1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 #define ATC_MAX_DSCR_TRIALS 10 52 53 /* 54 * Initial number of descriptors to allocate for each channel. This could 55 * be increased during dma usage. 56 */ 57 static unsigned int init_nr_desc_per_channel = 64; 58 module_param(init_nr_desc_per_channel, uint, 0644); 59 MODULE_PARM_DESC(init_nr_desc_per_channel, 60 "initial descriptors per channel (default: 64)"); 61 62 63 /* prototypes */ 64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 65 static void atc_issue_pending(struct dma_chan *chan); 66 67 68 /*----------------------------------------------------------------------*/ 69 70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 71 size_t len) 72 { 73 unsigned int width; 74 75 if (!((src | dst | len) & 3)) 76 width = 2; 77 else if (!((src | dst | len) & 1)) 78 width = 1; 79 else 80 width = 0; 81 82 return width; 83 } 84 85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 86 { 87 return list_first_entry(&atchan->active_list, 88 struct at_desc, desc_node); 89 } 90 91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 92 { 93 return list_first_entry(&atchan->queue, 94 struct at_desc, desc_node); 95 } 96 97 /** 98 * atc_alloc_descriptor - allocate and return an initialized descriptor 99 * @chan: the channel to allocate descriptors for 100 * @gfp_flags: GFP allocation flags 101 * 102 * Note: The ack-bit is positioned in the descriptor flag at creation time 103 * to make initial allocation more convenient. This bit will be cleared 104 * and control will be given to client at usage time (during 105 * preparation functions). 106 */ 107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 108 gfp_t gfp_flags) 109 { 110 struct at_desc *desc = NULL; 111 struct at_dma *atdma = to_at_dma(chan->device); 112 dma_addr_t phys; 113 114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys); 115 if (desc) { 116 memset(desc, 0, sizeof(struct at_desc)); 117 INIT_LIST_HEAD(&desc->tx_list); 118 dma_async_tx_descriptor_init(&desc->txd, chan); 119 /* txd.flags will be overwritten in prep functions */ 120 desc->txd.flags = DMA_CTRL_ACK; 121 desc->txd.tx_submit = atc_tx_submit; 122 desc->txd.phys = phys; 123 } 124 125 return desc; 126 } 127 128 /** 129 * atc_desc_get - get an unused descriptor from free_list 130 * @atchan: channel we want a new descriptor for 131 */ 132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 133 { 134 struct at_desc *desc, *_desc; 135 struct at_desc *ret = NULL; 136 unsigned long flags; 137 unsigned int i = 0; 138 LIST_HEAD(tmp_list); 139 140 spin_lock_irqsave(&atchan->lock, flags); 141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 142 i++; 143 if (async_tx_test_ack(&desc->txd)) { 144 list_del(&desc->desc_node); 145 ret = desc; 146 break; 147 } 148 dev_dbg(chan2dev(&atchan->chan_common), 149 "desc %p not ACKed\n", desc); 150 } 151 spin_unlock_irqrestore(&atchan->lock, flags); 152 dev_vdbg(chan2dev(&atchan->chan_common), 153 "scanned %u descriptors on freelist\n", i); 154 155 /* no more descriptor available in initial pool: create one more */ 156 if (!ret) { 157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 158 if (ret) { 159 spin_lock_irqsave(&atchan->lock, flags); 160 atchan->descs_allocated++; 161 spin_unlock_irqrestore(&atchan->lock, flags); 162 } else { 163 dev_err(chan2dev(&atchan->chan_common), 164 "not enough descriptors available\n"); 165 } 166 } 167 168 return ret; 169 } 170 171 /** 172 * atc_desc_put - move a descriptor, including any children, to the free list 173 * @atchan: channel we work on 174 * @desc: descriptor, at the head of a chain, to move to free list 175 */ 176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 177 { 178 if (desc) { 179 struct at_desc *child; 180 unsigned long flags; 181 182 spin_lock_irqsave(&atchan->lock, flags); 183 list_for_each_entry(child, &desc->tx_list, desc_node) 184 dev_vdbg(chan2dev(&atchan->chan_common), 185 "moving child desc %p to freelist\n", 186 child); 187 list_splice_init(&desc->tx_list, &atchan->free_list); 188 dev_vdbg(chan2dev(&atchan->chan_common), 189 "moving desc %p to freelist\n", desc); 190 list_add(&desc->desc_node, &atchan->free_list); 191 spin_unlock_irqrestore(&atchan->lock, flags); 192 } 193 } 194 195 /** 196 * atc_desc_chain - build chain adding a descriptor 197 * @first: address of first descriptor of the chain 198 * @prev: address of previous descriptor of the chain 199 * @desc: descriptor to queue 200 * 201 * Called from prep_* functions 202 */ 203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 204 struct at_desc *desc) 205 { 206 if (!(*first)) { 207 *first = desc; 208 } else { 209 /* inform the HW lli about chaining */ 210 (*prev)->lli.dscr = desc->txd.phys; 211 /* insert the link descriptor to the LD ring */ 212 list_add_tail(&desc->desc_node, 213 &(*first)->tx_list); 214 } 215 *prev = desc; 216 } 217 218 /** 219 * atc_dostart - starts the DMA engine for real 220 * @atchan: the channel we want to start 221 * @first: first descriptor in the list we want to begin with 222 * 223 * Called with atchan->lock held and bh disabled 224 */ 225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 226 { 227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 228 229 /* ASSERT: channel is idle */ 230 if (atc_chan_is_enabled(atchan)) { 231 dev_err(chan2dev(&atchan->chan_common), 232 "BUG: Attempted to start non-idle channel\n"); 233 dev_err(chan2dev(&atchan->chan_common), 234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 235 channel_readl(atchan, SADDR), 236 channel_readl(atchan, DADDR), 237 channel_readl(atchan, CTRLA), 238 channel_readl(atchan, CTRLB), 239 channel_readl(atchan, DSCR)); 240 241 /* The tasklet will hopefully advance the queue... */ 242 return; 243 } 244 245 vdbg_dump_regs(atchan); 246 247 channel_writel(atchan, SADDR, 0); 248 channel_writel(atchan, DADDR, 0); 249 channel_writel(atchan, CTRLA, 0); 250 channel_writel(atchan, CTRLB, 0); 251 channel_writel(atchan, DSCR, first->txd.phys); 252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 253 ATC_SPIP_BOUNDARY(first->boundary)); 254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 255 ATC_DPIP_BOUNDARY(first->boundary)); 256 dma_writel(atdma, CHER, atchan->mask); 257 258 vdbg_dump_regs(atchan); 259 } 260 261 /* 262 * atc_get_desc_by_cookie - get the descriptor of a cookie 263 * @atchan: the DMA channel 264 * @cookie: the cookie to get the descriptor for 265 */ 266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 267 dma_cookie_t cookie) 268 { 269 struct at_desc *desc, *_desc; 270 271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 272 if (desc->txd.cookie == cookie) 273 return desc; 274 } 275 276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 277 if (desc->txd.cookie == cookie) 278 return desc; 279 } 280 281 return NULL; 282 } 283 284 /** 285 * atc_calc_bytes_left - calculates the number of bytes left according to the 286 * value read from CTRLA. 287 * 288 * @current_len: the number of bytes left before reading CTRLA 289 * @ctrla: the value of CTRLA 290 */ 291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 292 { 293 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 295 296 /* 297 * According to the datasheet, when reading the Control A Register 298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 299 * number of transfers completed on the Source Interface. 300 * So btsize is always a number of source width transfers. 301 */ 302 return current_len - (btsize << src_width); 303 } 304 305 /** 306 * atc_get_bytes_left - get the number of bytes residue for a cookie 307 * @chan: DMA channel 308 * @cookie: transaction identifier to check status of 309 */ 310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 311 { 312 struct at_dma_chan *atchan = to_at_dma_chan(chan); 313 struct at_desc *desc_first = atc_first_active(atchan); 314 struct at_desc *desc; 315 int ret; 316 u32 ctrla, dscr, trials; 317 318 /* 319 * If the cookie doesn't match to the currently running transfer then 320 * we can return the total length of the associated DMA transfer, 321 * because it is still queued. 322 */ 323 desc = atc_get_desc_by_cookie(atchan, cookie); 324 if (desc == NULL) 325 return -EINVAL; 326 else if (desc != desc_first) 327 return desc->total_len; 328 329 /* cookie matches to the currently running transfer */ 330 ret = desc_first->total_len; 331 332 if (desc_first->lli.dscr) { 333 /* hardware linked list transfer */ 334 335 /* 336 * Calculate the residue by removing the length of the child 337 * descriptors already transferred from the total length. 338 * To get the current child descriptor we can use the value of 339 * the channel's DSCR register and compare it against the value 340 * of the hardware linked list structure of each child 341 * descriptor. 342 * 343 * The CTRLA register provides us with the amount of data 344 * already read from the source for the current child 345 * descriptor. So we can compute a more accurate residue by also 346 * removing the number of bytes corresponding to this amount of 347 * data. 348 * 349 * However, the DSCR and CTRLA registers cannot be read both 350 * atomically. Hence a race condition may occur: the first read 351 * register may refer to one child descriptor whereas the second 352 * read may refer to a later child descriptor in the list 353 * because of the DMA transfer progression inbetween the two 354 * reads. 355 * 356 * One solution could have been to pause the DMA transfer, read 357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 358 * this approach presents some drawbacks: 359 * - If the DMA transfer is paused, RX overruns or TX underruns 360 * are more likey to occur depending on the system latency. 361 * Taking the USART driver as an example, it uses a cyclic DMA 362 * transfer to read data from the Receive Holding Register 363 * (RHR) to avoid RX overruns since the RHR is not protected 364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 365 * to compute the residue would break the USART driver design. 366 * - The atc_pause() function masks interrupts but we'd rather 367 * avoid to do so for system latency purpose. 368 * 369 * Then we'd rather use another solution: the DSCR is read a 370 * first time, the CTRLA is read in turn, next the DSCR is read 371 * a second time. If the two consecutive read values of the DSCR 372 * are the same then we assume both refers to the very same 373 * child descriptor as well as the CTRLA value read inbetween 374 * does. For cyclic tranfers, the assumption is that a full loop 375 * is "not so fast". 376 * If the two DSCR values are different, we read again the CTRLA 377 * then the DSCR till two consecutive read values from DSCR are 378 * equal or till the maxium trials is reach. 379 * This algorithm is very unlikely not to find a stable value for 380 * DSCR. 381 */ 382 383 dscr = channel_readl(atchan, DSCR); 384 rmb(); /* ensure DSCR is read before CTRLA */ 385 ctrla = channel_readl(atchan, CTRLA); 386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 387 u32 new_dscr; 388 389 rmb(); /* ensure DSCR is read after CTRLA */ 390 new_dscr = channel_readl(atchan, DSCR); 391 392 /* 393 * If the DSCR register value has not changed inside the 394 * DMA controller since the previous read, we assume 395 * that both the dscr and ctrla values refers to the 396 * very same descriptor. 397 */ 398 if (likely(new_dscr == dscr)) 399 break; 400 401 /* 402 * DSCR has changed inside the DMA controller, so the 403 * previouly read value of CTRLA may refer to an already 404 * processed descriptor hence could be outdated. 405 * We need to update ctrla to match the current 406 * descriptor. 407 */ 408 dscr = new_dscr; 409 rmb(); /* ensure DSCR is read before CTRLA */ 410 ctrla = channel_readl(atchan, CTRLA); 411 } 412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 413 return -ETIMEDOUT; 414 415 /* for the first descriptor we can be more accurate */ 416 if (desc_first->lli.dscr == dscr) 417 return atc_calc_bytes_left(ret, ctrla); 418 419 ret -= desc_first->len; 420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 421 if (desc->lli.dscr == dscr) 422 break; 423 424 ret -= desc->len; 425 } 426 427 /* 428 * For the current descriptor in the chain we can calculate 429 * the remaining bytes using the channel's register. 430 */ 431 ret = atc_calc_bytes_left(ret, ctrla); 432 } else { 433 /* single transfer */ 434 ctrla = channel_readl(atchan, CTRLA); 435 ret = atc_calc_bytes_left(ret, ctrla); 436 } 437 438 return ret; 439 } 440 441 /** 442 * atc_chain_complete - finish work for one transaction chain 443 * @atchan: channel we work on 444 * @desc: descriptor at the head of the chain we want do complete 445 * 446 * Called with atchan->lock held and bh disabled */ 447 static void 448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 449 { 450 struct dma_async_tx_descriptor *txd = &desc->txd; 451 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 452 453 dev_vdbg(chan2dev(&atchan->chan_common), 454 "descriptor %u complete\n", txd->cookie); 455 456 /* mark the descriptor as complete for non cyclic cases only */ 457 if (!atc_chan_is_cyclic(atchan)) 458 dma_cookie_complete(txd); 459 460 /* If the transfer was a memset, free our temporary buffer */ 461 if (desc->memset_buffer) { 462 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 463 desc->memset_paddr); 464 desc->memset_buffer = false; 465 } 466 467 /* move children to free_list */ 468 list_splice_init(&desc->tx_list, &atchan->free_list); 469 /* move myself to free_list */ 470 list_move(&desc->desc_node, &atchan->free_list); 471 472 dma_descriptor_unmap(txd); 473 /* for cyclic transfers, 474 * no need to replay callback function while stopping */ 475 if (!atc_chan_is_cyclic(atchan)) { 476 dma_async_tx_callback callback = txd->callback; 477 void *param = txd->callback_param; 478 479 /* 480 * The API requires that no submissions are done from a 481 * callback, so we don't need to drop the lock here 482 */ 483 if (callback) 484 callback(param); 485 } 486 487 dma_run_dependencies(txd); 488 } 489 490 /** 491 * atc_complete_all - finish work for all transactions 492 * @atchan: channel to complete transactions for 493 * 494 * Eventually submit queued descriptors if any 495 * 496 * Assume channel is idle while calling this function 497 * Called with atchan->lock held and bh disabled 498 */ 499 static void atc_complete_all(struct at_dma_chan *atchan) 500 { 501 struct at_desc *desc, *_desc; 502 LIST_HEAD(list); 503 504 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 505 506 /* 507 * Submit queued descriptors ASAP, i.e. before we go through 508 * the completed ones. 509 */ 510 if (!list_empty(&atchan->queue)) 511 atc_dostart(atchan, atc_first_queued(atchan)); 512 /* empty active_list now it is completed */ 513 list_splice_init(&atchan->active_list, &list); 514 /* empty queue list by moving descriptors (if any) to active_list */ 515 list_splice_init(&atchan->queue, &atchan->active_list); 516 517 list_for_each_entry_safe(desc, _desc, &list, desc_node) 518 atc_chain_complete(atchan, desc); 519 } 520 521 /** 522 * atc_advance_work - at the end of a transaction, move forward 523 * @atchan: channel where the transaction ended 524 * 525 * Called with atchan->lock held and bh disabled 526 */ 527 static void atc_advance_work(struct at_dma_chan *atchan) 528 { 529 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 530 531 if (atc_chan_is_enabled(atchan)) 532 return; 533 534 if (list_empty(&atchan->active_list) || 535 list_is_singular(&atchan->active_list)) { 536 atc_complete_all(atchan); 537 } else { 538 atc_chain_complete(atchan, atc_first_active(atchan)); 539 /* advance work */ 540 atc_dostart(atchan, atc_first_active(atchan)); 541 } 542 } 543 544 545 /** 546 * atc_handle_error - handle errors reported by DMA controller 547 * @atchan: channel where error occurs 548 * 549 * Called with atchan->lock held and bh disabled 550 */ 551 static void atc_handle_error(struct at_dma_chan *atchan) 552 { 553 struct at_desc *bad_desc; 554 struct at_desc *child; 555 556 /* 557 * The descriptor currently at the head of the active list is 558 * broked. Since we don't have any way to report errors, we'll 559 * just have to scream loudly and try to carry on. 560 */ 561 bad_desc = atc_first_active(atchan); 562 list_del_init(&bad_desc->desc_node); 563 564 /* As we are stopped, take advantage to push queued descriptors 565 * in active_list */ 566 list_splice_init(&atchan->queue, atchan->active_list.prev); 567 568 /* Try to restart the controller */ 569 if (!list_empty(&atchan->active_list)) 570 atc_dostart(atchan, atc_first_active(atchan)); 571 572 /* 573 * KERN_CRITICAL may seem harsh, but since this only happens 574 * when someone submits a bad physical address in a 575 * descriptor, we should consider ourselves lucky that the 576 * controller flagged an error instead of scribbling over 577 * random memory locations. 578 */ 579 dev_crit(chan2dev(&atchan->chan_common), 580 "Bad descriptor submitted for DMA!\n"); 581 dev_crit(chan2dev(&atchan->chan_common), 582 " cookie: %d\n", bad_desc->txd.cookie); 583 atc_dump_lli(atchan, &bad_desc->lli); 584 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 585 atc_dump_lli(atchan, &child->lli); 586 587 /* Pretend the descriptor completed successfully */ 588 atc_chain_complete(atchan, bad_desc); 589 } 590 591 /** 592 * atc_handle_cyclic - at the end of a period, run callback function 593 * @atchan: channel used for cyclic operations 594 * 595 * Called with atchan->lock held and bh disabled 596 */ 597 static void atc_handle_cyclic(struct at_dma_chan *atchan) 598 { 599 struct at_desc *first = atc_first_active(atchan); 600 struct dma_async_tx_descriptor *txd = &first->txd; 601 dma_async_tx_callback callback = txd->callback; 602 void *param = txd->callback_param; 603 604 dev_vdbg(chan2dev(&atchan->chan_common), 605 "new cyclic period llp 0x%08x\n", 606 channel_readl(atchan, DSCR)); 607 608 if (callback) 609 callback(param); 610 } 611 612 /*-- IRQ & Tasklet ---------------------------------------------------*/ 613 614 static void atc_tasklet(unsigned long data) 615 { 616 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 617 unsigned long flags; 618 619 spin_lock_irqsave(&atchan->lock, flags); 620 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 621 atc_handle_error(atchan); 622 else if (atc_chan_is_cyclic(atchan)) 623 atc_handle_cyclic(atchan); 624 else 625 atc_advance_work(atchan); 626 627 spin_unlock_irqrestore(&atchan->lock, flags); 628 } 629 630 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 631 { 632 struct at_dma *atdma = (struct at_dma *)dev_id; 633 struct at_dma_chan *atchan; 634 int i; 635 u32 status, pending, imr; 636 int ret = IRQ_NONE; 637 638 do { 639 imr = dma_readl(atdma, EBCIMR); 640 status = dma_readl(atdma, EBCISR); 641 pending = status & imr; 642 643 if (!pending) 644 break; 645 646 dev_vdbg(atdma->dma_common.dev, 647 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 648 status, imr, pending); 649 650 for (i = 0; i < atdma->dma_common.chancnt; i++) { 651 atchan = &atdma->chan[i]; 652 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 653 if (pending & AT_DMA_ERR(i)) { 654 /* Disable channel on AHB error */ 655 dma_writel(atdma, CHDR, 656 AT_DMA_RES(i) | atchan->mask); 657 /* Give information to tasklet */ 658 set_bit(ATC_IS_ERROR, &atchan->status); 659 } 660 tasklet_schedule(&atchan->tasklet); 661 ret = IRQ_HANDLED; 662 } 663 } 664 665 } while (pending); 666 667 return ret; 668 } 669 670 671 /*-- DMA Engine API --------------------------------------------------*/ 672 673 /** 674 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 675 * @desc: descriptor at the head of the transaction chain 676 * 677 * Queue chain if DMA engine is working already 678 * 679 * Cookie increment and adding to active_list or queue must be atomic 680 */ 681 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 682 { 683 struct at_desc *desc = txd_to_at_desc(tx); 684 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 685 dma_cookie_t cookie; 686 unsigned long flags; 687 688 spin_lock_irqsave(&atchan->lock, flags); 689 cookie = dma_cookie_assign(tx); 690 691 if (list_empty(&atchan->active_list)) { 692 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 693 desc->txd.cookie); 694 atc_dostart(atchan, desc); 695 list_add_tail(&desc->desc_node, &atchan->active_list); 696 } else { 697 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 698 desc->txd.cookie); 699 list_add_tail(&desc->desc_node, &atchan->queue); 700 } 701 702 spin_unlock_irqrestore(&atchan->lock, flags); 703 704 return cookie; 705 } 706 707 /** 708 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 709 * @chan: the channel to prepare operation on 710 * @xt: Interleaved transfer template 711 * @flags: tx descriptor status flags 712 */ 713 static struct dma_async_tx_descriptor * 714 atc_prep_dma_interleaved(struct dma_chan *chan, 715 struct dma_interleaved_template *xt, 716 unsigned long flags) 717 { 718 struct at_dma_chan *atchan = to_at_dma_chan(chan); 719 struct data_chunk *first = xt->sgl; 720 struct at_desc *desc = NULL; 721 size_t xfer_count; 722 unsigned int dwidth; 723 u32 ctrla; 724 u32 ctrlb; 725 size_t len = 0; 726 int i; 727 728 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 729 return NULL; 730 731 dev_info(chan2dev(chan), 732 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n", 733 __func__, xt->src_start, xt->dst_start, xt->numf, 734 xt->frame_size, flags); 735 736 /* 737 * The controller can only "skip" X bytes every Y bytes, so we 738 * need to make sure we are given a template that fit that 739 * description, ie a template with chunks that always have the 740 * same size, with the same ICGs. 741 */ 742 for (i = 0; i < xt->frame_size; i++) { 743 struct data_chunk *chunk = xt->sgl + i; 744 745 if ((chunk->size != xt->sgl->size) || 746 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 747 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 748 dev_err(chan2dev(chan), 749 "%s: the controller can transfer only identical chunks\n", 750 __func__); 751 return NULL; 752 } 753 754 len += chunk->size; 755 } 756 757 dwidth = atc_get_xfer_width(xt->src_start, 758 xt->dst_start, len); 759 760 xfer_count = len >> dwidth; 761 if (xfer_count > ATC_BTSIZE_MAX) { 762 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 763 return NULL; 764 } 765 766 ctrla = ATC_SRC_WIDTH(dwidth) | 767 ATC_DST_WIDTH(dwidth); 768 769 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 770 | ATC_SRC_ADDR_MODE_INCR 771 | ATC_DST_ADDR_MODE_INCR 772 | ATC_SRC_PIP 773 | ATC_DST_PIP 774 | ATC_FC_MEM2MEM; 775 776 /* create the transfer */ 777 desc = atc_desc_get(atchan); 778 if (!desc) { 779 dev_err(chan2dev(chan), 780 "%s: couldn't allocate our descriptor\n", __func__); 781 return NULL; 782 } 783 784 desc->lli.saddr = xt->src_start; 785 desc->lli.daddr = xt->dst_start; 786 desc->lli.ctrla = ctrla | xfer_count; 787 desc->lli.ctrlb = ctrlb; 788 789 desc->boundary = first->size >> dwidth; 790 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 791 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 792 793 desc->txd.cookie = -EBUSY; 794 desc->total_len = desc->len = len; 795 796 /* set end-of-link to the last link descriptor of list*/ 797 set_desc_eol(desc); 798 799 desc->txd.flags = flags; /* client is in control of this ack */ 800 801 return &desc->txd; 802 } 803 804 /** 805 * atc_prep_dma_memcpy - prepare a memcpy operation 806 * @chan: the channel to prepare operation on 807 * @dest: operation virtual destination address 808 * @src: operation virtual source address 809 * @len: operation length 810 * @flags: tx descriptor status flags 811 */ 812 static struct dma_async_tx_descriptor * 813 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 814 size_t len, unsigned long flags) 815 { 816 struct at_dma_chan *atchan = to_at_dma_chan(chan); 817 struct at_desc *desc = NULL; 818 struct at_desc *first = NULL; 819 struct at_desc *prev = NULL; 820 size_t xfer_count; 821 size_t offset; 822 unsigned int src_width; 823 unsigned int dst_width; 824 u32 ctrla; 825 u32 ctrlb; 826 827 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n", 828 dest, src, len, flags); 829 830 if (unlikely(!len)) { 831 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 832 return NULL; 833 } 834 835 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 836 | ATC_SRC_ADDR_MODE_INCR 837 | ATC_DST_ADDR_MODE_INCR 838 | ATC_FC_MEM2MEM; 839 840 /* 841 * We can be a lot more clever here, but this should take care 842 * of the most common optimization. 843 */ 844 src_width = dst_width = atc_get_xfer_width(src, dest, len); 845 846 ctrla = ATC_SRC_WIDTH(src_width) | 847 ATC_DST_WIDTH(dst_width); 848 849 for (offset = 0; offset < len; offset += xfer_count << src_width) { 850 xfer_count = min_t(size_t, (len - offset) >> src_width, 851 ATC_BTSIZE_MAX); 852 853 desc = atc_desc_get(atchan); 854 if (!desc) 855 goto err_desc_get; 856 857 desc->lli.saddr = src + offset; 858 desc->lli.daddr = dest + offset; 859 desc->lli.ctrla = ctrla | xfer_count; 860 desc->lli.ctrlb = ctrlb; 861 862 desc->txd.cookie = 0; 863 desc->len = xfer_count << src_width; 864 865 atc_desc_chain(&first, &prev, desc); 866 } 867 868 /* First descriptor of the chain embedds additional information */ 869 first->txd.cookie = -EBUSY; 870 first->total_len = len; 871 872 /* set end-of-link to the last link descriptor of list*/ 873 set_desc_eol(desc); 874 875 first->txd.flags = flags; /* client is in control of this ack */ 876 877 return &first->txd; 878 879 err_desc_get: 880 atc_desc_put(atchan, first); 881 return NULL; 882 } 883 884 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 885 dma_addr_t psrc, 886 dma_addr_t pdst, 887 size_t len) 888 { 889 struct at_dma_chan *atchan = to_at_dma_chan(chan); 890 struct at_desc *desc; 891 size_t xfer_count; 892 893 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 894 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 895 ATC_SRC_ADDR_MODE_FIXED | 896 ATC_DST_ADDR_MODE_INCR | 897 ATC_FC_MEM2MEM; 898 899 xfer_count = len >> 2; 900 if (xfer_count > ATC_BTSIZE_MAX) { 901 dev_err(chan2dev(chan), "%s: buffer is too big\n", 902 __func__); 903 return NULL; 904 } 905 906 desc = atc_desc_get(atchan); 907 if (!desc) { 908 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 909 __func__); 910 return NULL; 911 } 912 913 desc->lli.saddr = psrc; 914 desc->lli.daddr = pdst; 915 desc->lli.ctrla = ctrla | xfer_count; 916 desc->lli.ctrlb = ctrlb; 917 918 desc->txd.cookie = 0; 919 desc->len = len; 920 921 return desc; 922 } 923 924 /** 925 * atc_prep_dma_memset - prepare a memcpy operation 926 * @chan: the channel to prepare operation on 927 * @dest: operation virtual destination address 928 * @value: value to set memory buffer to 929 * @len: operation length 930 * @flags: tx descriptor status flags 931 */ 932 static struct dma_async_tx_descriptor * 933 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 934 size_t len, unsigned long flags) 935 { 936 struct at_dma *atdma = to_at_dma(chan->device); 937 struct at_desc *desc; 938 void __iomem *vaddr; 939 dma_addr_t paddr; 940 941 dev_vdbg(chan2dev(chan), "%s: d0x%x v0x%x l0x%zx f0x%lx\n", __func__, 942 dest, value, len, flags); 943 944 if (unlikely(!len)) { 945 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 946 return NULL; 947 } 948 949 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 950 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 951 __func__); 952 return NULL; 953 } 954 955 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 956 if (!vaddr) { 957 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 958 __func__); 959 return NULL; 960 } 961 *(u32*)vaddr = value; 962 963 desc = atc_create_memset_desc(chan, paddr, dest, len); 964 if (!desc) { 965 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 966 __func__); 967 goto err_free_buffer; 968 } 969 970 desc->memset_paddr = paddr; 971 desc->memset_vaddr = vaddr; 972 desc->memset_buffer = true; 973 974 desc->txd.cookie = -EBUSY; 975 desc->total_len = len; 976 977 /* set end-of-link on the descriptor */ 978 set_desc_eol(desc); 979 980 desc->txd.flags = flags; 981 982 return &desc->txd; 983 984 err_free_buffer: 985 dma_pool_free(atdma->memset_pool, vaddr, paddr); 986 return NULL; 987 } 988 989 static struct dma_async_tx_descriptor * 990 atc_prep_dma_memset_sg(struct dma_chan *chan, 991 struct scatterlist *sgl, 992 unsigned int sg_len, int value, 993 unsigned long flags) 994 { 995 struct at_dma_chan *atchan = to_at_dma_chan(chan); 996 struct at_dma *atdma = to_at_dma(chan->device); 997 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 998 struct scatterlist *sg; 999 void __iomem *vaddr; 1000 dma_addr_t paddr; 1001 size_t total_len = 0; 1002 int i; 1003 1004 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 1005 value, sg_len, flags); 1006 1007 if (unlikely(!sgl || !sg_len)) { 1008 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1009 __func__); 1010 return NULL; 1011 } 1012 1013 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 1014 if (!vaddr) { 1015 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1016 __func__); 1017 return NULL; 1018 } 1019 *(u32*)vaddr = value; 1020 1021 for_each_sg(sgl, sg, sg_len, i) { 1022 dma_addr_t dest = sg_dma_address(sg); 1023 size_t len = sg_dma_len(sg); 1024 1025 dev_vdbg(chan2dev(chan), "%s: d0x%08x, l0x%zx\n", 1026 __func__, dest, len); 1027 1028 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1029 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1030 __func__); 1031 goto err_put_desc; 1032 } 1033 1034 desc = atc_create_memset_desc(chan, paddr, dest, len); 1035 if (!desc) 1036 goto err_put_desc; 1037 1038 atc_desc_chain(&first, &prev, desc); 1039 1040 total_len += len; 1041 } 1042 1043 /* 1044 * Only set the buffer pointers on the last descriptor to 1045 * avoid free'ing while we have our transfer still going 1046 */ 1047 desc->memset_paddr = paddr; 1048 desc->memset_vaddr = vaddr; 1049 desc->memset_buffer = true; 1050 1051 first->txd.cookie = -EBUSY; 1052 first->total_len = total_len; 1053 1054 /* set end-of-link on the descriptor */ 1055 set_desc_eol(desc); 1056 1057 first->txd.flags = flags; 1058 1059 return &first->txd; 1060 1061 err_put_desc: 1062 atc_desc_put(atchan, first); 1063 return NULL; 1064 } 1065 1066 /** 1067 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1068 * @chan: DMA channel 1069 * @sgl: scatterlist to transfer to/from 1070 * @sg_len: number of entries in @scatterlist 1071 * @direction: DMA direction 1072 * @flags: tx descriptor status flags 1073 * @context: transaction context (ignored) 1074 */ 1075 static struct dma_async_tx_descriptor * 1076 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1077 unsigned int sg_len, enum dma_transfer_direction direction, 1078 unsigned long flags, void *context) 1079 { 1080 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1081 struct at_dma_slave *atslave = chan->private; 1082 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1083 struct at_desc *first = NULL; 1084 struct at_desc *prev = NULL; 1085 u32 ctrla; 1086 u32 ctrlb; 1087 dma_addr_t reg; 1088 unsigned int reg_width; 1089 unsigned int mem_width; 1090 unsigned int i; 1091 struct scatterlist *sg; 1092 size_t total_len = 0; 1093 1094 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1095 sg_len, 1096 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1097 flags); 1098 1099 if (unlikely(!atslave || !sg_len)) { 1100 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1101 return NULL; 1102 } 1103 1104 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1105 | ATC_DCSIZE(sconfig->dst_maxburst); 1106 ctrlb = ATC_IEN; 1107 1108 switch (direction) { 1109 case DMA_MEM_TO_DEV: 1110 reg_width = convert_buswidth(sconfig->dst_addr_width); 1111 ctrla |= ATC_DST_WIDTH(reg_width); 1112 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1113 | ATC_SRC_ADDR_MODE_INCR 1114 | ATC_FC_MEM2PER 1115 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1116 reg = sconfig->dst_addr; 1117 for_each_sg(sgl, sg, sg_len, i) { 1118 struct at_desc *desc; 1119 u32 len; 1120 u32 mem; 1121 1122 desc = atc_desc_get(atchan); 1123 if (!desc) 1124 goto err_desc_get; 1125 1126 mem = sg_dma_address(sg); 1127 len = sg_dma_len(sg); 1128 if (unlikely(!len)) { 1129 dev_dbg(chan2dev(chan), 1130 "prep_slave_sg: sg(%d) data length is zero\n", i); 1131 goto err; 1132 } 1133 mem_width = 2; 1134 if (unlikely(mem & 3 || len & 3)) 1135 mem_width = 0; 1136 1137 desc->lli.saddr = mem; 1138 desc->lli.daddr = reg; 1139 desc->lli.ctrla = ctrla 1140 | ATC_SRC_WIDTH(mem_width) 1141 | len >> mem_width; 1142 desc->lli.ctrlb = ctrlb; 1143 desc->len = len; 1144 1145 atc_desc_chain(&first, &prev, desc); 1146 total_len += len; 1147 } 1148 break; 1149 case DMA_DEV_TO_MEM: 1150 reg_width = convert_buswidth(sconfig->src_addr_width); 1151 ctrla |= ATC_SRC_WIDTH(reg_width); 1152 ctrlb |= ATC_DST_ADDR_MODE_INCR 1153 | ATC_SRC_ADDR_MODE_FIXED 1154 | ATC_FC_PER2MEM 1155 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1156 1157 reg = sconfig->src_addr; 1158 for_each_sg(sgl, sg, sg_len, i) { 1159 struct at_desc *desc; 1160 u32 len; 1161 u32 mem; 1162 1163 desc = atc_desc_get(atchan); 1164 if (!desc) 1165 goto err_desc_get; 1166 1167 mem = sg_dma_address(sg); 1168 len = sg_dma_len(sg); 1169 if (unlikely(!len)) { 1170 dev_dbg(chan2dev(chan), 1171 "prep_slave_sg: sg(%d) data length is zero\n", i); 1172 goto err; 1173 } 1174 mem_width = 2; 1175 if (unlikely(mem & 3 || len & 3)) 1176 mem_width = 0; 1177 1178 desc->lli.saddr = reg; 1179 desc->lli.daddr = mem; 1180 desc->lli.ctrla = ctrla 1181 | ATC_DST_WIDTH(mem_width) 1182 | len >> reg_width; 1183 desc->lli.ctrlb = ctrlb; 1184 desc->len = len; 1185 1186 atc_desc_chain(&first, &prev, desc); 1187 total_len += len; 1188 } 1189 break; 1190 default: 1191 return NULL; 1192 } 1193 1194 /* set end-of-link to the last link descriptor of list*/ 1195 set_desc_eol(prev); 1196 1197 /* First descriptor of the chain embedds additional information */ 1198 first->txd.cookie = -EBUSY; 1199 first->total_len = total_len; 1200 1201 /* first link descriptor of list is responsible of flags */ 1202 first->txd.flags = flags; /* client is in control of this ack */ 1203 1204 return &first->txd; 1205 1206 err_desc_get: 1207 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1208 err: 1209 atc_desc_put(atchan, first); 1210 return NULL; 1211 } 1212 1213 /** 1214 * atc_prep_dma_sg - prepare memory to memory scather-gather operation 1215 * @chan: the channel to prepare operation on 1216 * @dst_sg: destination scatterlist 1217 * @dst_nents: number of destination scatterlist entries 1218 * @src_sg: source scatterlist 1219 * @src_nents: number of source scatterlist entries 1220 * @flags: tx descriptor status flags 1221 */ 1222 static struct dma_async_tx_descriptor * 1223 atc_prep_dma_sg(struct dma_chan *chan, 1224 struct scatterlist *dst_sg, unsigned int dst_nents, 1225 struct scatterlist *src_sg, unsigned int src_nents, 1226 unsigned long flags) 1227 { 1228 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1229 struct at_desc *desc = NULL; 1230 struct at_desc *first = NULL; 1231 struct at_desc *prev = NULL; 1232 unsigned int src_width; 1233 unsigned int dst_width; 1234 size_t xfer_count; 1235 u32 ctrla; 1236 u32 ctrlb; 1237 size_t dst_len = 0, src_len = 0; 1238 dma_addr_t dst = 0, src = 0; 1239 size_t len = 0, total_len = 0; 1240 1241 if (unlikely(dst_nents == 0 || src_nents == 0)) 1242 return NULL; 1243 1244 if (unlikely(dst_sg == NULL || src_sg == NULL)) 1245 return NULL; 1246 1247 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 1248 | ATC_SRC_ADDR_MODE_INCR 1249 | ATC_DST_ADDR_MODE_INCR 1250 | ATC_FC_MEM2MEM; 1251 1252 /* 1253 * loop until there is either no more source or no more destination 1254 * scatterlist entry 1255 */ 1256 while (true) { 1257 1258 /* prepare the next transfer */ 1259 if (dst_len == 0) { 1260 1261 /* no more destination scatterlist entries */ 1262 if (!dst_sg || !dst_nents) 1263 break; 1264 1265 dst = sg_dma_address(dst_sg); 1266 dst_len = sg_dma_len(dst_sg); 1267 1268 dst_sg = sg_next(dst_sg); 1269 dst_nents--; 1270 } 1271 1272 if (src_len == 0) { 1273 1274 /* no more source scatterlist entries */ 1275 if (!src_sg || !src_nents) 1276 break; 1277 1278 src = sg_dma_address(src_sg); 1279 src_len = sg_dma_len(src_sg); 1280 1281 src_sg = sg_next(src_sg); 1282 src_nents--; 1283 } 1284 1285 len = min_t(size_t, src_len, dst_len); 1286 if (len == 0) 1287 continue; 1288 1289 /* take care for the alignment */ 1290 src_width = dst_width = atc_get_xfer_width(src, dst, len); 1291 1292 ctrla = ATC_SRC_WIDTH(src_width) | 1293 ATC_DST_WIDTH(dst_width); 1294 1295 /* 1296 * The number of transfers to set up refer to the source width 1297 * that depends on the alignment. 1298 */ 1299 xfer_count = len >> src_width; 1300 if (xfer_count > ATC_BTSIZE_MAX) { 1301 xfer_count = ATC_BTSIZE_MAX; 1302 len = ATC_BTSIZE_MAX << src_width; 1303 } 1304 1305 /* create the transfer */ 1306 desc = atc_desc_get(atchan); 1307 if (!desc) 1308 goto err_desc_get; 1309 1310 desc->lli.saddr = src; 1311 desc->lli.daddr = dst; 1312 desc->lli.ctrla = ctrla | xfer_count; 1313 desc->lli.ctrlb = ctrlb; 1314 1315 desc->txd.cookie = 0; 1316 desc->len = len; 1317 1318 atc_desc_chain(&first, &prev, desc); 1319 1320 /* update the lengths and addresses for the next loop cycle */ 1321 dst_len -= len; 1322 src_len -= len; 1323 dst += len; 1324 src += len; 1325 1326 total_len += len; 1327 } 1328 1329 /* First descriptor of the chain embedds additional information */ 1330 first->txd.cookie = -EBUSY; 1331 first->total_len = total_len; 1332 1333 /* set end-of-link to the last link descriptor of list*/ 1334 set_desc_eol(desc); 1335 1336 first->txd.flags = flags; /* client is in control of this ack */ 1337 1338 return &first->txd; 1339 1340 err_desc_get: 1341 atc_desc_put(atchan, first); 1342 return NULL; 1343 } 1344 1345 /** 1346 * atc_dma_cyclic_check_values 1347 * Check for too big/unaligned periods and unaligned DMA buffer 1348 */ 1349 static int 1350 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1351 size_t period_len) 1352 { 1353 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1354 goto err_out; 1355 if (unlikely(period_len & ((1 << reg_width) - 1))) 1356 goto err_out; 1357 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1358 goto err_out; 1359 1360 return 0; 1361 1362 err_out: 1363 return -EINVAL; 1364 } 1365 1366 /** 1367 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1368 */ 1369 static int 1370 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1371 unsigned int period_index, dma_addr_t buf_addr, 1372 unsigned int reg_width, size_t period_len, 1373 enum dma_transfer_direction direction) 1374 { 1375 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1376 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1377 u32 ctrla; 1378 1379 /* prepare common CRTLA value */ 1380 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1381 | ATC_DCSIZE(sconfig->dst_maxburst) 1382 | ATC_DST_WIDTH(reg_width) 1383 | ATC_SRC_WIDTH(reg_width) 1384 | period_len >> reg_width; 1385 1386 switch (direction) { 1387 case DMA_MEM_TO_DEV: 1388 desc->lli.saddr = buf_addr + (period_len * period_index); 1389 desc->lli.daddr = sconfig->dst_addr; 1390 desc->lli.ctrla = ctrla; 1391 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1392 | ATC_SRC_ADDR_MODE_INCR 1393 | ATC_FC_MEM2PER 1394 | ATC_SIF(atchan->mem_if) 1395 | ATC_DIF(atchan->per_if); 1396 desc->len = period_len; 1397 break; 1398 1399 case DMA_DEV_TO_MEM: 1400 desc->lli.saddr = sconfig->src_addr; 1401 desc->lli.daddr = buf_addr + (period_len * period_index); 1402 desc->lli.ctrla = ctrla; 1403 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1404 | ATC_SRC_ADDR_MODE_FIXED 1405 | ATC_FC_PER2MEM 1406 | ATC_SIF(atchan->per_if) 1407 | ATC_DIF(atchan->mem_if); 1408 desc->len = period_len; 1409 break; 1410 1411 default: 1412 return -EINVAL; 1413 } 1414 1415 return 0; 1416 } 1417 1418 /** 1419 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1420 * @chan: the DMA channel to prepare 1421 * @buf_addr: physical DMA address where the buffer starts 1422 * @buf_len: total number of bytes for the entire buffer 1423 * @period_len: number of bytes for each period 1424 * @direction: transfer direction, to or from device 1425 * @flags: tx descriptor status flags 1426 */ 1427 static struct dma_async_tx_descriptor * 1428 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1429 size_t period_len, enum dma_transfer_direction direction, 1430 unsigned long flags) 1431 { 1432 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1433 struct at_dma_slave *atslave = chan->private; 1434 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1435 struct at_desc *first = NULL; 1436 struct at_desc *prev = NULL; 1437 unsigned long was_cyclic; 1438 unsigned int reg_width; 1439 unsigned int periods = buf_len / period_len; 1440 unsigned int i; 1441 1442 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n", 1443 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1444 buf_addr, 1445 periods, buf_len, period_len); 1446 1447 if (unlikely(!atslave || !buf_len || !period_len)) { 1448 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1449 return NULL; 1450 } 1451 1452 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1453 if (was_cyclic) { 1454 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1455 return NULL; 1456 } 1457 1458 if (unlikely(!is_slave_direction(direction))) 1459 goto err_out; 1460 1461 if (sconfig->direction == DMA_MEM_TO_DEV) 1462 reg_width = convert_buswidth(sconfig->dst_addr_width); 1463 else 1464 reg_width = convert_buswidth(sconfig->src_addr_width); 1465 1466 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1467 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1468 goto err_out; 1469 1470 /* build cyclic linked list */ 1471 for (i = 0; i < periods; i++) { 1472 struct at_desc *desc; 1473 1474 desc = atc_desc_get(atchan); 1475 if (!desc) 1476 goto err_desc_get; 1477 1478 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1479 reg_width, period_len, direction)) 1480 goto err_desc_get; 1481 1482 atc_desc_chain(&first, &prev, desc); 1483 } 1484 1485 /* lets make a cyclic list */ 1486 prev->lli.dscr = first->txd.phys; 1487 1488 /* First descriptor of the chain embedds additional information */ 1489 first->txd.cookie = -EBUSY; 1490 first->total_len = buf_len; 1491 1492 return &first->txd; 1493 1494 err_desc_get: 1495 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1496 atc_desc_put(atchan, first); 1497 err_out: 1498 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1499 return NULL; 1500 } 1501 1502 static int atc_config(struct dma_chan *chan, 1503 struct dma_slave_config *sconfig) 1504 { 1505 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1506 1507 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1508 1509 /* Check if it is chan is configured for slave transfers */ 1510 if (!chan->private) 1511 return -EINVAL; 1512 1513 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1514 1515 convert_burst(&atchan->dma_sconfig.src_maxburst); 1516 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1517 1518 return 0; 1519 } 1520 1521 static int atc_pause(struct dma_chan *chan) 1522 { 1523 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1524 struct at_dma *atdma = to_at_dma(chan->device); 1525 int chan_id = atchan->chan_common.chan_id; 1526 unsigned long flags; 1527 1528 LIST_HEAD(list); 1529 1530 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1531 1532 spin_lock_irqsave(&atchan->lock, flags); 1533 1534 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1535 set_bit(ATC_IS_PAUSED, &atchan->status); 1536 1537 spin_unlock_irqrestore(&atchan->lock, flags); 1538 1539 return 0; 1540 } 1541 1542 static int atc_resume(struct dma_chan *chan) 1543 { 1544 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1545 struct at_dma *atdma = to_at_dma(chan->device); 1546 int chan_id = atchan->chan_common.chan_id; 1547 unsigned long flags; 1548 1549 LIST_HEAD(list); 1550 1551 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1552 1553 if (!atc_chan_is_paused(atchan)) 1554 return 0; 1555 1556 spin_lock_irqsave(&atchan->lock, flags); 1557 1558 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1559 clear_bit(ATC_IS_PAUSED, &atchan->status); 1560 1561 spin_unlock_irqrestore(&atchan->lock, flags); 1562 1563 return 0; 1564 } 1565 1566 static int atc_terminate_all(struct dma_chan *chan) 1567 { 1568 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1569 struct at_dma *atdma = to_at_dma(chan->device); 1570 int chan_id = atchan->chan_common.chan_id; 1571 struct at_desc *desc, *_desc; 1572 unsigned long flags; 1573 1574 LIST_HEAD(list); 1575 1576 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1577 1578 /* 1579 * This is only called when something went wrong elsewhere, so 1580 * we don't really care about the data. Just disable the 1581 * channel. We still have to poll the channel enable bit due 1582 * to AHB/HSB limitations. 1583 */ 1584 spin_lock_irqsave(&atchan->lock, flags); 1585 1586 /* disabling channel: must also remove suspend state */ 1587 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1588 1589 /* confirm that this channel is disabled */ 1590 while (dma_readl(atdma, CHSR) & atchan->mask) 1591 cpu_relax(); 1592 1593 /* active_list entries will end up before queued entries */ 1594 list_splice_init(&atchan->queue, &list); 1595 list_splice_init(&atchan->active_list, &list); 1596 1597 /* Flush all pending and queued descriptors */ 1598 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1599 atc_chain_complete(atchan, desc); 1600 1601 clear_bit(ATC_IS_PAUSED, &atchan->status); 1602 /* if channel dedicated to cyclic operations, free it */ 1603 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1604 1605 spin_unlock_irqrestore(&atchan->lock, flags); 1606 1607 return 0; 1608 } 1609 1610 /** 1611 * atc_tx_status - poll for transaction completion 1612 * @chan: DMA channel 1613 * @cookie: transaction identifier to check status of 1614 * @txstate: if not %NULL updated with transaction state 1615 * 1616 * If @txstate is passed in, upon return it reflect the driver 1617 * internal state and can be used with dma_async_is_complete() to check 1618 * the status of multiple cookies without re-checking hardware state. 1619 */ 1620 static enum dma_status 1621 atc_tx_status(struct dma_chan *chan, 1622 dma_cookie_t cookie, 1623 struct dma_tx_state *txstate) 1624 { 1625 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1626 unsigned long flags; 1627 enum dma_status ret; 1628 int bytes = 0; 1629 1630 ret = dma_cookie_status(chan, cookie, txstate); 1631 if (ret == DMA_COMPLETE) 1632 return ret; 1633 /* 1634 * There's no point calculating the residue if there's 1635 * no txstate to store the value. 1636 */ 1637 if (!txstate) 1638 return DMA_ERROR; 1639 1640 spin_lock_irqsave(&atchan->lock, flags); 1641 1642 /* Get number of bytes left in the active transactions */ 1643 bytes = atc_get_bytes_left(chan, cookie); 1644 1645 spin_unlock_irqrestore(&atchan->lock, flags); 1646 1647 if (unlikely(bytes < 0)) { 1648 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1649 return DMA_ERROR; 1650 } else { 1651 dma_set_residue(txstate, bytes); 1652 } 1653 1654 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1655 ret, cookie, bytes); 1656 1657 return ret; 1658 } 1659 1660 /** 1661 * atc_issue_pending - try to finish work 1662 * @chan: target DMA channel 1663 */ 1664 static void atc_issue_pending(struct dma_chan *chan) 1665 { 1666 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1667 unsigned long flags; 1668 1669 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1670 1671 /* Not needed for cyclic transfers */ 1672 if (atc_chan_is_cyclic(atchan)) 1673 return; 1674 1675 spin_lock_irqsave(&atchan->lock, flags); 1676 atc_advance_work(atchan); 1677 spin_unlock_irqrestore(&atchan->lock, flags); 1678 } 1679 1680 /** 1681 * atc_alloc_chan_resources - allocate resources for DMA channel 1682 * @chan: allocate descriptor resources for this channel 1683 * @client: current client requesting the channel be ready for requests 1684 * 1685 * return - the number of allocated descriptors 1686 */ 1687 static int atc_alloc_chan_resources(struct dma_chan *chan) 1688 { 1689 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1690 struct at_dma *atdma = to_at_dma(chan->device); 1691 struct at_desc *desc; 1692 struct at_dma_slave *atslave; 1693 unsigned long flags; 1694 int i; 1695 u32 cfg; 1696 LIST_HEAD(tmp_list); 1697 1698 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1699 1700 /* ASSERT: channel is idle */ 1701 if (atc_chan_is_enabled(atchan)) { 1702 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1703 return -EIO; 1704 } 1705 1706 cfg = ATC_DEFAULT_CFG; 1707 1708 atslave = chan->private; 1709 if (atslave) { 1710 /* 1711 * We need controller-specific data to set up slave 1712 * transfers. 1713 */ 1714 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1715 1716 /* if cfg configuration specified take it instead of default */ 1717 if (atslave->cfg) 1718 cfg = atslave->cfg; 1719 } 1720 1721 /* have we already been set up? 1722 * reconfigure channel but no need to reallocate descriptors */ 1723 if (!list_empty(&atchan->free_list)) 1724 return atchan->descs_allocated; 1725 1726 /* Allocate initial pool of descriptors */ 1727 for (i = 0; i < init_nr_desc_per_channel; i++) { 1728 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1729 if (!desc) { 1730 dev_err(atdma->dma_common.dev, 1731 "Only %d initial descriptors\n", i); 1732 break; 1733 } 1734 list_add_tail(&desc->desc_node, &tmp_list); 1735 } 1736 1737 spin_lock_irqsave(&atchan->lock, flags); 1738 atchan->descs_allocated = i; 1739 list_splice(&tmp_list, &atchan->free_list); 1740 dma_cookie_init(chan); 1741 spin_unlock_irqrestore(&atchan->lock, flags); 1742 1743 /* channel parameters */ 1744 channel_writel(atchan, CFG, cfg); 1745 1746 dev_dbg(chan2dev(chan), 1747 "alloc_chan_resources: allocated %d descriptors\n", 1748 atchan->descs_allocated); 1749 1750 return atchan->descs_allocated; 1751 } 1752 1753 /** 1754 * atc_free_chan_resources - free all channel resources 1755 * @chan: DMA channel 1756 */ 1757 static void atc_free_chan_resources(struct dma_chan *chan) 1758 { 1759 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1760 struct at_dma *atdma = to_at_dma(chan->device); 1761 struct at_desc *desc, *_desc; 1762 LIST_HEAD(list); 1763 1764 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1765 atchan->descs_allocated); 1766 1767 /* ASSERT: channel is idle */ 1768 BUG_ON(!list_empty(&atchan->active_list)); 1769 BUG_ON(!list_empty(&atchan->queue)); 1770 BUG_ON(atc_chan_is_enabled(atchan)); 1771 1772 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1773 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1774 list_del(&desc->desc_node); 1775 /* free link descriptor */ 1776 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1777 } 1778 list_splice_init(&atchan->free_list, &list); 1779 atchan->descs_allocated = 0; 1780 atchan->status = 0; 1781 1782 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1783 } 1784 1785 #ifdef CONFIG_OF 1786 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1787 { 1788 struct at_dma_slave *atslave = slave; 1789 1790 if (atslave->dma_dev == chan->device->dev) { 1791 chan->private = atslave; 1792 return true; 1793 } else { 1794 return false; 1795 } 1796 } 1797 1798 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1799 struct of_dma *of_dma) 1800 { 1801 struct dma_chan *chan; 1802 struct at_dma_chan *atchan; 1803 struct at_dma_slave *atslave; 1804 dma_cap_mask_t mask; 1805 unsigned int per_id; 1806 struct platform_device *dmac_pdev; 1807 1808 if (dma_spec->args_count != 2) 1809 return NULL; 1810 1811 dmac_pdev = of_find_device_by_node(dma_spec->np); 1812 1813 dma_cap_zero(mask); 1814 dma_cap_set(DMA_SLAVE, mask); 1815 1816 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL); 1817 if (!atslave) 1818 return NULL; 1819 1820 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1821 /* 1822 * We can fill both SRC_PER and DST_PER, one of these fields will be 1823 * ignored depending on DMA transfer direction. 1824 */ 1825 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1826 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1827 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1828 /* 1829 * We have to translate the value we get from the device tree since 1830 * the half FIFO configuration value had to be 0 to keep backward 1831 * compatibility. 1832 */ 1833 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1834 case AT91_DMA_CFG_FIFOCFG_ALAP: 1835 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1836 break; 1837 case AT91_DMA_CFG_FIFOCFG_ASAP: 1838 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1839 break; 1840 case AT91_DMA_CFG_FIFOCFG_HALF: 1841 default: 1842 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1843 } 1844 atslave->dma_dev = &dmac_pdev->dev; 1845 1846 chan = dma_request_channel(mask, at_dma_filter, atslave); 1847 if (!chan) 1848 return NULL; 1849 1850 atchan = to_at_dma_chan(chan); 1851 atchan->per_if = dma_spec->args[0] & 0xff; 1852 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1853 1854 return chan; 1855 } 1856 #else 1857 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1858 struct of_dma *of_dma) 1859 { 1860 return NULL; 1861 } 1862 #endif 1863 1864 /*-- Module Management -----------------------------------------------*/ 1865 1866 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1867 static struct at_dma_platform_data at91sam9rl_config = { 1868 .nr_channels = 2, 1869 }; 1870 static struct at_dma_platform_data at91sam9g45_config = { 1871 .nr_channels = 8, 1872 }; 1873 1874 #if defined(CONFIG_OF) 1875 static const struct of_device_id atmel_dma_dt_ids[] = { 1876 { 1877 .compatible = "atmel,at91sam9rl-dma", 1878 .data = &at91sam9rl_config, 1879 }, { 1880 .compatible = "atmel,at91sam9g45-dma", 1881 .data = &at91sam9g45_config, 1882 }, { 1883 /* sentinel */ 1884 } 1885 }; 1886 1887 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1888 #endif 1889 1890 static const struct platform_device_id atdma_devtypes[] = { 1891 { 1892 .name = "at91sam9rl_dma", 1893 .driver_data = (unsigned long) &at91sam9rl_config, 1894 }, { 1895 .name = "at91sam9g45_dma", 1896 .driver_data = (unsigned long) &at91sam9g45_config, 1897 }, { 1898 /* sentinel */ 1899 } 1900 }; 1901 1902 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1903 struct platform_device *pdev) 1904 { 1905 if (pdev->dev.of_node) { 1906 const struct of_device_id *match; 1907 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1908 if (match == NULL) 1909 return NULL; 1910 return match->data; 1911 } 1912 return (struct at_dma_platform_data *) 1913 platform_get_device_id(pdev)->driver_data; 1914 } 1915 1916 /** 1917 * at_dma_off - disable DMA controller 1918 * @atdma: the Atmel HDAMC device 1919 */ 1920 static void at_dma_off(struct at_dma *atdma) 1921 { 1922 dma_writel(atdma, EN, 0); 1923 1924 /* disable all interrupts */ 1925 dma_writel(atdma, EBCIDR, -1L); 1926 1927 /* confirm that all channels are disabled */ 1928 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1929 cpu_relax(); 1930 } 1931 1932 static int __init at_dma_probe(struct platform_device *pdev) 1933 { 1934 struct resource *io; 1935 struct at_dma *atdma; 1936 size_t size; 1937 int irq; 1938 int err; 1939 int i; 1940 const struct at_dma_platform_data *plat_dat; 1941 1942 /* setup platform data for each SoC */ 1943 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1944 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask); 1945 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1946 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1947 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1948 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1949 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1950 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1951 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask); 1952 1953 /* get DMA parameters from controller type */ 1954 plat_dat = at_dma_get_driver_data(pdev); 1955 if (!plat_dat) 1956 return -ENODEV; 1957 1958 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1959 if (!io) 1960 return -EINVAL; 1961 1962 irq = platform_get_irq(pdev, 0); 1963 if (irq < 0) 1964 return irq; 1965 1966 size = sizeof(struct at_dma); 1967 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1968 atdma = kzalloc(size, GFP_KERNEL); 1969 if (!atdma) 1970 return -ENOMEM; 1971 1972 /* discover transaction capabilities */ 1973 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1974 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1975 1976 size = resource_size(io); 1977 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1978 err = -EBUSY; 1979 goto err_kfree; 1980 } 1981 1982 atdma->regs = ioremap(io->start, size); 1983 if (!atdma->regs) { 1984 err = -ENOMEM; 1985 goto err_release_r; 1986 } 1987 1988 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1989 if (IS_ERR(atdma->clk)) { 1990 err = PTR_ERR(atdma->clk); 1991 goto err_clk; 1992 } 1993 err = clk_prepare_enable(atdma->clk); 1994 if (err) 1995 goto err_clk_prepare; 1996 1997 /* force dma off, just in case */ 1998 at_dma_off(atdma); 1999 2000 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 2001 if (err) 2002 goto err_irq; 2003 2004 platform_set_drvdata(pdev, atdma); 2005 2006 /* create a pool of consistent memory blocks for hardware descriptors */ 2007 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 2008 &pdev->dev, sizeof(struct at_desc), 2009 4 /* word alignment */, 0); 2010 if (!atdma->dma_desc_pool) { 2011 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 2012 err = -ENOMEM; 2013 goto err_desc_pool_create; 2014 } 2015 2016 /* create a pool of consistent memory blocks for memset blocks */ 2017 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 2018 &pdev->dev, sizeof(int), 4, 0); 2019 if (!atdma->memset_pool) { 2020 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 2021 err = -ENOMEM; 2022 goto err_memset_pool_create; 2023 } 2024 2025 /* clear any pending interrupt */ 2026 while (dma_readl(atdma, EBCISR)) 2027 cpu_relax(); 2028 2029 /* initialize channels related values */ 2030 INIT_LIST_HEAD(&atdma->dma_common.channels); 2031 for (i = 0; i < plat_dat->nr_channels; i++) { 2032 struct at_dma_chan *atchan = &atdma->chan[i]; 2033 2034 atchan->mem_if = AT_DMA_MEM_IF; 2035 atchan->per_if = AT_DMA_PER_IF; 2036 atchan->chan_common.device = &atdma->dma_common; 2037 dma_cookie_init(&atchan->chan_common); 2038 list_add_tail(&atchan->chan_common.device_node, 2039 &atdma->dma_common.channels); 2040 2041 atchan->ch_regs = atdma->regs + ch_regs(i); 2042 spin_lock_init(&atchan->lock); 2043 atchan->mask = 1 << i; 2044 2045 INIT_LIST_HEAD(&atchan->active_list); 2046 INIT_LIST_HEAD(&atchan->queue); 2047 INIT_LIST_HEAD(&atchan->free_list); 2048 2049 tasklet_init(&atchan->tasklet, atc_tasklet, 2050 (unsigned long)atchan); 2051 atc_enable_chan_irq(atdma, i); 2052 } 2053 2054 /* set base routines */ 2055 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 2056 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 2057 atdma->dma_common.device_tx_status = atc_tx_status; 2058 atdma->dma_common.device_issue_pending = atc_issue_pending; 2059 atdma->dma_common.dev = &pdev->dev; 2060 2061 /* set prep routines based on capability */ 2062 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 2063 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 2064 2065 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 2066 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 2067 2068 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 2069 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 2070 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 2071 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 2072 } 2073 2074 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 2075 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 2076 /* controller can do slave DMA: can trigger cyclic transfers */ 2077 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 2078 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 2079 atdma->dma_common.device_config = atc_config; 2080 atdma->dma_common.device_pause = atc_pause; 2081 atdma->dma_common.device_resume = atc_resume; 2082 atdma->dma_common.device_terminate_all = atc_terminate_all; 2083 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 2084 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 2085 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2086 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2087 } 2088 2089 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)) 2090 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg; 2091 2092 dma_writel(atdma, EN, AT_DMA_ENABLE); 2093 2094 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n", 2095 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 2096 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 2097 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 2098 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "", 2099 plat_dat->nr_channels); 2100 2101 dma_async_device_register(&atdma->dma_common); 2102 2103 /* 2104 * Do not return an error if the dmac node is not present in order to 2105 * not break the existing way of requesting channel with 2106 * dma_request_channel(). 2107 */ 2108 if (pdev->dev.of_node) { 2109 err = of_dma_controller_register(pdev->dev.of_node, 2110 at_dma_xlate, atdma); 2111 if (err) { 2112 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 2113 goto err_of_dma_controller_register; 2114 } 2115 } 2116 2117 return 0; 2118 2119 err_of_dma_controller_register: 2120 dma_async_device_unregister(&atdma->dma_common); 2121 dma_pool_destroy(atdma->memset_pool); 2122 err_memset_pool_create: 2123 dma_pool_destroy(atdma->dma_desc_pool); 2124 err_desc_pool_create: 2125 free_irq(platform_get_irq(pdev, 0), atdma); 2126 err_irq: 2127 clk_disable_unprepare(atdma->clk); 2128 err_clk_prepare: 2129 clk_put(atdma->clk); 2130 err_clk: 2131 iounmap(atdma->regs); 2132 atdma->regs = NULL; 2133 err_release_r: 2134 release_mem_region(io->start, size); 2135 err_kfree: 2136 kfree(atdma); 2137 return err; 2138 } 2139 2140 static int at_dma_remove(struct platform_device *pdev) 2141 { 2142 struct at_dma *atdma = platform_get_drvdata(pdev); 2143 struct dma_chan *chan, *_chan; 2144 struct resource *io; 2145 2146 at_dma_off(atdma); 2147 dma_async_device_unregister(&atdma->dma_common); 2148 2149 dma_pool_destroy(atdma->memset_pool); 2150 dma_pool_destroy(atdma->dma_desc_pool); 2151 free_irq(platform_get_irq(pdev, 0), atdma); 2152 2153 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2154 device_node) { 2155 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2156 2157 /* Disable interrupts */ 2158 atc_disable_chan_irq(atdma, chan->chan_id); 2159 2160 tasklet_kill(&atchan->tasklet); 2161 list_del(&chan->device_node); 2162 } 2163 2164 clk_disable_unprepare(atdma->clk); 2165 clk_put(atdma->clk); 2166 2167 iounmap(atdma->regs); 2168 atdma->regs = NULL; 2169 2170 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2171 release_mem_region(io->start, resource_size(io)); 2172 2173 kfree(atdma); 2174 2175 return 0; 2176 } 2177 2178 static void at_dma_shutdown(struct platform_device *pdev) 2179 { 2180 struct at_dma *atdma = platform_get_drvdata(pdev); 2181 2182 at_dma_off(platform_get_drvdata(pdev)); 2183 clk_disable_unprepare(atdma->clk); 2184 } 2185 2186 static int at_dma_prepare(struct device *dev) 2187 { 2188 struct platform_device *pdev = to_platform_device(dev); 2189 struct at_dma *atdma = platform_get_drvdata(pdev); 2190 struct dma_chan *chan, *_chan; 2191 2192 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2193 device_node) { 2194 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2195 /* wait for transaction completion (except in cyclic case) */ 2196 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2197 return -EAGAIN; 2198 } 2199 return 0; 2200 } 2201 2202 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2203 { 2204 struct dma_chan *chan = &atchan->chan_common; 2205 2206 /* Channel should be paused by user 2207 * do it anyway even if it is not done already */ 2208 if (!atc_chan_is_paused(atchan)) { 2209 dev_warn(chan2dev(chan), 2210 "cyclic channel not paused, should be done by channel user\n"); 2211 atc_pause(chan); 2212 } 2213 2214 /* now preserve additional data for cyclic operations */ 2215 /* next descriptor address in the cyclic list */ 2216 atchan->save_dscr = channel_readl(atchan, DSCR); 2217 2218 vdbg_dump_regs(atchan); 2219 } 2220 2221 static int at_dma_suspend_noirq(struct device *dev) 2222 { 2223 struct platform_device *pdev = to_platform_device(dev); 2224 struct at_dma *atdma = platform_get_drvdata(pdev); 2225 struct dma_chan *chan, *_chan; 2226 2227 /* preserve data */ 2228 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2229 device_node) { 2230 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2231 2232 if (atc_chan_is_cyclic(atchan)) 2233 atc_suspend_cyclic(atchan); 2234 atchan->save_cfg = channel_readl(atchan, CFG); 2235 } 2236 atdma->save_imr = dma_readl(atdma, EBCIMR); 2237 2238 /* disable DMA controller */ 2239 at_dma_off(atdma); 2240 clk_disable_unprepare(atdma->clk); 2241 return 0; 2242 } 2243 2244 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2245 { 2246 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2247 2248 /* restore channel status for cyclic descriptors list: 2249 * next descriptor in the cyclic list at the time of suspend */ 2250 channel_writel(atchan, SADDR, 0); 2251 channel_writel(atchan, DADDR, 0); 2252 channel_writel(atchan, CTRLA, 0); 2253 channel_writel(atchan, CTRLB, 0); 2254 channel_writel(atchan, DSCR, atchan->save_dscr); 2255 dma_writel(atdma, CHER, atchan->mask); 2256 2257 /* channel pause status should be removed by channel user 2258 * We cannot take the initiative to do it here */ 2259 2260 vdbg_dump_regs(atchan); 2261 } 2262 2263 static int at_dma_resume_noirq(struct device *dev) 2264 { 2265 struct platform_device *pdev = to_platform_device(dev); 2266 struct at_dma *atdma = platform_get_drvdata(pdev); 2267 struct dma_chan *chan, *_chan; 2268 2269 /* bring back DMA controller */ 2270 clk_prepare_enable(atdma->clk); 2271 dma_writel(atdma, EN, AT_DMA_ENABLE); 2272 2273 /* clear any pending interrupt */ 2274 while (dma_readl(atdma, EBCISR)) 2275 cpu_relax(); 2276 2277 /* restore saved data */ 2278 dma_writel(atdma, EBCIER, atdma->save_imr); 2279 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2280 device_node) { 2281 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2282 2283 channel_writel(atchan, CFG, atchan->save_cfg); 2284 if (atc_chan_is_cyclic(atchan)) 2285 atc_resume_cyclic(atchan); 2286 } 2287 return 0; 2288 } 2289 2290 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2291 .prepare = at_dma_prepare, 2292 .suspend_noirq = at_dma_suspend_noirq, 2293 .resume_noirq = at_dma_resume_noirq, 2294 }; 2295 2296 static struct platform_driver at_dma_driver = { 2297 .remove = at_dma_remove, 2298 .shutdown = at_dma_shutdown, 2299 .id_table = atdma_devtypes, 2300 .driver = { 2301 .name = "at_hdmac", 2302 .pm = &at_dma_dev_pm_ops, 2303 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2304 }, 2305 }; 2306 2307 static int __init at_dma_init(void) 2308 { 2309 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2310 } 2311 subsys_initcall(at_dma_init); 2312 2313 static void __exit at_dma_exit(void) 2314 { 2315 platform_driver_unregister(&at_dma_driver); 2316 } 2317 module_exit(at_dma_exit); 2318 2319 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2320 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2321 MODULE_LICENSE("GPL"); 2322 MODULE_ALIAS("platform:at_hdmac"); 2323