL; 899 } 900 901 desc->lli.saddr = psrc; 902 desc->lli.daddr = pdst; 903 desc->lli.ctrla = ctrla | xfer_count; 904 desc->lli.ctrlb = ctrlb; 905 906 desc->txd.cookie = 0; 907 desc->len = len; 908 909 return desc; 910 } 911 912 /** 913 * atc_prep_dma_memset - prepare a memcpy operation 914 * @chan: the channel to prepare operation on 915 * @dest: operation virtual destination address 916 * @value: value to set memory buffer to 917 * @len: operation length 918 * @flags: tx descriptor status flags 919 */ 920 static struct dma_async_tx_descriptor * 921 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 922 size_t len, unsigned long flags) 923 { 924 struct at_dma *atdma = to_at_dma(chan->device); 925 struct at_desc *desc; 926 void __iomem *vaddr; 927 dma_addr_t paddr; 928 929 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 930 &dest, value, len, flags); 931 932 if (unlikely(!len)) { 933 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 934 return NULL; 935 } 936 937 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 938 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 939 __func__); 940 return NULL; 941 } 942 943 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 944 if (!vaddr) { 945 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 946 __func__); 947 return NULL; 948 } 949 *(u32*)vaddr = value; 950 951 desc = atc_create_memset_desc(chan, paddr, dest, len); 952 if (!desc) { 953 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 954 __func__); 955 goto err_free_buffer; 956 } 957 958 desc->memset_paddr = paddr; 959 desc->memset_vaddr = vaddr; 960 desc->memset_buffer = true; 961 962 desc->txd.cookie = -EBUSY; 963 desc->total_len = len; 964 965 /* set end-of-link on the descriptor */ 966 set_desc_eol(desc); 967 968 desc->txd.flags = flags; 969 970 return &desc->txd; 971 972 err_free_buffer: 973 dma_pool_free(atdma->memset_pool, vaddr, paddr); 974 return NULL; 975 } 976 977 static struct dma_async_tx_descriptor * 978 atc_prep_dma_memset_sg(struct dma_chan *chan, 979 struct scatterlist *sgl, 980 unsigned int sg_len, int value, 981 unsigned long flags) 982 { 983 struct at_dma_chan *atchan = to_at_dma_chan(chan); 984 struct at_dma *atdma = to_at_dma(chan->device); 985 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 986 struct scatterlist *sg; 987 void __iomem *vaddr; 988 dma_addr_t paddr; 989 size_t total_len = 0; 990 int i; 991 992 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 993 value, sg_len, flags); 994 995 if (unlikely(!sgl || !sg_len)) { 996 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 997 __func__); 998 return NULL; 999 } 1000 1001 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 1002 if (!vaddr) { 1003 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1004 __func__); 1005 return NULL; 1006 } 1007 *(u32*)vaddr = value; 1008 1009 for_each_sg(sgl, sg, sg_len, i) { 1010 dma_addr_t dest = sg_dma_address(sg); 1011 size_t len = sg_dma_len(sg); 1012 1013 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1014 __func__, &dest, len); 1015 1016 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1017 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1018 __func__); 1019 goto err_put_desc; 1020 } 1021 1022 desc = atc_create_memset_desc(chan, paddr, dest, len); 1023 if (!desc) 1024 goto err_put_desc; 1025 1026 atc_desc_chain(&first, &prev, desc); 1027 1028 total_len += len; 1029 } 1030 1031 /* 1032 * Only set the buffer pointers on the last descriptor to 1033 * avoid free'ing while we have our transfer still going 1034 */ 1035 desc->memset_paddr = paddr; 1036 desc->memset_vaddr = vaddr; 1037 desc->memset_buffer = true; 1038 1039 first->txd.cookie = -EBUSY; 1040 first->total_len = total_len; 1041 1042 /* set end-of-link on the descriptor */ 1043 set_desc_eol(desc); 1044 1045 first->txd.flags = flags; 1046 1047 return &first->txd; 1048 1049 err_put_desc: 1050 atc_desc_put(atchan, first); 1051 return NULL; 1052 } 1053 1054 /** 1055 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1056 * @chan: DMA channel 1057 * @sgl: scatterlist to transfer to/from 1058 * @sg_len: number of entries in @scatterlist 1059 * @direction: DMA direction 1060 * @flags: tx descriptor status flags 1061 * @context: transaction context (ignored) 1062 */ 1063 static struct dma_async_tx_descriptor * 1064 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1065 unsigned int sg_len, enum dma_transfer_direction direction, 1066 unsigned long flags, void *context) 1067 { 1068 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1069 struct at_dma_slave *atslave = chan->private; 1070 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1071 struct at_desc *first = NULL; 1072 struct at_desc *prev = NULL; 1073 u32 ctrla; 1074 u32 ctrlb; 1075 dma_addr_t reg; 1076 unsigned int reg_width; 1077 unsigned int mem_width; 1078 unsigned int i; 1079 struct scatterlist *sg; 1080 size_t total_len = 0; 1081 1082 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1083 sg_len, 1084 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1085 flags); 1086 1087 if (unlikely(!atslave || !sg_len)) { 1088 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1089 return NULL; 1090 } 1091 1092 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1093 | ATC_DCSIZE(sconfig->dst_maxburst); 1094 ctrlb = ATC_IEN; 1095 1096 switch (direction) { 1097 case DMA_MEM_TO_DEV: 1098 reg_width = convert_buswidth(sconfig->dst_addr_width); 1099 ctrla |= ATC_DST_WIDTH(reg_width); 1100 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1101 | ATC_SRC_ADDR_MODE_INCR 1102 | ATC_FC_MEM2PER 1103 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1104 reg = sconfig->dst_addr; 1105 for_each_sg(sgl, sg, sg_len, i) { 1106 struct at_desc *desc; 1107 u32 len; 1108 u32 mem; 1109 1110 desc = atc_desc_get(atchan); 1111 if (!desc) 1112 goto err_desc_get; 1113 1114 mem = sg_dma_address(sg); 1115 len = sg_dma_len(sg); 1116 if (unlikely(!len)) { 1117 dev_dbg(chan2dev(chan), 1118 "prep_slave_sg: sg(%d) data length is zero\n", i); 1119 goto err; 1120 } 1121 mem_width = 2; 1122 if (unlikely(mem & 3 || len & 3)) 1123 mem_width = 0; 1124 1125 desc->lli.saddr = mem; 1126 desc->lli.daddr = reg; 1127 desc->lli.ctrla = ctrla 1128 | ATC_SRC_WIDTH(mem_width) 1129 | len >> mem_width; 1130 desc->lli.ctrlb = ctrlb; 1131 desc->len = len; 1132 1133 atc_desc_chain(&first, &prev, desc); 1134 total_len += len; 1135 } 1136 break; 1137 case DMA_DEV_TO_MEM: 1138 reg_width = convert_buswidth(sconfig->src_addr_width); 1139 ctrla |= ATC_SRC_WIDTH(reg_width); 1140 ctrlb |= ATC_DST_ADDR_MODE_INCR 1141 | ATC_SRC_ADDR_MODE_FIXED 1142 | ATC_FC_PER2MEM 1143 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1144 1145 reg = sconfig->src_addr; 1146 for_each_sg(sgl, sg, sg_len, i) { 1147 struct at_desc *desc; 1148 u32 len; 1149 u32 mem; 1150 1151 desc = atc_desc_get(atchan); 1152 if (!desc) 1153 goto err_desc_get; 1154 1155 mem = sg_dma_address(sg); 1156 len = sg_dma_len(sg); 1157 if (unlikely(!len)) { 1158 dev_dbg(chan2dev(chan), 1159 "prep_slave_sg: sg(%d) data length is zero\n", i); 1160 goto err; 1161 } 1162 mem_width = 2; 1163 if (unlikely(mem & 3 || len & 3)) 1164 mem_width = 0; 1165 1166 desc->lli.saddr = reg; 1167 desc->lli.daddr = mem; 1168 desc->lli.ctrla = ctrla 1169 | ATC_DST_WIDTH(mem_width) 1170 | len >> reg_width; 1171 desc->lli.ctrlb = ctrlb; 1172 desc->len = len; 1173 1174 atc_desc_chain(&first, &prev, desc); 1175 total_len += len; 1176 } 1177 break; 1178 default: 1179 return NULL; 1180 } 1181 1182 /* set end-of-link to the last link descriptor of list*/ 1183 set_desc_eol(prev); 1184 1185 /* First descriptor of the chain embedds additional information */ 1186 first->txd.cookie = -EBUSY; 1187 first->total_len = total_len; 1188 1189 /* first link descriptor of list is responsible of flags */ 1190 first->txd.flags = flags; /* client is in control of this ack */ 1191 1192 return &first->txd; 1193 1194 err_desc_get: 1195 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1196 err: 1197 atc_desc_put(atchan, first); 1198 return NULL; 1199 } 1200 1201 /** 1202 * atc_dma_cyclic_check_values 1203 * Check for too big/unaligned periods and unaligned DMA buffer 1204 */ 1205 static int 1206 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1207 size_t period_len) 1208 { 1209 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1210 goto err_out; 1211 if (unlikely(period_len & ((1 << reg_width) - 1))) 1212 goto err_out; 1213 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1214 goto err_out; 1215 1216 return 0; 1217 1218 err_out: 1219 return -EINVAL; 1220 } 1221 1222 /** 1223 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1224 */ 1225 static int 1226 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1227 unsigned int period_index, dma_addr_t buf_addr, 1228 unsigned int reg_width, size_t period_len, 1229 enum dma_transfer_direction direction) 1230 { 1231 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1232 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1233 u32 ctrla; 1234 1235 /* prepare common CRTLA value */ 1236 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1237 | ATC_DCSIZE(sconfig->dst_maxburst) 1238 | ATC_DST_WIDTH(reg_width) 1239 | ATC_SRC_WIDTH(reg_width) 1240 | period_len >> reg_width; 1241 1242 switch (direction) { 1243 case DMA_MEM_TO_DEV: 1244 desc->lli.saddr = buf_addr + (period_len * period_index); 1245 desc->lli.daddr = sconfig->dst_addr; 1246 desc->lli.ctrla = ctrla; 1247 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1248 | ATC_SRC_ADDR_MODE_INCR 1249 | ATC_FC_MEM2PER 1250 | ATC_SIF(atchan->mem_if) 1251 | ATC_DIF(atchan->per_if); 1252 desc->len = period_len; 1253 break; 1254 1255 case DMA_DEV_TO_MEM: 1256 desc->lli.saddr = sconfig->src_addr; 1257 desc->lli.daddr = buf_addr + (period_len * period_index); 1258 desc->lli.ctrla = ctrla; 1259 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1260 | ATC_SRC_ADDR_MODE_FIXED 1261 | ATC_FC_PER2MEM 1262 | ATC_SIF(atchan->per_if) 1263 | ATC_DIF(atchan->mem_if); 1264 desc->len = period_len; 1265 break; 1266 1267 default: 1268 return -EINVAL; 1269 } 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1276 * @chan: the DMA channel to prepare 1277 * @buf_addr: physical DMA address where the buffer starts 1278 * @buf_len: total number of bytes for the entire buffer 1279 * @period_len: number of bytes for each period 1280 * @direction: transfer direction, to or from device 1281 * @flags: tx descriptor status flags 1282 */ 1283 static struct dma_async_tx_descriptor * 1284 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1285 size_t period_len, enum dma_transfer_direction direction, 1286 unsigned long flags) 1287 { 1288 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1289 struct at_dma_slave *atslave = chan->private; 1290 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1291 struct at_desc *first = NULL; 1292 struct at_desc *prev = NULL; 1293 unsigned long was_cyclic; 1294 unsigned int reg_width; 1295 unsigned int periods = buf_len / period_len; 1296 unsigned int i; 1297 1298 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1299 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1300 &buf_addr, 1301 periods, buf_len, period_len); 1302 1303 if (unlikely(!atslave || !buf_len || !period_len)) { 1304 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1305 return NULL; 1306 } 1307 1308 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1309 if (was_cyclic) { 1310 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1311 return NULL; 1312 } 1313 1314 if (unlikely(!is_slave_direction(direction))) 1315 goto err_out; 1316 1317 if (direction == DMA_MEM_TO_DEV) 1318 reg_width = convert_buswidth(sconfig->dst_addr_width); 1319 else 1320 reg_width = convert_buswidth(sconfig->src_addr_width); 1321 1322 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1323 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1324 goto err_out; 1325 1326 /* build cyclic linked list */ 1327 for (i = 0; i < periods; i++) { 1328 struct at_desc *desc; 1329 1330 desc = atc_desc_get(atchan); 1331 if (!desc) 1332 goto err_desc_get; 1333 1334 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1335 reg_width, period_len, direction)) 1336 goto err_desc_get; 1337 1338 atc_desc_chain(&first, &prev, desc); 1339 } 1340 1341 /* lets make a cyclic list */ 1342 prev->lli.dscr = first->txd.phys; 1343 1344 /* First descriptor of the chain embedds additional information */ 1345 first->txd.cookie = -EBUSY; 1346 first->total_len = buf_len; 1347 1348 return &first->txd; 1349 1350 err_desc_get: 1351 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1352 atc_desc_put(atchan, first); 1353 err_out: 1354 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1355 return NULL; 1356 } 1357 1358 static int atc_config(struct dma_chan *chan, 1359 struct dma_slave_config *sconfig) 1360 { 1361 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1362 1363 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1364 1365 /* Check if it is chan is configured for slave transfers */ 1366 if (!chan->private) 1367 return -EINVAL; 1368 1369 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1370 1371 convert_burst(&atchan->dma_sconfig.src_maxburst); 1372 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1373 1374 return 0; 1375 } 1376 1377 static int atc_pause(struct dma_chan *chan) 1378 { 1379 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1380 struct at_dma *atdma = to_at_dma(chan->device); 1381 int chan_id = atchan->chan_common.chan_id; 1382 unsigned long flags; 1383 1384 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1385 1386 spin_lock_irqsave(&atchan->lock, flags); 1387 1388 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1389 set_bit(ATC_IS_PAUSED, &atchan->status); 1390 1391 spin_unlock_irqrestore(&atchan->lock, flags); 1392 1393 return 0; 1394 } 1395 1396 static int atc_resume(struct dma_chan *chan) 1397 { 1398 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1399 struct at_dma *atdma = to_at_dma(chan->device); 1400 int chan_id = atchan->chan_common.chan_id; 1401 unsigned long flags; 1402 1403 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1404 1405 if (!atc_chan_is_paused(atchan)) 1406 return 0; 1407 1408 spin_lock_irqsave(&atchan->lock, flags); 1409 1410 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1411 clear_bit(ATC_IS_PAUSED, &atchan->status); 1412 1413 spin_unlock_irqrestore(&atchan->lock, flags); 1414 1415 return 0; 1416 } 1417 1418 static int atc_terminate_all(struct dma_chan *chan) 1419 { 1420 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1421 struct at_dma *atdma = to_at_dma(chan->device); 1422 int chan_id = atchan->chan_common.chan_id; 1423 struct at_desc *desc, *_desc; 1424 unsigned long flags; 1425 1426 LIST_HEAD(list); 1427 1428 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1429 1430 /* 1431 * This is only called when something went wrong elsewhere, so 1432 * we don't really care about the data. Just disable the 1433 * channel. We still have to poll the channel enable bit due 1434 * to AHB/HSB limitations. 1435 */ 1436 spin_lock_irqsave(&atchan->lock, flags); 1437 1438 /* disabling channel: must also remove suspend state */ 1439 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1440 1441 /* confirm that this channel is disabled */ 1442 while (dma_readl(atdma, CHSR) & atchan->mask) 1443 cpu_relax(); 1444 1445 /* active_list entries will end up before queued entries */ 1446 list_splice_init(&atchan->queue, &list); 1447 list_splice_init(&atchan->active_list, &list); 1448 1449 /* Flush all pending and queued descriptors */ 1450 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1451 atc_chain_complete(atchan, desc); 1452 1453 clear_bit(ATC_IS_PAUSED, &atchan->status); 1454 /* if channel dedicated to cyclic operations, free it */ 1455 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1456 1457 spin_unlock_irqrestore(&atchan->lock, flags); 1458 1459 return 0; 1460 } 1461 1462 /** 1463 * atc_tx_status - poll for transaction completion 1464 * @chan: DMA channel 1465 * @cookie: transaction identifier to check status of 1466 * @txstate: if not %NULL updated with transaction state 1467 * 1468 * If @txstate is passed in, upon return it reflect the driver 1469 * internal state and can be used with dma_async_is_complete() to check 1470 * the status of multiple cookies without re-checking hardware state. 1471 */ 1472 static enum dma_status 1473 atc_tx_status(struct dma_chan *chan, 1474 dma_cookie_t cookie, 1475 struct dma_tx_state *txstate) 1476 { 1477 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1478 unsigned long flags; 1479 enum dma_status ret; 1480 int bytes = 0; 1481 1482 ret = dma_cookie_status(chan, cookie, txstate); 1483 if (ret == DMA_COMPLETE) 1484 return ret; 1485 /* 1486 * There's no point calculating the residue if there's 1487 * no txstate to store the value. 1488 */ 1489 if (!txstate) 1490 return DMA_ERROR; 1491 1492 spin_lock_irqsave(&atchan->lock, flags); 1493 1494 /* Get number of bytes left in the active transactions */ 1495 bytes = atc_get_bytes_left(chan, cookie); 1496 1497 spin_unlock_irqrestore(&atchan->lock, flags); 1498 1499 if (unlikely(bytes < 0)) { 1500 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1501 return DMA_ERROR; 1502 } else { 1503 dma_set_residue(txstate, bytes); 1504 } 1505 1506 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1507 ret, cookie, bytes); 1508 1509 return ret; 1510 } 1511 1512 /** 1513 * atc_issue_pending - try to finish work 1514 * @chan: target DMA channel 1515 */ 1516 static void atc_issue_pending(struct dma_chan *chan) 1517 { 1518 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1519 unsigned long flags; 1520 1521 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1522 1523 /* Not needed for cyclic transfers */ 1524 if (atc_chan_is_cyclic(atchan)) 1525 return; 1526 1527 spin_lock_irqsave(&atchan->lock, flags); 1528 atc_advance_work(atchan); 1529 spin_unlock_irqrestore(&atchan->lock, flags); 1530 } 1531 1532 /** 1533 * atc_alloc_chan_resources - allocate resources for DMA channel 1534 * @chan: allocate descriptor resources for this channel 1535 * @client: current client requesting the channel be ready for requests 1536 * 1537 * return - the number of allocated descriptors 1538 */ 1539 static int atc_alloc_chan_resources(struct dma_chan *chan) 1540 { 1541 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1542 struct at_dma *atdma = to_at_dma(chan->device); 1543 struct at_desc *desc; 1544 struct at_dma_slave *atslave; 1545 unsigned long flags; 1546 int i; 1547 u32 cfg; 1548 LIST_HEAD(tmp_list); 1549 1550 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1551 1552 /* ASSERT: channel is idle */ 1553 if (atc_chan_is_enabled(atchan)) { 1554 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1555 return -EIO; 1556 } 1557 1558 cfg = ATC_DEFAULT_CFG; 1559 1560 atslave = chan->private; 1561 if (atslave) { 1562 /* 1563 * We need controller-specific data to set up slave 1564 * transfers. 1565 */ 1566 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1567 1568 /* if cfg configuration specified take it instead of default */ 1569 if (atslave->cfg) 1570 cfg = atslave->cfg; 1571 } 1572 1573 /* have we already been set up? 1574 * reconfigure channel but no need to reallocate descriptors */ 1575 if (!list_empty(&atchan->free_list)) 1576 return atchan->descs_allocated; 1577 1578 /* Allocate initial pool of descriptors */ 1579 for (i = 0; i < init_nr_desc_per_channel; i++) { 1580 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1581 if (!desc) { 1582 dev_err(atdma->dma_common.dev, 1583 "Only %d initial descriptors\n", i); 1584 break; 1585 } 1586 list_add_tail(&desc->desc_node, &tmp_list); 1587 } 1588 1589 spin_lock_irqsave(&atchan->lock, flags); 1590 atchan->descs_allocated = i; 1591 list_splice(&tmp_list, &atchan->free_list); 1592 dma_cookie_init(chan); 1593 spin_unlock_irqrestore(&atchan->lock, flags); 1594 1595 /* channel parameters */ 1596 channel_writel(atchan, CFG, cfg); 1597 1598 dev_dbg(chan2dev(chan), 1599 "alloc_chan_resources: allocated %d descriptors\n", 1600 atchan->descs_allocated); 1601 1602 return atchan->descs_allocated; 1603 } 1604 1605 /** 1606 * atc_free_chan_resources - free all channel resources 1607 * @chan: DMA channel 1608 */ 1609 static void atc_free_chan_resources(struct dma_chan *chan) 1610 { 1611 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1612 struct at_dma *atdma = to_at_dma(chan->device); 1613 struct at_desc *desc, *_desc; 1614 LIST_HEAD(list); 1615 1616 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1617 atchan->descs_allocated); 1618 1619 /* ASSERT: channel is idle */ 1620 BUG_ON(!list_empty(&atchan->active_list)); 1621 BUG_ON(!list_empty(&atchan->queue)); 1622 BUG_ON(atc_chan_is_enabled(atchan)); 1623 1624 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1625 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1626 list_del(&desc->desc_node); 1627 /* free link descriptor */ 1628 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1629 } 1630 list_splice_init(&atchan->free_list, &list); 1631 atchan->descs_allocated = 0; 1632 atchan->status = 0; 1633 1634 /* 1635 * Free atslave allocated in at_dma_xlate() 1636 */ 1637 kfree(chan->private); 1638 chan->private = NULL; 1639 1640 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1641 } 1642 1643 #ifdef CONFIG_OF 1644 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1645 { 1646 struct at_dma_slave *atslave = slave; 1647 1648 if (atslave->dma_dev == chan->device->dev) { 1649 chan->private = atslave; 1650 return true; 1651 } else { 1652 return false; 1653 } 1654 } 1655 1656 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1657 struct of_dma *of_dma) 1658 { 1659 struct dma_chan *chan; 1660 struct at_dma_chan *atchan; 1661 struct at_dma_slave *atslave; 1662 dma_cap_mask_t mask; 1663 unsigned int per_id; 1664 struct platform_device *dmac_pdev; 1665 1666 if (dma_spec->args_count != 2) 1667 return NULL; 1668 1669 dmac_pdev = of_find_device_by_node(dma_spec->np); 1670 1671 dma_cap_zero(mask); 1672 dma_cap_set(DMA_SLAVE, mask); 1673 1674 atslave = kzalloc(sizeof(*atslave), GFP_KERNEL); 1675 if (!atslave) 1676 return NULL; 1677 1678 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1679 /* 1680 * We can fill both SRC_PER and DST_PER, one of these fields will be 1681 * ignored depending on DMA transfer direction. 1682 */ 1683 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1684 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1685 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1686 /* 1687 * We have to translate the value we get from the device tree since 1688 * the half FIFO configuration value had to be 0 to keep backward 1689 * compatibility. 1690 */ 1691 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1692 case AT91_DMA_CFG_FIFOCFG_ALAP: 1693 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1694 break; 1695 case AT91_DMA_CFG_FIFOCFG_ASAP: 1696 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1697 break; 1698 case AT91_DMA_CFG_FIFOCFG_HALF: 1699 default: 1700 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1701 } 1702 atslave->dma_dev = &dmac_pdev->dev; 1703 1704 chan = dma_request_channel(mask, at_dma_filter, atslave); 1705 if (!chan) 1706 return NULL; 1707 1708 atchan = to_at_dma_chan(chan); 1709 atchan->per_if = dma_spec->args[0] & 0xff; 1710 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1711 1712 return chan; 1713 } 1714 #else 1715 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1716 struct of_dma *of_dma) 1717 { 1718 return NULL; 1719 } 1720 #endif 1721 1722 /*-- Module Management -----------------------------------------------*/ 1723 1724 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1725 static struct at_dma_platform_data at91sam9rl_config = { 1726 .nr_channels = 2, 1727 }; 1728 static struct at_dma_platform_data at91sam9g45_config = { 1729 .nr_channels = 8, 1730 }; 1731 1732 #if defined(CONFIG_OF) 1733 static const struct of_device_id atmel_dma_dt_ids[] = { 1734 { 1735 .compatible = "atmel,at91sam9rl-dma", 1736 .data = &at91sam9rl_config, 1737 }, { 1738 .compatible = "atmel,at91sam9g45-dma", 1739 .data = &at91sam9g45_config, 1740 }, { 1741 /* sentinel */ 1742 } 1743 }; 1744 1745 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1746 #endif 1747 1748 static const struct platform_device_id atdma_devtypes[] = { 1749 { 1750 .name = "at91sam9rl_dma", 1751 .driver_data = (unsigned long) &at91sam9rl_config, 1752 }, { 1753 .name = "at91sam9g45_dma", 1754 .driver_data = (unsigned long) &at91sam9g45_config, 1755 }, { 1756 /* sentinel */ 1757 } 1758 }; 1759 1760 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1761 struct platform_device *pdev) 1762 { 1763 if (pdev->dev.of_node) { 1764 const struct of_device_id *match; 1765 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1766 if (match == NULL) 1767 return NULL; 1768 return match->data; 1769 } 1770 return (struct at_dma_platform_data *) 1771 platform_get_device_id(pdev)->driver_data; 1772 } 1773 1774 /** 1775 * at_dma_off - disable DMA controller 1776 * @atdma: the Atmel HDAMC device 1777 */ 1778 static void at_dma_off(struct at_dma *atdma) 1779 { 1780 dma_writel(atdma, EN, 0); 1781 1782 /* disable all interrupts */ 1783 dma_writel(atdma, EBCIDR, -1L); 1784 1785 /* confirm that all channels are disabled */ 1786 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1787 cpu_relax(); 1788 } 1789 1790 static int __init at_dma_probe(struct platform_device *pdev) 1791 { 1792 struct resource *io; 1793 struct at_dma *atdma; 1794 size_t size; 1795 int irq; 1796 int err; 1797 int i; 1798 const struct at_dma_platform_data *plat_dat; 1799 1800 /* setup platform data for each SoC */ 1801 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1802 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1803 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1804 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1805 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1806 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1807 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1808 1809 /* get DMA parameters from controller type */ 1810 plat_dat = at_dma_get_driver_data(pdev); 1811 if (!plat_dat) 1812 return -ENODEV; 1813 1814 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1815 if (!io) 1816 return -EINVAL; 1817 1818 irq = platform_get_irq(pdev, 0); 1819 if (irq < 0) 1820 return irq; 1821 1822 size = sizeof(struct at_dma); 1823 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1824 atdma = kzalloc(size, GFP_KERNEL); 1825 if (!atdma) 1826 return -ENOMEM; 1827 1828 /* discover transaction capabilities */ 1829 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1830 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1831 1832 size = resource_size(io); 1833 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1834 err = -EBUSY; 1835 goto err_kfree; 1836 } 1837 1838 atdma->regs = ioremap(io->start, size); 1839 if (!atdma->regs) { 1840 err = -ENOMEM; 1841 goto err_release_r; 1842 } 1843 1844 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1845 if (IS_ERR(atdma->clk)) { 1846 err = PTR_ERR(atdma->clk); 1847 goto err_clk; 1848 } 1849 err = clk_prepare_enable(atdma->clk); 1850 if (err) 1851 goto err_clk_prepare; 1852 1853 /* force dma off, just in case */ 1854 at_dma_off(atdma); 1855 1856 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1857 if (err) 1858 goto err_irq; 1859 1860 platform_set_drvdata(pdev, atdma); 1861 1862 /* create a pool of consistent memory blocks for hardware descriptors */ 1863 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1864 &pdev->dev, sizeof(struct at_desc), 1865 4 /* word alignment */, 0); 1866 if (!atdma->dma_desc_pool) { 1867 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1868 err = -ENOMEM; 1869 goto err_desc_pool_create; 1870 } 1871 1872 /* create a pool of consistent memory blocks for memset blocks */ 1873 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1874 &pdev->dev, sizeof(int), 4, 0); 1875 if (!atdma->memset_pool) { 1876 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1877 err = -ENOMEM; 1878 goto err_memset_pool_create; 1879 } 1880 1881 /* clear any pending interrupt */ 1882 while (dma_readl(atdma, EBCISR)) 1883 cpu_relax(); 1884 1885 /* initialize channels related values */ 1886 INIT_LIST_HEAD(&atdma->dma_common.channels); 1887 for (i = 0; i < plat_dat->nr_channels; i++) { 1888 struct at_dma_chan *atchan = &atdma->chan[i]; 1889 1890 atchan->mem_if = AT_DMA_MEM_IF; 1891 atchan->per_if = AT_DMA_PER_IF; 1892 atchan->chan_common.device = &atdma->dma_common; 1893 dma_cookie_init(&atchan->chan_common); 1894 list_add_tail(&atchan->chan_common.device_node, 1895 &atdma->dma_common.channels); 1896 1897 atchan->ch_regs = atdma->regs + ch_regs(i); 1898 spin_lock_init(&atchan->lock); 1899 atchan->mask = 1 << i; 1900 1901 INIT_LIST_HEAD(&atchan->active_list); 1902 INIT_LIST_HEAD(&atchan->queue); 1903 INIT_LIST_HEAD(&atchan->free_list); 1904 1905 tasklet_init(&atchan->tasklet, atc_tasklet, 1906 (unsigned long)atchan); 1907 atc_enable_chan_irq(atdma, i); 1908 } 1909 1910 /* set base routines */ 1911 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1912 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1913 atdma->dma_common.device_tx_status = atc_tx_status; 1914 atdma->dma_common.device_issue_pending = atc_issue_pending; 1915 atdma->dma_common.dev = &pdev->dev; 1916 1917 /* set prep routines based on capability */ 1918 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1919 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1920 1921 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1922 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1923 1924 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 1925 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 1926 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 1927 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 1928 } 1929 1930 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1931 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1932 /* controller can do slave DMA: can trigger cyclic transfers */ 1933 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1934 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1935 atdma->dma_common.device_config = atc_config; 1936 atdma->dma_common.device_pause = atc_pause; 1937 atdma->dma_common.device_resume = atc_resume; 1938 atdma->dma_common.device_terminate_all = atc_terminate_all; 1939 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1940 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1941 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1942 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1943 } 1944 1945 dma_writel(atdma, EN, AT_DMA_ENABLE); 1946 1947 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1948 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1949 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 1950 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1951 plat_dat->nr_channels); 1952 1953 dma_async_device_register(&atdma->dma_common); 1954 1955 /* 1956 * Do not return an error if the dmac node is not present in order to 1957 * not break the existing way of requesting channel with 1958 * dma_request_channel(). 1959 */ 1960 if (pdev->dev.of_node) { 1961 err = of_dma_controller_register(pdev->dev.of_node, 1962 at_dma_xlate, atdma); 1963 if (err) { 1964 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1965 goto err_of_dma_controller_register; 1966 } 1967 } 1968 1969 return 0; 1970 1971 err_of_dma_controller_register: 1972 dma_async_device_unregister(&atdma->dma_common); 1973 dma_pool_destroy(atdma->memset_pool); 1974 err_memset_pool_create: 1975 dma_pool_destroy(atdma->dma_desc_pool); 1976 err_desc_pool_create: 1977 free_irq(platform_get_irq(pdev, 0), atdma); 1978 err_irq: 1979 clk_disable_unprepare(atdma->clk); 1980 err_clk_prepare: 1981 clk_put(atdma->clk); 1982 err_clk: 1983 iounmap(atdma->regs); 1984 atdma->regs = NULL; 1985 err_release_r: 1986 release_mem_region(io->start, size); 1987 err_kfree: 1988 kfree(atdma); 1989 return err; 1990 } 1991 1992 static int at_dma_remove(struct platform_device *pdev) 1993 { 1994 struct at_dma *atdma = platform_get_drvdata(pdev); 1995 struct dma_chan *chan, *_chan; 1996 struct resource *io; 1997 1998 at_dma_off(atdma); 1999 if (pdev->dev.of_node) 2000 of_dma_controller_free(pdev->dev.of_node); 2001 dma_async_device_unregister(&atdma->dma_common); 2002 2003 dma_pool_destroy(atdma->memset_pool); 2004 dma_pool_destroy(atdma->dma_desc_pool); 2005 free_irq(platform_get_irq(pdev, 0), atdma); 2006 2007 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2008 device_node) { 2009 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2010 2011 /* Disable interrupts */ 2012 atc_disable_chan_irq(atdma, chan->chan_id); 2013 2014 tasklet_kill(&atchan->tasklet); 2015 list_del(&chan->device_node); 2016 } 2017 2018 clk_disable_unprepare(atdma->clk); 2019 clk_put(atdma->clk); 2020 2021 iounmap(atdma->regs); 2022 atdma->regs = NULL; 2023 2024 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2025 release_mem_region(io->start, resource_size(io)); 2026 2027 kfree(atdma); 2028 2029 return 0; 2030 } 2031 2032 static void at_dma_shutdown(struct platform_device *pdev) 2033 { 2034 struct at_dma *atdma = platform_get_drvdata(pdev); 2035 2036 at_dma_off(platform_get_drvdata(pdev)); 2037 clk_disable_unprepare(atdma->clk); 2038 } 2039 2040 static int at_dma_prepare(struct device *dev) 2041 { 2042 struct at_dma *atdma = dev_get_drvdata(dev); 2043 struct dma_chan *chan, *_chan; 2044 2045 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2046 device_node) { 2047 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2048 /* wait for transaction completion (except in cyclic case) */ 2049 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2050 return -EAGAIN; 2051 } 2052 return 0; 2053 } 2054 2055 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2056 { 2057 struct dma_chan *chan = &atchan->chan_common; 2058 2059 /* Channel should be paused by user 2060 * do it anyway even if it is not done already */ 2061 if (!atc_chan_is_paused(atchan)) { 2062 dev_warn(chan2dev(chan), 2063 "cyclic channel not paused, should be done by channel user\n"); 2064 atc_pause(chan); 2065 } 2066 2067 /* now preserve additional data for cyclic operations */ 2068 /* next descriptor address in the cyclic list */ 2069 atchan->save_dscr = channel_readl(atchan, DSCR); 2070 2071 vdbg_dump_regs(atchan); 2072 } 2073 2074 static int at_dma_suspend_noirq(struct device *dev) 2075 { 2076 struct at_dma *atdma = dev_get_drvdata(dev); 2077 struct dma_chan *chan, *_chan; 2078 2079 /* preserve data */ 2080 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2081 device_node) { 2082 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2083 2084 if (atc_chan_is_cyclic(atchan)) 2085 atc_suspend_cyclic(atchan); 2086 atchan->save_cfg = channel_readl(atchan, CFG); 2087 } 2088 atdma->save_imr = dma_readl(atdma, EBCIMR); 2089 2090 /* disable DMA controller */ 2091 at_dma_off(atdma); 2092 clk_disable_unprepare(atdma->clk); 2093 return 0; 2094 } 2095 2096 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2097 { 2098 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2099 2100 /* restore channel status for cyclic descriptors list: 2101 * next descriptor in the cyclic list at the time of suspend */ 2102 channel_writel(atchan, SADDR, 0); 2103 channel_writel(atchan, DADDR, 0); 2104 channel_writel(atchan, CTRLA, 0); 2105 channel_writel(atchan, CTRLB, 0); 2106 channel_writel(atchan, DSCR, atchan->save_dscr); 2107 dma_writel(atdma, CHER, atchan->mask); 2108 2109 /* channel pause status should be removed by channel user 2110 * We cannot take the initiative to do it here */ 2111 2112 vdbg_dump_regs(atchan); 2113 } 2114 2115 static int at_dma_resume_noirq(struct device *dev) 2116 { 2117 struct at_dma *atdma = dev_get_drvdata(dev); 2118 struct dma_chan *chan, *_chan; 2119 2120 /* bring back DMA controller */ 2121 clk_prepare_enable(atdma->clk); 2122 dma_writel(atdma, EN, AT_DMA_ENABLE); 2123 2124 /* clear any pending interrupt */ 2125 while (dma_readl(atdma, EBCISR)) 2126 cpu_relax(); 2127 2128 /* restore saved data */ 2129 dma_writel(atdma, EBCIER, atdma->save_imr); 2130 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2131 device_node) { 2132 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2133 2134 channel_writel(atchan, CFG, atchan->save_cfg); 2135 if (atc_chan_is_cyclic(atchan)) 2136 atc_resume_cyclic(atchan); 2137 } 2138 return 0; 2139 } 2140 2141 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2142 .prepare = at_dma_prepare, 2143 .suspend_noirq = at_dma_suspend_noirq, 2144 .resume_noirq = at_dma_resume_noirq, 2145 }; 2146 2147 static struct platform_driver at_dma_driver = { 2148 .remove = at_dma_remove, 2149 .shutdown = at_dma_shutdown, 2150 .id_table = atdma_devtypes, 2151 .driver = { 2152 .name = "at_hdmac", 2153 .pm = &at_dma_dev_pm_ops, 2154 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2155 }, 2156 }; 2157 2158 static int __init at_dma_init(void) 2159 { 2160 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2161 } 2162 subsys_initcall(at_dma_init); 2163 2164 static void __exit at_dma_exit(void) 2165 { 2166 platform_driver_unregister(&at_dma_driver); 2167 } 2168 module_exit(at_dma_exit); 2169 2170 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2171 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2172 MODULE_LICENSE("GPL"); 2173 MODULE_ALIAS("platform:at_hdmac"); 2174