1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 #define ATC_MAX_DSCR_TRIALS 10 52 53 /* 54 * Initial number of descriptors to allocate for each channel. This could 55 * be increased during dma usage. 56 */ 57 static unsigned int init_nr_desc_per_channel = 64; 58 module_param(init_nr_desc_per_channel, uint, 0644); 59 MODULE_PARM_DESC(init_nr_desc_per_channel, 60 "initial descriptors per channel (default: 64)"); 61 62 63 /* prototypes */ 64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 65 static void atc_issue_pending(struct dma_chan *chan); 66 67 68 /*----------------------------------------------------------------------*/ 69 70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 71 size_t len) 72 { 73 unsigned int width; 74 75 if (!((src | dst | len) & 3)) 76 width = 2; 77 else if (!((src | dst | len) & 1)) 78 width = 1; 79 else 80 width = 0; 81 82 return width; 83 } 84 85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 86 { 87 return list_first_entry(&atchan->active_list, 88 struct at_desc, desc_node); 89 } 90 91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 92 { 93 return list_first_entry(&atchan->queue, 94 struct at_desc, desc_node); 95 } 96 97 /** 98 * atc_alloc_descriptor - allocate and return an initialized descriptor 99 * @chan: the channel to allocate descriptors for 100 * @gfp_flags: GFP allocation flags 101 * 102 * Note: The ack-bit is positioned in the descriptor flag at creation time 103 * to make initial allocation more convenient. This bit will be cleared 104 * and control will be given to client at usage time (during 105 * preparation functions). 106 */ 107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 108 gfp_t gfp_flags) 109 { 110 struct at_desc *desc = NULL; 111 struct at_dma *atdma = to_at_dma(chan->device); 112 dma_addr_t phys; 113 114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys); 115 if (desc) { 116 memset(desc, 0, sizeof(struct at_desc)); 117 INIT_LIST_HEAD(&desc->tx_list); 118 dma_async_tx_descriptor_init(&desc->txd, chan); 119 /* txd.flags will be overwritten in prep functions */ 120 desc->txd.flags = DMA_CTRL_ACK; 121 desc->txd.tx_submit = atc_tx_submit; 122 desc->txd.phys = phys; 123 } 124 125 return desc; 126 } 127 128 /** 129 * atc_desc_get - get an unused descriptor from free_list 130 * @atchan: channel we want a new descriptor for 131 */ 132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 133 { 134 struct at_desc *desc, *_desc; 135 struct at_desc *ret = NULL; 136 unsigned long flags; 137 unsigned int i = 0; 138 LIST_HEAD(tmp_list); 139 140 spin_lock_irqsave(&atchan->lock, flags); 141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 142 i++; 143 if (async_tx_test_ack(&desc->txd)) { 144 list_del(&desc->desc_node); 145 ret = desc; 146 break; 147 } 148 dev_dbg(chan2dev(&atchan->chan_common), 149 "desc %p not ACKed\n", desc); 150 } 151 spin_unlock_irqrestore(&atchan->lock, flags); 152 dev_vdbg(chan2dev(&atchan->chan_common), 153 "scanned %u descriptors on freelist\n", i); 154 155 /* no more descriptor available in initial pool: create one more */ 156 if (!ret) { 157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 158 if (ret) { 159 spin_lock_irqsave(&atchan->lock, flags); 160 atchan->descs_allocated++; 161 spin_unlock_irqrestore(&atchan->lock, flags); 162 } else { 163 dev_err(chan2dev(&atchan->chan_common), 164 "not enough descriptors available\n"); 165 } 166 } 167 168 return ret; 169 } 170 171 /** 172 * atc_desc_put - move a descriptor, including any children, to the free list 173 * @atchan: channel we work on 174 * @desc: descriptor, at the head of a chain, to move to free list 175 */ 176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 177 { 178 if (desc) { 179 struct at_desc *child; 180 unsigned long flags; 181 182 spin_lock_irqsave(&atchan->lock, flags); 183 list_for_each_entry(child, &desc->tx_list, desc_node) 184 dev_vdbg(chan2dev(&atchan->chan_common), 185 "moving child desc %p to freelist\n", 186 child); 187 list_splice_init(&desc->tx_list, &atchan->free_list); 188 dev_vdbg(chan2dev(&atchan->chan_common), 189 "moving desc %p to freelist\n", desc); 190 list_add(&desc->desc_node, &atchan->free_list); 191 spin_unlock_irqrestore(&atchan->lock, flags); 192 } 193 } 194 195 /** 196 * atc_desc_chain - build chain adding a descriptor 197 * @first: address of first descriptor of the chain 198 * @prev: address of previous descriptor of the chain 199 * @desc: descriptor to queue 200 * 201 * Called from prep_* functions 202 */ 203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 204 struct at_desc *desc) 205 { 206 if (!(*first)) { 207 *first = desc; 208 } else { 209 /* inform the HW lli about chaining */ 210 (*prev)->lli.dscr = desc->txd.phys; 211 /* insert the link descriptor to the LD ring */ 212 list_add_tail(&desc->desc_node, 213 &(*first)->tx_list); 214 } 215 *prev = desc; 216 } 217 218 /** 219 * atc_dostart - starts the DMA engine for real 220 * @atchan: the channel we want to start 221 * @first: first descriptor in the list we want to begin with 222 * 223 * Called with atchan->lock held and bh disabled 224 */ 225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 226 { 227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 228 229 /* ASSERT: channel is idle */ 230 if (atc_chan_is_enabled(atchan)) { 231 dev_err(chan2dev(&atchan->chan_common), 232 "BUG: Attempted to start non-idle channel\n"); 233 dev_err(chan2dev(&atchan->chan_common), 234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 235 channel_readl(atchan, SADDR), 236 channel_readl(atchan, DADDR), 237 channel_readl(atchan, CTRLA), 238 channel_readl(atchan, CTRLB), 239 channel_readl(atchan, DSCR)); 240 241 /* The tasklet will hopefully advance the queue... */ 242 return; 243 } 244 245 vdbg_dump_regs(atchan); 246 247 channel_writel(atchan, SADDR, 0); 248 channel_writel(atchan, DADDR, 0); 249 channel_writel(atchan, CTRLA, 0); 250 channel_writel(atchan, CTRLB, 0); 251 channel_writel(atchan, DSCR, first->txd.phys); 252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 253 ATC_SPIP_BOUNDARY(first->boundary)); 254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 255 ATC_DPIP_BOUNDARY(first->boundary)); 256 dma_writel(atdma, CHER, atchan->mask); 257 258 vdbg_dump_regs(atchan); 259 } 260 261 /* 262 * atc_get_desc_by_cookie - get the descriptor of a cookie 263 * @atchan: the DMA channel 264 * @cookie: the cookie to get the descriptor for 265 */ 266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 267 dma_cookie_t cookie) 268 { 269 struct at_desc *desc, *_desc; 270 271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 272 if (desc->txd.cookie == cookie) 273 return desc; 274 } 275 276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 277 if (desc->txd.cookie == cookie) 278 return desc; 279 } 280 281 return NULL; 282 } 283 284 /** 285 * atc_calc_bytes_left - calculates the number of bytes left according to the 286 * value read from CTRLA. 287 * 288 * @current_len: the number of bytes left before reading CTRLA 289 * @ctrla: the value of CTRLA 290 */ 291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 292 { 293 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 295 296 /* 297 * According to the datasheet, when reading the Control A Register 298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 299 * number of transfers completed on the Source Interface. 300 * So btsize is always a number of source width transfers. 301 */ 302 return current_len - (btsize << src_width); 303 } 304 305 /** 306 * atc_get_bytes_left - get the number of bytes residue for a cookie 307 * @chan: DMA channel 308 * @cookie: transaction identifier to check status of 309 */ 310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 311 { 312 struct at_dma_chan *atchan = to_at_dma_chan(chan); 313 struct at_desc *desc_first = atc_first_active(atchan); 314 struct at_desc *desc; 315 int ret; 316 u32 ctrla, dscr, trials; 317 318 /* 319 * If the cookie doesn't match to the currently running transfer then 320 * we can return the total length of the associated DMA transfer, 321 * because it is still queued. 322 */ 323 desc = atc_get_desc_by_cookie(atchan, cookie); 324 if (desc == NULL) 325 return -EINVAL; 326 else if (desc != desc_first) 327 return desc->total_len; 328 329 /* cookie matches to the currently running transfer */ 330 ret = desc_first->total_len; 331 332 if (desc_first->lli.dscr) { 333 /* hardware linked list transfer */ 334 335 /* 336 * Calculate the residue by removing the length of the child 337 * descriptors already transferred from the total length. 338 * To get the current child descriptor we can use the value of 339 * the channel's DSCR register and compare it against the value 340 * of the hardware linked list structure of each child 341 * descriptor. 342 * 343 * The CTRLA register provides us with the amount of data 344 * already read from the source for the current child 345 * descriptor. So we can compute a more accurate residue by also 346 * removing the number of bytes corresponding to this amount of 347 * data. 348 * 349 * However, the DSCR and CTRLA registers cannot be read both 350 * atomically. Hence a race condition may occur: the first read 351 * register may refer to one child descriptor whereas the second 352 * read may refer to a later child descriptor in the list 353 * because of the DMA transfer progression inbetween the two 354 * reads. 355 * 356 * One solution could have been to pause the DMA transfer, read 357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 358 * this approach presents some drawbacks: 359 * - If the DMA transfer is paused, RX overruns or TX underruns 360 * are more likey to occur depending on the system latency. 361 * Taking the USART driver as an example, it uses a cyclic DMA 362 * transfer to read data from the Receive Holding Register 363 * (RHR) to avoid RX overruns since the RHR is not protected 364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 365 * to compute the residue would break the USART driver design. 366 * - The atc_pause() function masks interrupts but we'd rather 367 * avoid to do so for system latency purpose. 368 * 369 * Then we'd rather use another solution: the DSCR is read a 370 * first time, the CTRLA is read in turn, next the DSCR is read 371 * a second time. If the two consecutive read values of the DSCR 372 * are the same then we assume both refers to the very same 373 * child descriptor as well as the CTRLA value read inbetween 374 * does. For cyclic tranfers, the assumption is that a full loop 375 * is "not so fast". 376 * If the two DSCR values are different, we read again the CTRLA 377 * then the DSCR till two consecutive read values from DSCR are 378 * equal or till the maxium trials is reach. 379 * This algorithm is very unlikely not to find a stable value for 380 * DSCR. 381 */ 382 383 dscr = channel_readl(atchan, DSCR); 384 rmb(); /* ensure DSCR is read before CTRLA */ 385 ctrla = channel_readl(atchan, CTRLA); 386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 387 u32 new_dscr; 388 389 rmb(); /* ensure DSCR is read after CTRLA */ 390 new_dscr = channel_readl(atchan, DSCR); 391 392 /* 393 * If the DSCR register value has not changed inside the 394 * DMA controller since the previous read, we assume 395 * that both the dscr and ctrla values refers to the 396 * very same descriptor. 397 */ 398 if (likely(new_dscr == dscr)) 399 break; 400 401 /* 402 * DSCR has changed inside the DMA controller, so the 403 * previouly read value of CTRLA may refer to an already 404 * processed descriptor hence could be outdated. 405 * We need to update ctrla to match the current 406 * descriptor. 407 */ 408 dscr = new_dscr; 409 rmb(); /* ensure DSCR is read before CTRLA */ 410 ctrla = channel_readl(atchan, CTRLA); 411 } 412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 413 return -ETIMEDOUT; 414 415 /* for the first descriptor we can be more accurate */ 416 if (desc_first->lli.dscr == dscr) 417 return atc_calc_bytes_left(ret, ctrla); 418 419 ret -= desc_first->len; 420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 421 if (desc->lli.dscr == dscr) 422 break; 423 424 ret -= desc->len; 425 } 426 427 /* 428 * For the current descriptor in the chain we can calculate 429 * the remaining bytes using the channel's register. 430 */ 431 ret = atc_calc_bytes_left(ret, ctrla); 432 } else { 433 /* single transfer */ 434 ctrla = channel_readl(atchan, CTRLA); 435 ret = atc_calc_bytes_left(ret, ctrla); 436 } 437 438 return ret; 439 } 440 441 /** 442 * atc_chain_complete - finish work for one transaction chain 443 * @atchan: channel we work on 444 * @desc: descriptor at the head of the chain we want do complete 445 * 446 * Called with atchan->lock held and bh disabled */ 447 static void 448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 449 { 450 struct dma_async_tx_descriptor *txd = &desc->txd; 451 452 dev_vdbg(chan2dev(&atchan->chan_common), 453 "descriptor %u complete\n", txd->cookie); 454 455 /* mark the descriptor as complete for non cyclic cases only */ 456 if (!atc_chan_is_cyclic(atchan)) 457 dma_cookie_complete(txd); 458 459 /* move children to free_list */ 460 list_splice_init(&desc->tx_list, &atchan->free_list); 461 /* move myself to free_list */ 462 list_move(&desc->desc_node, &atchan->free_list); 463 464 dma_descriptor_unmap(txd); 465 /* for cyclic transfers, 466 * no need to replay callback function while stopping */ 467 if (!atc_chan_is_cyclic(atchan)) { 468 dma_async_tx_callback callback = txd->callback; 469 void *param = txd->callback_param; 470 471 /* 472 * The API requires that no submissions are done from a 473 * callback, so we don't need to drop the lock here 474 */ 475 if (callback) 476 callback(param); 477 } 478 479 dma_run_dependencies(txd); 480 } 481 482 /** 483 * atc_complete_all - finish work for all transactions 484 * @atchan: channel to complete transactions for 485 * 486 * Eventually submit queued descriptors if any 487 * 488 * Assume channel is idle while calling this function 489 * Called with atchan->lock held and bh disabled 490 */ 491 static void atc_complete_all(struct at_dma_chan *atchan) 492 { 493 struct at_desc *desc, *_desc; 494 LIST_HEAD(list); 495 496 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 497 498 /* 499 * Submit queued descriptors ASAP, i.e. before we go through 500 * the completed ones. 501 */ 502 if (!list_empty(&atchan->queue)) 503 atc_dostart(atchan, atc_first_queued(atchan)); 504 /* empty active_list now it is completed */ 505 list_splice_init(&atchan->active_list, &list); 506 /* empty queue list by moving descriptors (if any) to active_list */ 507 list_splice_init(&atchan->queue, &atchan->active_list); 508 509 list_for_each_entry_safe(desc, _desc, &list, desc_node) 510 atc_chain_complete(atchan, desc); 511 } 512 513 /** 514 * atc_advance_work - at the end of a transaction, move forward 515 * @atchan: channel where the transaction ended 516 * 517 * Called with atchan->lock held and bh disabled 518 */ 519 static void atc_advance_work(struct at_dma_chan *atchan) 520 { 521 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 522 523 if (atc_chan_is_enabled(atchan)) 524 return; 525 526 if (list_empty(&atchan->active_list) || 527 list_is_singular(&atchan->active_list)) { 528 atc_complete_all(atchan); 529 } else { 530 atc_chain_complete(atchan, atc_first_active(atchan)); 531 /* advance work */ 532 atc_dostart(atchan, atc_first_active(atchan)); 533 } 534 } 535 536 537 /** 538 * atc_handle_error - handle errors reported by DMA controller 539 * @atchan: channel where error occurs 540 * 541 * Called with atchan->lock held and bh disabled 542 */ 543 static void atc_handle_error(struct at_dma_chan *atchan) 544 { 545 struct at_desc *bad_desc; 546 struct at_desc *child; 547 548 /* 549 * The descriptor currently at the head of the active list is 550 * broked. Since we don't have any way to report errors, we'll 551 * just have to scream loudly and try to carry on. 552 */ 553 bad_desc = atc_first_active(atchan); 554 list_del_init(&bad_desc->desc_node); 555 556 /* As we are stopped, take advantage to push queued descriptors 557 * in active_list */ 558 list_splice_init(&atchan->queue, atchan->active_list.prev); 559 560 /* Try to restart the controller */ 561 if (!list_empty(&atchan->active_list)) 562 atc_dostart(atchan, atc_first_active(atchan)); 563 564 /* 565 * KERN_CRITICAL may seem harsh, but since this only happens 566 * when someone submits a bad physical address in a 567 * descriptor, we should consider ourselves lucky that the 568 * controller flagged an error instead of scribbling over 569 * random memory locations. 570 */ 571 dev_crit(chan2dev(&atchan->chan_common), 572 "Bad descriptor submitted for DMA!\n"); 573 dev_crit(chan2dev(&atchan->chan_common), 574 " cookie: %d\n", bad_desc->txd.cookie); 575 atc_dump_lli(atchan, &bad_desc->lli); 576 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 577 atc_dump_lli(atchan, &child->lli); 578 579 /* Pretend the descriptor completed successfully */ 580 atc_chain_complete(atchan, bad_desc); 581 } 582 583 /** 584 * atc_handle_cyclic - at the end of a period, run callback function 585 * @atchan: channel used for cyclic operations 586 * 587 * Called with atchan->lock held and bh disabled 588 */ 589 static void atc_handle_cyclic(struct at_dma_chan *atchan) 590 { 591 struct at_desc *first = atc_first_active(atchan); 592 struct dma_async_tx_descriptor *txd = &first->txd; 593 dma_async_tx_callback callback = txd->callback; 594 void *param = txd->callback_param; 595 596 dev_vdbg(chan2dev(&atchan->chan_common), 597 "new cyclic period llp 0x%08x\n", 598 channel_readl(atchan, DSCR)); 599 600 if (callback) 601 callback(param); 602 } 603 604 /*-- IRQ & Tasklet ---------------------------------------------------*/ 605 606 static void atc_tasklet(unsigned long data) 607 { 608 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 609 unsigned long flags; 610 611 spin_lock_irqsave(&atchan->lock, flags); 612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 613 atc_handle_error(atchan); 614 else if (atc_chan_is_cyclic(atchan)) 615 atc_handle_cyclic(atchan); 616 else 617 atc_advance_work(atchan); 618 619 spin_unlock_irqrestore(&atchan->lock, flags); 620 } 621 622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 623 { 624 struct at_dma *atdma = (struct at_dma *)dev_id; 625 struct at_dma_chan *atchan; 626 int i; 627 u32 status, pending, imr; 628 int ret = IRQ_NONE; 629 630 do { 631 imr = dma_readl(atdma, EBCIMR); 632 status = dma_readl(atdma, EBCISR); 633 pending = status & imr; 634 635 if (!pending) 636 break; 637 638 dev_vdbg(atdma->dma_common.dev, 639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 640 status, imr, pending); 641 642 for (i = 0; i < atdma->dma_common.chancnt; i++) { 643 atchan = &atdma->chan[i]; 644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 645 if (pending & AT_DMA_ERR(i)) { 646 /* Disable channel on AHB error */ 647 dma_writel(atdma, CHDR, 648 AT_DMA_RES(i) | atchan->mask); 649 /* Give information to tasklet */ 650 set_bit(ATC_IS_ERROR, &atchan->status); 651 } 652 tasklet_schedule(&atchan->tasklet); 653 ret = IRQ_HANDLED; 654 } 655 } 656 657 } while (pending); 658 659 return ret; 660 } 661 662 663 /*-- DMA Engine API --------------------------------------------------*/ 664 665 /** 666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 667 * @desc: descriptor at the head of the transaction chain 668 * 669 * Queue chain if DMA engine is working already 670 * 671 * Cookie increment and adding to active_list or queue must be atomic 672 */ 673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 674 { 675 struct at_desc *desc = txd_to_at_desc(tx); 676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 677 dma_cookie_t cookie; 678 unsigned long flags; 679 680 spin_lock_irqsave(&atchan->lock, flags); 681 cookie = dma_cookie_assign(tx); 682 683 if (list_empty(&atchan->active_list)) { 684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 685 desc->txd.cookie); 686 atc_dostart(atchan, desc); 687 list_add_tail(&desc->desc_node, &atchan->active_list); 688 } else { 689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 690 desc->txd.cookie); 691 list_add_tail(&desc->desc_node, &atchan->queue); 692 } 693 694 spin_unlock_irqrestore(&atchan->lock, flags); 695 696 return cookie; 697 } 698 699 /** 700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 701 * @chan: the channel to prepare operation on 702 * @xt: Interleaved transfer template 703 * @flags: tx descriptor status flags 704 */ 705 static struct dma_async_tx_descriptor * 706 atc_prep_dma_interleaved(struct dma_chan *chan, 707 struct dma_interleaved_template *xt, 708 unsigned long flags) 709 { 710 struct at_dma_chan *atchan = to_at_dma_chan(chan); 711 struct data_chunk *first = xt->sgl; 712 struct at_desc *desc = NULL; 713 size_t xfer_count; 714 unsigned int dwidth; 715 u32 ctrla; 716 u32 ctrlb; 717 size_t len = 0; 718 int i; 719 720 dev_info(chan2dev(chan), 721 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n", 722 __func__, xt->src_start, xt->dst_start, xt->numf, 723 xt->frame_size, flags); 724 725 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 726 return NULL; 727 728 /* 729 * The controller can only "skip" X bytes every Y bytes, so we 730 * need to make sure we are given a template that fit that 731 * description, ie a template with chunks that always have the 732 * same size, with the same ICGs. 733 */ 734 for (i = 0; i < xt->frame_size; i++) { 735 struct data_chunk *chunk = xt->sgl + i; 736 737 if ((chunk->size != xt->sgl->size) || 738 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 739 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 740 dev_err(chan2dev(chan), 741 "%s: the controller can transfer only identical chunks\n", 742 __func__); 743 return NULL; 744 } 745 746 len += chunk->size; 747 } 748 749 dwidth = atc_get_xfer_width(xt->src_start, 750 xt->dst_start, len); 751 752 xfer_count = len >> dwidth; 753 if (xfer_count > ATC_BTSIZE_MAX) { 754 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 755 return NULL; 756 } 757 758 ctrla = ATC_SRC_WIDTH(dwidth) | 759 ATC_DST_WIDTH(dwidth); 760 761 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 762 | ATC_SRC_ADDR_MODE_INCR 763 | ATC_DST_ADDR_MODE_INCR 764 | ATC_SRC_PIP 765 | ATC_DST_PIP 766 | ATC_FC_MEM2MEM; 767 768 /* create the transfer */ 769 desc = atc_desc_get(atchan); 770 if (!desc) { 771 dev_err(chan2dev(chan), 772 "%s: couldn't allocate our descriptor\n", __func__); 773 return NULL; 774 } 775 776 desc->lli.saddr = xt->src_start; 777 desc->lli.daddr = xt->dst_start; 778 desc->lli.ctrla = ctrla | xfer_count; 779 desc->lli.ctrlb = ctrlb; 780 781 desc->boundary = first->size >> dwidth; 782 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 783 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 784 785 desc->txd.cookie = -EBUSY; 786 desc->total_len = desc->len = len; 787 788 /* set end-of-link to the last link descriptor of list*/ 789 set_desc_eol(desc); 790 791 desc->txd.flags = flags; /* client is in control of this ack */ 792 793 return &desc->txd; 794 } 795 796 /** 797 * atc_prep_dma_memcpy - prepare a memcpy operation 798 * @chan: the channel to prepare operation on 799 * @dest: operation virtual destination address 800 * @src: operation virtual source address 801 * @len: operation length 802 * @flags: tx descriptor status flags 803 */ 804 static struct dma_async_tx_descriptor * 805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 806 size_t len, unsigned long flags) 807 { 808 struct at_dma_chan *atchan = to_at_dma_chan(chan); 809 struct at_desc *desc = NULL; 810 struct at_desc *first = NULL; 811 struct at_desc *prev = NULL; 812 size_t xfer_count; 813 size_t offset; 814 unsigned int src_width; 815 unsigned int dst_width; 816 u32 ctrla; 817 u32 ctrlb; 818 819 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n", 820 dest, src, len, flags); 821 822 if (unlikely(!len)) { 823 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 824 return NULL; 825 } 826 827 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 828 | ATC_SRC_ADDR_MODE_INCR 829 | ATC_DST_ADDR_MODE_INCR 830 | ATC_FC_MEM2MEM; 831 832 /* 833 * We can be a lot more clever here, but this should take care 834 * of the most common optimization. 835 */ 836 src_width = dst_width = atc_get_xfer_width(src, dest, len); 837 838 ctrla = ATC_SRC_WIDTH(src_width) | 839 ATC_DST_WIDTH(dst_width); 840 841 for (offset = 0; offset < len; offset += xfer_count << src_width) { 842 xfer_count = min_t(size_t, (len - offset) >> src_width, 843 ATC_BTSIZE_MAX); 844 845 desc = atc_desc_get(atchan); 846 if (!desc) 847 goto err_desc_get; 848 849 desc->lli.saddr = src + offset; 850 desc->lli.daddr = dest + offset; 851 desc->lli.ctrla = ctrla | xfer_count; 852 desc->lli.ctrlb = ctrlb; 853 854 desc->txd.cookie = 0; 855 desc->len = xfer_count << src_width; 856 857 atc_desc_chain(&first, &prev, desc); 858 } 859 860 /* First descriptor of the chain embedds additional information */ 861 first->txd.cookie = -EBUSY; 862 first->total_len = len; 863 864 /* set end-of-link to the last link descriptor of list*/ 865 set_desc_eol(desc); 866 867 first->txd.flags = flags; /* client is in control of this ack */ 868 869 return &first->txd; 870 871 err_desc_get: 872 atc_desc_put(atchan, first); 873 return NULL; 874 } 875 876 877 /** 878 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 879 * @chan: DMA channel 880 * @sgl: scatterlist to transfer to/from 881 * @sg_len: number of entries in @scatterlist 882 * @direction: DMA direction 883 * @flags: tx descriptor status flags 884 * @context: transaction context (ignored) 885 */ 886 static struct dma_async_tx_descriptor * 887 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 888 unsigned int sg_len, enum dma_transfer_direction direction, 889 unsigned long flags, void *context) 890 { 891 struct at_dma_chan *atchan = to_at_dma_chan(chan); 892 struct at_dma_slave *atslave = chan->private; 893 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 894 struct at_desc *first = NULL; 895 struct at_desc *prev = NULL; 896 u32 ctrla; 897 u32 ctrlb; 898 dma_addr_t reg; 899 unsigned int reg_width; 900 unsigned int mem_width; 901 unsigned int i; 902 struct scatterlist *sg; 903 size_t total_len = 0; 904 905 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 906 sg_len, 907 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 908 flags); 909 910 if (unlikely(!atslave || !sg_len)) { 911 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 912 return NULL; 913 } 914 915 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 916 | ATC_DCSIZE(sconfig->dst_maxburst); 917 ctrlb = ATC_IEN; 918 919 switch (direction) { 920 case DMA_MEM_TO_DEV: 921 reg_width = convert_buswidth(sconfig->dst_addr_width); 922 ctrla |= ATC_DST_WIDTH(reg_width); 923 ctrlb |= ATC_DST_ADDR_MODE_FIXED 924 | ATC_SRC_ADDR_MODE_INCR 925 | ATC_FC_MEM2PER 926 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 927 reg = sconfig->dst_addr; 928 for_each_sg(sgl, sg, sg_len, i) { 929 struct at_desc *desc; 930 u32 len; 931 u32 mem; 932 933 desc = atc_desc_get(atchan); 934 if (!desc) 935 goto err_desc_get; 936 937 mem = sg_dma_address(sg); 938 len = sg_dma_len(sg); 939 if (unlikely(!len)) { 940 dev_dbg(chan2dev(chan), 941 "prep_slave_sg: sg(%d) data length is zero\n", i); 942 goto err; 943 } 944 mem_width = 2; 945 if (unlikely(mem & 3 || len & 3)) 946 mem_width = 0; 947 948 desc->lli.saddr = mem; 949 desc->lli.daddr = reg; 950 desc->lli.ctrla = ctrla 951 | ATC_SRC_WIDTH(mem_width) 952 | len >> mem_width; 953 desc->lli.ctrlb = ctrlb; 954 desc->len = len; 955 956 atc_desc_chain(&first, &prev, desc); 957 total_len += len; 958 } 959 break; 960 case DMA_DEV_TO_MEM: 961 reg_width = convert_buswidth(sconfig->src_addr_width); 962 ctrla |= ATC_SRC_WIDTH(reg_width); 963 ctrlb |= ATC_DST_ADDR_MODE_INCR 964 | ATC_SRC_ADDR_MODE_FIXED 965 | ATC_FC_PER2MEM 966 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 967 968 reg = sconfig->src_addr; 969 for_each_sg(sgl, sg, sg_len, i) { 970 struct at_desc *desc; 971 u32 len; 972 u32 mem; 973 974 desc = atc_desc_get(atchan); 975 if (!desc) 976 goto err_desc_get; 977 978 mem = sg_dma_address(sg); 979 len = sg_dma_len(sg); 980 if (unlikely(!len)) { 981 dev_dbg(chan2dev(chan), 982 "prep_slave_sg: sg(%d) data length is zero\n", i); 983 goto err; 984 } 985 mem_width = 2; 986 if (unlikely(mem & 3 || len & 3)) 987 mem_width = 0; 988 989 desc->lli.saddr = reg; 990 desc->lli.daddr = mem; 991 desc->lli.ctrla = ctrla 992 | ATC_DST_WIDTH(mem_width) 993 | len >> reg_width; 994 desc->lli.ctrlb = ctrlb; 995 desc->len = len; 996 997 atc_desc_chain(&first, &prev, desc); 998 total_len += len; 999 } 1000 break; 1001 default: 1002 return NULL; 1003 } 1004 1005 /* set end-of-link to the last link descriptor of list*/ 1006 set_desc_eol(prev); 1007 1008 /* First descriptor of the chain embedds additional information */ 1009 first->txd.cookie = -EBUSY; 1010 first->total_len = total_len; 1011 1012 /* first link descriptor of list is responsible of flags */ 1013 first->txd.flags = flags; /* client is in control of this ack */ 1014 1015 return &first->txd; 1016 1017 err_desc_get: 1018 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1019 err: 1020 atc_desc_put(atchan, first); 1021 return NULL; 1022 } 1023 1024 /** 1025 * atc_prep_dma_sg - prepare memory to memory scather-gather operation 1026 * @chan: the channel to prepare operation on 1027 * @dst_sg: destination scatterlist 1028 * @dst_nents: number of destination scatterlist entries 1029 * @src_sg: source scatterlist 1030 * @src_nents: number of source scatterlist entries 1031 * @flags: tx descriptor status flags 1032 */ 1033 static struct dma_async_tx_descriptor * 1034 atc_prep_dma_sg(struct dma_chan *chan, 1035 struct scatterlist *dst_sg, unsigned int dst_nents, 1036 struct scatterlist *src_sg, unsigned int src_nents, 1037 unsigned long flags) 1038 { 1039 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1040 struct at_desc *desc = NULL; 1041 struct at_desc *first = NULL; 1042 struct at_desc *prev = NULL; 1043 unsigned int src_width; 1044 unsigned int dst_width; 1045 size_t xfer_count; 1046 u32 ctrla; 1047 u32 ctrlb; 1048 size_t dst_len = 0, src_len = 0; 1049 dma_addr_t dst = 0, src = 0; 1050 size_t len = 0, total_len = 0; 1051 1052 if (unlikely(dst_nents == 0 || src_nents == 0)) 1053 return NULL; 1054 1055 if (unlikely(dst_sg == NULL || src_sg == NULL)) 1056 return NULL; 1057 1058 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 1059 | ATC_SRC_ADDR_MODE_INCR 1060 | ATC_DST_ADDR_MODE_INCR 1061 | ATC_FC_MEM2MEM; 1062 1063 /* 1064 * loop until there is either no more source or no more destination 1065 * scatterlist entry 1066 */ 1067 while (true) { 1068 1069 /* prepare the next transfer */ 1070 if (dst_len == 0) { 1071 1072 /* no more destination scatterlist entries */ 1073 if (!dst_sg || !dst_nents) 1074 break; 1075 1076 dst = sg_dma_address(dst_sg); 1077 dst_len = sg_dma_len(dst_sg); 1078 1079 dst_sg = sg_next(dst_sg); 1080 dst_nents--; 1081 } 1082 1083 if (src_len == 0) { 1084 1085 /* no more source scatterlist entries */ 1086 if (!src_sg || !src_nents) 1087 break; 1088 1089 src = sg_dma_address(src_sg); 1090 src_len = sg_dma_len(src_sg); 1091 1092 src_sg = sg_next(src_sg); 1093 src_nents--; 1094 } 1095 1096 len = min_t(size_t, src_len, dst_len); 1097 if (len == 0) 1098 continue; 1099 1100 /* take care for the alignment */ 1101 src_width = dst_width = atc_get_xfer_width(src, dst, len); 1102 1103 ctrla = ATC_SRC_WIDTH(src_width) | 1104 ATC_DST_WIDTH(dst_width); 1105 1106 /* 1107 * The number of transfers to set up refer to the source width 1108 * that depends on the alignment. 1109 */ 1110 xfer_count = len >> src_width; 1111 if (xfer_count > ATC_BTSIZE_MAX) { 1112 xfer_count = ATC_BTSIZE_MAX; 1113 len = ATC_BTSIZE_MAX << src_width; 1114 } 1115 1116 /* create the transfer */ 1117 desc = atc_desc_get(atchan); 1118 if (!desc) 1119 goto err_desc_get; 1120 1121 desc->lli.saddr = src; 1122 desc->lli.daddr = dst; 1123 desc->lli.ctrla = ctrla | xfer_count; 1124 desc->lli.ctrlb = ctrlb; 1125 1126 desc->txd.cookie = 0; 1127 desc->len = len; 1128 1129 atc_desc_chain(&first, &prev, desc); 1130 1131 /* update the lengths and addresses for the next loop cycle */ 1132 dst_len -= len; 1133 src_len -= len; 1134 dst += len; 1135 src += len; 1136 1137 total_len += len; 1138 } 1139 1140 /* First descriptor of the chain embedds additional information */ 1141 first->txd.cookie = -EBUSY; 1142 first->total_len = total_len; 1143 1144 /* set end-of-link to the last link descriptor of list*/ 1145 set_desc_eol(desc); 1146 1147 first->txd.flags = flags; /* client is in control of this ack */ 1148 1149 return &first->txd; 1150 1151 err_desc_get: 1152 atc_desc_put(atchan, first); 1153 return NULL; 1154 } 1155 1156 /** 1157 * atc_dma_cyclic_check_values 1158 * Check for too big/unaligned periods and unaligned DMA buffer 1159 */ 1160 static int 1161 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1162 size_t period_len) 1163 { 1164 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1165 goto err_out; 1166 if (unlikely(period_len & ((1 << reg_width) - 1))) 1167 goto err_out; 1168 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1169 goto err_out; 1170 1171 return 0; 1172 1173 err_out: 1174 return -EINVAL; 1175 } 1176 1177 /** 1178 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1179 */ 1180 static int 1181 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1182 unsigned int period_index, dma_addr_t buf_addr, 1183 unsigned int reg_width, size_t period_len, 1184 enum dma_transfer_direction direction) 1185 { 1186 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1187 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1188 u32 ctrla; 1189 1190 /* prepare common CRTLA value */ 1191 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1192 | ATC_DCSIZE(sconfig->dst_maxburst) 1193 | ATC_DST_WIDTH(reg_width) 1194 | ATC_SRC_WIDTH(reg_width) 1195 | period_len >> reg_width; 1196 1197 switch (direction) { 1198 case DMA_MEM_TO_DEV: 1199 desc->lli.saddr = buf_addr + (period_len * period_index); 1200 desc->lli.daddr = sconfig->dst_addr; 1201 desc->lli.ctrla = ctrla; 1202 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1203 | ATC_SRC_ADDR_MODE_INCR 1204 | ATC_FC_MEM2PER 1205 | ATC_SIF(atchan->mem_if) 1206 | ATC_DIF(atchan->per_if); 1207 desc->len = period_len; 1208 break; 1209 1210 case DMA_DEV_TO_MEM: 1211 desc->lli.saddr = sconfig->src_addr; 1212 desc->lli.daddr = buf_addr + (period_len * period_index); 1213 desc->lli.ctrla = ctrla; 1214 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1215 | ATC_SRC_ADDR_MODE_FIXED 1216 | ATC_FC_PER2MEM 1217 | ATC_SIF(atchan->per_if) 1218 | ATC_DIF(atchan->mem_if); 1219 desc->len = period_len; 1220 break; 1221 1222 default: 1223 return -EINVAL; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1231 * @chan: the DMA channel to prepare 1232 * @buf_addr: physical DMA address where the buffer starts 1233 * @buf_len: total number of bytes for the entire buffer 1234 * @period_len: number of bytes for each period 1235 * @direction: transfer direction, to or from device 1236 * @flags: tx descriptor status flags 1237 */ 1238 static struct dma_async_tx_descriptor * 1239 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1240 size_t period_len, enum dma_transfer_direction direction, 1241 unsigned long flags) 1242 { 1243 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1244 struct at_dma_slave *atslave = chan->private; 1245 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1246 struct at_desc *first = NULL; 1247 struct at_desc *prev = NULL; 1248 unsigned long was_cyclic; 1249 unsigned int reg_width; 1250 unsigned int periods = buf_len / period_len; 1251 unsigned int i; 1252 1253 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n", 1254 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1255 buf_addr, 1256 periods, buf_len, period_len); 1257 1258 if (unlikely(!atslave || !buf_len || !period_len)) { 1259 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1260 return NULL; 1261 } 1262 1263 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1264 if (was_cyclic) { 1265 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1266 return NULL; 1267 } 1268 1269 if (unlikely(!is_slave_direction(direction))) 1270 goto err_out; 1271 1272 if (sconfig->direction == DMA_MEM_TO_DEV) 1273 reg_width = convert_buswidth(sconfig->dst_addr_width); 1274 else 1275 reg_width = convert_buswidth(sconfig->src_addr_width); 1276 1277 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1278 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1279 goto err_out; 1280 1281 /* build cyclic linked list */ 1282 for (i = 0; i < periods; i++) { 1283 struct at_desc *desc; 1284 1285 desc = atc_desc_get(atchan); 1286 if (!desc) 1287 goto err_desc_get; 1288 1289 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1290 reg_width, period_len, direction)) 1291 goto err_desc_get; 1292 1293 atc_desc_chain(&first, &prev, desc); 1294 } 1295 1296 /* lets make a cyclic list */ 1297 prev->lli.dscr = first->txd.phys; 1298 1299 /* First descriptor of the chain embedds additional information */ 1300 first->txd.cookie = -EBUSY; 1301 first->total_len = buf_len; 1302 1303 return &first->txd; 1304 1305 err_desc_get: 1306 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1307 atc_desc_put(atchan, first); 1308 err_out: 1309 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1310 return NULL; 1311 } 1312 1313 static int atc_config(struct dma_chan *chan, 1314 struct dma_slave_config *sconfig) 1315 { 1316 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1317 1318 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1319 1320 /* Check if it is chan is configured for slave transfers */ 1321 if (!chan->private) 1322 return -EINVAL; 1323 1324 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1325 1326 convert_burst(&atchan->dma_sconfig.src_maxburst); 1327 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1328 1329 return 0; 1330 } 1331 1332 static int atc_pause(struct dma_chan *chan) 1333 { 1334 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1335 struct at_dma *atdma = to_at_dma(chan->device); 1336 int chan_id = atchan->chan_common.chan_id; 1337 unsigned long flags; 1338 1339 LIST_HEAD(list); 1340 1341 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1342 1343 spin_lock_irqsave(&atchan->lock, flags); 1344 1345 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1346 set_bit(ATC_IS_PAUSED, &atchan->status); 1347 1348 spin_unlock_irqrestore(&atchan->lock, flags); 1349 1350 return 0; 1351 } 1352 1353 static int atc_resume(struct dma_chan *chan) 1354 { 1355 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1356 struct at_dma *atdma = to_at_dma(chan->device); 1357 int chan_id = atchan->chan_common.chan_id; 1358 unsigned long flags; 1359 1360 LIST_HEAD(list); 1361 1362 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1363 1364 if (!atc_chan_is_paused(atchan)) 1365 return 0; 1366 1367 spin_lock_irqsave(&atchan->lock, flags); 1368 1369 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1370 clear_bit(ATC_IS_PAUSED, &atchan->status); 1371 1372 spin_unlock_irqrestore(&atchan->lock, flags); 1373 1374 return 0; 1375 } 1376 1377 static int atc_terminate_all(struct dma_chan *chan) 1378 { 1379 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1380 struct at_dma *atdma = to_at_dma(chan->device); 1381 int chan_id = atchan->chan_common.chan_id; 1382 struct at_desc *desc, *_desc; 1383 unsigned long flags; 1384 1385 LIST_HEAD(list); 1386 1387 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1388 1389 /* 1390 * This is only called when something went wrong elsewhere, so 1391 * we don't really care about the data. Just disable the 1392 * channel. We still have to poll the channel enable bit due 1393 * to AHB/HSB limitations. 1394 */ 1395 spin_lock_irqsave(&atchan->lock, flags); 1396 1397 /* disabling channel: must also remove suspend state */ 1398 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1399 1400 /* confirm that this channel is disabled */ 1401 while (dma_readl(atdma, CHSR) & atchan->mask) 1402 cpu_relax(); 1403 1404 /* active_list entries will end up before queued entries */ 1405 list_splice_init(&atchan->queue, &list); 1406 list_splice_init(&atchan->active_list, &list); 1407 1408 /* Flush all pending and queued descriptors */ 1409 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1410 atc_chain_complete(atchan, desc); 1411 1412 clear_bit(ATC_IS_PAUSED, &atchan->status); 1413 /* if channel dedicated to cyclic operations, free it */ 1414 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1415 1416 spin_unlock_irqrestore(&atchan->lock, flags); 1417 1418 return 0; 1419 } 1420 1421 /** 1422 * atc_tx_status - poll for transaction completion 1423 * @chan: DMA channel 1424 * @cookie: transaction identifier to check status of 1425 * @txstate: if not %NULL updated with transaction state 1426 * 1427 * If @txstate is passed in, upon return it reflect the driver 1428 * internal state and can be used with dma_async_is_complete() to check 1429 * the status of multiple cookies without re-checking hardware state. 1430 */ 1431 static enum dma_status 1432 atc_tx_status(struct dma_chan *chan, 1433 dma_cookie_t cookie, 1434 struct dma_tx_state *txstate) 1435 { 1436 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1437 unsigned long flags; 1438 enum dma_status ret; 1439 int bytes = 0; 1440 1441 ret = dma_cookie_status(chan, cookie, txstate); 1442 if (ret == DMA_COMPLETE) 1443 return ret; 1444 /* 1445 * There's no point calculating the residue if there's 1446 * no txstate to store the value. 1447 */ 1448 if (!txstate) 1449 return DMA_ERROR; 1450 1451 spin_lock_irqsave(&atchan->lock, flags); 1452 1453 /* Get number of bytes left in the active transactions */ 1454 bytes = atc_get_bytes_left(chan, cookie); 1455 1456 spin_unlock_irqrestore(&atchan->lock, flags); 1457 1458 if (unlikely(bytes < 0)) { 1459 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1460 return DMA_ERROR; 1461 } else { 1462 dma_set_residue(txstate, bytes); 1463 } 1464 1465 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1466 ret, cookie, bytes); 1467 1468 return ret; 1469 } 1470 1471 /** 1472 * atc_issue_pending - try to finish work 1473 * @chan: target DMA channel 1474 */ 1475 static void atc_issue_pending(struct dma_chan *chan) 1476 { 1477 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1478 unsigned long flags; 1479 1480 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1481 1482 /* Not needed for cyclic transfers */ 1483 if (atc_chan_is_cyclic(atchan)) 1484 return; 1485 1486 spin_lock_irqsave(&atchan->lock, flags); 1487 atc_advance_work(atchan); 1488 spin_unlock_irqrestore(&atchan->lock, flags); 1489 } 1490 1491 /** 1492 * atc_alloc_chan_resources - allocate resources for DMA channel 1493 * @chan: allocate descriptor resources for this channel 1494 * @client: current client requesting the channel be ready for requests 1495 * 1496 * return - the number of allocated descriptors 1497 */ 1498 static int atc_alloc_chan_resources(struct dma_chan *chan) 1499 { 1500 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1501 struct at_dma *atdma = to_at_dma(chan->device); 1502 struct at_desc *desc; 1503 struct at_dma_slave *atslave; 1504 unsigned long flags; 1505 int i; 1506 u32 cfg; 1507 LIST_HEAD(tmp_list); 1508 1509 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1510 1511 /* ASSERT: channel is idle */ 1512 if (atc_chan_is_enabled(atchan)) { 1513 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1514 return -EIO; 1515 } 1516 1517 cfg = ATC_DEFAULT_CFG; 1518 1519 atslave = chan->private; 1520 if (atslave) { 1521 /* 1522 * We need controller-specific data to set up slave 1523 * transfers. 1524 */ 1525 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1526 1527 /* if cfg configuration specified take it instead of default */ 1528 if (atslave->cfg) 1529 cfg = atslave->cfg; 1530 } 1531 1532 /* have we already been set up? 1533 * reconfigure channel but no need to reallocate descriptors */ 1534 if (!list_empty(&atchan->free_list)) 1535 return atchan->descs_allocated; 1536 1537 /* Allocate initial pool of descriptors */ 1538 for (i = 0; i < init_nr_desc_per_channel; i++) { 1539 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1540 if (!desc) { 1541 dev_err(atdma->dma_common.dev, 1542 "Only %d initial descriptors\n", i); 1543 break; 1544 } 1545 list_add_tail(&desc->desc_node, &tmp_list); 1546 } 1547 1548 spin_lock_irqsave(&atchan->lock, flags); 1549 atchan->descs_allocated = i; 1550 list_splice(&tmp_list, &atchan->free_list); 1551 dma_cookie_init(chan); 1552 spin_unlock_irqrestore(&atchan->lock, flags); 1553 1554 /* channel parameters */ 1555 channel_writel(atchan, CFG, cfg); 1556 1557 dev_dbg(chan2dev(chan), 1558 "alloc_chan_resources: allocated %d descriptors\n", 1559 atchan->descs_allocated); 1560 1561 return atchan->descs_allocated; 1562 } 1563 1564 /** 1565 * atc_free_chan_resources - free all channel resources 1566 * @chan: DMA channel 1567 */ 1568 static void atc_free_chan_resources(struct dma_chan *chan) 1569 { 1570 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1571 struct at_dma *atdma = to_at_dma(chan->device); 1572 struct at_desc *desc, *_desc; 1573 LIST_HEAD(list); 1574 1575 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1576 atchan->descs_allocated); 1577 1578 /* ASSERT: channel is idle */ 1579 BUG_ON(!list_empty(&atchan->active_list)); 1580 BUG_ON(!list_empty(&atchan->queue)); 1581 BUG_ON(atc_chan_is_enabled(atchan)); 1582 1583 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1584 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1585 list_del(&desc->desc_node); 1586 /* free link descriptor */ 1587 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1588 } 1589 list_splice_init(&atchan->free_list, &list); 1590 atchan->descs_allocated = 0; 1591 atchan->status = 0; 1592 1593 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1594 } 1595 1596 #ifdef CONFIG_OF 1597 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1598 { 1599 struct at_dma_slave *atslave = slave; 1600 1601 if (atslave->dma_dev == chan->device->dev) { 1602 chan->private = atslave; 1603 return true; 1604 } else { 1605 return false; 1606 } 1607 } 1608 1609 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1610 struct of_dma *of_dma) 1611 { 1612 struct dma_chan *chan; 1613 struct at_dma_chan *atchan; 1614 struct at_dma_slave *atslave; 1615 dma_cap_mask_t mask; 1616 unsigned int per_id; 1617 struct platform_device *dmac_pdev; 1618 1619 if (dma_spec->args_count != 2) 1620 return NULL; 1621 1622 dmac_pdev = of_find_device_by_node(dma_spec->np); 1623 1624 dma_cap_zero(mask); 1625 dma_cap_set(DMA_SLAVE, mask); 1626 1627 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL); 1628 if (!atslave) 1629 return NULL; 1630 1631 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1632 /* 1633 * We can fill both SRC_PER and DST_PER, one of these fields will be 1634 * ignored depending on DMA transfer direction. 1635 */ 1636 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1637 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1638 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1639 /* 1640 * We have to translate the value we get from the device tree since 1641 * the half FIFO configuration value had to be 0 to keep backward 1642 * compatibility. 1643 */ 1644 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1645 case AT91_DMA_CFG_FIFOCFG_ALAP: 1646 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1647 break; 1648 case AT91_DMA_CFG_FIFOCFG_ASAP: 1649 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1650 break; 1651 case AT91_DMA_CFG_FIFOCFG_HALF: 1652 default: 1653 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1654 } 1655 atslave->dma_dev = &dmac_pdev->dev; 1656 1657 chan = dma_request_channel(mask, at_dma_filter, atslave); 1658 if (!chan) 1659 return NULL; 1660 1661 atchan = to_at_dma_chan(chan); 1662 atchan->per_if = dma_spec->args[0] & 0xff; 1663 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1664 1665 return chan; 1666 } 1667 #else 1668 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1669 struct of_dma *of_dma) 1670 { 1671 return NULL; 1672 } 1673 #endif 1674 1675 /*-- Module Management -----------------------------------------------*/ 1676 1677 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1678 static struct at_dma_platform_data at91sam9rl_config = { 1679 .nr_channels = 2, 1680 }; 1681 static struct at_dma_platform_data at91sam9g45_config = { 1682 .nr_channels = 8, 1683 }; 1684 1685 #if defined(CONFIG_OF) 1686 static const struct of_device_id atmel_dma_dt_ids[] = { 1687 { 1688 .compatible = "atmel,at91sam9rl-dma", 1689 .data = &at91sam9rl_config, 1690 }, { 1691 .compatible = "atmel,at91sam9g45-dma", 1692 .data = &at91sam9g45_config, 1693 }, { 1694 /* sentinel */ 1695 } 1696 }; 1697 1698 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1699 #endif 1700 1701 static const struct platform_device_id atdma_devtypes[] = { 1702 { 1703 .name = "at91sam9rl_dma", 1704 .driver_data = (unsigned long) &at91sam9rl_config, 1705 }, { 1706 .name = "at91sam9g45_dma", 1707 .driver_data = (unsigned long) &at91sam9g45_config, 1708 }, { 1709 /* sentinel */ 1710 } 1711 }; 1712 1713 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1714 struct platform_device *pdev) 1715 { 1716 if (pdev->dev.of_node) { 1717 const struct of_device_id *match; 1718 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1719 if (match == NULL) 1720 return NULL; 1721 return match->data; 1722 } 1723 return (struct at_dma_platform_data *) 1724 platform_get_device_id(pdev)->driver_data; 1725 } 1726 1727 /** 1728 * at_dma_off - disable DMA controller 1729 * @atdma: the Atmel HDAMC device 1730 */ 1731 static void at_dma_off(struct at_dma *atdma) 1732 { 1733 dma_writel(atdma, EN, 0); 1734 1735 /* disable all interrupts */ 1736 dma_writel(atdma, EBCIDR, -1L); 1737 1738 /* confirm that all channels are disabled */ 1739 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1740 cpu_relax(); 1741 } 1742 1743 static int __init at_dma_probe(struct platform_device *pdev) 1744 { 1745 struct resource *io; 1746 struct at_dma *atdma; 1747 size_t size; 1748 int irq; 1749 int err; 1750 int i; 1751 const struct at_dma_platform_data *plat_dat; 1752 1753 /* setup platform data for each SoC */ 1754 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1755 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask); 1756 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1757 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1758 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1759 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask); 1760 1761 /* get DMA parameters from controller type */ 1762 plat_dat = at_dma_get_driver_data(pdev); 1763 if (!plat_dat) 1764 return -ENODEV; 1765 1766 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1767 if (!io) 1768 return -EINVAL; 1769 1770 irq = platform_get_irq(pdev, 0); 1771 if (irq < 0) 1772 return irq; 1773 1774 size = sizeof(struct at_dma); 1775 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1776 atdma = kzalloc(size, GFP_KERNEL); 1777 if (!atdma) 1778 return -ENOMEM; 1779 1780 /* discover transaction capabilities */ 1781 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1782 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1783 1784 size = resource_size(io); 1785 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1786 err = -EBUSY; 1787 goto err_kfree; 1788 } 1789 1790 atdma->regs = ioremap(io->start, size); 1791 if (!atdma->regs) { 1792 err = -ENOMEM; 1793 goto err_release_r; 1794 } 1795 1796 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1797 if (IS_ERR(atdma->clk)) { 1798 err = PTR_ERR(atdma->clk); 1799 goto err_clk; 1800 } 1801 err = clk_prepare_enable(atdma->clk); 1802 if (err) 1803 goto err_clk_prepare; 1804 1805 /* force dma off, just in case */ 1806 at_dma_off(atdma); 1807 1808 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1809 if (err) 1810 goto err_irq; 1811 1812 platform_set_drvdata(pdev, atdma); 1813 1814 /* create a pool of consistent memory blocks for hardware descriptors */ 1815 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1816 &pdev->dev, sizeof(struct at_desc), 1817 4 /* word alignment */, 0); 1818 if (!atdma->dma_desc_pool) { 1819 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1820 err = -ENOMEM; 1821 goto err_pool_create; 1822 } 1823 1824 /* clear any pending interrupt */ 1825 while (dma_readl(atdma, EBCISR)) 1826 cpu_relax(); 1827 1828 /* initialize channels related values */ 1829 INIT_LIST_HEAD(&atdma->dma_common.channels); 1830 for (i = 0; i < plat_dat->nr_channels; i++) { 1831 struct at_dma_chan *atchan = &atdma->chan[i]; 1832 1833 atchan->mem_if = AT_DMA_MEM_IF; 1834 atchan->per_if = AT_DMA_PER_IF; 1835 atchan->chan_common.device = &atdma->dma_common; 1836 dma_cookie_init(&atchan->chan_common); 1837 list_add_tail(&atchan->chan_common.device_node, 1838 &atdma->dma_common.channels); 1839 1840 atchan->ch_regs = atdma->regs + ch_regs(i); 1841 spin_lock_init(&atchan->lock); 1842 atchan->mask = 1 << i; 1843 1844 INIT_LIST_HEAD(&atchan->active_list); 1845 INIT_LIST_HEAD(&atchan->queue); 1846 INIT_LIST_HEAD(&atchan->free_list); 1847 1848 tasklet_init(&atchan->tasklet, atc_tasklet, 1849 (unsigned long)atchan); 1850 atc_enable_chan_irq(atdma, i); 1851 } 1852 1853 /* set base routines */ 1854 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1855 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1856 atdma->dma_common.device_tx_status = atc_tx_status; 1857 atdma->dma_common.device_issue_pending = atc_issue_pending; 1858 atdma->dma_common.dev = &pdev->dev; 1859 1860 /* set prep routines based on capability */ 1861 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1862 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1863 1864 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1865 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1866 1867 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1868 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1869 /* controller can do slave DMA: can trigger cyclic transfers */ 1870 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1871 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1872 atdma->dma_common.device_config = atc_config; 1873 atdma->dma_common.device_pause = atc_pause; 1874 atdma->dma_common.device_resume = atc_resume; 1875 atdma->dma_common.device_terminate_all = atc_terminate_all; 1876 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1877 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1878 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1879 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1880 } 1881 1882 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)) 1883 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg; 1884 1885 dma_writel(atdma, EN, AT_DMA_ENABLE); 1886 1887 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1888 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1889 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1890 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "", 1891 plat_dat->nr_channels); 1892 1893 dma_async_device_register(&atdma->dma_common); 1894 1895 /* 1896 * Do not return an error if the dmac node is not present in order to 1897 * not break the existing way of requesting channel with 1898 * dma_request_channel(). 1899 */ 1900 if (pdev->dev.of_node) { 1901 err = of_dma_controller_register(pdev->dev.of_node, 1902 at_dma_xlate, atdma); 1903 if (err) { 1904 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1905 goto err_of_dma_controller_register; 1906 } 1907 } 1908 1909 return 0; 1910 1911 err_of_dma_controller_register: 1912 dma_async_device_unregister(&atdma->dma_common); 1913 dma_pool_destroy(atdma->dma_desc_pool); 1914 err_pool_create: 1915 free_irq(platform_get_irq(pdev, 0), atdma); 1916 err_irq: 1917 clk_disable_unprepare(atdma->clk); 1918 err_clk_prepare: 1919 clk_put(atdma->clk); 1920 err_clk: 1921 iounmap(atdma->regs); 1922 atdma->regs = NULL; 1923 err_release_r: 1924 release_mem_region(io->start, size); 1925 err_kfree: 1926 kfree(atdma); 1927 return err; 1928 } 1929 1930 static int at_dma_remove(struct platform_device *pdev) 1931 { 1932 struct at_dma *atdma = platform_get_drvdata(pdev); 1933 struct dma_chan *chan, *_chan; 1934 struct resource *io; 1935 1936 at_dma_off(atdma); 1937 dma_async_device_unregister(&atdma->dma_common); 1938 1939 dma_pool_destroy(atdma->dma_desc_pool); 1940 free_irq(platform_get_irq(pdev, 0), atdma); 1941 1942 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 1943 device_node) { 1944 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1945 1946 /* Disable interrupts */ 1947 atc_disable_chan_irq(atdma, chan->chan_id); 1948 1949 tasklet_kill(&atchan->tasklet); 1950 list_del(&chan->device_node); 1951 } 1952 1953 clk_disable_unprepare(atdma->clk); 1954 clk_put(atdma->clk); 1955 1956 iounmap(atdma->regs); 1957 atdma->regs = NULL; 1958 1959 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1960 release_mem_region(io->start, resource_size(io)); 1961 1962 kfree(atdma); 1963 1964 return 0; 1965 } 1966 1967 static void at_dma_shutdown(struct platform_device *pdev) 1968 { 1969 struct at_dma *atdma = platform_get_drvdata(pdev); 1970 1971 at_dma_off(platform_get_drvdata(pdev)); 1972 clk_disable_unprepare(atdma->clk); 1973 } 1974 1975 static int at_dma_prepare(struct device *dev) 1976 { 1977 struct platform_device *pdev = to_platform_device(dev); 1978 struct at_dma *atdma = platform_get_drvdata(pdev); 1979 struct dma_chan *chan, *_chan; 1980 1981 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 1982 device_node) { 1983 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1984 /* wait for transaction completion (except in cyclic case) */ 1985 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 1986 return -EAGAIN; 1987 } 1988 return 0; 1989 } 1990 1991 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 1992 { 1993 struct dma_chan *chan = &atchan->chan_common; 1994 1995 /* Channel should be paused by user 1996 * do it anyway even if it is not done already */ 1997 if (!atc_chan_is_paused(atchan)) { 1998 dev_warn(chan2dev(chan), 1999 "cyclic channel not paused, should be done by channel user\n"); 2000 atc_pause(chan); 2001 } 2002 2003 /* now preserve additional data for cyclic operations */ 2004 /* next descriptor address in the cyclic list */ 2005 atchan->save_dscr = channel_readl(atchan, DSCR); 2006 2007 vdbg_dump_regs(atchan); 2008 } 2009 2010 static int at_dma_suspend_noirq(struct device *dev) 2011 { 2012 struct platform_device *pdev = to_platform_device(dev); 2013 struct at_dma *atdma = platform_get_drvdata(pdev); 2014 struct dma_chan *chan, *_chan; 2015 2016 /* preserve data */ 2017 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2018 device_node) { 2019 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2020 2021 if (atc_chan_is_cyclic(atchan)) 2022 atc_suspend_cyclic(atchan); 2023 atchan->save_cfg = channel_readl(atchan, CFG); 2024 } 2025 atdma->save_imr = dma_readl(atdma, EBCIMR); 2026 2027 /* disable DMA controller */ 2028 at_dma_off(atdma); 2029 clk_disable_unprepare(atdma->clk); 2030 return 0; 2031 } 2032 2033 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2034 { 2035 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2036 2037 /* restore channel status for cyclic descriptors list: 2038 * next descriptor in the cyclic list at the time of suspend */ 2039 channel_writel(atchan, SADDR, 0); 2040 channel_writel(atchan, DADDR, 0); 2041 channel_writel(atchan, CTRLA, 0); 2042 channel_writel(atchan, CTRLB, 0); 2043 channel_writel(atchan, DSCR, atchan->save_dscr); 2044 dma_writel(atdma, CHER, atchan->mask); 2045 2046 /* channel pause status should be removed by channel user 2047 * We cannot take the initiative to do it here */ 2048 2049 vdbg_dump_regs(atchan); 2050 } 2051 2052 static int at_dma_resume_noirq(struct device *dev) 2053 { 2054 struct platform_device *pdev = to_platform_device(dev); 2055 struct at_dma *atdma = platform_get_drvdata(pdev); 2056 struct dma_chan *chan, *_chan; 2057 2058 /* bring back DMA controller */ 2059 clk_prepare_enable(atdma->clk); 2060 dma_writel(atdma, EN, AT_DMA_ENABLE); 2061 2062 /* clear any pending interrupt */ 2063 while (dma_readl(atdma, EBCISR)) 2064 cpu_relax(); 2065 2066 /* restore saved data */ 2067 dma_writel(atdma, EBCIER, atdma->save_imr); 2068 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2069 device_node) { 2070 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2071 2072 channel_writel(atchan, CFG, atchan->save_cfg); 2073 if (atc_chan_is_cyclic(atchan)) 2074 atc_resume_cyclic(atchan); 2075 } 2076 return 0; 2077 } 2078 2079 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2080 .prepare = at_dma_prepare, 2081 .suspend_noirq = at_dma_suspend_noirq, 2082 .resume_noirq = at_dma_resume_noirq, 2083 }; 2084 2085 static struct platform_driver at_dma_driver = { 2086 .remove = at_dma_remove, 2087 .shutdown = at_dma_shutdown, 2088 .id_table = atdma_devtypes, 2089 .driver = { 2090 .name = "at_hdmac", 2091 .pm = &at_dma_dev_pm_ops, 2092 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2093 }, 2094 }; 2095 2096 static int __init at_dma_init(void) 2097 { 2098 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2099 } 2100 subsys_initcall(at_dma_init); 2101 2102 static void __exit at_dma_exit(void) 2103 { 2104 platform_driver_unregister(&at_dma_driver); 2105 } 2106 module_exit(at_dma_exit); 2107 2108 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2109 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2110 MODULE_LICENSE("GPL"); 2111 MODULE_ALIAS("platform:at_hdmac"); 2112