xref: /linux/drivers/dma/at_hdmac.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		memset(desc, 0, sizeof(struct at_desc));
117 		INIT_LIST_HEAD(&desc->tx_list);
118 		dma_async_tx_descriptor_init(&desc->txd, chan);
119 		/* txd.flags will be overwritten in prep functions */
120 		desc->txd.flags = DMA_CTRL_ACK;
121 		desc->txd.tx_submit = atc_tx_submit;
122 		desc->txd.phys = phys;
123 	}
124 
125 	return desc;
126 }
127 
128 /**
129  * atc_desc_get - get an unused descriptor from free_list
130  * @atchan: channel we want a new descriptor for
131  */
132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133 {
134 	struct at_desc *desc, *_desc;
135 	struct at_desc *ret = NULL;
136 	unsigned long flags;
137 	unsigned int i = 0;
138 	LIST_HEAD(tmp_list);
139 
140 	spin_lock_irqsave(&atchan->lock, flags);
141 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 		i++;
143 		if (async_tx_test_ack(&desc->txd)) {
144 			list_del(&desc->desc_node);
145 			ret = desc;
146 			break;
147 		}
148 		dev_dbg(chan2dev(&atchan->chan_common),
149 				"desc %p not ACKed\n", desc);
150 	}
151 	spin_unlock_irqrestore(&atchan->lock, flags);
152 	dev_vdbg(chan2dev(&atchan->chan_common),
153 		"scanned %u descriptors on freelist\n", i);
154 
155 	/* no more descriptor available in initial pool: create one more */
156 	if (!ret) {
157 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 		if (ret) {
159 			spin_lock_irqsave(&atchan->lock, flags);
160 			atchan->descs_allocated++;
161 			spin_unlock_irqrestore(&atchan->lock, flags);
162 		} else {
163 			dev_err(chan2dev(&atchan->chan_common),
164 					"not enough descriptors available\n");
165 		}
166 	}
167 
168 	return ret;
169 }
170 
171 /**
172  * atc_desc_put - move a descriptor, including any children, to the free list
173  * @atchan: channel we work on
174  * @desc: descriptor, at the head of a chain, to move to free list
175  */
176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177 {
178 	if (desc) {
179 		struct at_desc *child;
180 		unsigned long flags;
181 
182 		spin_lock_irqsave(&atchan->lock, flags);
183 		list_for_each_entry(child, &desc->tx_list, desc_node)
184 			dev_vdbg(chan2dev(&atchan->chan_common),
185 					"moving child desc %p to freelist\n",
186 					child);
187 		list_splice_init(&desc->tx_list, &atchan->free_list);
188 		dev_vdbg(chan2dev(&atchan->chan_common),
189 			 "moving desc %p to freelist\n", desc);
190 		list_add(&desc->desc_node, &atchan->free_list);
191 		spin_unlock_irqrestore(&atchan->lock, flags);
192 	}
193 }
194 
195 /**
196  * atc_desc_chain - build chain adding a descriptor
197  * @first: address of first descriptor of the chain
198  * @prev: address of previous descriptor of the chain
199  * @desc: descriptor to queue
200  *
201  * Called from prep_* functions
202  */
203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 			   struct at_desc *desc)
205 {
206 	if (!(*first)) {
207 		*first = desc;
208 	} else {
209 		/* inform the HW lli about chaining */
210 		(*prev)->lli.dscr = desc->txd.phys;
211 		/* insert the link descriptor to the LD ring */
212 		list_add_tail(&desc->desc_node,
213 				&(*first)->tx_list);
214 	}
215 	*prev = desc;
216 }
217 
218 /**
219  * atc_dostart - starts the DMA engine for real
220  * @atchan: the channel we want to start
221  * @first: first descriptor in the list we want to begin with
222  *
223  * Called with atchan->lock held and bh disabled
224  */
225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226 {
227 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
228 
229 	/* ASSERT:  channel is idle */
230 	if (atc_chan_is_enabled(atchan)) {
231 		dev_err(chan2dev(&atchan->chan_common),
232 			"BUG: Attempted to start non-idle channel\n");
233 		dev_err(chan2dev(&atchan->chan_common),
234 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 			channel_readl(atchan, SADDR),
236 			channel_readl(atchan, DADDR),
237 			channel_readl(atchan, CTRLA),
238 			channel_readl(atchan, CTRLB),
239 			channel_readl(atchan, DSCR));
240 
241 		/* The tasklet will hopefully advance the queue... */
242 		return;
243 	}
244 
245 	vdbg_dump_regs(atchan);
246 
247 	channel_writel(atchan, SADDR, 0);
248 	channel_writel(atchan, DADDR, 0);
249 	channel_writel(atchan, CTRLA, 0);
250 	channel_writel(atchan, CTRLB, 0);
251 	channel_writel(atchan, DSCR, first->txd.phys);
252 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 		       ATC_SPIP_BOUNDARY(first->boundary));
254 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 		       ATC_DPIP_BOUNDARY(first->boundary));
256 	dma_writel(atdma, CHER, atchan->mask);
257 
258 	vdbg_dump_regs(atchan);
259 }
260 
261 /*
262  * atc_get_desc_by_cookie - get the descriptor of a cookie
263  * @atchan: the DMA channel
264  * @cookie: the cookie to get the descriptor for
265  */
266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 						dma_cookie_t cookie)
268 {
269 	struct at_desc *desc, *_desc;
270 
271 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 		if (desc->txd.cookie == cookie)
273 			return desc;
274 	}
275 
276 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 		if (desc->txd.cookie == cookie)
278 			return desc;
279 	}
280 
281 	return NULL;
282 }
283 
284 /**
285  * atc_calc_bytes_left - calculates the number of bytes left according to the
286  * value read from CTRLA.
287  *
288  * @current_len: the number of bytes left before reading CTRLA
289  * @ctrla: the value of CTRLA
290  */
291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292 {
293 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295 
296 	/*
297 	 * According to the datasheet, when reading the Control A Register
298 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 	 * number of transfers completed on the Source Interface.
300 	 * So btsize is always a number of source width transfers.
301 	 */
302 	return current_len - (btsize << src_width);
303 }
304 
305 /**
306  * atc_get_bytes_left - get the number of bytes residue for a cookie
307  * @chan: DMA channel
308  * @cookie: transaction identifier to check status of
309  */
310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311 {
312 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
313 	struct at_desc *desc_first = atc_first_active(atchan);
314 	struct at_desc *desc;
315 	int ret;
316 	u32 ctrla, dscr, trials;
317 
318 	/*
319 	 * If the cookie doesn't match to the currently running transfer then
320 	 * we can return the total length of the associated DMA transfer,
321 	 * because it is still queued.
322 	 */
323 	desc = atc_get_desc_by_cookie(atchan, cookie);
324 	if (desc == NULL)
325 		return -EINVAL;
326 	else if (desc != desc_first)
327 		return desc->total_len;
328 
329 	/* cookie matches to the currently running transfer */
330 	ret = desc_first->total_len;
331 
332 	if (desc_first->lli.dscr) {
333 		/* hardware linked list transfer */
334 
335 		/*
336 		 * Calculate the residue by removing the length of the child
337 		 * descriptors already transferred from the total length.
338 		 * To get the current child descriptor we can use the value of
339 		 * the channel's DSCR register and compare it against the value
340 		 * of the hardware linked list structure of each child
341 		 * descriptor.
342 		 *
343 		 * The CTRLA register provides us with the amount of data
344 		 * already read from the source for the current child
345 		 * descriptor. So we can compute a more accurate residue by also
346 		 * removing the number of bytes corresponding to this amount of
347 		 * data.
348 		 *
349 		 * However, the DSCR and CTRLA registers cannot be read both
350 		 * atomically. Hence a race condition may occur: the first read
351 		 * register may refer to one child descriptor whereas the second
352 		 * read may refer to a later child descriptor in the list
353 		 * because of the DMA transfer progression inbetween the two
354 		 * reads.
355 		 *
356 		 * One solution could have been to pause the DMA transfer, read
357 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 		 * this approach presents some drawbacks:
359 		 * - If the DMA transfer is paused, RX overruns or TX underruns
360 		 *   are more likey to occur depending on the system latency.
361 		 *   Taking the USART driver as an example, it uses a cyclic DMA
362 		 *   transfer to read data from the Receive Holding Register
363 		 *   (RHR) to avoid RX overruns since the RHR is not protected
364 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 		 *   to compute the residue would break the USART driver design.
366 		 * - The atc_pause() function masks interrupts but we'd rather
367 		 *   avoid to do so for system latency purpose.
368 		 *
369 		 * Then we'd rather use another solution: the DSCR is read a
370 		 * first time, the CTRLA is read in turn, next the DSCR is read
371 		 * a second time. If the two consecutive read values of the DSCR
372 		 * are the same then we assume both refers to the very same
373 		 * child descriptor as well as the CTRLA value read inbetween
374 		 * does. For cyclic tranfers, the assumption is that a full loop
375 		 * is "not so fast".
376 		 * If the two DSCR values are different, we read again the CTRLA
377 		 * then the DSCR till two consecutive read values from DSCR are
378 		 * equal or till the maxium trials is reach.
379 		 * This algorithm is very unlikely not to find a stable value for
380 		 * DSCR.
381 		 */
382 
383 		dscr = channel_readl(atchan, DSCR);
384 		rmb(); /* ensure DSCR is read before CTRLA */
385 		ctrla = channel_readl(atchan, CTRLA);
386 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 			u32 new_dscr;
388 
389 			rmb(); /* ensure DSCR is read after CTRLA */
390 			new_dscr = channel_readl(atchan, DSCR);
391 
392 			/*
393 			 * If the DSCR register value has not changed inside the
394 			 * DMA controller since the previous read, we assume
395 			 * that both the dscr and ctrla values refers to the
396 			 * very same descriptor.
397 			 */
398 			if (likely(new_dscr == dscr))
399 				break;
400 
401 			/*
402 			 * DSCR has changed inside the DMA controller, so the
403 			 * previouly read value of CTRLA may refer to an already
404 			 * processed descriptor hence could be outdated.
405 			 * We need to update ctrla to match the current
406 			 * descriptor.
407 			 */
408 			dscr = new_dscr;
409 			rmb(); /* ensure DSCR is read before CTRLA */
410 			ctrla = channel_readl(atchan, CTRLA);
411 		}
412 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 			return -ETIMEDOUT;
414 
415 		/* for the first descriptor we can be more accurate */
416 		if (desc_first->lli.dscr == dscr)
417 			return atc_calc_bytes_left(ret, ctrla);
418 
419 		ret -= desc_first->len;
420 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 			if (desc->lli.dscr == dscr)
422 				break;
423 
424 			ret -= desc->len;
425 		}
426 
427 		/*
428 		 * For the current descriptor in the chain we can calculate
429 		 * the remaining bytes using the channel's register.
430 		 */
431 		ret = atc_calc_bytes_left(ret, ctrla);
432 	} else {
433 		/* single transfer */
434 		ctrla = channel_readl(atchan, CTRLA);
435 		ret = atc_calc_bytes_left(ret, ctrla);
436 	}
437 
438 	return ret;
439 }
440 
441 /**
442  * atc_chain_complete - finish work for one transaction chain
443  * @atchan: channel we work on
444  * @desc: descriptor at the head of the chain we want do complete
445  *
446  * Called with atchan->lock held and bh disabled */
447 static void
448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449 {
450 	struct dma_async_tx_descriptor	*txd = &desc->txd;
451 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
452 
453 	dev_vdbg(chan2dev(&atchan->chan_common),
454 		"descriptor %u complete\n", txd->cookie);
455 
456 	/* mark the descriptor as complete for non cyclic cases only */
457 	if (!atc_chan_is_cyclic(atchan))
458 		dma_cookie_complete(txd);
459 
460 	/* If the transfer was a memset, free our temporary buffer */
461 	if (desc->memset_buffer) {
462 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463 			      desc->memset_paddr);
464 		desc->memset_buffer = false;
465 	}
466 
467 	/* move children to free_list */
468 	list_splice_init(&desc->tx_list, &atchan->free_list);
469 	/* move myself to free_list */
470 	list_move(&desc->desc_node, &atchan->free_list);
471 
472 	dma_descriptor_unmap(txd);
473 	/* for cyclic transfers,
474 	 * no need to replay callback function while stopping */
475 	if (!atc_chan_is_cyclic(atchan)) {
476 		dma_async_tx_callback	callback = txd->callback;
477 		void			*param = txd->callback_param;
478 
479 		/*
480 		 * The API requires that no submissions are done from a
481 		 * callback, so we don't need to drop the lock here
482 		 */
483 		if (callback)
484 			callback(param);
485 	}
486 
487 	dma_run_dependencies(txd);
488 }
489 
490 /**
491  * atc_complete_all - finish work for all transactions
492  * @atchan: channel to complete transactions for
493  *
494  * Eventually submit queued descriptors if any
495  *
496  * Assume channel is idle while calling this function
497  * Called with atchan->lock held and bh disabled
498  */
499 static void atc_complete_all(struct at_dma_chan *atchan)
500 {
501 	struct at_desc *desc, *_desc;
502 	LIST_HEAD(list);
503 
504 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
505 
506 	/*
507 	 * Submit queued descriptors ASAP, i.e. before we go through
508 	 * the completed ones.
509 	 */
510 	if (!list_empty(&atchan->queue))
511 		atc_dostart(atchan, atc_first_queued(atchan));
512 	/* empty active_list now it is completed */
513 	list_splice_init(&atchan->active_list, &list);
514 	/* empty queue list by moving descriptors (if any) to active_list */
515 	list_splice_init(&atchan->queue, &atchan->active_list);
516 
517 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
518 		atc_chain_complete(atchan, desc);
519 }
520 
521 /**
522  * atc_advance_work - at the end of a transaction, move forward
523  * @atchan: channel where the transaction ended
524  *
525  * Called with atchan->lock held and bh disabled
526  */
527 static void atc_advance_work(struct at_dma_chan *atchan)
528 {
529 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
530 
531 	if (atc_chan_is_enabled(atchan))
532 		return;
533 
534 	if (list_empty(&atchan->active_list) ||
535 	    list_is_singular(&atchan->active_list)) {
536 		atc_complete_all(atchan);
537 	} else {
538 		atc_chain_complete(atchan, atc_first_active(atchan));
539 		/* advance work */
540 		atc_dostart(atchan, atc_first_active(atchan));
541 	}
542 }
543 
544 
545 /**
546  * atc_handle_error - handle errors reported by DMA controller
547  * @atchan: channel where error occurs
548  *
549  * Called with atchan->lock held and bh disabled
550  */
551 static void atc_handle_error(struct at_dma_chan *atchan)
552 {
553 	struct at_desc *bad_desc;
554 	struct at_desc *child;
555 
556 	/*
557 	 * The descriptor currently at the head of the active list is
558 	 * broked. Since we don't have any way to report errors, we'll
559 	 * just have to scream loudly and try to carry on.
560 	 */
561 	bad_desc = atc_first_active(atchan);
562 	list_del_init(&bad_desc->desc_node);
563 
564 	/* As we are stopped, take advantage to push queued descriptors
565 	 * in active_list */
566 	list_splice_init(&atchan->queue, atchan->active_list.prev);
567 
568 	/* Try to restart the controller */
569 	if (!list_empty(&atchan->active_list))
570 		atc_dostart(atchan, atc_first_active(atchan));
571 
572 	/*
573 	 * KERN_CRITICAL may seem harsh, but since this only happens
574 	 * when someone submits a bad physical address in a
575 	 * descriptor, we should consider ourselves lucky that the
576 	 * controller flagged an error instead of scribbling over
577 	 * random memory locations.
578 	 */
579 	dev_crit(chan2dev(&atchan->chan_common),
580 			"Bad descriptor submitted for DMA!\n");
581 	dev_crit(chan2dev(&atchan->chan_common),
582 			"  cookie: %d\n", bad_desc->txd.cookie);
583 	atc_dump_lli(atchan, &bad_desc->lli);
584 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
585 		atc_dump_lli(atchan, &child->lli);
586 
587 	/* Pretend the descriptor completed successfully */
588 	atc_chain_complete(atchan, bad_desc);
589 }
590 
591 /**
592  * atc_handle_cyclic - at the end of a period, run callback function
593  * @atchan: channel used for cyclic operations
594  *
595  * Called with atchan->lock held and bh disabled
596  */
597 static void atc_handle_cyclic(struct at_dma_chan *atchan)
598 {
599 	struct at_desc			*first = atc_first_active(atchan);
600 	struct dma_async_tx_descriptor	*txd = &first->txd;
601 	dma_async_tx_callback		callback = txd->callback;
602 	void				*param = txd->callback_param;
603 
604 	dev_vdbg(chan2dev(&atchan->chan_common),
605 			"new cyclic period llp 0x%08x\n",
606 			channel_readl(atchan, DSCR));
607 
608 	if (callback)
609 		callback(param);
610 }
611 
612 /*--  IRQ & Tasklet  ---------------------------------------------------*/
613 
614 static void atc_tasklet(unsigned long data)
615 {
616 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&atchan->lock, flags);
620 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
621 		atc_handle_error(atchan);
622 	else if (atc_chan_is_cyclic(atchan))
623 		atc_handle_cyclic(atchan);
624 	else
625 		atc_advance_work(atchan);
626 
627 	spin_unlock_irqrestore(&atchan->lock, flags);
628 }
629 
630 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
631 {
632 	struct at_dma		*atdma = (struct at_dma *)dev_id;
633 	struct at_dma_chan	*atchan;
634 	int			i;
635 	u32			status, pending, imr;
636 	int			ret = IRQ_NONE;
637 
638 	do {
639 		imr = dma_readl(atdma, EBCIMR);
640 		status = dma_readl(atdma, EBCISR);
641 		pending = status & imr;
642 
643 		if (!pending)
644 			break;
645 
646 		dev_vdbg(atdma->dma_common.dev,
647 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
648 			 status, imr, pending);
649 
650 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
651 			atchan = &atdma->chan[i];
652 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
653 				if (pending & AT_DMA_ERR(i)) {
654 					/* Disable channel on AHB error */
655 					dma_writel(atdma, CHDR,
656 						AT_DMA_RES(i) | atchan->mask);
657 					/* Give information to tasklet */
658 					set_bit(ATC_IS_ERROR, &atchan->status);
659 				}
660 				tasklet_schedule(&atchan->tasklet);
661 				ret = IRQ_HANDLED;
662 			}
663 		}
664 
665 	} while (pending);
666 
667 	return ret;
668 }
669 
670 
671 /*--  DMA Engine API  --------------------------------------------------*/
672 
673 /**
674  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
675  * @desc: descriptor at the head of the transaction chain
676  *
677  * Queue chain if DMA engine is working already
678  *
679  * Cookie increment and adding to active_list or queue must be atomic
680  */
681 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
682 {
683 	struct at_desc		*desc = txd_to_at_desc(tx);
684 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
685 	dma_cookie_t		cookie;
686 	unsigned long		flags;
687 
688 	spin_lock_irqsave(&atchan->lock, flags);
689 	cookie = dma_cookie_assign(tx);
690 
691 	if (list_empty(&atchan->active_list)) {
692 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
693 				desc->txd.cookie);
694 		atc_dostart(atchan, desc);
695 		list_add_tail(&desc->desc_node, &atchan->active_list);
696 	} else {
697 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
698 				desc->txd.cookie);
699 		list_add_tail(&desc->desc_node, &atchan->queue);
700 	}
701 
702 	spin_unlock_irqrestore(&atchan->lock, flags);
703 
704 	return cookie;
705 }
706 
707 /**
708  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
709  * @chan: the channel to prepare operation on
710  * @xt: Interleaved transfer template
711  * @flags: tx descriptor status flags
712  */
713 static struct dma_async_tx_descriptor *
714 atc_prep_dma_interleaved(struct dma_chan *chan,
715 			 struct dma_interleaved_template *xt,
716 			 unsigned long flags)
717 {
718 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
719 	struct data_chunk	*first = xt->sgl;
720 	struct at_desc		*desc = NULL;
721 	size_t			xfer_count;
722 	unsigned int		dwidth;
723 	u32			ctrla;
724 	u32			ctrlb;
725 	size_t			len = 0;
726 	int			i;
727 
728 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
729 		return NULL;
730 
731 	dev_info(chan2dev(chan),
732 		 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n",
733 		__func__, xt->src_start, xt->dst_start, xt->numf,
734 		xt->frame_size, flags);
735 
736 	/*
737 	 * The controller can only "skip" X bytes every Y bytes, so we
738 	 * need to make sure we are given a template that fit that
739 	 * description, ie a template with chunks that always have the
740 	 * same size, with the same ICGs.
741 	 */
742 	for (i = 0; i < xt->frame_size; i++) {
743 		struct data_chunk *chunk = xt->sgl + i;
744 
745 		if ((chunk->size != xt->sgl->size) ||
746 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
747 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
748 			dev_err(chan2dev(chan),
749 				"%s: the controller can transfer only identical chunks\n",
750 				__func__);
751 			return NULL;
752 		}
753 
754 		len += chunk->size;
755 	}
756 
757 	dwidth = atc_get_xfer_width(xt->src_start,
758 				    xt->dst_start, len);
759 
760 	xfer_count = len >> dwidth;
761 	if (xfer_count > ATC_BTSIZE_MAX) {
762 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
763 		return NULL;
764 	}
765 
766 	ctrla = ATC_SRC_WIDTH(dwidth) |
767 		ATC_DST_WIDTH(dwidth);
768 
769 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
770 		| ATC_SRC_ADDR_MODE_INCR
771 		| ATC_DST_ADDR_MODE_INCR
772 		| ATC_SRC_PIP
773 		| ATC_DST_PIP
774 		| ATC_FC_MEM2MEM;
775 
776 	/* create the transfer */
777 	desc = atc_desc_get(atchan);
778 	if (!desc) {
779 		dev_err(chan2dev(chan),
780 			"%s: couldn't allocate our descriptor\n", __func__);
781 		return NULL;
782 	}
783 
784 	desc->lli.saddr = xt->src_start;
785 	desc->lli.daddr = xt->dst_start;
786 	desc->lli.ctrla = ctrla | xfer_count;
787 	desc->lli.ctrlb = ctrlb;
788 
789 	desc->boundary = first->size >> dwidth;
790 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
791 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
792 
793 	desc->txd.cookie = -EBUSY;
794 	desc->total_len = desc->len = len;
795 
796 	/* set end-of-link to the last link descriptor of list*/
797 	set_desc_eol(desc);
798 
799 	desc->txd.flags = flags; /* client is in control of this ack */
800 
801 	return &desc->txd;
802 }
803 
804 /**
805  * atc_prep_dma_memcpy - prepare a memcpy operation
806  * @chan: the channel to prepare operation on
807  * @dest: operation virtual destination address
808  * @src: operation virtual source address
809  * @len: operation length
810  * @flags: tx descriptor status flags
811  */
812 static struct dma_async_tx_descriptor *
813 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
814 		size_t len, unsigned long flags)
815 {
816 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
817 	struct at_desc		*desc = NULL;
818 	struct at_desc		*first = NULL;
819 	struct at_desc		*prev = NULL;
820 	size_t			xfer_count;
821 	size_t			offset;
822 	unsigned int		src_width;
823 	unsigned int		dst_width;
824 	u32			ctrla;
825 	u32			ctrlb;
826 
827 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n",
828 			dest, src, len, flags);
829 
830 	if (unlikely(!len)) {
831 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
832 		return NULL;
833 	}
834 
835 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
836 		| ATC_SRC_ADDR_MODE_INCR
837 		| ATC_DST_ADDR_MODE_INCR
838 		| ATC_FC_MEM2MEM;
839 
840 	/*
841 	 * We can be a lot more clever here, but this should take care
842 	 * of the most common optimization.
843 	 */
844 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
845 
846 	ctrla = ATC_SRC_WIDTH(src_width) |
847 		ATC_DST_WIDTH(dst_width);
848 
849 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
850 		xfer_count = min_t(size_t, (len - offset) >> src_width,
851 				ATC_BTSIZE_MAX);
852 
853 		desc = atc_desc_get(atchan);
854 		if (!desc)
855 			goto err_desc_get;
856 
857 		desc->lli.saddr = src + offset;
858 		desc->lli.daddr = dest + offset;
859 		desc->lli.ctrla = ctrla | xfer_count;
860 		desc->lli.ctrlb = ctrlb;
861 
862 		desc->txd.cookie = 0;
863 		desc->len = xfer_count << src_width;
864 
865 		atc_desc_chain(&first, &prev, desc);
866 	}
867 
868 	/* First descriptor of the chain embedds additional information */
869 	first->txd.cookie = -EBUSY;
870 	first->total_len = len;
871 
872 	/* set end-of-link to the last link descriptor of list*/
873 	set_desc_eol(desc);
874 
875 	first->txd.flags = flags; /* client is in control of this ack */
876 
877 	return &first->txd;
878 
879 err_desc_get:
880 	atc_desc_put(atchan, first);
881 	return NULL;
882 }
883 
884 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
885 					      dma_addr_t psrc,
886 					      dma_addr_t pdst,
887 					      size_t len)
888 {
889 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
890 	struct at_desc *desc;
891 	size_t xfer_count;
892 
893 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
894 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
895 		ATC_SRC_ADDR_MODE_FIXED |
896 		ATC_DST_ADDR_MODE_INCR |
897 		ATC_FC_MEM2MEM;
898 
899 	xfer_count = len >> 2;
900 	if (xfer_count > ATC_BTSIZE_MAX) {
901 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
902 			__func__);
903 		return NULL;
904 	}
905 
906 	desc = atc_desc_get(atchan);
907 	if (!desc) {
908 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
909 			__func__);
910 		return NULL;
911 	}
912 
913 	desc->lli.saddr = psrc;
914 	desc->lli.daddr = pdst;
915 	desc->lli.ctrla = ctrla | xfer_count;
916 	desc->lli.ctrlb = ctrlb;
917 
918 	desc->txd.cookie = 0;
919 	desc->len = len;
920 
921 	return desc;
922 }
923 
924 /**
925  * atc_prep_dma_memset - prepare a memcpy operation
926  * @chan: the channel to prepare operation on
927  * @dest: operation virtual destination address
928  * @value: value to set memory buffer to
929  * @len: operation length
930  * @flags: tx descriptor status flags
931  */
932 static struct dma_async_tx_descriptor *
933 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
934 		    size_t len, unsigned long flags)
935 {
936 	struct at_dma		*atdma = to_at_dma(chan->device);
937 	struct at_desc		*desc;
938 	void __iomem		*vaddr;
939 	dma_addr_t		paddr;
940 
941 	dev_vdbg(chan2dev(chan), "%s: d0x%x v0x%x l0x%zx f0x%lx\n", __func__,
942 		dest, value, len, flags);
943 
944 	if (unlikely(!len)) {
945 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
946 		return NULL;
947 	}
948 
949 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
950 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
951 			__func__);
952 		return NULL;
953 	}
954 
955 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
956 	if (!vaddr) {
957 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
958 			__func__);
959 		return NULL;
960 	}
961 	*(u32*)vaddr = value;
962 
963 	desc = atc_create_memset_desc(chan, paddr, dest, len);
964 	if (!desc) {
965 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
966 			__func__);
967 		goto err_free_buffer;
968 	}
969 
970 	desc->memset_paddr = paddr;
971 	desc->memset_vaddr = vaddr;
972 	desc->memset_buffer = true;
973 
974 	desc->txd.cookie = -EBUSY;
975 	desc->total_len = len;
976 
977 	/* set end-of-link on the descriptor */
978 	set_desc_eol(desc);
979 
980 	desc->txd.flags = flags;
981 
982 	return &desc->txd;
983 
984 err_free_buffer:
985 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
986 	return NULL;
987 }
988 
989 static struct dma_async_tx_descriptor *
990 atc_prep_dma_memset_sg(struct dma_chan *chan,
991 		       struct scatterlist *sgl,
992 		       unsigned int sg_len, int value,
993 		       unsigned long flags)
994 {
995 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
996 	struct at_dma		*atdma = to_at_dma(chan->device);
997 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
998 	struct scatterlist	*sg;
999 	void __iomem		*vaddr;
1000 	dma_addr_t		paddr;
1001 	size_t			total_len = 0;
1002 	int			i;
1003 
1004 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1005 		 value, sg_len, flags);
1006 
1007 	if (unlikely(!sgl || !sg_len)) {
1008 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1009 			__func__);
1010 		return NULL;
1011 	}
1012 
1013 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1014 	if (!vaddr) {
1015 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1016 			__func__);
1017 		return NULL;
1018 	}
1019 	*(u32*)vaddr = value;
1020 
1021 	for_each_sg(sgl, sg, sg_len, i) {
1022 		dma_addr_t dest = sg_dma_address(sg);
1023 		size_t len = sg_dma_len(sg);
1024 
1025 		dev_vdbg(chan2dev(chan), "%s: d0x%08x, l0x%zx\n",
1026 			 __func__, dest, len);
1027 
1028 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1029 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1030 				__func__);
1031 			goto err_put_desc;
1032 		}
1033 
1034 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1035 		if (!desc)
1036 			goto err_put_desc;
1037 
1038 		atc_desc_chain(&first, &prev, desc);
1039 
1040 		total_len += len;
1041 	}
1042 
1043 	/*
1044 	 * Only set the buffer pointers on the last descriptor to
1045 	 * avoid free'ing while we have our transfer still going
1046 	 */
1047 	desc->memset_paddr = paddr;
1048 	desc->memset_vaddr = vaddr;
1049 	desc->memset_buffer = true;
1050 
1051 	first->txd.cookie = -EBUSY;
1052 	first->total_len = total_len;
1053 
1054 	/* set end-of-link on the descriptor */
1055 	set_desc_eol(desc);
1056 
1057 	first->txd.flags = flags;
1058 
1059 	return &first->txd;
1060 
1061 err_put_desc:
1062 	atc_desc_put(atchan, first);
1063 	return NULL;
1064 }
1065 
1066 /**
1067  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1068  * @chan: DMA channel
1069  * @sgl: scatterlist to transfer to/from
1070  * @sg_len: number of entries in @scatterlist
1071  * @direction: DMA direction
1072  * @flags: tx descriptor status flags
1073  * @context: transaction context (ignored)
1074  */
1075 static struct dma_async_tx_descriptor *
1076 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1077 		unsigned int sg_len, enum dma_transfer_direction direction,
1078 		unsigned long flags, void *context)
1079 {
1080 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1081 	struct at_dma_slave	*atslave = chan->private;
1082 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1083 	struct at_desc		*first = NULL;
1084 	struct at_desc		*prev = NULL;
1085 	u32			ctrla;
1086 	u32			ctrlb;
1087 	dma_addr_t		reg;
1088 	unsigned int		reg_width;
1089 	unsigned int		mem_width;
1090 	unsigned int		i;
1091 	struct scatterlist	*sg;
1092 	size_t			total_len = 0;
1093 
1094 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1095 			sg_len,
1096 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1097 			flags);
1098 
1099 	if (unlikely(!atslave || !sg_len)) {
1100 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1101 		return NULL;
1102 	}
1103 
1104 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1105 		| ATC_DCSIZE(sconfig->dst_maxburst);
1106 	ctrlb = ATC_IEN;
1107 
1108 	switch (direction) {
1109 	case DMA_MEM_TO_DEV:
1110 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1111 		ctrla |=  ATC_DST_WIDTH(reg_width);
1112 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1113 			| ATC_SRC_ADDR_MODE_INCR
1114 			| ATC_FC_MEM2PER
1115 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1116 		reg = sconfig->dst_addr;
1117 		for_each_sg(sgl, sg, sg_len, i) {
1118 			struct at_desc	*desc;
1119 			u32		len;
1120 			u32		mem;
1121 
1122 			desc = atc_desc_get(atchan);
1123 			if (!desc)
1124 				goto err_desc_get;
1125 
1126 			mem = sg_dma_address(sg);
1127 			len = sg_dma_len(sg);
1128 			if (unlikely(!len)) {
1129 				dev_dbg(chan2dev(chan),
1130 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1131 				goto err;
1132 			}
1133 			mem_width = 2;
1134 			if (unlikely(mem & 3 || len & 3))
1135 				mem_width = 0;
1136 
1137 			desc->lli.saddr = mem;
1138 			desc->lli.daddr = reg;
1139 			desc->lli.ctrla = ctrla
1140 					| ATC_SRC_WIDTH(mem_width)
1141 					| len >> mem_width;
1142 			desc->lli.ctrlb = ctrlb;
1143 			desc->len = len;
1144 
1145 			atc_desc_chain(&first, &prev, desc);
1146 			total_len += len;
1147 		}
1148 		break;
1149 	case DMA_DEV_TO_MEM:
1150 		reg_width = convert_buswidth(sconfig->src_addr_width);
1151 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1152 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1153 			| ATC_SRC_ADDR_MODE_FIXED
1154 			| ATC_FC_PER2MEM
1155 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1156 
1157 		reg = sconfig->src_addr;
1158 		for_each_sg(sgl, sg, sg_len, i) {
1159 			struct at_desc	*desc;
1160 			u32		len;
1161 			u32		mem;
1162 
1163 			desc = atc_desc_get(atchan);
1164 			if (!desc)
1165 				goto err_desc_get;
1166 
1167 			mem = sg_dma_address(sg);
1168 			len = sg_dma_len(sg);
1169 			if (unlikely(!len)) {
1170 				dev_dbg(chan2dev(chan),
1171 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1172 				goto err;
1173 			}
1174 			mem_width = 2;
1175 			if (unlikely(mem & 3 || len & 3))
1176 				mem_width = 0;
1177 
1178 			desc->lli.saddr = reg;
1179 			desc->lli.daddr = mem;
1180 			desc->lli.ctrla = ctrla
1181 					| ATC_DST_WIDTH(mem_width)
1182 					| len >> reg_width;
1183 			desc->lli.ctrlb = ctrlb;
1184 			desc->len = len;
1185 
1186 			atc_desc_chain(&first, &prev, desc);
1187 			total_len += len;
1188 		}
1189 		break;
1190 	default:
1191 		return NULL;
1192 	}
1193 
1194 	/* set end-of-link to the last link descriptor of list*/
1195 	set_desc_eol(prev);
1196 
1197 	/* First descriptor of the chain embedds additional information */
1198 	first->txd.cookie = -EBUSY;
1199 	first->total_len = total_len;
1200 
1201 	/* first link descriptor of list is responsible of flags */
1202 	first->txd.flags = flags; /* client is in control of this ack */
1203 
1204 	return &first->txd;
1205 
1206 err_desc_get:
1207 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1208 err:
1209 	atc_desc_put(atchan, first);
1210 	return NULL;
1211 }
1212 
1213 /**
1214  * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1215  * @chan: the channel to prepare operation on
1216  * @dst_sg: destination scatterlist
1217  * @dst_nents: number of destination scatterlist entries
1218  * @src_sg: source scatterlist
1219  * @src_nents: number of source scatterlist entries
1220  * @flags: tx descriptor status flags
1221  */
1222 static struct dma_async_tx_descriptor *
1223 atc_prep_dma_sg(struct dma_chan *chan,
1224 		struct scatterlist *dst_sg, unsigned int dst_nents,
1225 		struct scatterlist *src_sg, unsigned int src_nents,
1226 		unsigned long flags)
1227 {
1228 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1229 	struct at_desc		*desc = NULL;
1230 	struct at_desc		*first = NULL;
1231 	struct at_desc		*prev = NULL;
1232 	unsigned int		src_width;
1233 	unsigned int		dst_width;
1234 	size_t			xfer_count;
1235 	u32			ctrla;
1236 	u32			ctrlb;
1237 	size_t			dst_len = 0, src_len = 0;
1238 	dma_addr_t		dst = 0, src = 0;
1239 	size_t			len = 0, total_len = 0;
1240 
1241 	if (unlikely(dst_nents == 0 || src_nents == 0))
1242 		return NULL;
1243 
1244 	if (unlikely(dst_sg == NULL || src_sg == NULL))
1245 		return NULL;
1246 
1247 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1248 		| ATC_SRC_ADDR_MODE_INCR
1249 		| ATC_DST_ADDR_MODE_INCR
1250 		| ATC_FC_MEM2MEM;
1251 
1252 	/*
1253 	 * loop until there is either no more source or no more destination
1254 	 * scatterlist entry
1255 	 */
1256 	while (true) {
1257 
1258 		/* prepare the next transfer */
1259 		if (dst_len == 0) {
1260 
1261 			/* no more destination scatterlist entries */
1262 			if (!dst_sg || !dst_nents)
1263 				break;
1264 
1265 			dst = sg_dma_address(dst_sg);
1266 			dst_len = sg_dma_len(dst_sg);
1267 
1268 			dst_sg = sg_next(dst_sg);
1269 			dst_nents--;
1270 		}
1271 
1272 		if (src_len == 0) {
1273 
1274 			/* no more source scatterlist entries */
1275 			if (!src_sg || !src_nents)
1276 				break;
1277 
1278 			src = sg_dma_address(src_sg);
1279 			src_len = sg_dma_len(src_sg);
1280 
1281 			src_sg = sg_next(src_sg);
1282 			src_nents--;
1283 		}
1284 
1285 		len = min_t(size_t, src_len, dst_len);
1286 		if (len == 0)
1287 			continue;
1288 
1289 		/* take care for the alignment */
1290 		src_width = dst_width = atc_get_xfer_width(src, dst, len);
1291 
1292 		ctrla = ATC_SRC_WIDTH(src_width) |
1293 			ATC_DST_WIDTH(dst_width);
1294 
1295 		/*
1296 		 * The number of transfers to set up refer to the source width
1297 		 * that depends on the alignment.
1298 		 */
1299 		xfer_count = len >> src_width;
1300 		if (xfer_count > ATC_BTSIZE_MAX) {
1301 			xfer_count = ATC_BTSIZE_MAX;
1302 			len = ATC_BTSIZE_MAX << src_width;
1303 		}
1304 
1305 		/* create the transfer */
1306 		desc = atc_desc_get(atchan);
1307 		if (!desc)
1308 			goto err_desc_get;
1309 
1310 		desc->lli.saddr = src;
1311 		desc->lli.daddr = dst;
1312 		desc->lli.ctrla = ctrla | xfer_count;
1313 		desc->lli.ctrlb = ctrlb;
1314 
1315 		desc->txd.cookie = 0;
1316 		desc->len = len;
1317 
1318 		atc_desc_chain(&first, &prev, desc);
1319 
1320 		/* update the lengths and addresses for the next loop cycle */
1321 		dst_len -= len;
1322 		src_len -= len;
1323 		dst += len;
1324 		src += len;
1325 
1326 		total_len += len;
1327 	}
1328 
1329 	/* First descriptor of the chain embedds additional information */
1330 	first->txd.cookie = -EBUSY;
1331 	first->total_len = total_len;
1332 
1333 	/* set end-of-link to the last link descriptor of list*/
1334 	set_desc_eol(desc);
1335 
1336 	first->txd.flags = flags; /* client is in control of this ack */
1337 
1338 	return &first->txd;
1339 
1340 err_desc_get:
1341 	atc_desc_put(atchan, first);
1342 	return NULL;
1343 }
1344 
1345 /**
1346  * atc_dma_cyclic_check_values
1347  * Check for too big/unaligned periods and unaligned DMA buffer
1348  */
1349 static int
1350 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1351 		size_t period_len)
1352 {
1353 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1354 		goto err_out;
1355 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1356 		goto err_out;
1357 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1358 		goto err_out;
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	return -EINVAL;
1364 }
1365 
1366 /**
1367  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1368  */
1369 static int
1370 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1371 		unsigned int period_index, dma_addr_t buf_addr,
1372 		unsigned int reg_width, size_t period_len,
1373 		enum dma_transfer_direction direction)
1374 {
1375 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1376 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1377 	u32			ctrla;
1378 
1379 	/* prepare common CRTLA value */
1380 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1381 		| ATC_DCSIZE(sconfig->dst_maxburst)
1382 		| ATC_DST_WIDTH(reg_width)
1383 		| ATC_SRC_WIDTH(reg_width)
1384 		| period_len >> reg_width;
1385 
1386 	switch (direction) {
1387 	case DMA_MEM_TO_DEV:
1388 		desc->lli.saddr = buf_addr + (period_len * period_index);
1389 		desc->lli.daddr = sconfig->dst_addr;
1390 		desc->lli.ctrla = ctrla;
1391 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1392 				| ATC_SRC_ADDR_MODE_INCR
1393 				| ATC_FC_MEM2PER
1394 				| ATC_SIF(atchan->mem_if)
1395 				| ATC_DIF(atchan->per_if);
1396 		desc->len = period_len;
1397 		break;
1398 
1399 	case DMA_DEV_TO_MEM:
1400 		desc->lli.saddr = sconfig->src_addr;
1401 		desc->lli.daddr = buf_addr + (period_len * period_index);
1402 		desc->lli.ctrla = ctrla;
1403 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1404 				| ATC_SRC_ADDR_MODE_FIXED
1405 				| ATC_FC_PER2MEM
1406 				| ATC_SIF(atchan->per_if)
1407 				| ATC_DIF(atchan->mem_if);
1408 		desc->len = period_len;
1409 		break;
1410 
1411 	default:
1412 		return -EINVAL;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 /**
1419  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1420  * @chan: the DMA channel to prepare
1421  * @buf_addr: physical DMA address where the buffer starts
1422  * @buf_len: total number of bytes for the entire buffer
1423  * @period_len: number of bytes for each period
1424  * @direction: transfer direction, to or from device
1425  * @flags: tx descriptor status flags
1426  */
1427 static struct dma_async_tx_descriptor *
1428 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1429 		size_t period_len, enum dma_transfer_direction direction,
1430 		unsigned long flags)
1431 {
1432 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1433 	struct at_dma_slave	*atslave = chan->private;
1434 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1435 	struct at_desc		*first = NULL;
1436 	struct at_desc		*prev = NULL;
1437 	unsigned long		was_cyclic;
1438 	unsigned int		reg_width;
1439 	unsigned int		periods = buf_len / period_len;
1440 	unsigned int		i;
1441 
1442 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n",
1443 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1444 			buf_addr,
1445 			periods, buf_len, period_len);
1446 
1447 	if (unlikely(!atslave || !buf_len || !period_len)) {
1448 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1449 		return NULL;
1450 	}
1451 
1452 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1453 	if (was_cyclic) {
1454 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1455 		return NULL;
1456 	}
1457 
1458 	if (unlikely(!is_slave_direction(direction)))
1459 		goto err_out;
1460 
1461 	if (sconfig->direction == DMA_MEM_TO_DEV)
1462 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1463 	else
1464 		reg_width = convert_buswidth(sconfig->src_addr_width);
1465 
1466 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1467 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1468 		goto err_out;
1469 
1470 	/* build cyclic linked list */
1471 	for (i = 0; i < periods; i++) {
1472 		struct at_desc	*desc;
1473 
1474 		desc = atc_desc_get(atchan);
1475 		if (!desc)
1476 			goto err_desc_get;
1477 
1478 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1479 					     reg_width, period_len, direction))
1480 			goto err_desc_get;
1481 
1482 		atc_desc_chain(&first, &prev, desc);
1483 	}
1484 
1485 	/* lets make a cyclic list */
1486 	prev->lli.dscr = first->txd.phys;
1487 
1488 	/* First descriptor of the chain embedds additional information */
1489 	first->txd.cookie = -EBUSY;
1490 	first->total_len = buf_len;
1491 
1492 	return &first->txd;
1493 
1494 err_desc_get:
1495 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1496 	atc_desc_put(atchan, first);
1497 err_out:
1498 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1499 	return NULL;
1500 }
1501 
1502 static int atc_config(struct dma_chan *chan,
1503 		      struct dma_slave_config *sconfig)
1504 {
1505 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1506 
1507 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1508 
1509 	/* Check if it is chan is configured for slave transfers */
1510 	if (!chan->private)
1511 		return -EINVAL;
1512 
1513 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1514 
1515 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1516 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1517 
1518 	return 0;
1519 }
1520 
1521 static int atc_pause(struct dma_chan *chan)
1522 {
1523 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1524 	struct at_dma		*atdma = to_at_dma(chan->device);
1525 	int			chan_id = atchan->chan_common.chan_id;
1526 	unsigned long		flags;
1527 
1528 	LIST_HEAD(list);
1529 
1530 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1531 
1532 	spin_lock_irqsave(&atchan->lock, flags);
1533 
1534 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1535 	set_bit(ATC_IS_PAUSED, &atchan->status);
1536 
1537 	spin_unlock_irqrestore(&atchan->lock, flags);
1538 
1539 	return 0;
1540 }
1541 
1542 static int atc_resume(struct dma_chan *chan)
1543 {
1544 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1545 	struct at_dma		*atdma = to_at_dma(chan->device);
1546 	int			chan_id = atchan->chan_common.chan_id;
1547 	unsigned long		flags;
1548 
1549 	LIST_HEAD(list);
1550 
1551 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1552 
1553 	if (!atc_chan_is_paused(atchan))
1554 		return 0;
1555 
1556 	spin_lock_irqsave(&atchan->lock, flags);
1557 
1558 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1559 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1560 
1561 	spin_unlock_irqrestore(&atchan->lock, flags);
1562 
1563 	return 0;
1564 }
1565 
1566 static int atc_terminate_all(struct dma_chan *chan)
1567 {
1568 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1569 	struct at_dma		*atdma = to_at_dma(chan->device);
1570 	int			chan_id = atchan->chan_common.chan_id;
1571 	struct at_desc		*desc, *_desc;
1572 	unsigned long		flags;
1573 
1574 	LIST_HEAD(list);
1575 
1576 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1577 
1578 	/*
1579 	 * This is only called when something went wrong elsewhere, so
1580 	 * we don't really care about the data. Just disable the
1581 	 * channel. We still have to poll the channel enable bit due
1582 	 * to AHB/HSB limitations.
1583 	 */
1584 	spin_lock_irqsave(&atchan->lock, flags);
1585 
1586 	/* disabling channel: must also remove suspend state */
1587 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1588 
1589 	/* confirm that this channel is disabled */
1590 	while (dma_readl(atdma, CHSR) & atchan->mask)
1591 		cpu_relax();
1592 
1593 	/* active_list entries will end up before queued entries */
1594 	list_splice_init(&atchan->queue, &list);
1595 	list_splice_init(&atchan->active_list, &list);
1596 
1597 	/* Flush all pending and queued descriptors */
1598 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1599 		atc_chain_complete(atchan, desc);
1600 
1601 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1602 	/* if channel dedicated to cyclic operations, free it */
1603 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1604 
1605 	spin_unlock_irqrestore(&atchan->lock, flags);
1606 
1607 	return 0;
1608 }
1609 
1610 /**
1611  * atc_tx_status - poll for transaction completion
1612  * @chan: DMA channel
1613  * @cookie: transaction identifier to check status of
1614  * @txstate: if not %NULL updated with transaction state
1615  *
1616  * If @txstate is passed in, upon return it reflect the driver
1617  * internal state and can be used with dma_async_is_complete() to check
1618  * the status of multiple cookies without re-checking hardware state.
1619  */
1620 static enum dma_status
1621 atc_tx_status(struct dma_chan *chan,
1622 		dma_cookie_t cookie,
1623 		struct dma_tx_state *txstate)
1624 {
1625 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1626 	unsigned long		flags;
1627 	enum dma_status		ret;
1628 	int bytes = 0;
1629 
1630 	ret = dma_cookie_status(chan, cookie, txstate);
1631 	if (ret == DMA_COMPLETE)
1632 		return ret;
1633 	/*
1634 	 * There's no point calculating the residue if there's
1635 	 * no txstate to store the value.
1636 	 */
1637 	if (!txstate)
1638 		return DMA_ERROR;
1639 
1640 	spin_lock_irqsave(&atchan->lock, flags);
1641 
1642 	/*  Get number of bytes left in the active transactions */
1643 	bytes = atc_get_bytes_left(chan, cookie);
1644 
1645 	spin_unlock_irqrestore(&atchan->lock, flags);
1646 
1647 	if (unlikely(bytes < 0)) {
1648 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1649 		return DMA_ERROR;
1650 	} else {
1651 		dma_set_residue(txstate, bytes);
1652 	}
1653 
1654 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1655 		 ret, cookie, bytes);
1656 
1657 	return ret;
1658 }
1659 
1660 /**
1661  * atc_issue_pending - try to finish work
1662  * @chan: target DMA channel
1663  */
1664 static void atc_issue_pending(struct dma_chan *chan)
1665 {
1666 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1667 	unsigned long		flags;
1668 
1669 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1670 
1671 	/* Not needed for cyclic transfers */
1672 	if (atc_chan_is_cyclic(atchan))
1673 		return;
1674 
1675 	spin_lock_irqsave(&atchan->lock, flags);
1676 	atc_advance_work(atchan);
1677 	spin_unlock_irqrestore(&atchan->lock, flags);
1678 }
1679 
1680 /**
1681  * atc_alloc_chan_resources - allocate resources for DMA channel
1682  * @chan: allocate descriptor resources for this channel
1683  * @client: current client requesting the channel be ready for requests
1684  *
1685  * return - the number of allocated descriptors
1686  */
1687 static int atc_alloc_chan_resources(struct dma_chan *chan)
1688 {
1689 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1690 	struct at_dma		*atdma = to_at_dma(chan->device);
1691 	struct at_desc		*desc;
1692 	struct at_dma_slave	*atslave;
1693 	unsigned long		flags;
1694 	int			i;
1695 	u32			cfg;
1696 	LIST_HEAD(tmp_list);
1697 
1698 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1699 
1700 	/* ASSERT:  channel is idle */
1701 	if (atc_chan_is_enabled(atchan)) {
1702 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1703 		return -EIO;
1704 	}
1705 
1706 	cfg = ATC_DEFAULT_CFG;
1707 
1708 	atslave = chan->private;
1709 	if (atslave) {
1710 		/*
1711 		 * We need controller-specific data to set up slave
1712 		 * transfers.
1713 		 */
1714 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1715 
1716 		/* if cfg configuration specified take it instead of default */
1717 		if (atslave->cfg)
1718 			cfg = atslave->cfg;
1719 	}
1720 
1721 	/* have we already been set up?
1722 	 * reconfigure channel but no need to reallocate descriptors */
1723 	if (!list_empty(&atchan->free_list))
1724 		return atchan->descs_allocated;
1725 
1726 	/* Allocate initial pool of descriptors */
1727 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1728 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1729 		if (!desc) {
1730 			dev_err(atdma->dma_common.dev,
1731 				"Only %d initial descriptors\n", i);
1732 			break;
1733 		}
1734 		list_add_tail(&desc->desc_node, &tmp_list);
1735 	}
1736 
1737 	spin_lock_irqsave(&atchan->lock, flags);
1738 	atchan->descs_allocated = i;
1739 	list_splice(&tmp_list, &atchan->free_list);
1740 	dma_cookie_init(chan);
1741 	spin_unlock_irqrestore(&atchan->lock, flags);
1742 
1743 	/* channel parameters */
1744 	channel_writel(atchan, CFG, cfg);
1745 
1746 	dev_dbg(chan2dev(chan),
1747 		"alloc_chan_resources: allocated %d descriptors\n",
1748 		atchan->descs_allocated);
1749 
1750 	return atchan->descs_allocated;
1751 }
1752 
1753 /**
1754  * atc_free_chan_resources - free all channel resources
1755  * @chan: DMA channel
1756  */
1757 static void atc_free_chan_resources(struct dma_chan *chan)
1758 {
1759 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1760 	struct at_dma		*atdma = to_at_dma(chan->device);
1761 	struct at_desc		*desc, *_desc;
1762 	LIST_HEAD(list);
1763 
1764 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1765 		atchan->descs_allocated);
1766 
1767 	/* ASSERT:  channel is idle */
1768 	BUG_ON(!list_empty(&atchan->active_list));
1769 	BUG_ON(!list_empty(&atchan->queue));
1770 	BUG_ON(atc_chan_is_enabled(atchan));
1771 
1772 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1773 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1774 		list_del(&desc->desc_node);
1775 		/* free link descriptor */
1776 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1777 	}
1778 	list_splice_init(&atchan->free_list, &list);
1779 	atchan->descs_allocated = 0;
1780 	atchan->status = 0;
1781 
1782 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1783 }
1784 
1785 #ifdef CONFIG_OF
1786 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1787 {
1788 	struct at_dma_slave *atslave = slave;
1789 
1790 	if (atslave->dma_dev == chan->device->dev) {
1791 		chan->private = atslave;
1792 		return true;
1793 	} else {
1794 		return false;
1795 	}
1796 }
1797 
1798 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1799 				     struct of_dma *of_dma)
1800 {
1801 	struct dma_chan *chan;
1802 	struct at_dma_chan *atchan;
1803 	struct at_dma_slave *atslave;
1804 	dma_cap_mask_t mask;
1805 	unsigned int per_id;
1806 	struct platform_device *dmac_pdev;
1807 
1808 	if (dma_spec->args_count != 2)
1809 		return NULL;
1810 
1811 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1812 
1813 	dma_cap_zero(mask);
1814 	dma_cap_set(DMA_SLAVE, mask);
1815 
1816 	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1817 	if (!atslave)
1818 		return NULL;
1819 
1820 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1821 	/*
1822 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1823 	 * ignored depending on DMA transfer direction.
1824 	 */
1825 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1826 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1827 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1828 	/*
1829 	 * We have to translate the value we get from the device tree since
1830 	 * the half FIFO configuration value had to be 0 to keep backward
1831 	 * compatibility.
1832 	 */
1833 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1834 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1835 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1836 		break;
1837 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1838 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1839 		break;
1840 	case AT91_DMA_CFG_FIFOCFG_HALF:
1841 	default:
1842 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1843 	}
1844 	atslave->dma_dev = &dmac_pdev->dev;
1845 
1846 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1847 	if (!chan)
1848 		return NULL;
1849 
1850 	atchan = to_at_dma_chan(chan);
1851 	atchan->per_if = dma_spec->args[0] & 0xff;
1852 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1853 
1854 	return chan;
1855 }
1856 #else
1857 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1858 				     struct of_dma *of_dma)
1859 {
1860 	return NULL;
1861 }
1862 #endif
1863 
1864 /*--  Module Management  -----------------------------------------------*/
1865 
1866 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1867 static struct at_dma_platform_data at91sam9rl_config = {
1868 	.nr_channels = 2,
1869 };
1870 static struct at_dma_platform_data at91sam9g45_config = {
1871 	.nr_channels = 8,
1872 };
1873 
1874 #if defined(CONFIG_OF)
1875 static const struct of_device_id atmel_dma_dt_ids[] = {
1876 	{
1877 		.compatible = "atmel,at91sam9rl-dma",
1878 		.data = &at91sam9rl_config,
1879 	}, {
1880 		.compatible = "atmel,at91sam9g45-dma",
1881 		.data = &at91sam9g45_config,
1882 	}, {
1883 		/* sentinel */
1884 	}
1885 };
1886 
1887 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1888 #endif
1889 
1890 static const struct platform_device_id atdma_devtypes[] = {
1891 	{
1892 		.name = "at91sam9rl_dma",
1893 		.driver_data = (unsigned long) &at91sam9rl_config,
1894 	}, {
1895 		.name = "at91sam9g45_dma",
1896 		.driver_data = (unsigned long) &at91sam9g45_config,
1897 	}, {
1898 		/* sentinel */
1899 	}
1900 };
1901 
1902 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1903 						struct platform_device *pdev)
1904 {
1905 	if (pdev->dev.of_node) {
1906 		const struct of_device_id *match;
1907 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1908 		if (match == NULL)
1909 			return NULL;
1910 		return match->data;
1911 	}
1912 	return (struct at_dma_platform_data *)
1913 			platform_get_device_id(pdev)->driver_data;
1914 }
1915 
1916 /**
1917  * at_dma_off - disable DMA controller
1918  * @atdma: the Atmel HDAMC device
1919  */
1920 static void at_dma_off(struct at_dma *atdma)
1921 {
1922 	dma_writel(atdma, EN, 0);
1923 
1924 	/* disable all interrupts */
1925 	dma_writel(atdma, EBCIDR, -1L);
1926 
1927 	/* confirm that all channels are disabled */
1928 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1929 		cpu_relax();
1930 }
1931 
1932 static int __init at_dma_probe(struct platform_device *pdev)
1933 {
1934 	struct resource		*io;
1935 	struct at_dma		*atdma;
1936 	size_t			size;
1937 	int			irq;
1938 	int			err;
1939 	int			i;
1940 	const struct at_dma_platform_data *plat_dat;
1941 
1942 	/* setup platform data for each SoC */
1943 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1944 	dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1945 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1946 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1947 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1948 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1949 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1950 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1951 	dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1952 
1953 	/* get DMA parameters from controller type */
1954 	plat_dat = at_dma_get_driver_data(pdev);
1955 	if (!plat_dat)
1956 		return -ENODEV;
1957 
1958 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1959 	if (!io)
1960 		return -EINVAL;
1961 
1962 	irq = platform_get_irq(pdev, 0);
1963 	if (irq < 0)
1964 		return irq;
1965 
1966 	size = sizeof(struct at_dma);
1967 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1968 	atdma = kzalloc(size, GFP_KERNEL);
1969 	if (!atdma)
1970 		return -ENOMEM;
1971 
1972 	/* discover transaction capabilities */
1973 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1974 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1975 
1976 	size = resource_size(io);
1977 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1978 		err = -EBUSY;
1979 		goto err_kfree;
1980 	}
1981 
1982 	atdma->regs = ioremap(io->start, size);
1983 	if (!atdma->regs) {
1984 		err = -ENOMEM;
1985 		goto err_release_r;
1986 	}
1987 
1988 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1989 	if (IS_ERR(atdma->clk)) {
1990 		err = PTR_ERR(atdma->clk);
1991 		goto err_clk;
1992 	}
1993 	err = clk_prepare_enable(atdma->clk);
1994 	if (err)
1995 		goto err_clk_prepare;
1996 
1997 	/* force dma off, just in case */
1998 	at_dma_off(atdma);
1999 
2000 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
2001 	if (err)
2002 		goto err_irq;
2003 
2004 	platform_set_drvdata(pdev, atdma);
2005 
2006 	/* create a pool of consistent memory blocks for hardware descriptors */
2007 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2008 			&pdev->dev, sizeof(struct at_desc),
2009 			4 /* word alignment */, 0);
2010 	if (!atdma->dma_desc_pool) {
2011 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2012 		err = -ENOMEM;
2013 		goto err_desc_pool_create;
2014 	}
2015 
2016 	/* create a pool of consistent memory blocks for memset blocks */
2017 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2018 					     &pdev->dev, sizeof(int), 4, 0);
2019 	if (!atdma->memset_pool) {
2020 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2021 		err = -ENOMEM;
2022 		goto err_memset_pool_create;
2023 	}
2024 
2025 	/* clear any pending interrupt */
2026 	while (dma_readl(atdma, EBCISR))
2027 		cpu_relax();
2028 
2029 	/* initialize channels related values */
2030 	INIT_LIST_HEAD(&atdma->dma_common.channels);
2031 	for (i = 0; i < plat_dat->nr_channels; i++) {
2032 		struct at_dma_chan	*atchan = &atdma->chan[i];
2033 
2034 		atchan->mem_if = AT_DMA_MEM_IF;
2035 		atchan->per_if = AT_DMA_PER_IF;
2036 		atchan->chan_common.device = &atdma->dma_common;
2037 		dma_cookie_init(&atchan->chan_common);
2038 		list_add_tail(&atchan->chan_common.device_node,
2039 				&atdma->dma_common.channels);
2040 
2041 		atchan->ch_regs = atdma->regs + ch_regs(i);
2042 		spin_lock_init(&atchan->lock);
2043 		atchan->mask = 1 << i;
2044 
2045 		INIT_LIST_HEAD(&atchan->active_list);
2046 		INIT_LIST_HEAD(&atchan->queue);
2047 		INIT_LIST_HEAD(&atchan->free_list);
2048 
2049 		tasklet_init(&atchan->tasklet, atc_tasklet,
2050 				(unsigned long)atchan);
2051 		atc_enable_chan_irq(atdma, i);
2052 	}
2053 
2054 	/* set base routines */
2055 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2056 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2057 	atdma->dma_common.device_tx_status = atc_tx_status;
2058 	atdma->dma_common.device_issue_pending = atc_issue_pending;
2059 	atdma->dma_common.dev = &pdev->dev;
2060 
2061 	/* set prep routines based on capability */
2062 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2063 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2064 
2065 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2066 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2067 
2068 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2069 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2070 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2071 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2072 	}
2073 
2074 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2075 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2076 		/* controller can do slave DMA: can trigger cyclic transfers */
2077 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2078 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2079 		atdma->dma_common.device_config = atc_config;
2080 		atdma->dma_common.device_pause = atc_pause;
2081 		atdma->dma_common.device_resume = atc_resume;
2082 		atdma->dma_common.device_terminate_all = atc_terminate_all;
2083 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2084 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2085 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2086 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2087 	}
2088 
2089 	if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2090 		atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2091 
2092 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2093 
2094 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2095 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2096 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2097 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
2098 	  dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
2099 	  plat_dat->nr_channels);
2100 
2101 	dma_async_device_register(&atdma->dma_common);
2102 
2103 	/*
2104 	 * Do not return an error if the dmac node is not present in order to
2105 	 * not break the existing way of requesting channel with
2106 	 * dma_request_channel().
2107 	 */
2108 	if (pdev->dev.of_node) {
2109 		err = of_dma_controller_register(pdev->dev.of_node,
2110 						 at_dma_xlate, atdma);
2111 		if (err) {
2112 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2113 			goto err_of_dma_controller_register;
2114 		}
2115 	}
2116 
2117 	return 0;
2118 
2119 err_of_dma_controller_register:
2120 	dma_async_device_unregister(&atdma->dma_common);
2121 	dma_pool_destroy(atdma->memset_pool);
2122 err_memset_pool_create:
2123 	dma_pool_destroy(atdma->dma_desc_pool);
2124 err_desc_pool_create:
2125 	free_irq(platform_get_irq(pdev, 0), atdma);
2126 err_irq:
2127 	clk_disable_unprepare(atdma->clk);
2128 err_clk_prepare:
2129 	clk_put(atdma->clk);
2130 err_clk:
2131 	iounmap(atdma->regs);
2132 	atdma->regs = NULL;
2133 err_release_r:
2134 	release_mem_region(io->start, size);
2135 err_kfree:
2136 	kfree(atdma);
2137 	return err;
2138 }
2139 
2140 static int at_dma_remove(struct platform_device *pdev)
2141 {
2142 	struct at_dma		*atdma = platform_get_drvdata(pdev);
2143 	struct dma_chan		*chan, *_chan;
2144 	struct resource		*io;
2145 
2146 	at_dma_off(atdma);
2147 	dma_async_device_unregister(&atdma->dma_common);
2148 
2149 	dma_pool_destroy(atdma->memset_pool);
2150 	dma_pool_destroy(atdma->dma_desc_pool);
2151 	free_irq(platform_get_irq(pdev, 0), atdma);
2152 
2153 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2154 			device_node) {
2155 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2156 
2157 		/* Disable interrupts */
2158 		atc_disable_chan_irq(atdma, chan->chan_id);
2159 
2160 		tasklet_kill(&atchan->tasklet);
2161 		list_del(&chan->device_node);
2162 	}
2163 
2164 	clk_disable_unprepare(atdma->clk);
2165 	clk_put(atdma->clk);
2166 
2167 	iounmap(atdma->regs);
2168 	atdma->regs = NULL;
2169 
2170 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2171 	release_mem_region(io->start, resource_size(io));
2172 
2173 	kfree(atdma);
2174 
2175 	return 0;
2176 }
2177 
2178 static void at_dma_shutdown(struct platform_device *pdev)
2179 {
2180 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2181 
2182 	at_dma_off(platform_get_drvdata(pdev));
2183 	clk_disable_unprepare(atdma->clk);
2184 }
2185 
2186 static int at_dma_prepare(struct device *dev)
2187 {
2188 	struct platform_device *pdev = to_platform_device(dev);
2189 	struct at_dma *atdma = platform_get_drvdata(pdev);
2190 	struct dma_chan *chan, *_chan;
2191 
2192 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2193 			device_node) {
2194 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2195 		/* wait for transaction completion (except in cyclic case) */
2196 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2197 			return -EAGAIN;
2198 	}
2199 	return 0;
2200 }
2201 
2202 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2203 {
2204 	struct dma_chan	*chan = &atchan->chan_common;
2205 
2206 	/* Channel should be paused by user
2207 	 * do it anyway even if it is not done already */
2208 	if (!atc_chan_is_paused(atchan)) {
2209 		dev_warn(chan2dev(chan),
2210 		"cyclic channel not paused, should be done by channel user\n");
2211 		atc_pause(chan);
2212 	}
2213 
2214 	/* now preserve additional data for cyclic operations */
2215 	/* next descriptor address in the cyclic list */
2216 	atchan->save_dscr = channel_readl(atchan, DSCR);
2217 
2218 	vdbg_dump_regs(atchan);
2219 }
2220 
2221 static int at_dma_suspend_noirq(struct device *dev)
2222 {
2223 	struct platform_device *pdev = to_platform_device(dev);
2224 	struct at_dma *atdma = platform_get_drvdata(pdev);
2225 	struct dma_chan *chan, *_chan;
2226 
2227 	/* preserve data */
2228 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2229 			device_node) {
2230 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2231 
2232 		if (atc_chan_is_cyclic(atchan))
2233 			atc_suspend_cyclic(atchan);
2234 		atchan->save_cfg = channel_readl(atchan, CFG);
2235 	}
2236 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2237 
2238 	/* disable DMA controller */
2239 	at_dma_off(atdma);
2240 	clk_disable_unprepare(atdma->clk);
2241 	return 0;
2242 }
2243 
2244 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2245 {
2246 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2247 
2248 	/* restore channel status for cyclic descriptors list:
2249 	 * next descriptor in the cyclic list at the time of suspend */
2250 	channel_writel(atchan, SADDR, 0);
2251 	channel_writel(atchan, DADDR, 0);
2252 	channel_writel(atchan, CTRLA, 0);
2253 	channel_writel(atchan, CTRLB, 0);
2254 	channel_writel(atchan, DSCR, atchan->save_dscr);
2255 	dma_writel(atdma, CHER, atchan->mask);
2256 
2257 	/* channel pause status should be removed by channel user
2258 	 * We cannot take the initiative to do it here */
2259 
2260 	vdbg_dump_regs(atchan);
2261 }
2262 
2263 static int at_dma_resume_noirq(struct device *dev)
2264 {
2265 	struct platform_device *pdev = to_platform_device(dev);
2266 	struct at_dma *atdma = platform_get_drvdata(pdev);
2267 	struct dma_chan *chan, *_chan;
2268 
2269 	/* bring back DMA controller */
2270 	clk_prepare_enable(atdma->clk);
2271 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2272 
2273 	/* clear any pending interrupt */
2274 	while (dma_readl(atdma, EBCISR))
2275 		cpu_relax();
2276 
2277 	/* restore saved data */
2278 	dma_writel(atdma, EBCIER, atdma->save_imr);
2279 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2280 			device_node) {
2281 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2282 
2283 		channel_writel(atchan, CFG, atchan->save_cfg);
2284 		if (atc_chan_is_cyclic(atchan))
2285 			atc_resume_cyclic(atchan);
2286 	}
2287 	return 0;
2288 }
2289 
2290 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2291 	.prepare = at_dma_prepare,
2292 	.suspend_noirq = at_dma_suspend_noirq,
2293 	.resume_noirq = at_dma_resume_noirq,
2294 };
2295 
2296 static struct platform_driver at_dma_driver = {
2297 	.remove		= at_dma_remove,
2298 	.shutdown	= at_dma_shutdown,
2299 	.id_table	= atdma_devtypes,
2300 	.driver = {
2301 		.name	= "at_hdmac",
2302 		.pm	= &at_dma_dev_pm_ops,
2303 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2304 	},
2305 };
2306 
2307 static int __init at_dma_init(void)
2308 {
2309 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2310 }
2311 subsys_initcall(at_dma_init);
2312 
2313 static void __exit at_dma_exit(void)
2314 {
2315 	platform_driver_unregister(&at_dma_driver);
2316 }
2317 module_exit(at_dma_exit);
2318 
2319 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2320 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2321 MODULE_LICENSE("GPL");
2322 MODULE_ALIAS("platform:at_hdmac");
2323