xref: /linux/drivers/dma/at_hdmac.c (revision 9b28829d6da391f67a76dbba07a167e2b554bd10)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		memset(desc, 0, sizeof(struct at_desc));
117 		INIT_LIST_HEAD(&desc->tx_list);
118 		dma_async_tx_descriptor_init(&desc->txd, chan);
119 		/* txd.flags will be overwritten in prep functions */
120 		desc->txd.flags = DMA_CTRL_ACK;
121 		desc->txd.tx_submit = atc_tx_submit;
122 		desc->txd.phys = phys;
123 	}
124 
125 	return desc;
126 }
127 
128 /**
129  * atc_desc_get - get an unused descriptor from free_list
130  * @atchan: channel we want a new descriptor for
131  */
132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133 {
134 	struct at_desc *desc, *_desc;
135 	struct at_desc *ret = NULL;
136 	unsigned long flags;
137 	unsigned int i = 0;
138 	LIST_HEAD(tmp_list);
139 
140 	spin_lock_irqsave(&atchan->lock, flags);
141 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 		i++;
143 		if (async_tx_test_ack(&desc->txd)) {
144 			list_del(&desc->desc_node);
145 			ret = desc;
146 			break;
147 		}
148 		dev_dbg(chan2dev(&atchan->chan_common),
149 				"desc %p not ACKed\n", desc);
150 	}
151 	spin_unlock_irqrestore(&atchan->lock, flags);
152 	dev_vdbg(chan2dev(&atchan->chan_common),
153 		"scanned %u descriptors on freelist\n", i);
154 
155 	/* no more descriptor available in initial pool: create one more */
156 	if (!ret) {
157 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 		if (ret) {
159 			spin_lock_irqsave(&atchan->lock, flags);
160 			atchan->descs_allocated++;
161 			spin_unlock_irqrestore(&atchan->lock, flags);
162 		} else {
163 			dev_err(chan2dev(&atchan->chan_common),
164 					"not enough descriptors available\n");
165 		}
166 	}
167 
168 	return ret;
169 }
170 
171 /**
172  * atc_desc_put - move a descriptor, including any children, to the free list
173  * @atchan: channel we work on
174  * @desc: descriptor, at the head of a chain, to move to free list
175  */
176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177 {
178 	if (desc) {
179 		struct at_desc *child;
180 		unsigned long flags;
181 
182 		spin_lock_irqsave(&atchan->lock, flags);
183 		list_for_each_entry(child, &desc->tx_list, desc_node)
184 			dev_vdbg(chan2dev(&atchan->chan_common),
185 					"moving child desc %p to freelist\n",
186 					child);
187 		list_splice_init(&desc->tx_list, &atchan->free_list);
188 		dev_vdbg(chan2dev(&atchan->chan_common),
189 			 "moving desc %p to freelist\n", desc);
190 		list_add(&desc->desc_node, &atchan->free_list);
191 		spin_unlock_irqrestore(&atchan->lock, flags);
192 	}
193 }
194 
195 /**
196  * atc_desc_chain - build chain adding a descriptor
197  * @first: address of first descriptor of the chain
198  * @prev: address of previous descriptor of the chain
199  * @desc: descriptor to queue
200  *
201  * Called from prep_* functions
202  */
203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 			   struct at_desc *desc)
205 {
206 	if (!(*first)) {
207 		*first = desc;
208 	} else {
209 		/* inform the HW lli about chaining */
210 		(*prev)->lli.dscr = desc->txd.phys;
211 		/* insert the link descriptor to the LD ring */
212 		list_add_tail(&desc->desc_node,
213 				&(*first)->tx_list);
214 	}
215 	*prev = desc;
216 }
217 
218 /**
219  * atc_dostart - starts the DMA engine for real
220  * @atchan: the channel we want to start
221  * @first: first descriptor in the list we want to begin with
222  *
223  * Called with atchan->lock held and bh disabled
224  */
225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226 {
227 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
228 
229 	/* ASSERT:  channel is idle */
230 	if (atc_chan_is_enabled(atchan)) {
231 		dev_err(chan2dev(&atchan->chan_common),
232 			"BUG: Attempted to start non-idle channel\n");
233 		dev_err(chan2dev(&atchan->chan_common),
234 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 			channel_readl(atchan, SADDR),
236 			channel_readl(atchan, DADDR),
237 			channel_readl(atchan, CTRLA),
238 			channel_readl(atchan, CTRLB),
239 			channel_readl(atchan, DSCR));
240 
241 		/* The tasklet will hopefully advance the queue... */
242 		return;
243 	}
244 
245 	vdbg_dump_regs(atchan);
246 
247 	channel_writel(atchan, SADDR, 0);
248 	channel_writel(atchan, DADDR, 0);
249 	channel_writel(atchan, CTRLA, 0);
250 	channel_writel(atchan, CTRLB, 0);
251 	channel_writel(atchan, DSCR, first->txd.phys);
252 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 		       ATC_SPIP_BOUNDARY(first->boundary));
254 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 		       ATC_DPIP_BOUNDARY(first->boundary));
256 	dma_writel(atdma, CHER, atchan->mask);
257 
258 	vdbg_dump_regs(atchan);
259 }
260 
261 /*
262  * atc_get_desc_by_cookie - get the descriptor of a cookie
263  * @atchan: the DMA channel
264  * @cookie: the cookie to get the descriptor for
265  */
266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 						dma_cookie_t cookie)
268 {
269 	struct at_desc *desc, *_desc;
270 
271 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 		if (desc->txd.cookie == cookie)
273 			return desc;
274 	}
275 
276 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 		if (desc->txd.cookie == cookie)
278 			return desc;
279 	}
280 
281 	return NULL;
282 }
283 
284 /**
285  * atc_calc_bytes_left - calculates the number of bytes left according to the
286  * value read from CTRLA.
287  *
288  * @current_len: the number of bytes left before reading CTRLA
289  * @ctrla: the value of CTRLA
290  */
291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292 {
293 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295 
296 	/*
297 	 * According to the datasheet, when reading the Control A Register
298 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 	 * number of transfers completed on the Source Interface.
300 	 * So btsize is always a number of source width transfers.
301 	 */
302 	return current_len - (btsize << src_width);
303 }
304 
305 /**
306  * atc_get_bytes_left - get the number of bytes residue for a cookie
307  * @chan: DMA channel
308  * @cookie: transaction identifier to check status of
309  */
310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311 {
312 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
313 	struct at_desc *desc_first = atc_first_active(atchan);
314 	struct at_desc *desc;
315 	int ret;
316 	u32 ctrla, dscr, trials;
317 
318 	/*
319 	 * If the cookie doesn't match to the currently running transfer then
320 	 * we can return the total length of the associated DMA transfer,
321 	 * because it is still queued.
322 	 */
323 	desc = atc_get_desc_by_cookie(atchan, cookie);
324 	if (desc == NULL)
325 		return -EINVAL;
326 	else if (desc != desc_first)
327 		return desc->total_len;
328 
329 	/* cookie matches to the currently running transfer */
330 	ret = desc_first->total_len;
331 
332 	if (desc_first->lli.dscr) {
333 		/* hardware linked list transfer */
334 
335 		/*
336 		 * Calculate the residue by removing the length of the child
337 		 * descriptors already transferred from the total length.
338 		 * To get the current child descriptor we can use the value of
339 		 * the channel's DSCR register and compare it against the value
340 		 * of the hardware linked list structure of each child
341 		 * descriptor.
342 		 *
343 		 * The CTRLA register provides us with the amount of data
344 		 * already read from the source for the current child
345 		 * descriptor. So we can compute a more accurate residue by also
346 		 * removing the number of bytes corresponding to this amount of
347 		 * data.
348 		 *
349 		 * However, the DSCR and CTRLA registers cannot be read both
350 		 * atomically. Hence a race condition may occur: the first read
351 		 * register may refer to one child descriptor whereas the second
352 		 * read may refer to a later child descriptor in the list
353 		 * because of the DMA transfer progression inbetween the two
354 		 * reads.
355 		 *
356 		 * One solution could have been to pause the DMA transfer, read
357 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 		 * this approach presents some drawbacks:
359 		 * - If the DMA transfer is paused, RX overruns or TX underruns
360 		 *   are more likey to occur depending on the system latency.
361 		 *   Taking the USART driver as an example, it uses a cyclic DMA
362 		 *   transfer to read data from the Receive Holding Register
363 		 *   (RHR) to avoid RX overruns since the RHR is not protected
364 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 		 *   to compute the residue would break the USART driver design.
366 		 * - The atc_pause() function masks interrupts but we'd rather
367 		 *   avoid to do so for system latency purpose.
368 		 *
369 		 * Then we'd rather use another solution: the DSCR is read a
370 		 * first time, the CTRLA is read in turn, next the DSCR is read
371 		 * a second time. If the two consecutive read values of the DSCR
372 		 * are the same then we assume both refers to the very same
373 		 * child descriptor as well as the CTRLA value read inbetween
374 		 * does. For cyclic tranfers, the assumption is that a full loop
375 		 * is "not so fast".
376 		 * If the two DSCR values are different, we read again the CTRLA
377 		 * then the DSCR till two consecutive read values from DSCR are
378 		 * equal or till the maxium trials is reach.
379 		 * This algorithm is very unlikely not to find a stable value for
380 		 * DSCR.
381 		 */
382 
383 		dscr = channel_readl(atchan, DSCR);
384 		rmb(); /* ensure DSCR is read before CTRLA */
385 		ctrla = channel_readl(atchan, CTRLA);
386 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 			u32 new_dscr;
388 
389 			rmb(); /* ensure DSCR is read after CTRLA */
390 			new_dscr = channel_readl(atchan, DSCR);
391 
392 			/*
393 			 * If the DSCR register value has not changed inside the
394 			 * DMA controller since the previous read, we assume
395 			 * that both the dscr and ctrla values refers to the
396 			 * very same descriptor.
397 			 */
398 			if (likely(new_dscr == dscr))
399 				break;
400 
401 			/*
402 			 * DSCR has changed inside the DMA controller, so the
403 			 * previouly read value of CTRLA may refer to an already
404 			 * processed descriptor hence could be outdated.
405 			 * We need to update ctrla to match the current
406 			 * descriptor.
407 			 */
408 			dscr = new_dscr;
409 			rmb(); /* ensure DSCR is read before CTRLA */
410 			ctrla = channel_readl(atchan, CTRLA);
411 		}
412 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 			return -ETIMEDOUT;
414 
415 		/* for the first descriptor we can be more accurate */
416 		if (desc_first->lli.dscr == dscr)
417 			return atc_calc_bytes_left(ret, ctrla);
418 
419 		ret -= desc_first->len;
420 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 			if (desc->lli.dscr == dscr)
422 				break;
423 
424 			ret -= desc->len;
425 		}
426 
427 		/*
428 		 * For the current descriptor in the chain we can calculate
429 		 * the remaining bytes using the channel's register.
430 		 */
431 		ret = atc_calc_bytes_left(ret, ctrla);
432 	} else {
433 		/* single transfer */
434 		ctrla = channel_readl(atchan, CTRLA);
435 		ret = atc_calc_bytes_left(ret, ctrla);
436 	}
437 
438 	return ret;
439 }
440 
441 /**
442  * atc_chain_complete - finish work for one transaction chain
443  * @atchan: channel we work on
444  * @desc: descriptor at the head of the chain we want do complete
445  *
446  * Called with atchan->lock held and bh disabled */
447 static void
448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449 {
450 	struct dma_async_tx_descriptor	*txd = &desc->txd;
451 
452 	dev_vdbg(chan2dev(&atchan->chan_common),
453 		"descriptor %u complete\n", txd->cookie);
454 
455 	/* mark the descriptor as complete for non cyclic cases only */
456 	if (!atc_chan_is_cyclic(atchan))
457 		dma_cookie_complete(txd);
458 
459 	/* move children to free_list */
460 	list_splice_init(&desc->tx_list, &atchan->free_list);
461 	/* move myself to free_list */
462 	list_move(&desc->desc_node, &atchan->free_list);
463 
464 	dma_descriptor_unmap(txd);
465 	/* for cyclic transfers,
466 	 * no need to replay callback function while stopping */
467 	if (!atc_chan_is_cyclic(atchan)) {
468 		dma_async_tx_callback	callback = txd->callback;
469 		void			*param = txd->callback_param;
470 
471 		/*
472 		 * The API requires that no submissions are done from a
473 		 * callback, so we don't need to drop the lock here
474 		 */
475 		if (callback)
476 			callback(param);
477 	}
478 
479 	dma_run_dependencies(txd);
480 }
481 
482 /**
483  * atc_complete_all - finish work for all transactions
484  * @atchan: channel to complete transactions for
485  *
486  * Eventually submit queued descriptors if any
487  *
488  * Assume channel is idle while calling this function
489  * Called with atchan->lock held and bh disabled
490  */
491 static void atc_complete_all(struct at_dma_chan *atchan)
492 {
493 	struct at_desc *desc, *_desc;
494 	LIST_HEAD(list);
495 
496 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
497 
498 	/*
499 	 * Submit queued descriptors ASAP, i.e. before we go through
500 	 * the completed ones.
501 	 */
502 	if (!list_empty(&atchan->queue))
503 		atc_dostart(atchan, atc_first_queued(atchan));
504 	/* empty active_list now it is completed */
505 	list_splice_init(&atchan->active_list, &list);
506 	/* empty queue list by moving descriptors (if any) to active_list */
507 	list_splice_init(&atchan->queue, &atchan->active_list);
508 
509 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
510 		atc_chain_complete(atchan, desc);
511 }
512 
513 /**
514  * atc_advance_work - at the end of a transaction, move forward
515  * @atchan: channel where the transaction ended
516  *
517  * Called with atchan->lock held and bh disabled
518  */
519 static void atc_advance_work(struct at_dma_chan *atchan)
520 {
521 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
522 
523 	if (atc_chan_is_enabled(atchan))
524 		return;
525 
526 	if (list_empty(&atchan->active_list) ||
527 	    list_is_singular(&atchan->active_list)) {
528 		atc_complete_all(atchan);
529 	} else {
530 		atc_chain_complete(atchan, atc_first_active(atchan));
531 		/* advance work */
532 		atc_dostart(atchan, atc_first_active(atchan));
533 	}
534 }
535 
536 
537 /**
538  * atc_handle_error - handle errors reported by DMA controller
539  * @atchan: channel where error occurs
540  *
541  * Called with atchan->lock held and bh disabled
542  */
543 static void atc_handle_error(struct at_dma_chan *atchan)
544 {
545 	struct at_desc *bad_desc;
546 	struct at_desc *child;
547 
548 	/*
549 	 * The descriptor currently at the head of the active list is
550 	 * broked. Since we don't have any way to report errors, we'll
551 	 * just have to scream loudly and try to carry on.
552 	 */
553 	bad_desc = atc_first_active(atchan);
554 	list_del_init(&bad_desc->desc_node);
555 
556 	/* As we are stopped, take advantage to push queued descriptors
557 	 * in active_list */
558 	list_splice_init(&atchan->queue, atchan->active_list.prev);
559 
560 	/* Try to restart the controller */
561 	if (!list_empty(&atchan->active_list))
562 		atc_dostart(atchan, atc_first_active(atchan));
563 
564 	/*
565 	 * KERN_CRITICAL may seem harsh, but since this only happens
566 	 * when someone submits a bad physical address in a
567 	 * descriptor, we should consider ourselves lucky that the
568 	 * controller flagged an error instead of scribbling over
569 	 * random memory locations.
570 	 */
571 	dev_crit(chan2dev(&atchan->chan_common),
572 			"Bad descriptor submitted for DMA!\n");
573 	dev_crit(chan2dev(&atchan->chan_common),
574 			"  cookie: %d\n", bad_desc->txd.cookie);
575 	atc_dump_lli(atchan, &bad_desc->lli);
576 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
577 		atc_dump_lli(atchan, &child->lli);
578 
579 	/* Pretend the descriptor completed successfully */
580 	atc_chain_complete(atchan, bad_desc);
581 }
582 
583 /**
584  * atc_handle_cyclic - at the end of a period, run callback function
585  * @atchan: channel used for cyclic operations
586  *
587  * Called with atchan->lock held and bh disabled
588  */
589 static void atc_handle_cyclic(struct at_dma_chan *atchan)
590 {
591 	struct at_desc			*first = atc_first_active(atchan);
592 	struct dma_async_tx_descriptor	*txd = &first->txd;
593 	dma_async_tx_callback		callback = txd->callback;
594 	void				*param = txd->callback_param;
595 
596 	dev_vdbg(chan2dev(&atchan->chan_common),
597 			"new cyclic period llp 0x%08x\n",
598 			channel_readl(atchan, DSCR));
599 
600 	if (callback)
601 		callback(param);
602 }
603 
604 /*--  IRQ & Tasklet  ---------------------------------------------------*/
605 
606 static void atc_tasklet(unsigned long data)
607 {
608 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 	unsigned long flags;
610 
611 	spin_lock_irqsave(&atchan->lock, flags);
612 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 		atc_handle_error(atchan);
614 	else if (atc_chan_is_cyclic(atchan))
615 		atc_handle_cyclic(atchan);
616 	else
617 		atc_advance_work(atchan);
618 
619 	spin_unlock_irqrestore(&atchan->lock, flags);
620 }
621 
622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623 {
624 	struct at_dma		*atdma = (struct at_dma *)dev_id;
625 	struct at_dma_chan	*atchan;
626 	int			i;
627 	u32			status, pending, imr;
628 	int			ret = IRQ_NONE;
629 
630 	do {
631 		imr = dma_readl(atdma, EBCIMR);
632 		status = dma_readl(atdma, EBCISR);
633 		pending = status & imr;
634 
635 		if (!pending)
636 			break;
637 
638 		dev_vdbg(atdma->dma_common.dev,
639 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 			 status, imr, pending);
641 
642 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 			atchan = &atdma->chan[i];
644 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 				if (pending & AT_DMA_ERR(i)) {
646 					/* Disable channel on AHB error */
647 					dma_writel(atdma, CHDR,
648 						AT_DMA_RES(i) | atchan->mask);
649 					/* Give information to tasklet */
650 					set_bit(ATC_IS_ERROR, &atchan->status);
651 				}
652 				tasklet_schedule(&atchan->tasklet);
653 				ret = IRQ_HANDLED;
654 			}
655 		}
656 
657 	} while (pending);
658 
659 	return ret;
660 }
661 
662 
663 /*--  DMA Engine API  --------------------------------------------------*/
664 
665 /**
666  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667  * @desc: descriptor at the head of the transaction chain
668  *
669  * Queue chain if DMA engine is working already
670  *
671  * Cookie increment and adding to active_list or queue must be atomic
672  */
673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675 	struct at_desc		*desc = txd_to_at_desc(tx);
676 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
677 	dma_cookie_t		cookie;
678 	unsigned long		flags;
679 
680 	spin_lock_irqsave(&atchan->lock, flags);
681 	cookie = dma_cookie_assign(tx);
682 
683 	if (list_empty(&atchan->active_list)) {
684 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 				desc->txd.cookie);
686 		atc_dostart(atchan, desc);
687 		list_add_tail(&desc->desc_node, &atchan->active_list);
688 	} else {
689 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 				desc->txd.cookie);
691 		list_add_tail(&desc->desc_node, &atchan->queue);
692 	}
693 
694 	spin_unlock_irqrestore(&atchan->lock, flags);
695 
696 	return cookie;
697 }
698 
699 /**
700  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701  * @chan: the channel to prepare operation on
702  * @xt: Interleaved transfer template
703  * @flags: tx descriptor status flags
704  */
705 static struct dma_async_tx_descriptor *
706 atc_prep_dma_interleaved(struct dma_chan *chan,
707 			 struct dma_interleaved_template *xt,
708 			 unsigned long flags)
709 {
710 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
711 	struct data_chunk	*first = xt->sgl;
712 	struct at_desc		*desc = NULL;
713 	size_t			xfer_count;
714 	unsigned int		dwidth;
715 	u32			ctrla;
716 	u32			ctrlb;
717 	size_t			len = 0;
718 	int			i;
719 
720 	dev_info(chan2dev(chan),
721 		 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n",
722 		__func__, xt->src_start, xt->dst_start, xt->numf,
723 		xt->frame_size, flags);
724 
725 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
726 		return NULL;
727 
728 	/*
729 	 * The controller can only "skip" X bytes every Y bytes, so we
730 	 * need to make sure we are given a template that fit that
731 	 * description, ie a template with chunks that always have the
732 	 * same size, with the same ICGs.
733 	 */
734 	for (i = 0; i < xt->frame_size; i++) {
735 		struct data_chunk *chunk = xt->sgl + i;
736 
737 		if ((chunk->size != xt->sgl->size) ||
738 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
739 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
740 			dev_err(chan2dev(chan),
741 				"%s: the controller can transfer only identical chunks\n",
742 				__func__);
743 			return NULL;
744 		}
745 
746 		len += chunk->size;
747 	}
748 
749 	dwidth = atc_get_xfer_width(xt->src_start,
750 				    xt->dst_start, len);
751 
752 	xfer_count = len >> dwidth;
753 	if (xfer_count > ATC_BTSIZE_MAX) {
754 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
755 		return NULL;
756 	}
757 
758 	ctrla = ATC_SRC_WIDTH(dwidth) |
759 		ATC_DST_WIDTH(dwidth);
760 
761 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
762 		| ATC_SRC_ADDR_MODE_INCR
763 		| ATC_DST_ADDR_MODE_INCR
764 		| ATC_SRC_PIP
765 		| ATC_DST_PIP
766 		| ATC_FC_MEM2MEM;
767 
768 	/* create the transfer */
769 	desc = atc_desc_get(atchan);
770 	if (!desc) {
771 		dev_err(chan2dev(chan),
772 			"%s: couldn't allocate our descriptor\n", __func__);
773 		return NULL;
774 	}
775 
776 	desc->lli.saddr = xt->src_start;
777 	desc->lli.daddr = xt->dst_start;
778 	desc->lli.ctrla = ctrla | xfer_count;
779 	desc->lli.ctrlb = ctrlb;
780 
781 	desc->boundary = first->size >> dwidth;
782 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
783 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
784 
785 	desc->txd.cookie = -EBUSY;
786 	desc->total_len = desc->len = len;
787 
788 	/* set end-of-link to the last link descriptor of list*/
789 	set_desc_eol(desc);
790 
791 	desc->txd.flags = flags; /* client is in control of this ack */
792 
793 	return &desc->txd;
794 }
795 
796 /**
797  * atc_prep_dma_memcpy - prepare a memcpy operation
798  * @chan: the channel to prepare operation on
799  * @dest: operation virtual destination address
800  * @src: operation virtual source address
801  * @len: operation length
802  * @flags: tx descriptor status flags
803  */
804 static struct dma_async_tx_descriptor *
805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
806 		size_t len, unsigned long flags)
807 {
808 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
809 	struct at_desc		*desc = NULL;
810 	struct at_desc		*first = NULL;
811 	struct at_desc		*prev = NULL;
812 	size_t			xfer_count;
813 	size_t			offset;
814 	unsigned int		src_width;
815 	unsigned int		dst_width;
816 	u32			ctrla;
817 	u32			ctrlb;
818 
819 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n",
820 			dest, src, len, flags);
821 
822 	if (unlikely(!len)) {
823 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
824 		return NULL;
825 	}
826 
827 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
828 		| ATC_SRC_ADDR_MODE_INCR
829 		| ATC_DST_ADDR_MODE_INCR
830 		| ATC_FC_MEM2MEM;
831 
832 	/*
833 	 * We can be a lot more clever here, but this should take care
834 	 * of the most common optimization.
835 	 */
836 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
837 
838 	ctrla = ATC_SRC_WIDTH(src_width) |
839 		ATC_DST_WIDTH(dst_width);
840 
841 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
842 		xfer_count = min_t(size_t, (len - offset) >> src_width,
843 				ATC_BTSIZE_MAX);
844 
845 		desc = atc_desc_get(atchan);
846 		if (!desc)
847 			goto err_desc_get;
848 
849 		desc->lli.saddr = src + offset;
850 		desc->lli.daddr = dest + offset;
851 		desc->lli.ctrla = ctrla | xfer_count;
852 		desc->lli.ctrlb = ctrlb;
853 
854 		desc->txd.cookie = 0;
855 		desc->len = xfer_count << src_width;
856 
857 		atc_desc_chain(&first, &prev, desc);
858 	}
859 
860 	/* First descriptor of the chain embedds additional information */
861 	first->txd.cookie = -EBUSY;
862 	first->total_len = len;
863 
864 	/* set end-of-link to the last link descriptor of list*/
865 	set_desc_eol(desc);
866 
867 	first->txd.flags = flags; /* client is in control of this ack */
868 
869 	return &first->txd;
870 
871 err_desc_get:
872 	atc_desc_put(atchan, first);
873 	return NULL;
874 }
875 
876 
877 /**
878  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
879  * @chan: DMA channel
880  * @sgl: scatterlist to transfer to/from
881  * @sg_len: number of entries in @scatterlist
882  * @direction: DMA direction
883  * @flags: tx descriptor status flags
884  * @context: transaction context (ignored)
885  */
886 static struct dma_async_tx_descriptor *
887 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
888 		unsigned int sg_len, enum dma_transfer_direction direction,
889 		unsigned long flags, void *context)
890 {
891 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
892 	struct at_dma_slave	*atslave = chan->private;
893 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
894 	struct at_desc		*first = NULL;
895 	struct at_desc		*prev = NULL;
896 	u32			ctrla;
897 	u32			ctrlb;
898 	dma_addr_t		reg;
899 	unsigned int		reg_width;
900 	unsigned int		mem_width;
901 	unsigned int		i;
902 	struct scatterlist	*sg;
903 	size_t			total_len = 0;
904 
905 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
906 			sg_len,
907 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
908 			flags);
909 
910 	if (unlikely(!atslave || !sg_len)) {
911 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
912 		return NULL;
913 	}
914 
915 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
916 		| ATC_DCSIZE(sconfig->dst_maxburst);
917 	ctrlb = ATC_IEN;
918 
919 	switch (direction) {
920 	case DMA_MEM_TO_DEV:
921 		reg_width = convert_buswidth(sconfig->dst_addr_width);
922 		ctrla |=  ATC_DST_WIDTH(reg_width);
923 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
924 			| ATC_SRC_ADDR_MODE_INCR
925 			| ATC_FC_MEM2PER
926 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
927 		reg = sconfig->dst_addr;
928 		for_each_sg(sgl, sg, sg_len, i) {
929 			struct at_desc	*desc;
930 			u32		len;
931 			u32		mem;
932 
933 			desc = atc_desc_get(atchan);
934 			if (!desc)
935 				goto err_desc_get;
936 
937 			mem = sg_dma_address(sg);
938 			len = sg_dma_len(sg);
939 			if (unlikely(!len)) {
940 				dev_dbg(chan2dev(chan),
941 					"prep_slave_sg: sg(%d) data length is zero\n", i);
942 				goto err;
943 			}
944 			mem_width = 2;
945 			if (unlikely(mem & 3 || len & 3))
946 				mem_width = 0;
947 
948 			desc->lli.saddr = mem;
949 			desc->lli.daddr = reg;
950 			desc->lli.ctrla = ctrla
951 					| ATC_SRC_WIDTH(mem_width)
952 					| len >> mem_width;
953 			desc->lli.ctrlb = ctrlb;
954 			desc->len = len;
955 
956 			atc_desc_chain(&first, &prev, desc);
957 			total_len += len;
958 		}
959 		break;
960 	case DMA_DEV_TO_MEM:
961 		reg_width = convert_buswidth(sconfig->src_addr_width);
962 		ctrla |=  ATC_SRC_WIDTH(reg_width);
963 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
964 			| ATC_SRC_ADDR_MODE_FIXED
965 			| ATC_FC_PER2MEM
966 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
967 
968 		reg = sconfig->src_addr;
969 		for_each_sg(sgl, sg, sg_len, i) {
970 			struct at_desc	*desc;
971 			u32		len;
972 			u32		mem;
973 
974 			desc = atc_desc_get(atchan);
975 			if (!desc)
976 				goto err_desc_get;
977 
978 			mem = sg_dma_address(sg);
979 			len = sg_dma_len(sg);
980 			if (unlikely(!len)) {
981 				dev_dbg(chan2dev(chan),
982 					"prep_slave_sg: sg(%d) data length is zero\n", i);
983 				goto err;
984 			}
985 			mem_width = 2;
986 			if (unlikely(mem & 3 || len & 3))
987 				mem_width = 0;
988 
989 			desc->lli.saddr = reg;
990 			desc->lli.daddr = mem;
991 			desc->lli.ctrla = ctrla
992 					| ATC_DST_WIDTH(mem_width)
993 					| len >> reg_width;
994 			desc->lli.ctrlb = ctrlb;
995 			desc->len = len;
996 
997 			atc_desc_chain(&first, &prev, desc);
998 			total_len += len;
999 		}
1000 		break;
1001 	default:
1002 		return NULL;
1003 	}
1004 
1005 	/* set end-of-link to the last link descriptor of list*/
1006 	set_desc_eol(prev);
1007 
1008 	/* First descriptor of the chain embedds additional information */
1009 	first->txd.cookie = -EBUSY;
1010 	first->total_len = total_len;
1011 
1012 	/* first link descriptor of list is responsible of flags */
1013 	first->txd.flags = flags; /* client is in control of this ack */
1014 
1015 	return &first->txd;
1016 
1017 err_desc_get:
1018 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1019 err:
1020 	atc_desc_put(atchan, first);
1021 	return NULL;
1022 }
1023 
1024 /**
1025  * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1026  * @chan: the channel to prepare operation on
1027  * @dst_sg: destination scatterlist
1028  * @dst_nents: number of destination scatterlist entries
1029  * @src_sg: source scatterlist
1030  * @src_nents: number of source scatterlist entries
1031  * @flags: tx descriptor status flags
1032  */
1033 static struct dma_async_tx_descriptor *
1034 atc_prep_dma_sg(struct dma_chan *chan,
1035 		struct scatterlist *dst_sg, unsigned int dst_nents,
1036 		struct scatterlist *src_sg, unsigned int src_nents,
1037 		unsigned long flags)
1038 {
1039 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1040 	struct at_desc		*desc = NULL;
1041 	struct at_desc		*first = NULL;
1042 	struct at_desc		*prev = NULL;
1043 	unsigned int		src_width;
1044 	unsigned int		dst_width;
1045 	size_t			xfer_count;
1046 	u32			ctrla;
1047 	u32			ctrlb;
1048 	size_t			dst_len = 0, src_len = 0;
1049 	dma_addr_t		dst = 0, src = 0;
1050 	size_t			len = 0, total_len = 0;
1051 
1052 	if (unlikely(dst_nents == 0 || src_nents == 0))
1053 		return NULL;
1054 
1055 	if (unlikely(dst_sg == NULL || src_sg == NULL))
1056 		return NULL;
1057 
1058 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1059 		| ATC_SRC_ADDR_MODE_INCR
1060 		| ATC_DST_ADDR_MODE_INCR
1061 		| ATC_FC_MEM2MEM;
1062 
1063 	/*
1064 	 * loop until there is either no more source or no more destination
1065 	 * scatterlist entry
1066 	 */
1067 	while (true) {
1068 
1069 		/* prepare the next transfer */
1070 		if (dst_len == 0) {
1071 
1072 			/* no more destination scatterlist entries */
1073 			if (!dst_sg || !dst_nents)
1074 				break;
1075 
1076 			dst = sg_dma_address(dst_sg);
1077 			dst_len = sg_dma_len(dst_sg);
1078 
1079 			dst_sg = sg_next(dst_sg);
1080 			dst_nents--;
1081 		}
1082 
1083 		if (src_len == 0) {
1084 
1085 			/* no more source scatterlist entries */
1086 			if (!src_sg || !src_nents)
1087 				break;
1088 
1089 			src = sg_dma_address(src_sg);
1090 			src_len = sg_dma_len(src_sg);
1091 
1092 			src_sg = sg_next(src_sg);
1093 			src_nents--;
1094 		}
1095 
1096 		len = min_t(size_t, src_len, dst_len);
1097 		if (len == 0)
1098 			continue;
1099 
1100 		/* take care for the alignment */
1101 		src_width = dst_width = atc_get_xfer_width(src, dst, len);
1102 
1103 		ctrla = ATC_SRC_WIDTH(src_width) |
1104 			ATC_DST_WIDTH(dst_width);
1105 
1106 		/*
1107 		 * The number of transfers to set up refer to the source width
1108 		 * that depends on the alignment.
1109 		 */
1110 		xfer_count = len >> src_width;
1111 		if (xfer_count > ATC_BTSIZE_MAX) {
1112 			xfer_count = ATC_BTSIZE_MAX;
1113 			len = ATC_BTSIZE_MAX << src_width;
1114 		}
1115 
1116 		/* create the transfer */
1117 		desc = atc_desc_get(atchan);
1118 		if (!desc)
1119 			goto err_desc_get;
1120 
1121 		desc->lli.saddr = src;
1122 		desc->lli.daddr = dst;
1123 		desc->lli.ctrla = ctrla | xfer_count;
1124 		desc->lli.ctrlb = ctrlb;
1125 
1126 		desc->txd.cookie = 0;
1127 		desc->len = len;
1128 
1129 		atc_desc_chain(&first, &prev, desc);
1130 
1131 		/* update the lengths and addresses for the next loop cycle */
1132 		dst_len -= len;
1133 		src_len -= len;
1134 		dst += len;
1135 		src += len;
1136 
1137 		total_len += len;
1138 	}
1139 
1140 	/* First descriptor of the chain embedds additional information */
1141 	first->txd.cookie = -EBUSY;
1142 	first->total_len = total_len;
1143 
1144 	/* set end-of-link to the last link descriptor of list*/
1145 	set_desc_eol(desc);
1146 
1147 	first->txd.flags = flags; /* client is in control of this ack */
1148 
1149 	return &first->txd;
1150 
1151 err_desc_get:
1152 	atc_desc_put(atchan, first);
1153 	return NULL;
1154 }
1155 
1156 /**
1157  * atc_dma_cyclic_check_values
1158  * Check for too big/unaligned periods and unaligned DMA buffer
1159  */
1160 static int
1161 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1162 		size_t period_len)
1163 {
1164 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1165 		goto err_out;
1166 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1167 		goto err_out;
1168 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1169 		goto err_out;
1170 
1171 	return 0;
1172 
1173 err_out:
1174 	return -EINVAL;
1175 }
1176 
1177 /**
1178  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1179  */
1180 static int
1181 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1182 		unsigned int period_index, dma_addr_t buf_addr,
1183 		unsigned int reg_width, size_t period_len,
1184 		enum dma_transfer_direction direction)
1185 {
1186 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1187 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1188 	u32			ctrla;
1189 
1190 	/* prepare common CRTLA value */
1191 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1192 		| ATC_DCSIZE(sconfig->dst_maxburst)
1193 		| ATC_DST_WIDTH(reg_width)
1194 		| ATC_SRC_WIDTH(reg_width)
1195 		| period_len >> reg_width;
1196 
1197 	switch (direction) {
1198 	case DMA_MEM_TO_DEV:
1199 		desc->lli.saddr = buf_addr + (period_len * period_index);
1200 		desc->lli.daddr = sconfig->dst_addr;
1201 		desc->lli.ctrla = ctrla;
1202 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1203 				| ATC_SRC_ADDR_MODE_INCR
1204 				| ATC_FC_MEM2PER
1205 				| ATC_SIF(atchan->mem_if)
1206 				| ATC_DIF(atchan->per_if);
1207 		desc->len = period_len;
1208 		break;
1209 
1210 	case DMA_DEV_TO_MEM:
1211 		desc->lli.saddr = sconfig->src_addr;
1212 		desc->lli.daddr = buf_addr + (period_len * period_index);
1213 		desc->lli.ctrla = ctrla;
1214 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1215 				| ATC_SRC_ADDR_MODE_FIXED
1216 				| ATC_FC_PER2MEM
1217 				| ATC_SIF(atchan->per_if)
1218 				| ATC_DIF(atchan->mem_if);
1219 		desc->len = period_len;
1220 		break;
1221 
1222 	default:
1223 		return -EINVAL;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 /**
1230  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1231  * @chan: the DMA channel to prepare
1232  * @buf_addr: physical DMA address where the buffer starts
1233  * @buf_len: total number of bytes for the entire buffer
1234  * @period_len: number of bytes for each period
1235  * @direction: transfer direction, to or from device
1236  * @flags: tx descriptor status flags
1237  */
1238 static struct dma_async_tx_descriptor *
1239 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1240 		size_t period_len, enum dma_transfer_direction direction,
1241 		unsigned long flags)
1242 {
1243 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1244 	struct at_dma_slave	*atslave = chan->private;
1245 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1246 	struct at_desc		*first = NULL;
1247 	struct at_desc		*prev = NULL;
1248 	unsigned long		was_cyclic;
1249 	unsigned int		reg_width;
1250 	unsigned int		periods = buf_len / period_len;
1251 	unsigned int		i;
1252 
1253 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n",
1254 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1255 			buf_addr,
1256 			periods, buf_len, period_len);
1257 
1258 	if (unlikely(!atslave || !buf_len || !period_len)) {
1259 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1260 		return NULL;
1261 	}
1262 
1263 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1264 	if (was_cyclic) {
1265 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1266 		return NULL;
1267 	}
1268 
1269 	if (unlikely(!is_slave_direction(direction)))
1270 		goto err_out;
1271 
1272 	if (sconfig->direction == DMA_MEM_TO_DEV)
1273 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1274 	else
1275 		reg_width = convert_buswidth(sconfig->src_addr_width);
1276 
1277 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1278 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1279 		goto err_out;
1280 
1281 	/* build cyclic linked list */
1282 	for (i = 0; i < periods; i++) {
1283 		struct at_desc	*desc;
1284 
1285 		desc = atc_desc_get(atchan);
1286 		if (!desc)
1287 			goto err_desc_get;
1288 
1289 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1290 					     reg_width, period_len, direction))
1291 			goto err_desc_get;
1292 
1293 		atc_desc_chain(&first, &prev, desc);
1294 	}
1295 
1296 	/* lets make a cyclic list */
1297 	prev->lli.dscr = first->txd.phys;
1298 
1299 	/* First descriptor of the chain embedds additional information */
1300 	first->txd.cookie = -EBUSY;
1301 	first->total_len = buf_len;
1302 
1303 	return &first->txd;
1304 
1305 err_desc_get:
1306 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1307 	atc_desc_put(atchan, first);
1308 err_out:
1309 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1310 	return NULL;
1311 }
1312 
1313 static int atc_config(struct dma_chan *chan,
1314 		      struct dma_slave_config *sconfig)
1315 {
1316 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1317 
1318 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1319 
1320 	/* Check if it is chan is configured for slave transfers */
1321 	if (!chan->private)
1322 		return -EINVAL;
1323 
1324 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1325 
1326 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1327 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1328 
1329 	return 0;
1330 }
1331 
1332 static int atc_pause(struct dma_chan *chan)
1333 {
1334 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1335 	struct at_dma		*atdma = to_at_dma(chan->device);
1336 	int			chan_id = atchan->chan_common.chan_id;
1337 	unsigned long		flags;
1338 
1339 	LIST_HEAD(list);
1340 
1341 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1342 
1343 	spin_lock_irqsave(&atchan->lock, flags);
1344 
1345 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1346 	set_bit(ATC_IS_PAUSED, &atchan->status);
1347 
1348 	spin_unlock_irqrestore(&atchan->lock, flags);
1349 
1350 	return 0;
1351 }
1352 
1353 static int atc_resume(struct dma_chan *chan)
1354 {
1355 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1356 	struct at_dma		*atdma = to_at_dma(chan->device);
1357 	int			chan_id = atchan->chan_common.chan_id;
1358 	unsigned long		flags;
1359 
1360 	LIST_HEAD(list);
1361 
1362 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1363 
1364 	if (!atc_chan_is_paused(atchan))
1365 		return 0;
1366 
1367 	spin_lock_irqsave(&atchan->lock, flags);
1368 
1369 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1370 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1371 
1372 	spin_unlock_irqrestore(&atchan->lock, flags);
1373 
1374 	return 0;
1375 }
1376 
1377 static int atc_terminate_all(struct dma_chan *chan)
1378 {
1379 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1380 	struct at_dma		*atdma = to_at_dma(chan->device);
1381 	int			chan_id = atchan->chan_common.chan_id;
1382 	struct at_desc		*desc, *_desc;
1383 	unsigned long		flags;
1384 
1385 	LIST_HEAD(list);
1386 
1387 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1388 
1389 	/*
1390 	 * This is only called when something went wrong elsewhere, so
1391 	 * we don't really care about the data. Just disable the
1392 	 * channel. We still have to poll the channel enable bit due
1393 	 * to AHB/HSB limitations.
1394 	 */
1395 	spin_lock_irqsave(&atchan->lock, flags);
1396 
1397 	/* disabling channel: must also remove suspend state */
1398 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1399 
1400 	/* confirm that this channel is disabled */
1401 	while (dma_readl(atdma, CHSR) & atchan->mask)
1402 		cpu_relax();
1403 
1404 	/* active_list entries will end up before queued entries */
1405 	list_splice_init(&atchan->queue, &list);
1406 	list_splice_init(&atchan->active_list, &list);
1407 
1408 	/* Flush all pending and queued descriptors */
1409 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1410 		atc_chain_complete(atchan, desc);
1411 
1412 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1413 	/* if channel dedicated to cyclic operations, free it */
1414 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1415 
1416 	spin_unlock_irqrestore(&atchan->lock, flags);
1417 
1418 	return 0;
1419 }
1420 
1421 /**
1422  * atc_tx_status - poll for transaction completion
1423  * @chan: DMA channel
1424  * @cookie: transaction identifier to check status of
1425  * @txstate: if not %NULL updated with transaction state
1426  *
1427  * If @txstate is passed in, upon return it reflect the driver
1428  * internal state and can be used with dma_async_is_complete() to check
1429  * the status of multiple cookies without re-checking hardware state.
1430  */
1431 static enum dma_status
1432 atc_tx_status(struct dma_chan *chan,
1433 		dma_cookie_t cookie,
1434 		struct dma_tx_state *txstate)
1435 {
1436 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1437 	unsigned long		flags;
1438 	enum dma_status		ret;
1439 	int bytes = 0;
1440 
1441 	ret = dma_cookie_status(chan, cookie, txstate);
1442 	if (ret == DMA_COMPLETE)
1443 		return ret;
1444 	/*
1445 	 * There's no point calculating the residue if there's
1446 	 * no txstate to store the value.
1447 	 */
1448 	if (!txstate)
1449 		return DMA_ERROR;
1450 
1451 	spin_lock_irqsave(&atchan->lock, flags);
1452 
1453 	/*  Get number of bytes left in the active transactions */
1454 	bytes = atc_get_bytes_left(chan, cookie);
1455 
1456 	spin_unlock_irqrestore(&atchan->lock, flags);
1457 
1458 	if (unlikely(bytes < 0)) {
1459 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1460 		return DMA_ERROR;
1461 	} else {
1462 		dma_set_residue(txstate, bytes);
1463 	}
1464 
1465 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1466 		 ret, cookie, bytes);
1467 
1468 	return ret;
1469 }
1470 
1471 /**
1472  * atc_issue_pending - try to finish work
1473  * @chan: target DMA channel
1474  */
1475 static void atc_issue_pending(struct dma_chan *chan)
1476 {
1477 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1478 	unsigned long		flags;
1479 
1480 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1481 
1482 	/* Not needed for cyclic transfers */
1483 	if (atc_chan_is_cyclic(atchan))
1484 		return;
1485 
1486 	spin_lock_irqsave(&atchan->lock, flags);
1487 	atc_advance_work(atchan);
1488 	spin_unlock_irqrestore(&atchan->lock, flags);
1489 }
1490 
1491 /**
1492  * atc_alloc_chan_resources - allocate resources for DMA channel
1493  * @chan: allocate descriptor resources for this channel
1494  * @client: current client requesting the channel be ready for requests
1495  *
1496  * return - the number of allocated descriptors
1497  */
1498 static int atc_alloc_chan_resources(struct dma_chan *chan)
1499 {
1500 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1501 	struct at_dma		*atdma = to_at_dma(chan->device);
1502 	struct at_desc		*desc;
1503 	struct at_dma_slave	*atslave;
1504 	unsigned long		flags;
1505 	int			i;
1506 	u32			cfg;
1507 	LIST_HEAD(tmp_list);
1508 
1509 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1510 
1511 	/* ASSERT:  channel is idle */
1512 	if (atc_chan_is_enabled(atchan)) {
1513 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1514 		return -EIO;
1515 	}
1516 
1517 	cfg = ATC_DEFAULT_CFG;
1518 
1519 	atslave = chan->private;
1520 	if (atslave) {
1521 		/*
1522 		 * We need controller-specific data to set up slave
1523 		 * transfers.
1524 		 */
1525 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1526 
1527 		/* if cfg configuration specified take it instead of default */
1528 		if (atslave->cfg)
1529 			cfg = atslave->cfg;
1530 	}
1531 
1532 	/* have we already been set up?
1533 	 * reconfigure channel but no need to reallocate descriptors */
1534 	if (!list_empty(&atchan->free_list))
1535 		return atchan->descs_allocated;
1536 
1537 	/* Allocate initial pool of descriptors */
1538 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1539 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1540 		if (!desc) {
1541 			dev_err(atdma->dma_common.dev,
1542 				"Only %d initial descriptors\n", i);
1543 			break;
1544 		}
1545 		list_add_tail(&desc->desc_node, &tmp_list);
1546 	}
1547 
1548 	spin_lock_irqsave(&atchan->lock, flags);
1549 	atchan->descs_allocated = i;
1550 	list_splice(&tmp_list, &atchan->free_list);
1551 	dma_cookie_init(chan);
1552 	spin_unlock_irqrestore(&atchan->lock, flags);
1553 
1554 	/* channel parameters */
1555 	channel_writel(atchan, CFG, cfg);
1556 
1557 	dev_dbg(chan2dev(chan),
1558 		"alloc_chan_resources: allocated %d descriptors\n",
1559 		atchan->descs_allocated);
1560 
1561 	return atchan->descs_allocated;
1562 }
1563 
1564 /**
1565  * atc_free_chan_resources - free all channel resources
1566  * @chan: DMA channel
1567  */
1568 static void atc_free_chan_resources(struct dma_chan *chan)
1569 {
1570 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1571 	struct at_dma		*atdma = to_at_dma(chan->device);
1572 	struct at_desc		*desc, *_desc;
1573 	LIST_HEAD(list);
1574 
1575 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1576 		atchan->descs_allocated);
1577 
1578 	/* ASSERT:  channel is idle */
1579 	BUG_ON(!list_empty(&atchan->active_list));
1580 	BUG_ON(!list_empty(&atchan->queue));
1581 	BUG_ON(atc_chan_is_enabled(atchan));
1582 
1583 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1584 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1585 		list_del(&desc->desc_node);
1586 		/* free link descriptor */
1587 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1588 	}
1589 	list_splice_init(&atchan->free_list, &list);
1590 	atchan->descs_allocated = 0;
1591 	atchan->status = 0;
1592 
1593 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1594 }
1595 
1596 #ifdef CONFIG_OF
1597 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1598 {
1599 	struct at_dma_slave *atslave = slave;
1600 
1601 	if (atslave->dma_dev == chan->device->dev) {
1602 		chan->private = atslave;
1603 		return true;
1604 	} else {
1605 		return false;
1606 	}
1607 }
1608 
1609 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1610 				     struct of_dma *of_dma)
1611 {
1612 	struct dma_chan *chan;
1613 	struct at_dma_chan *atchan;
1614 	struct at_dma_slave *atslave;
1615 	dma_cap_mask_t mask;
1616 	unsigned int per_id;
1617 	struct platform_device *dmac_pdev;
1618 
1619 	if (dma_spec->args_count != 2)
1620 		return NULL;
1621 
1622 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1623 
1624 	dma_cap_zero(mask);
1625 	dma_cap_set(DMA_SLAVE, mask);
1626 
1627 	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1628 	if (!atslave)
1629 		return NULL;
1630 
1631 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1632 	/*
1633 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1634 	 * ignored depending on DMA transfer direction.
1635 	 */
1636 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1637 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1638 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1639 	/*
1640 	 * We have to translate the value we get from the device tree since
1641 	 * the half FIFO configuration value had to be 0 to keep backward
1642 	 * compatibility.
1643 	 */
1644 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1645 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1646 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1647 		break;
1648 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1649 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1650 		break;
1651 	case AT91_DMA_CFG_FIFOCFG_HALF:
1652 	default:
1653 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1654 	}
1655 	atslave->dma_dev = &dmac_pdev->dev;
1656 
1657 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1658 	if (!chan)
1659 		return NULL;
1660 
1661 	atchan = to_at_dma_chan(chan);
1662 	atchan->per_if = dma_spec->args[0] & 0xff;
1663 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1664 
1665 	return chan;
1666 }
1667 #else
1668 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1669 				     struct of_dma *of_dma)
1670 {
1671 	return NULL;
1672 }
1673 #endif
1674 
1675 /*--  Module Management  -----------------------------------------------*/
1676 
1677 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1678 static struct at_dma_platform_data at91sam9rl_config = {
1679 	.nr_channels = 2,
1680 };
1681 static struct at_dma_platform_data at91sam9g45_config = {
1682 	.nr_channels = 8,
1683 };
1684 
1685 #if defined(CONFIG_OF)
1686 static const struct of_device_id atmel_dma_dt_ids[] = {
1687 	{
1688 		.compatible = "atmel,at91sam9rl-dma",
1689 		.data = &at91sam9rl_config,
1690 	}, {
1691 		.compatible = "atmel,at91sam9g45-dma",
1692 		.data = &at91sam9g45_config,
1693 	}, {
1694 		/* sentinel */
1695 	}
1696 };
1697 
1698 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1699 #endif
1700 
1701 static const struct platform_device_id atdma_devtypes[] = {
1702 	{
1703 		.name = "at91sam9rl_dma",
1704 		.driver_data = (unsigned long) &at91sam9rl_config,
1705 	}, {
1706 		.name = "at91sam9g45_dma",
1707 		.driver_data = (unsigned long) &at91sam9g45_config,
1708 	}, {
1709 		/* sentinel */
1710 	}
1711 };
1712 
1713 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1714 						struct platform_device *pdev)
1715 {
1716 	if (pdev->dev.of_node) {
1717 		const struct of_device_id *match;
1718 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1719 		if (match == NULL)
1720 			return NULL;
1721 		return match->data;
1722 	}
1723 	return (struct at_dma_platform_data *)
1724 			platform_get_device_id(pdev)->driver_data;
1725 }
1726 
1727 /**
1728  * at_dma_off - disable DMA controller
1729  * @atdma: the Atmel HDAMC device
1730  */
1731 static void at_dma_off(struct at_dma *atdma)
1732 {
1733 	dma_writel(atdma, EN, 0);
1734 
1735 	/* disable all interrupts */
1736 	dma_writel(atdma, EBCIDR, -1L);
1737 
1738 	/* confirm that all channels are disabled */
1739 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1740 		cpu_relax();
1741 }
1742 
1743 static int __init at_dma_probe(struct platform_device *pdev)
1744 {
1745 	struct resource		*io;
1746 	struct at_dma		*atdma;
1747 	size_t			size;
1748 	int			irq;
1749 	int			err;
1750 	int			i;
1751 	const struct at_dma_platform_data *plat_dat;
1752 
1753 	/* setup platform data for each SoC */
1754 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1755 	dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1756 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1757 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1758 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1759 	dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1760 
1761 	/* get DMA parameters from controller type */
1762 	plat_dat = at_dma_get_driver_data(pdev);
1763 	if (!plat_dat)
1764 		return -ENODEV;
1765 
1766 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1767 	if (!io)
1768 		return -EINVAL;
1769 
1770 	irq = platform_get_irq(pdev, 0);
1771 	if (irq < 0)
1772 		return irq;
1773 
1774 	size = sizeof(struct at_dma);
1775 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1776 	atdma = kzalloc(size, GFP_KERNEL);
1777 	if (!atdma)
1778 		return -ENOMEM;
1779 
1780 	/* discover transaction capabilities */
1781 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1782 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1783 
1784 	size = resource_size(io);
1785 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1786 		err = -EBUSY;
1787 		goto err_kfree;
1788 	}
1789 
1790 	atdma->regs = ioremap(io->start, size);
1791 	if (!atdma->regs) {
1792 		err = -ENOMEM;
1793 		goto err_release_r;
1794 	}
1795 
1796 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1797 	if (IS_ERR(atdma->clk)) {
1798 		err = PTR_ERR(atdma->clk);
1799 		goto err_clk;
1800 	}
1801 	err = clk_prepare_enable(atdma->clk);
1802 	if (err)
1803 		goto err_clk_prepare;
1804 
1805 	/* force dma off, just in case */
1806 	at_dma_off(atdma);
1807 
1808 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1809 	if (err)
1810 		goto err_irq;
1811 
1812 	platform_set_drvdata(pdev, atdma);
1813 
1814 	/* create a pool of consistent memory blocks for hardware descriptors */
1815 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1816 			&pdev->dev, sizeof(struct at_desc),
1817 			4 /* word alignment */, 0);
1818 	if (!atdma->dma_desc_pool) {
1819 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1820 		err = -ENOMEM;
1821 		goto err_pool_create;
1822 	}
1823 
1824 	/* clear any pending interrupt */
1825 	while (dma_readl(atdma, EBCISR))
1826 		cpu_relax();
1827 
1828 	/* initialize channels related values */
1829 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1830 	for (i = 0; i < plat_dat->nr_channels; i++) {
1831 		struct at_dma_chan	*atchan = &atdma->chan[i];
1832 
1833 		atchan->mem_if = AT_DMA_MEM_IF;
1834 		atchan->per_if = AT_DMA_PER_IF;
1835 		atchan->chan_common.device = &atdma->dma_common;
1836 		dma_cookie_init(&atchan->chan_common);
1837 		list_add_tail(&atchan->chan_common.device_node,
1838 				&atdma->dma_common.channels);
1839 
1840 		atchan->ch_regs = atdma->regs + ch_regs(i);
1841 		spin_lock_init(&atchan->lock);
1842 		atchan->mask = 1 << i;
1843 
1844 		INIT_LIST_HEAD(&atchan->active_list);
1845 		INIT_LIST_HEAD(&atchan->queue);
1846 		INIT_LIST_HEAD(&atchan->free_list);
1847 
1848 		tasklet_init(&atchan->tasklet, atc_tasklet,
1849 				(unsigned long)atchan);
1850 		atc_enable_chan_irq(atdma, i);
1851 	}
1852 
1853 	/* set base routines */
1854 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1855 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1856 	atdma->dma_common.device_tx_status = atc_tx_status;
1857 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1858 	atdma->dma_common.dev = &pdev->dev;
1859 
1860 	/* set prep routines based on capability */
1861 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1862 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1863 
1864 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1865 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1866 
1867 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1868 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1869 		/* controller can do slave DMA: can trigger cyclic transfers */
1870 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1871 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1872 		atdma->dma_common.device_config = atc_config;
1873 		atdma->dma_common.device_pause = atc_pause;
1874 		atdma->dma_common.device_resume = atc_resume;
1875 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1876 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1877 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1878 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1879 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1880 	}
1881 
1882 	if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
1883 		atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
1884 
1885 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1886 
1887 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1888 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1889 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1890 	  dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
1891 	  plat_dat->nr_channels);
1892 
1893 	dma_async_device_register(&atdma->dma_common);
1894 
1895 	/*
1896 	 * Do not return an error if the dmac node is not present in order to
1897 	 * not break the existing way of requesting channel with
1898 	 * dma_request_channel().
1899 	 */
1900 	if (pdev->dev.of_node) {
1901 		err = of_dma_controller_register(pdev->dev.of_node,
1902 						 at_dma_xlate, atdma);
1903 		if (err) {
1904 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1905 			goto err_of_dma_controller_register;
1906 		}
1907 	}
1908 
1909 	return 0;
1910 
1911 err_of_dma_controller_register:
1912 	dma_async_device_unregister(&atdma->dma_common);
1913 	dma_pool_destroy(atdma->dma_desc_pool);
1914 err_pool_create:
1915 	free_irq(platform_get_irq(pdev, 0), atdma);
1916 err_irq:
1917 	clk_disable_unprepare(atdma->clk);
1918 err_clk_prepare:
1919 	clk_put(atdma->clk);
1920 err_clk:
1921 	iounmap(atdma->regs);
1922 	atdma->regs = NULL;
1923 err_release_r:
1924 	release_mem_region(io->start, size);
1925 err_kfree:
1926 	kfree(atdma);
1927 	return err;
1928 }
1929 
1930 static int at_dma_remove(struct platform_device *pdev)
1931 {
1932 	struct at_dma		*atdma = platform_get_drvdata(pdev);
1933 	struct dma_chan		*chan, *_chan;
1934 	struct resource		*io;
1935 
1936 	at_dma_off(atdma);
1937 	dma_async_device_unregister(&atdma->dma_common);
1938 
1939 	dma_pool_destroy(atdma->dma_desc_pool);
1940 	free_irq(platform_get_irq(pdev, 0), atdma);
1941 
1942 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1943 			device_node) {
1944 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1945 
1946 		/* Disable interrupts */
1947 		atc_disable_chan_irq(atdma, chan->chan_id);
1948 
1949 		tasklet_kill(&atchan->tasklet);
1950 		list_del(&chan->device_node);
1951 	}
1952 
1953 	clk_disable_unprepare(atdma->clk);
1954 	clk_put(atdma->clk);
1955 
1956 	iounmap(atdma->regs);
1957 	atdma->regs = NULL;
1958 
1959 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1960 	release_mem_region(io->start, resource_size(io));
1961 
1962 	kfree(atdma);
1963 
1964 	return 0;
1965 }
1966 
1967 static void at_dma_shutdown(struct platform_device *pdev)
1968 {
1969 	struct at_dma	*atdma = platform_get_drvdata(pdev);
1970 
1971 	at_dma_off(platform_get_drvdata(pdev));
1972 	clk_disable_unprepare(atdma->clk);
1973 }
1974 
1975 static int at_dma_prepare(struct device *dev)
1976 {
1977 	struct platform_device *pdev = to_platform_device(dev);
1978 	struct at_dma *atdma = platform_get_drvdata(pdev);
1979 	struct dma_chan *chan, *_chan;
1980 
1981 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1982 			device_node) {
1983 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
1984 		/* wait for transaction completion (except in cyclic case) */
1985 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
1986 			return -EAGAIN;
1987 	}
1988 	return 0;
1989 }
1990 
1991 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
1992 {
1993 	struct dma_chan	*chan = &atchan->chan_common;
1994 
1995 	/* Channel should be paused by user
1996 	 * do it anyway even if it is not done already */
1997 	if (!atc_chan_is_paused(atchan)) {
1998 		dev_warn(chan2dev(chan),
1999 		"cyclic channel not paused, should be done by channel user\n");
2000 		atc_pause(chan);
2001 	}
2002 
2003 	/* now preserve additional data for cyclic operations */
2004 	/* next descriptor address in the cyclic list */
2005 	atchan->save_dscr = channel_readl(atchan, DSCR);
2006 
2007 	vdbg_dump_regs(atchan);
2008 }
2009 
2010 static int at_dma_suspend_noirq(struct device *dev)
2011 {
2012 	struct platform_device *pdev = to_platform_device(dev);
2013 	struct at_dma *atdma = platform_get_drvdata(pdev);
2014 	struct dma_chan *chan, *_chan;
2015 
2016 	/* preserve data */
2017 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2018 			device_node) {
2019 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2020 
2021 		if (atc_chan_is_cyclic(atchan))
2022 			atc_suspend_cyclic(atchan);
2023 		atchan->save_cfg = channel_readl(atchan, CFG);
2024 	}
2025 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2026 
2027 	/* disable DMA controller */
2028 	at_dma_off(atdma);
2029 	clk_disable_unprepare(atdma->clk);
2030 	return 0;
2031 }
2032 
2033 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2034 {
2035 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2036 
2037 	/* restore channel status for cyclic descriptors list:
2038 	 * next descriptor in the cyclic list at the time of suspend */
2039 	channel_writel(atchan, SADDR, 0);
2040 	channel_writel(atchan, DADDR, 0);
2041 	channel_writel(atchan, CTRLA, 0);
2042 	channel_writel(atchan, CTRLB, 0);
2043 	channel_writel(atchan, DSCR, atchan->save_dscr);
2044 	dma_writel(atdma, CHER, atchan->mask);
2045 
2046 	/* channel pause status should be removed by channel user
2047 	 * We cannot take the initiative to do it here */
2048 
2049 	vdbg_dump_regs(atchan);
2050 }
2051 
2052 static int at_dma_resume_noirq(struct device *dev)
2053 {
2054 	struct platform_device *pdev = to_platform_device(dev);
2055 	struct at_dma *atdma = platform_get_drvdata(pdev);
2056 	struct dma_chan *chan, *_chan;
2057 
2058 	/* bring back DMA controller */
2059 	clk_prepare_enable(atdma->clk);
2060 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2061 
2062 	/* clear any pending interrupt */
2063 	while (dma_readl(atdma, EBCISR))
2064 		cpu_relax();
2065 
2066 	/* restore saved data */
2067 	dma_writel(atdma, EBCIER, atdma->save_imr);
2068 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2069 			device_node) {
2070 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2071 
2072 		channel_writel(atchan, CFG, atchan->save_cfg);
2073 		if (atc_chan_is_cyclic(atchan))
2074 			atc_resume_cyclic(atchan);
2075 	}
2076 	return 0;
2077 }
2078 
2079 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2080 	.prepare = at_dma_prepare,
2081 	.suspend_noirq = at_dma_suspend_noirq,
2082 	.resume_noirq = at_dma_resume_noirq,
2083 };
2084 
2085 static struct platform_driver at_dma_driver = {
2086 	.remove		= at_dma_remove,
2087 	.shutdown	= at_dma_shutdown,
2088 	.id_table	= atdma_devtypes,
2089 	.driver = {
2090 		.name	= "at_hdmac",
2091 		.pm	= &at_dma_dev_pm_ops,
2092 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2093 	},
2094 };
2095 
2096 static int __init at_dma_init(void)
2097 {
2098 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2099 }
2100 subsys_initcall(at_dma_init);
2101 
2102 static void __exit at_dma_exit(void)
2103 {
2104 	platform_driver_unregister(&at_dma_driver);
2105 }
2106 module_exit(at_dma_exit);
2107 
2108 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2109 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2110 MODULE_LICENSE("GPL");
2111 MODULE_ALIAS("platform:at_hdmac");
2112