1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 4 * 5 * Copyright (C) 2008 Atmel Corporation 6 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries 7 * 8 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 9 * The only Atmel DMA Controller that is not covered by this driver is the one 10 * found on AT91SAM9263. 11 */ 12 13 #include <dt-bindings/dma/at91.h> 14 #include <linux/bitfield.h> 15 #include <linux/clk.h> 16 #include <linux/dmaengine.h> 17 #include <linux/dmapool.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/overflow.h> 23 #include <linux/of_platform.h> 24 #include <linux/of_dma.h> 25 #include <linux/platform_device.h> 26 #include <linux/slab.h> 27 28 #include "dmaengine.h" 29 #include "virt-dma.h" 30 31 /* 32 * Glossary 33 * -------- 34 * 35 * at_hdmac : Name of the ATmel AHB DMA Controller 36 * at_dma_ / atdma : ATmel DMA controller entity related 37 * atc_ / atchan : ATmel DMA Channel entity related 38 */ 39 40 #define AT_DMA_MAX_NR_CHANNELS 8 41 42 /* Global Configuration Register */ 43 #define AT_DMA_GCFG 0x00 44 #define AT_DMA_IF_BIGEND(i) BIT((i)) /* AHB-Lite Interface i in Big-endian mode */ 45 #define AT_DMA_ARB_CFG BIT(4) /* Arbiter mode. */ 46 47 /* Controller Enable Register */ 48 #define AT_DMA_EN 0x04 49 #define AT_DMA_ENABLE BIT(0) 50 51 /* Software Single Request Register */ 52 #define AT_DMA_SREQ 0x08 53 #define AT_DMA_SSREQ(x) BIT((x) << 1) /* Request a source single transfer on channel x */ 54 #define AT_DMA_DSREQ(x) BIT(1 + ((x) << 1)) /* Request a destination single transfer on channel x */ 55 56 /* Software Chunk Transfer Request Register */ 57 #define AT_DMA_CREQ 0x0c 58 #define AT_DMA_SCREQ(x) BIT((x) << 1) /* Request a source chunk transfer on channel x */ 59 #define AT_DMA_DCREQ(x) BIT(1 + ((x) << 1)) /* Request a destination chunk transfer on channel x */ 60 61 /* Software Last Transfer Flag Register */ 62 #define AT_DMA_LAST 0x10 63 #define AT_DMA_SLAST(x) BIT((x) << 1) /* This src rq is last tx of buffer on channel x */ 64 #define AT_DMA_DLAST(x) BIT(1 + ((x) << 1)) /* This dst rq is last tx of buffer on channel x */ 65 66 /* Request Synchronization Register */ 67 #define AT_DMA_SYNC 0x14 68 #define AT_DMA_SYR(h) BIT((h)) /* Synchronize handshake line h */ 69 70 /* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */ 71 #define AT_DMA_EBCIER 0x18 /* Enable register */ 72 #define AT_DMA_EBCIDR 0x1c /* Disable register */ 73 #define AT_DMA_EBCIMR 0x20 /* Mask Register */ 74 #define AT_DMA_EBCISR 0x24 /* Status Register */ 75 #define AT_DMA_CBTC_OFFSET 8 76 #define AT_DMA_ERR_OFFSET 16 77 #define AT_DMA_BTC(x) BIT((x)) 78 #define AT_DMA_CBTC(x) BIT(AT_DMA_CBTC_OFFSET + (x)) 79 #define AT_DMA_ERR(x) BIT(AT_DMA_ERR_OFFSET + (x)) 80 81 /* Channel Handler Enable Register */ 82 #define AT_DMA_CHER 0x28 83 #define AT_DMA_ENA(x) BIT((x)) 84 #define AT_DMA_SUSP(x) BIT(8 + (x)) 85 #define AT_DMA_KEEP(x) BIT(24 + (x)) 86 87 /* Channel Handler Disable Register */ 88 #define AT_DMA_CHDR 0x2c 89 #define AT_DMA_DIS(x) BIT(x) 90 #define AT_DMA_RES(x) BIT(8 + (x)) 91 92 /* Channel Handler Status Register */ 93 #define AT_DMA_CHSR 0x30 94 #define AT_DMA_EMPT(x) BIT(16 + (x)) 95 #define AT_DMA_STAL(x) BIT(24 + (x)) 96 97 /* Channel registers base address */ 98 #define AT_DMA_CH_REGS_BASE 0x3c 99 #define ch_regs(x) (AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */ 100 101 /* Hardware register offset for each channel */ 102 #define ATC_SADDR_OFFSET 0x00 /* Source Address Register */ 103 #define ATC_DADDR_OFFSET 0x04 /* Destination Address Register */ 104 #define ATC_DSCR_OFFSET 0x08 /* Descriptor Address Register */ 105 #define ATC_CTRLA_OFFSET 0x0c /* Control A Register */ 106 #define ATC_CTRLB_OFFSET 0x10 /* Control B Register */ 107 #define ATC_CFG_OFFSET 0x14 /* Configuration Register */ 108 #define ATC_SPIP_OFFSET 0x18 /* Src PIP Configuration Register */ 109 #define ATC_DPIP_OFFSET 0x1c /* Dst PIP Configuration Register */ 110 111 112 /* Bitfield definitions */ 113 114 /* Bitfields in DSCR */ 115 #define ATC_DSCR_IF GENMASK(1, 0) /* Dsc feched via AHB-Lite Interface */ 116 117 /* Bitfields in CTRLA */ 118 #define ATC_BTSIZE_MAX GENMASK(15, 0) /* Maximum Buffer Transfer Size */ 119 #define ATC_BTSIZE GENMASK(15, 0) /* Buffer Transfer Size */ 120 #define ATC_SCSIZE GENMASK(18, 16) /* Source Chunk Transfer Size */ 121 #define ATC_DCSIZE GENMASK(22, 20) /* Destination Chunk Transfer Size */ 122 #define ATC_SRC_WIDTH GENMASK(25, 24) /* Source Single Transfer Size */ 123 #define ATC_DST_WIDTH GENMASK(29, 28) /* Destination Single Transfer Size */ 124 #define ATC_DONE BIT(31) /* Tx Done (only written back in descriptor) */ 125 126 /* Bitfields in CTRLB */ 127 #define ATC_SIF GENMASK(1, 0) /* Src tx done via AHB-Lite Interface i */ 128 #define ATC_DIF GENMASK(5, 4) /* Dst tx done via AHB-Lite Interface i */ 129 #define AT_DMA_MEM_IF 0x0 /* interface 0 as memory interface */ 130 #define AT_DMA_PER_IF 0x1 /* interface 1 as peripheral interface */ 131 #define ATC_SRC_PIP BIT(8) /* Source Picture-in-Picture enabled */ 132 #define ATC_DST_PIP BIT(12) /* Destination Picture-in-Picture enabled */ 133 #define ATC_SRC_DSCR_DIS BIT(16) /* Src Descriptor fetch disable */ 134 #define ATC_DST_DSCR_DIS BIT(20) /* Dst Descriptor fetch disable */ 135 #define ATC_FC GENMASK(23, 21) /* Choose Flow Controller */ 136 #define ATC_FC_MEM2MEM 0x0 /* Mem-to-Mem (DMA) */ 137 #define ATC_FC_MEM2PER 0x1 /* Mem-to-Periph (DMA) */ 138 #define ATC_FC_PER2MEM 0x2 /* Periph-to-Mem (DMA) */ 139 #define ATC_FC_PER2PER 0x3 /* Periph-to-Periph (DMA) */ 140 #define ATC_FC_PER2MEM_PER 0x4 /* Periph-to-Mem (Peripheral) */ 141 #define ATC_FC_MEM2PER_PER 0x5 /* Mem-to-Periph (Peripheral) */ 142 #define ATC_FC_PER2PER_SRCPER 0x6 /* Periph-to-Periph (Src Peripheral) */ 143 #define ATC_FC_PER2PER_DSTPER 0x7 /* Periph-to-Periph (Dst Peripheral) */ 144 #define ATC_SRC_ADDR_MODE GENMASK(25, 24) 145 #define ATC_SRC_ADDR_MODE_INCR 0x0 /* Incrementing Mode */ 146 #define ATC_SRC_ADDR_MODE_DECR 0x1 /* Decrementing Mode */ 147 #define ATC_SRC_ADDR_MODE_FIXED 0x2 /* Fixed Mode */ 148 #define ATC_DST_ADDR_MODE GENMASK(29, 28) 149 #define ATC_DST_ADDR_MODE_INCR 0x0 /* Incrementing Mode */ 150 #define ATC_DST_ADDR_MODE_DECR 0x1 /* Decrementing Mode */ 151 #define ATC_DST_ADDR_MODE_FIXED 0x2 /* Fixed Mode */ 152 #define ATC_IEN BIT(30) /* BTC interrupt enable (active low) */ 153 #define ATC_AUTO BIT(31) /* Auto multiple buffer tx enable */ 154 155 /* Bitfields in CFG */ 156 #define ATC_SRC_PER GENMASK(3, 0) /* Channel src rq associated with periph handshaking ifc h */ 157 #define ATC_DST_PER GENMASK(7, 4) /* Channel dst rq associated with periph handshaking ifc h */ 158 #define ATC_SRC_REP BIT(8) /* Source Replay Mod */ 159 #define ATC_SRC_H2SEL BIT(9) /* Source Handshaking Mod */ 160 #define ATC_SRC_PER_MSB GENMASK(11, 10) /* Channel src rq (most significant bits) */ 161 #define ATC_DST_REP BIT(12) /* Destination Replay Mod */ 162 #define ATC_DST_H2SEL BIT(13) /* Destination Handshaking Mod */ 163 #define ATC_DST_PER_MSB GENMASK(15, 14) /* Channel dst rq (most significant bits) */ 164 #define ATC_SOD BIT(16) /* Stop On Done */ 165 #define ATC_LOCK_IF BIT(20) /* Interface Lock */ 166 #define ATC_LOCK_B BIT(21) /* AHB Bus Lock */ 167 #define ATC_LOCK_IF_L BIT(22) /* Master Interface Arbiter Lock */ 168 #define ATC_AHB_PROT GENMASK(26, 24) /* AHB Protection */ 169 #define ATC_FIFOCFG GENMASK(29, 28) /* FIFO Request Configuration */ 170 #define ATC_FIFOCFG_LARGESTBURST 0x0 171 #define ATC_FIFOCFG_HALFFIFO 0x1 172 #define ATC_FIFOCFG_ENOUGHSPACE 0x2 173 174 /* Bitfields in SPIP */ 175 #define ATC_SPIP_HOLE GENMASK(15, 0) 176 #define ATC_SPIP_BOUNDARY GENMASK(25, 16) 177 178 /* Bitfields in DPIP */ 179 #define ATC_DPIP_HOLE GENMASK(15, 0) 180 #define ATC_DPIP_BOUNDARY GENMASK(25, 16) 181 182 #define ATC_PER_MSB GENMASK(5, 4) /* Extract MSBs of a handshaking identifier */ 183 #define ATC_SRC_PER_ID(id) \ 184 ({ typeof(id) _id = (id); \ 185 FIELD_PREP(ATC_SRC_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) | \ 186 FIELD_PREP(ATC_SRC_PER, _id); }) 187 #define ATC_DST_PER_ID(id) \ 188 ({ typeof(id) _id = (id); \ 189 FIELD_PREP(ATC_DST_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) | \ 190 FIELD_PREP(ATC_DST_PER, _id); }) 191 192 193 194 /*-- descriptors -----------------------------------------------------*/ 195 196 /* LLI == Linked List Item; aka DMA buffer descriptor */ 197 struct at_lli { 198 /* values that are not changed by hardware */ 199 u32 saddr; 200 u32 daddr; 201 /* value that may get written back: */ 202 u32 ctrla; 203 /* more values that are not changed by hardware */ 204 u32 ctrlb; 205 u32 dscr; /* chain to next lli */ 206 }; 207 208 /** 209 * struct atdma_sg - atdma scatter gather entry 210 * @len: length of the current Linked List Item. 211 * @lli: linked list item that is passed to the DMA controller 212 * @lli_phys: physical address of the LLI. 213 */ 214 struct atdma_sg { 215 unsigned int len; 216 struct at_lli *lli; 217 dma_addr_t lli_phys; 218 }; 219 220 /** 221 * struct at_desc - software descriptor 222 * @vd: pointer to the virtual dma descriptor. 223 * @atchan: pointer to the atmel dma channel. 224 * @total_len: total transaction byte count 225 * @sglen: number of sg entries. 226 * @sg: array of sgs. 227 * @boundary: number of transfers to perform before the automatic address increment operation 228 * @dst_hole: value to add to the destination address when the boundary has been reached 229 * @src_hole: value to add to the source address when the boundary has been reached 230 * @memset_buffer: buffer used for the memset operation 231 * @memset_paddr: physical address of the buffer used for the memset operation 232 * @memset_vaddr: virtual address of the buffer used for the memset operation 233 */ 234 struct at_desc { 235 struct virt_dma_desc vd; 236 struct at_dma_chan *atchan; 237 size_t total_len; 238 unsigned int sglen; 239 /* Interleaved data */ 240 size_t boundary; 241 size_t dst_hole; 242 size_t src_hole; 243 244 /* Memset temporary buffer */ 245 bool memset_buffer; 246 dma_addr_t memset_paddr; 247 int *memset_vaddr; 248 struct atdma_sg sg[] __counted_by(sglen); 249 }; 250 251 /*-- Channels --------------------------------------------------------*/ 252 253 /** 254 * enum atc_status - information bits stored in channel status flag 255 * 256 * @ATC_IS_PAUSED: If channel is pauses 257 * @ATC_IS_CYCLIC: If channel is cyclic 258 * 259 * Manipulated with atomic operations. 260 */ 261 enum atc_status { 262 ATC_IS_PAUSED = 1, 263 ATC_IS_CYCLIC = 24, 264 }; 265 266 /** 267 * struct at_dma_chan - internal representation of an Atmel HDMAC channel 268 * @vc: virtual dma channel entry. 269 * @atdma: pointer to the driver data. 270 * @ch_regs: memory mapped register base 271 * @mask: channel index in a mask 272 * @per_if: peripheral interface 273 * @mem_if: memory interface 274 * @status: transmit status information from irq/prep* functions 275 * to tasklet (use atomic operations) 276 * @save_cfg: configuration register that is saved on suspend/resume cycle 277 * @save_dscr: for cyclic operations, preserve next descriptor address in 278 * the cyclic list on suspend/resume cycle 279 * @dma_sconfig: configuration for slave transfers, passed via 280 * .device_config 281 * @desc: pointer to the atmel dma descriptor. 282 */ 283 struct at_dma_chan { 284 struct virt_dma_chan vc; 285 struct at_dma *atdma; 286 void __iomem *ch_regs; 287 u8 mask; 288 u8 per_if; 289 u8 mem_if; 290 unsigned long status; 291 u32 save_cfg; 292 u32 save_dscr; 293 struct dma_slave_config dma_sconfig; 294 struct at_desc *desc; 295 }; 296 297 #define channel_readl(atchan, name) \ 298 __raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET) 299 300 #define channel_writel(atchan, name, val) \ 301 __raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET) 302 303 /* 304 * Fix sconfig's burst size according to at_hdmac. We need to convert them as: 305 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7. 306 * 307 * This can be done by finding most significant bit set. 308 */ 309 static inline void convert_burst(u32 *maxburst) 310 { 311 if (*maxburst > 1) 312 *maxburst = fls(*maxburst) - 2; 313 else 314 *maxburst = 0; 315 } 316 317 /* 318 * Fix sconfig's bus width according to at_hdmac. 319 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2. 320 */ 321 static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width) 322 { 323 switch (addr_width) { 324 case DMA_SLAVE_BUSWIDTH_2_BYTES: 325 return 1; 326 case DMA_SLAVE_BUSWIDTH_4_BYTES: 327 return 2; 328 default: 329 /* For 1 byte width or fallback */ 330 return 0; 331 } 332 } 333 334 /*-- Controller ------------------------------------------------------*/ 335 336 /** 337 * struct at_dma - internal representation of an Atmel HDMA Controller 338 * @dma_device: dmaengine dma_device object members 339 * @regs: memory mapped register base 340 * @clk: dma controller clock 341 * @save_imr: interrupt mask register that is saved on suspend/resume cycle 342 * @all_chan_mask: all channels available in a mask 343 * @lli_pool: hw lli table 344 * @memset_pool: hw memset pool 345 * @chan: channels table to store at_dma_chan structures 346 */ 347 struct at_dma { 348 struct dma_device dma_device; 349 void __iomem *regs; 350 struct clk *clk; 351 u32 save_imr; 352 353 u8 all_chan_mask; 354 355 struct dma_pool *lli_pool; 356 struct dma_pool *memset_pool; 357 /* AT THE END channels table */ 358 struct at_dma_chan chan[]; 359 }; 360 361 #define dma_readl(atdma, name) \ 362 __raw_readl((atdma)->regs + AT_DMA_##name) 363 #define dma_writel(atdma, name, val) \ 364 __raw_writel((val), (atdma)->regs + AT_DMA_##name) 365 366 static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t) 367 { 368 return container_of(t, struct at_desc, vd.tx); 369 } 370 371 static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan) 372 { 373 return container_of(chan, struct at_dma_chan, vc.chan); 374 } 375 376 static inline struct at_dma *to_at_dma(struct dma_device *ddev) 377 { 378 return container_of(ddev, struct at_dma, dma_device); 379 } 380 381 382 /*-- Helper functions ------------------------------------------------*/ 383 384 static struct device *chan2dev(struct dma_chan *chan) 385 { 386 return &chan->dev->device; 387 } 388 389 #if defined(VERBOSE_DEBUG) 390 static void vdbg_dump_regs(struct at_dma_chan *atchan) 391 { 392 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device); 393 394 dev_err(chan2dev(&atchan->vc.chan), 395 " channel %d : imr = 0x%x, chsr = 0x%x\n", 396 atchan->vc.chan.chan_id, 397 dma_readl(atdma, EBCIMR), 398 dma_readl(atdma, CHSR)); 399 400 dev_err(chan2dev(&atchan->vc.chan), 401 " channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n", 402 channel_readl(atchan, SADDR), 403 channel_readl(atchan, DADDR), 404 channel_readl(atchan, CTRLA), 405 channel_readl(atchan, CTRLB), 406 channel_readl(atchan, CFG), 407 channel_readl(atchan, DSCR)); 408 } 409 #else 410 static void vdbg_dump_regs(struct at_dma_chan *atchan) {} 411 #endif 412 413 static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli) 414 { 415 dev_crit(chan2dev(&atchan->vc.chan), 416 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n", 417 &lli->saddr, &lli->daddr, 418 lli->ctrla, lli->ctrlb, &lli->dscr); 419 } 420 421 422 static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on) 423 { 424 u32 ebci; 425 426 /* enable interrupts on buffer transfer completion & error */ 427 ebci = AT_DMA_BTC(chan_id) 428 | AT_DMA_ERR(chan_id); 429 if (on) 430 dma_writel(atdma, EBCIER, ebci); 431 else 432 dma_writel(atdma, EBCIDR, ebci); 433 } 434 435 static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id) 436 { 437 atc_setup_irq(atdma, chan_id, 1); 438 } 439 440 static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id) 441 { 442 atc_setup_irq(atdma, chan_id, 0); 443 } 444 445 446 /** 447 * atc_chan_is_enabled - test if given channel is enabled 448 * @atchan: channel we want to test status 449 */ 450 static inline int atc_chan_is_enabled(struct at_dma_chan *atchan) 451 { 452 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device); 453 454 return !!(dma_readl(atdma, CHSR) & atchan->mask); 455 } 456 457 /** 458 * atc_chan_is_paused - test channel pause/resume status 459 * @atchan: channel we want to test status 460 */ 461 static inline int atc_chan_is_paused(struct at_dma_chan *atchan) 462 { 463 return test_bit(ATC_IS_PAUSED, &atchan->status); 464 } 465 466 /** 467 * atc_chan_is_cyclic - test if given channel has cyclic property set 468 * @atchan: channel we want to test status 469 */ 470 static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan) 471 { 472 return test_bit(ATC_IS_CYCLIC, &atchan->status); 473 } 474 475 /** 476 * set_lli_eol - set end-of-link to descriptor so it will end transfer 477 * @desc: descriptor, signle or at the end of a chain, to end chain on 478 * @i: index of the atmel scatter gather entry that is at the end of the chain. 479 */ 480 static void set_lli_eol(struct at_desc *desc, unsigned int i) 481 { 482 u32 ctrlb = desc->sg[i].lli->ctrlb; 483 484 ctrlb &= ~ATC_IEN; 485 ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS; 486 487 desc->sg[i].lli->ctrlb = ctrlb; 488 desc->sg[i].lli->dscr = 0; 489 } 490 491 #define ATC_DEFAULT_CFG FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO) 492 #define ATC_DEFAULT_CTRLB (FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \ 493 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF)) 494 #define ATC_DMA_BUSWIDTHS\ 495 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 496 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 497 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 498 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 499 500 #define ATC_MAX_DSCR_TRIALS 10 501 502 /* 503 * Initial number of descriptors to allocate for each channel. This could 504 * be increased during dma usage. 505 */ 506 static unsigned int init_nr_desc_per_channel = 64; 507 module_param(init_nr_desc_per_channel, uint, 0644); 508 MODULE_PARM_DESC(init_nr_desc_per_channel, 509 "initial descriptors per channel (default: 64)"); 510 511 /** 512 * struct at_dma_platform_data - Controller configuration parameters 513 * @nr_channels: Number of channels supported by hardware (max 8) 514 * @cap_mask: dma_capability flags supported by the platform 515 */ 516 struct at_dma_platform_data { 517 unsigned int nr_channels; 518 dma_cap_mask_t cap_mask; 519 }; 520 521 /** 522 * struct at_dma_slave - Controller-specific information about a slave 523 * @dma_dev: required DMA master device 524 * @cfg: Platform-specific initializer for the CFG register 525 */ 526 struct at_dma_slave { 527 struct device *dma_dev; 528 u32 cfg; 529 }; 530 531 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 532 size_t len) 533 { 534 unsigned int width; 535 536 if (!((src | dst | len) & 3)) 537 width = 2; 538 else if (!((src | dst | len) & 1)) 539 width = 1; 540 else 541 width = 0; 542 543 return width; 544 } 545 546 static void atdma_lli_chain(struct at_desc *desc, unsigned int i) 547 { 548 struct atdma_sg *atdma_sg = &desc->sg[i]; 549 550 if (i) 551 desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys; 552 } 553 554 /** 555 * atc_dostart - starts the DMA engine for real 556 * @atchan: the channel we want to start 557 */ 558 static void atc_dostart(struct at_dma_chan *atchan) 559 { 560 struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc); 561 struct at_desc *desc; 562 563 if (!vd) { 564 atchan->desc = NULL; 565 return; 566 } 567 568 vdbg_dump_regs(atchan); 569 570 list_del(&vd->node); 571 atchan->desc = desc = to_atdma_desc(&vd->tx); 572 573 channel_writel(atchan, SADDR, 0); 574 channel_writel(atchan, DADDR, 0); 575 channel_writel(atchan, CTRLA, 0); 576 channel_writel(atchan, CTRLB, 0); 577 channel_writel(atchan, DSCR, desc->sg[0].lli_phys); 578 channel_writel(atchan, SPIP, 579 FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) | 580 FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary)); 581 channel_writel(atchan, DPIP, 582 FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) | 583 FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary)); 584 585 /* Don't allow CPU to reorder channel enable. */ 586 wmb(); 587 dma_writel(atchan->atdma, CHER, atchan->mask); 588 589 vdbg_dump_regs(atchan); 590 } 591 592 static void atdma_desc_free(struct virt_dma_desc *vd) 593 { 594 struct at_dma *atdma = to_at_dma(vd->tx.chan->device); 595 struct at_desc *desc = to_atdma_desc(&vd->tx); 596 unsigned int i; 597 598 for (i = 0; i < desc->sglen; i++) { 599 if (desc->sg[i].lli) 600 dma_pool_free(atdma->lli_pool, desc->sg[i].lli, 601 desc->sg[i].lli_phys); 602 } 603 604 /* If the transfer was a memset, free our temporary buffer */ 605 if (desc->memset_buffer) { 606 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 607 desc->memset_paddr); 608 desc->memset_buffer = false; 609 } 610 611 kfree(desc); 612 } 613 614 /** 615 * atc_calc_bytes_left - calculates the number of bytes left according to the 616 * value read from CTRLA. 617 * 618 * @current_len: the number of bytes left before reading CTRLA 619 * @ctrla: the value of CTRLA 620 */ 621 static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla) 622 { 623 u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla); 624 u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla); 625 626 /* 627 * According to the datasheet, when reading the Control A Register 628 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 629 * number of transfers completed on the Source Interface. 630 * So btsize is always a number of source width transfers. 631 */ 632 return current_len - (btsize << src_width); 633 } 634 635 /** 636 * atc_get_llis_residue - Get residue for a hardware linked list transfer 637 * @atchan: pointer to an atmel hdmac channel. 638 * @desc: pointer to the descriptor for which the residue is calculated. 639 * @residue: residue to be set to dma_tx_state. 640 * 641 * Calculate the residue by removing the length of the Linked List Item (LLI) 642 * already transferred from the total length. To get the current LLI we can use 643 * the value of the channel's DSCR register and compare it against the DSCR 644 * value of each LLI. 645 * 646 * The CTRLA register provides us with the amount of data already read from the 647 * source for the LLI. So we can compute a more accurate residue by also 648 * removing the number of bytes corresponding to this amount of data. 649 * 650 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a 651 * race condition may occur: the first read register may refer to one LLI 652 * whereas the second read may refer to a later LLI in the list because of the 653 * DMA transfer progression inbetween the two reads. 654 * 655 * One solution could have been to pause the DMA transfer, read the DSCR and 656 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some 657 * drawbacks: 658 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey 659 * to occur depending on the system latency. Taking the USART driver as an 660 * example, it uses a cyclic DMA transfer to read data from the Receive 661 * Holding Register (RHR) to avoid RX overruns since the RHR is not protected 662 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the 663 * residue would break the USART driver design. 664 * - The atc_pause() function masks interrupts but we'd rather avoid to do so 665 * for system latency purpose. 666 * 667 * Then we'd rather use another solution: the DSCR is read a first time, the 668 * CTRLA is read in turn, next the DSCR is read a second time. If the two 669 * consecutive read values of the DSCR are the same then we assume both refers 670 * to the very same LLI as well as the CTRLA value read inbetween does. For 671 * cyclic transfers, the assumption is that a full loop is "not so fast". If the 672 * two DSCR values are different, we read again the CTRLA then the DSCR till two 673 * consecutive read values from DSCR are equal or till the maximum trials is 674 * reach. This algorithm is very unlikely not to find a stable value for DSCR. 675 * 676 * Returns: %0 on success, -errno otherwise. 677 */ 678 static int atc_get_llis_residue(struct at_dma_chan *atchan, 679 struct at_desc *desc, u32 *residue) 680 { 681 u32 len, ctrla, dscr; 682 unsigned int i; 683 684 len = desc->total_len; 685 dscr = channel_readl(atchan, DSCR); 686 rmb(); /* ensure DSCR is read before CTRLA */ 687 ctrla = channel_readl(atchan, CTRLA); 688 for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) { 689 u32 new_dscr; 690 691 rmb(); /* ensure DSCR is read after CTRLA */ 692 new_dscr = channel_readl(atchan, DSCR); 693 694 /* 695 * If the DSCR register value has not changed inside the DMA 696 * controller since the previous read, we assume that both the 697 * dscr and ctrla values refers to the very same descriptor. 698 */ 699 if (likely(new_dscr == dscr)) 700 break; 701 702 /* 703 * DSCR has changed inside the DMA controller, so the previously 704 * read value of CTRLA may refer to an already processed 705 * descriptor hence could be outdated. We need to update ctrla 706 * to match the current descriptor. 707 */ 708 dscr = new_dscr; 709 rmb(); /* ensure DSCR is read before CTRLA */ 710 ctrla = channel_readl(atchan, CTRLA); 711 } 712 if (unlikely(i == ATC_MAX_DSCR_TRIALS)) 713 return -ETIMEDOUT; 714 715 /* For the first descriptor we can be more accurate. */ 716 if (desc->sg[0].lli->dscr == dscr) { 717 *residue = atc_calc_bytes_left(len, ctrla); 718 return 0; 719 } 720 len -= desc->sg[0].len; 721 722 for (i = 1; i < desc->sglen; i++) { 723 if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr) 724 break; 725 len -= desc->sg[i].len; 726 } 727 728 /* 729 * For the current LLI in the chain we can calculate the remaining bytes 730 * using the channel's CTRLA register. 731 */ 732 *residue = atc_calc_bytes_left(len, ctrla); 733 return 0; 734 735 } 736 737 /** 738 * atc_get_residue - get the number of bytes residue for a cookie. 739 * The residue is passed by address and updated on success. 740 * @chan: DMA channel 741 * @cookie: transaction identifier to check status of 742 * @residue: residue to be updated. 743 * 744 * Return: %0 on success, -errno otherwise. 745 */ 746 static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie, 747 u32 *residue) 748 { 749 struct at_dma_chan *atchan = to_at_dma_chan(chan); 750 struct virt_dma_desc *vd; 751 struct at_desc *desc = NULL; 752 u32 len, ctrla; 753 754 vd = vchan_find_desc(&atchan->vc, cookie); 755 if (vd) 756 desc = to_atdma_desc(&vd->tx); 757 else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie) 758 desc = atchan->desc; 759 760 if (!desc) 761 return -EINVAL; 762 763 if (desc->sg[0].lli->dscr) 764 /* hardware linked list transfer */ 765 return atc_get_llis_residue(atchan, desc, residue); 766 767 /* single transfer */ 768 len = desc->total_len; 769 ctrla = channel_readl(atchan, CTRLA); 770 *residue = atc_calc_bytes_left(len, ctrla); 771 return 0; 772 } 773 774 /** 775 * atc_handle_error - handle errors reported by DMA controller 776 * @atchan: channel where error occurs. 777 * @i: channel index 778 */ 779 static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i) 780 { 781 struct at_desc *desc = atchan->desc; 782 783 /* Disable channel on AHB error */ 784 dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask); 785 786 /* 787 * KERN_CRITICAL may seem harsh, but since this only happens 788 * when someone submits a bad physical address in a 789 * descriptor, we should consider ourselves lucky that the 790 * controller flagged an error instead of scribbling over 791 * random memory locations. 792 */ 793 dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n"); 794 dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n", 795 desc->vd.tx.cookie); 796 for (i = 0; i < desc->sglen; i++) 797 atc_dump_lli(atchan, desc->sg[i].lli); 798 } 799 800 static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending, 801 unsigned int i) 802 { 803 struct at_desc *desc; 804 805 spin_lock(&atchan->vc.lock); 806 desc = atchan->desc; 807 808 if (desc) { 809 if (pending & AT_DMA_ERR(i)) { 810 atc_handle_error(atchan, i); 811 /* Pretend the descriptor completed successfully */ 812 } 813 814 if (atc_chan_is_cyclic(atchan)) { 815 vchan_cyclic_callback(&desc->vd); 816 } else { 817 vchan_cookie_complete(&desc->vd); 818 atchan->desc = NULL; 819 if (!(atc_chan_is_enabled(atchan))) 820 atc_dostart(atchan); 821 } 822 } 823 spin_unlock(&atchan->vc.lock); 824 } 825 826 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 827 { 828 struct at_dma *atdma = dev_id; 829 struct at_dma_chan *atchan; 830 int i; 831 u32 status, pending, imr; 832 int ret = IRQ_NONE; 833 834 do { 835 imr = dma_readl(atdma, EBCIMR); 836 status = dma_readl(atdma, EBCISR); 837 pending = status & imr; 838 839 if (!pending) 840 break; 841 842 dev_vdbg(atdma->dma_device.dev, 843 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 844 status, imr, pending); 845 846 for (i = 0; i < atdma->dma_device.chancnt; i++) { 847 atchan = &atdma->chan[i]; 848 if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i)))) 849 continue; 850 atdma_handle_chan_done(atchan, pending, i); 851 ret = IRQ_HANDLED; 852 } 853 854 } while (pending); 855 856 return ret; 857 } 858 859 /*-- DMA Engine API --------------------------------------------------*/ 860 /** 861 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 862 * @chan: the channel to prepare operation on 863 * @xt: Interleaved transfer template 864 * @flags: tx descriptor status flags 865 */ 866 static struct dma_async_tx_descriptor * 867 atc_prep_dma_interleaved(struct dma_chan *chan, 868 struct dma_interleaved_template *xt, 869 unsigned long flags) 870 { 871 struct at_dma *atdma = to_at_dma(chan->device); 872 struct at_dma_chan *atchan = to_at_dma_chan(chan); 873 struct data_chunk *first; 874 struct atdma_sg *atdma_sg; 875 struct at_desc *desc; 876 struct at_lli *lli; 877 size_t xfer_count; 878 unsigned int dwidth; 879 u32 ctrla; 880 u32 ctrlb; 881 size_t len = 0; 882 int i; 883 884 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 885 return NULL; 886 887 first = xt->sgl; 888 889 dev_info(chan2dev(chan), 890 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 891 __func__, &xt->src_start, &xt->dst_start, xt->numf, 892 xt->frame_size, flags); 893 894 /* 895 * The controller can only "skip" X bytes every Y bytes, so we 896 * need to make sure we are given a template that fit that 897 * description, ie a template with chunks that always have the 898 * same size, with the same ICGs. 899 */ 900 for (i = 0; i < xt->frame_size; i++) { 901 struct data_chunk *chunk = xt->sgl + i; 902 903 if ((chunk->size != xt->sgl->size) || 904 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 905 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 906 dev_err(chan2dev(chan), 907 "%s: the controller can transfer only identical chunks\n", 908 __func__); 909 return NULL; 910 } 911 912 len += chunk->size; 913 } 914 915 dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len); 916 917 xfer_count = len >> dwidth; 918 if (xfer_count > ATC_BTSIZE_MAX) { 919 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 920 return NULL; 921 } 922 923 ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) | 924 FIELD_PREP(ATC_DST_WIDTH, dwidth); 925 926 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 927 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) | 928 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) | 929 ATC_SRC_PIP | ATC_DST_PIP | 930 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM); 931 932 desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC); 933 if (!desc) 934 return NULL; 935 desc->sglen = 1; 936 937 atdma_sg = desc->sg; 938 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT, 939 &atdma_sg->lli_phys); 940 if (!atdma_sg->lli) { 941 kfree(desc); 942 return NULL; 943 } 944 lli = atdma_sg->lli; 945 946 lli->saddr = xt->src_start; 947 lli->daddr = xt->dst_start; 948 lli->ctrla = ctrla | xfer_count; 949 lli->ctrlb = ctrlb; 950 951 desc->boundary = first->size >> dwidth; 952 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 953 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 954 955 atdma_sg->len = len; 956 desc->total_len = len; 957 958 set_lli_eol(desc, 0); 959 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 960 } 961 962 /** 963 * atc_prep_dma_memcpy - prepare a memcpy operation 964 * @chan: the channel to prepare operation on 965 * @dest: operation virtual destination address 966 * @src: operation virtual source address 967 * @len: operation length 968 * @flags: tx descriptor status flags 969 */ 970 static struct dma_async_tx_descriptor * 971 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 972 size_t len, unsigned long flags) 973 { 974 struct at_dma *atdma = to_at_dma(chan->device); 975 struct at_dma_chan *atchan = to_at_dma_chan(chan); 976 struct at_desc *desc = NULL; 977 size_t xfer_count; 978 size_t offset; 979 size_t sg_len; 980 unsigned int src_width; 981 unsigned int dst_width; 982 unsigned int i; 983 u32 ctrla; 984 u32 ctrlb; 985 986 dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 987 &dest, &src, len, flags); 988 989 if (unlikely(!len)) { 990 dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 991 return NULL; 992 } 993 994 sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX); 995 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC); 996 if (!desc) 997 return NULL; 998 desc->sglen = sg_len; 999 1000 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 1001 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) | 1002 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) | 1003 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM); 1004 1005 /* 1006 * We can be a lot more clever here, but this should take care 1007 * of the most common optimization. 1008 */ 1009 src_width = dst_width = atc_get_xfer_width(src, dest, len); 1010 1011 ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) | 1012 FIELD_PREP(ATC_DST_WIDTH, dst_width); 1013 1014 for (offset = 0, i = 0; offset < len; 1015 offset += xfer_count << src_width, i++) { 1016 struct atdma_sg *atdma_sg = &desc->sg[i]; 1017 struct at_lli *lli; 1018 1019 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT, 1020 &atdma_sg->lli_phys); 1021 if (!atdma_sg->lli) 1022 goto err_desc_get; 1023 lli = atdma_sg->lli; 1024 1025 xfer_count = min_t(size_t, (len - offset) >> src_width, 1026 ATC_BTSIZE_MAX); 1027 1028 lli->saddr = src + offset; 1029 lli->daddr = dest + offset; 1030 lli->ctrla = ctrla | xfer_count; 1031 lli->ctrlb = ctrlb; 1032 1033 desc->sg[i].len = xfer_count << src_width; 1034 1035 atdma_lli_chain(desc, i); 1036 } 1037 1038 desc->total_len = len; 1039 1040 /* set end-of-link to the last link descriptor of list*/ 1041 set_lli_eol(desc, i - 1); 1042 1043 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1044 1045 err_desc_get: 1046 atdma_desc_free(&desc->vd); 1047 return NULL; 1048 } 1049 1050 static int atdma_create_memset_lli(struct dma_chan *chan, 1051 struct atdma_sg *atdma_sg, 1052 dma_addr_t psrc, dma_addr_t pdst, size_t len) 1053 { 1054 struct at_dma *atdma = to_at_dma(chan->device); 1055 struct at_lli *lli; 1056 size_t xfer_count; 1057 u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2); 1058 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 1059 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) | 1060 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) | 1061 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM); 1062 1063 xfer_count = len >> 2; 1064 if (xfer_count > ATC_BTSIZE_MAX) { 1065 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 1066 return -EINVAL; 1067 } 1068 1069 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT, 1070 &atdma_sg->lli_phys); 1071 if (!atdma_sg->lli) 1072 return -ENOMEM; 1073 lli = atdma_sg->lli; 1074 1075 lli->saddr = psrc; 1076 lli->daddr = pdst; 1077 lli->ctrla = ctrla | xfer_count; 1078 lli->ctrlb = ctrlb; 1079 1080 atdma_sg->len = len; 1081 1082 return 0; 1083 } 1084 1085 /** 1086 * atc_prep_dma_memset - prepare a memcpy operation 1087 * @chan: the channel to prepare operation on 1088 * @dest: operation virtual destination address 1089 * @value: value to set memory buffer to 1090 * @len: operation length 1091 * @flags: tx descriptor status flags 1092 */ 1093 static struct dma_async_tx_descriptor * 1094 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1095 size_t len, unsigned long flags) 1096 { 1097 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1098 struct at_dma *atdma = to_at_dma(chan->device); 1099 struct at_desc *desc; 1100 void __iomem *vaddr; 1101 dma_addr_t paddr; 1102 char fill_pattern; 1103 int ret; 1104 1105 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 1106 &dest, value, len, flags); 1107 1108 if (unlikely(!len)) { 1109 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 1110 return NULL; 1111 } 1112 1113 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1114 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 1115 __func__); 1116 return NULL; 1117 } 1118 1119 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 1120 if (!vaddr) { 1121 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1122 __func__); 1123 return NULL; 1124 } 1125 1126 /* Only the first byte of value is to be used according to dmaengine */ 1127 fill_pattern = (char)value; 1128 1129 *(u32*)vaddr = (fill_pattern << 24) | 1130 (fill_pattern << 16) | 1131 (fill_pattern << 8) | 1132 fill_pattern; 1133 1134 desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC); 1135 if (!desc) 1136 goto err_free_buffer; 1137 desc->sglen = 1; 1138 1139 ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len); 1140 if (ret) 1141 goto err_free_desc; 1142 1143 desc->memset_paddr = paddr; 1144 desc->memset_vaddr = vaddr; 1145 desc->memset_buffer = true; 1146 1147 desc->total_len = len; 1148 1149 /* set end-of-link on the descriptor */ 1150 set_lli_eol(desc, 0); 1151 1152 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1153 1154 err_free_desc: 1155 kfree(desc); 1156 err_free_buffer: 1157 dma_pool_free(atdma->memset_pool, vaddr, paddr); 1158 return NULL; 1159 } 1160 1161 static struct dma_async_tx_descriptor * 1162 atc_prep_dma_memset_sg(struct dma_chan *chan, 1163 struct scatterlist *sgl, 1164 unsigned int sg_len, int value, 1165 unsigned long flags) 1166 { 1167 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1168 struct at_dma *atdma = to_at_dma(chan->device); 1169 struct at_desc *desc; 1170 struct scatterlist *sg; 1171 void __iomem *vaddr; 1172 dma_addr_t paddr; 1173 size_t total_len = 0; 1174 int i; 1175 int ret; 1176 1177 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 1178 value, sg_len, flags); 1179 1180 if (unlikely(!sgl || !sg_len)) { 1181 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1182 __func__); 1183 return NULL; 1184 } 1185 1186 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 1187 if (!vaddr) { 1188 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1189 __func__); 1190 return NULL; 1191 } 1192 *(u32*)vaddr = value; 1193 1194 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC); 1195 if (!desc) 1196 goto err_free_dma_buf; 1197 desc->sglen = sg_len; 1198 1199 for_each_sg(sgl, sg, sg_len, i) { 1200 dma_addr_t dest = sg_dma_address(sg); 1201 size_t len = sg_dma_len(sg); 1202 1203 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1204 __func__, &dest, len); 1205 1206 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1207 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1208 __func__); 1209 goto err_free_desc; 1210 } 1211 1212 ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest, 1213 len); 1214 if (ret) 1215 goto err_free_desc; 1216 1217 atdma_lli_chain(desc, i); 1218 total_len += len; 1219 } 1220 1221 desc->memset_paddr = paddr; 1222 desc->memset_vaddr = vaddr; 1223 desc->memset_buffer = true; 1224 1225 desc->total_len = total_len; 1226 1227 /* set end-of-link on the descriptor */ 1228 set_lli_eol(desc, i - 1); 1229 1230 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1231 1232 err_free_desc: 1233 atdma_desc_free(&desc->vd); 1234 err_free_dma_buf: 1235 dma_pool_free(atdma->memset_pool, vaddr, paddr); 1236 return NULL; 1237 } 1238 1239 /** 1240 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1241 * @chan: DMA channel 1242 * @sgl: scatterlist to transfer to/from 1243 * @sg_len: number of entries in @scatterlist 1244 * @direction: DMA direction 1245 * @flags: tx descriptor status flags 1246 * @context: transaction context (ignored) 1247 */ 1248 static struct dma_async_tx_descriptor * 1249 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1250 unsigned int sg_len, enum dma_transfer_direction direction, 1251 unsigned long flags, void *context) 1252 { 1253 struct at_dma *atdma = to_at_dma(chan->device); 1254 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1255 struct at_dma_slave *atslave = chan->private; 1256 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1257 struct at_desc *desc; 1258 u32 ctrla; 1259 u32 ctrlb; 1260 dma_addr_t reg; 1261 unsigned int reg_width; 1262 unsigned int mem_width; 1263 unsigned int i; 1264 struct scatterlist *sg; 1265 size_t total_len = 0; 1266 1267 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1268 sg_len, 1269 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1270 flags); 1271 1272 if (unlikely(!atslave || !sg_len)) { 1273 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1274 return NULL; 1275 } 1276 1277 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC); 1278 if (!desc) 1279 return NULL; 1280 desc->sglen = sg_len; 1281 1282 ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) | 1283 FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst); 1284 ctrlb = ATC_IEN; 1285 1286 switch (direction) { 1287 case DMA_MEM_TO_DEV: 1288 reg_width = convert_buswidth(sconfig->dst_addr_width); 1289 ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width); 1290 ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, 1291 ATC_DST_ADDR_MODE_FIXED) | 1292 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) | 1293 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) | 1294 FIELD_PREP(ATC_SIF, atchan->mem_if) | 1295 FIELD_PREP(ATC_DIF, atchan->per_if); 1296 reg = sconfig->dst_addr; 1297 for_each_sg(sgl, sg, sg_len, i) { 1298 struct atdma_sg *atdma_sg = &desc->sg[i]; 1299 struct at_lli *lli; 1300 u32 len; 1301 u32 mem; 1302 1303 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, 1304 GFP_NOWAIT, 1305 &atdma_sg->lli_phys); 1306 if (!atdma_sg->lli) 1307 goto err_desc_get; 1308 lli = atdma_sg->lli; 1309 1310 mem = sg_dma_address(sg); 1311 len = sg_dma_len(sg); 1312 if (unlikely(!len)) { 1313 dev_dbg(chan2dev(chan), 1314 "prep_slave_sg: sg(%d) data length is zero\n", i); 1315 goto err; 1316 } 1317 mem_width = 2; 1318 if (unlikely(mem & 3 || len & 3)) 1319 mem_width = 0; 1320 1321 lli->saddr = mem; 1322 lli->daddr = reg; 1323 lli->ctrla = ctrla | 1324 FIELD_PREP(ATC_SRC_WIDTH, mem_width) | 1325 len >> mem_width; 1326 lli->ctrlb = ctrlb; 1327 1328 atdma_sg->len = len; 1329 total_len += len; 1330 1331 desc->sg[i].len = len; 1332 atdma_lli_chain(desc, i); 1333 } 1334 break; 1335 case DMA_DEV_TO_MEM: 1336 reg_width = convert_buswidth(sconfig->src_addr_width); 1337 ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width); 1338 ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) | 1339 FIELD_PREP(ATC_SRC_ADDR_MODE, 1340 ATC_SRC_ADDR_MODE_FIXED) | 1341 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) | 1342 FIELD_PREP(ATC_SIF, atchan->per_if) | 1343 FIELD_PREP(ATC_DIF, atchan->mem_if); 1344 1345 reg = sconfig->src_addr; 1346 for_each_sg(sgl, sg, sg_len, i) { 1347 struct atdma_sg *atdma_sg = &desc->sg[i]; 1348 struct at_lli *lli; 1349 u32 len; 1350 u32 mem; 1351 1352 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, 1353 GFP_NOWAIT, 1354 &atdma_sg->lli_phys); 1355 if (!atdma_sg->lli) 1356 goto err_desc_get; 1357 lli = atdma_sg->lli; 1358 1359 mem = sg_dma_address(sg); 1360 len = sg_dma_len(sg); 1361 if (unlikely(!len)) { 1362 dev_dbg(chan2dev(chan), 1363 "prep_slave_sg: sg(%d) data length is zero\n", i); 1364 goto err; 1365 } 1366 mem_width = 2; 1367 if (unlikely(mem & 3 || len & 3)) 1368 mem_width = 0; 1369 1370 lli->saddr = reg; 1371 lli->daddr = mem; 1372 lli->ctrla = ctrla | 1373 FIELD_PREP(ATC_DST_WIDTH, mem_width) | 1374 len >> reg_width; 1375 lli->ctrlb = ctrlb; 1376 1377 desc->sg[i].len = len; 1378 total_len += len; 1379 1380 atdma_lli_chain(desc, i); 1381 } 1382 break; 1383 default: 1384 return NULL; 1385 } 1386 1387 /* set end-of-link to the last link descriptor of list*/ 1388 set_lli_eol(desc, i - 1); 1389 1390 desc->total_len = total_len; 1391 1392 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1393 1394 err_desc_get: 1395 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1396 err: 1397 atdma_desc_free(&desc->vd); 1398 return NULL; 1399 } 1400 1401 /* 1402 * atc_dma_cyclic_check_values 1403 * Check for too big/unaligned periods and unaligned DMA buffer 1404 */ 1405 static int 1406 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1407 size_t period_len) 1408 { 1409 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1410 goto err_out; 1411 if (unlikely(period_len & ((1 << reg_width) - 1))) 1412 goto err_out; 1413 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1414 goto err_out; 1415 1416 return 0; 1417 1418 err_out: 1419 return -EINVAL; 1420 } 1421 1422 /* 1423 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1424 */ 1425 static int 1426 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1427 unsigned int i, dma_addr_t buf_addr, 1428 unsigned int reg_width, size_t period_len, 1429 enum dma_transfer_direction direction) 1430 { 1431 struct at_dma *atdma = to_at_dma(chan->device); 1432 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1433 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1434 struct atdma_sg *atdma_sg = &desc->sg[i]; 1435 struct at_lli *lli; 1436 1437 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC, 1438 &atdma_sg->lli_phys); 1439 if (!atdma_sg->lli) 1440 return -ENOMEM; 1441 lli = atdma_sg->lli; 1442 1443 switch (direction) { 1444 case DMA_MEM_TO_DEV: 1445 lli->saddr = buf_addr + (period_len * i); 1446 lli->daddr = sconfig->dst_addr; 1447 lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE, 1448 ATC_DST_ADDR_MODE_FIXED) | 1449 FIELD_PREP(ATC_SRC_ADDR_MODE, 1450 ATC_SRC_ADDR_MODE_INCR) | 1451 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) | 1452 FIELD_PREP(ATC_SIF, atchan->mem_if) | 1453 FIELD_PREP(ATC_DIF, atchan->per_if); 1454 1455 break; 1456 1457 case DMA_DEV_TO_MEM: 1458 lli->saddr = sconfig->src_addr; 1459 lli->daddr = buf_addr + (period_len * i); 1460 lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE, 1461 ATC_DST_ADDR_MODE_INCR) | 1462 FIELD_PREP(ATC_SRC_ADDR_MODE, 1463 ATC_SRC_ADDR_MODE_FIXED) | 1464 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) | 1465 FIELD_PREP(ATC_SIF, atchan->per_if) | 1466 FIELD_PREP(ATC_DIF, atchan->mem_if); 1467 break; 1468 1469 default: 1470 return -EINVAL; 1471 } 1472 1473 lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) | 1474 FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) | 1475 FIELD_PREP(ATC_DST_WIDTH, reg_width) | 1476 FIELD_PREP(ATC_SRC_WIDTH, reg_width) | 1477 period_len >> reg_width; 1478 desc->sg[i].len = period_len; 1479 1480 return 0; 1481 } 1482 1483 /** 1484 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1485 * @chan: the DMA channel to prepare 1486 * @buf_addr: physical DMA address where the buffer starts 1487 * @buf_len: total number of bytes for the entire buffer 1488 * @period_len: number of bytes for each period 1489 * @direction: transfer direction, to or from device 1490 * @flags: tx descriptor status flags 1491 */ 1492 static struct dma_async_tx_descriptor * 1493 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1494 size_t period_len, enum dma_transfer_direction direction, 1495 unsigned long flags) 1496 { 1497 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1498 struct at_dma_slave *atslave = chan->private; 1499 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1500 struct at_desc *desc; 1501 unsigned long was_cyclic; 1502 unsigned int reg_width; 1503 unsigned int periods = buf_len / period_len; 1504 unsigned int i; 1505 1506 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1507 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1508 &buf_addr, 1509 periods, buf_len, period_len); 1510 1511 if (unlikely(!atslave || !buf_len || !period_len)) { 1512 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1513 return NULL; 1514 } 1515 1516 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1517 if (was_cyclic) { 1518 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1519 return NULL; 1520 } 1521 1522 if (unlikely(!is_slave_direction(direction))) 1523 goto err_out; 1524 1525 if (direction == DMA_MEM_TO_DEV) 1526 reg_width = convert_buswidth(sconfig->dst_addr_width); 1527 else 1528 reg_width = convert_buswidth(sconfig->src_addr_width); 1529 1530 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1531 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1532 goto err_out; 1533 1534 desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC); 1535 if (!desc) 1536 goto err_out; 1537 desc->sglen = periods; 1538 1539 /* build cyclic linked list */ 1540 for (i = 0; i < periods; i++) { 1541 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1542 reg_width, period_len, direction)) 1543 goto err_fill_desc; 1544 atdma_lli_chain(desc, i); 1545 } 1546 desc->total_len = buf_len; 1547 /* lets make a cyclic list */ 1548 desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys; 1549 1550 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1551 1552 err_fill_desc: 1553 atdma_desc_free(&desc->vd); 1554 err_out: 1555 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1556 return NULL; 1557 } 1558 1559 static int atc_config(struct dma_chan *chan, 1560 struct dma_slave_config *sconfig) 1561 { 1562 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1563 1564 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1565 1566 /* Check if it is chan is configured for slave transfers */ 1567 if (!chan->private) 1568 return -EINVAL; 1569 1570 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1571 1572 convert_burst(&atchan->dma_sconfig.src_maxburst); 1573 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1574 1575 return 0; 1576 } 1577 1578 static int atc_pause(struct dma_chan *chan) 1579 { 1580 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1581 struct at_dma *atdma = to_at_dma(chan->device); 1582 int chan_id = atchan->vc.chan.chan_id; 1583 unsigned long flags; 1584 1585 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1586 1587 spin_lock_irqsave(&atchan->vc.lock, flags); 1588 1589 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1590 set_bit(ATC_IS_PAUSED, &atchan->status); 1591 1592 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1593 1594 return 0; 1595 } 1596 1597 static int atc_resume(struct dma_chan *chan) 1598 { 1599 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1600 struct at_dma *atdma = to_at_dma(chan->device); 1601 int chan_id = atchan->vc.chan.chan_id; 1602 unsigned long flags; 1603 1604 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1605 1606 if (!atc_chan_is_paused(atchan)) 1607 return 0; 1608 1609 spin_lock_irqsave(&atchan->vc.lock, flags); 1610 1611 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1612 clear_bit(ATC_IS_PAUSED, &atchan->status); 1613 1614 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1615 1616 return 0; 1617 } 1618 1619 static int atc_terminate_all(struct dma_chan *chan) 1620 { 1621 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1622 struct at_dma *atdma = to_at_dma(chan->device); 1623 int chan_id = atchan->vc.chan.chan_id; 1624 unsigned long flags; 1625 1626 LIST_HEAD(list); 1627 1628 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1629 1630 /* 1631 * This is only called when something went wrong elsewhere, so 1632 * we don't really care about the data. Just disable the 1633 * channel. We still have to poll the channel enable bit due 1634 * to AHB/HSB limitations. 1635 */ 1636 spin_lock_irqsave(&atchan->vc.lock, flags); 1637 1638 /* disabling channel: must also remove suspend state */ 1639 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1640 1641 /* confirm that this channel is disabled */ 1642 while (dma_readl(atdma, CHSR) & atchan->mask) 1643 cpu_relax(); 1644 1645 if (atchan->desc) { 1646 vchan_terminate_vdesc(&atchan->desc->vd); 1647 atchan->desc = NULL; 1648 } 1649 1650 vchan_get_all_descriptors(&atchan->vc, &list); 1651 1652 clear_bit(ATC_IS_PAUSED, &atchan->status); 1653 /* if channel dedicated to cyclic operations, free it */ 1654 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1655 1656 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1657 1658 vchan_dma_desc_free_list(&atchan->vc, &list); 1659 1660 return 0; 1661 } 1662 1663 /** 1664 * atc_tx_status - poll for transaction completion 1665 * @chan: DMA channel 1666 * @cookie: transaction identifier to check status of 1667 * @txstate: if not %NULL updated with transaction state 1668 * 1669 * If @txstate is passed in, upon return it reflect the driver 1670 * internal state and can be used with dma_async_is_complete() to check 1671 * the status of multiple cookies without re-checking hardware state. 1672 */ 1673 static enum dma_status 1674 atc_tx_status(struct dma_chan *chan, 1675 dma_cookie_t cookie, 1676 struct dma_tx_state *txstate) 1677 { 1678 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1679 unsigned long flags; 1680 enum dma_status dma_status; 1681 u32 residue; 1682 int ret; 1683 1684 dma_status = dma_cookie_status(chan, cookie, txstate); 1685 if (dma_status == DMA_COMPLETE || !txstate) 1686 return dma_status; 1687 1688 spin_lock_irqsave(&atchan->vc.lock, flags); 1689 /* Get number of bytes left in the active transactions */ 1690 ret = atc_get_residue(chan, cookie, &residue); 1691 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1692 1693 if (unlikely(ret < 0)) { 1694 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1695 return DMA_ERROR; 1696 } else { 1697 dma_set_residue(txstate, residue); 1698 } 1699 1700 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n", 1701 dma_status, cookie, residue); 1702 1703 return dma_status; 1704 } 1705 1706 static void atc_issue_pending(struct dma_chan *chan) 1707 { 1708 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1709 unsigned long flags; 1710 1711 spin_lock_irqsave(&atchan->vc.lock, flags); 1712 if (vchan_issue_pending(&atchan->vc) && !atchan->desc) { 1713 if (!(atc_chan_is_enabled(atchan))) 1714 atc_dostart(atchan); 1715 } 1716 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1717 } 1718 1719 /** 1720 * atc_alloc_chan_resources - allocate resources for DMA channel 1721 * @chan: allocate descriptor resources for this channel 1722 * 1723 * Return: the number of allocated descriptors 1724 */ 1725 static int atc_alloc_chan_resources(struct dma_chan *chan) 1726 { 1727 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1728 struct at_dma *atdma = to_at_dma(chan->device); 1729 struct at_dma_slave *atslave; 1730 u32 cfg; 1731 1732 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1733 1734 /* ASSERT: channel is idle */ 1735 if (atc_chan_is_enabled(atchan)) { 1736 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1737 return -EIO; 1738 } 1739 1740 cfg = ATC_DEFAULT_CFG; 1741 1742 atslave = chan->private; 1743 if (atslave) { 1744 /* 1745 * We need controller-specific data to set up slave 1746 * transfers. 1747 */ 1748 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev); 1749 1750 /* if cfg configuration specified take it instead of default */ 1751 if (atslave->cfg) 1752 cfg = atslave->cfg; 1753 } 1754 1755 /* channel parameters */ 1756 channel_writel(atchan, CFG, cfg); 1757 1758 return 0; 1759 } 1760 1761 /** 1762 * atc_free_chan_resources - free all channel resources 1763 * @chan: DMA channel 1764 */ 1765 static void atc_free_chan_resources(struct dma_chan *chan) 1766 { 1767 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1768 1769 BUG_ON(atc_chan_is_enabled(atchan)); 1770 1771 vchan_free_chan_resources(to_virt_chan(chan)); 1772 atchan->status = 0; 1773 1774 /* 1775 * Free atslave allocated in at_dma_xlate() 1776 */ 1777 kfree(chan->private); 1778 chan->private = NULL; 1779 1780 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1781 } 1782 1783 #ifdef CONFIG_OF 1784 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1785 { 1786 struct at_dma_slave *atslave = slave; 1787 1788 if (atslave->dma_dev == chan->device->dev) { 1789 chan->private = atslave; 1790 return true; 1791 } else { 1792 return false; 1793 } 1794 } 1795 1796 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1797 struct of_dma *of_dma) 1798 { 1799 struct dma_chan *chan; 1800 struct at_dma_chan *atchan; 1801 struct at_dma_slave *atslave; 1802 dma_cap_mask_t mask; 1803 unsigned int per_id; 1804 struct platform_device *dmac_pdev; 1805 1806 if (dma_spec->args_count != 2) 1807 return NULL; 1808 1809 dmac_pdev = of_find_device_by_node(dma_spec->np); 1810 if (!dmac_pdev) 1811 return NULL; 1812 1813 dma_cap_zero(mask); 1814 dma_cap_set(DMA_SLAVE, mask); 1815 1816 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL); 1817 if (!atslave) { 1818 put_device(&dmac_pdev->dev); 1819 return NULL; 1820 } 1821 1822 atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL; 1823 /* 1824 * We can fill both SRC_PER and DST_PER, one of these fields will be 1825 * ignored depending on DMA transfer direction. 1826 */ 1827 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1828 atslave->cfg |= ATC_DST_PER_ID(per_id) | ATC_SRC_PER_ID(per_id); 1829 /* 1830 * We have to translate the value we get from the device tree since 1831 * the half FIFO configuration value had to be 0 to keep backward 1832 * compatibility. 1833 */ 1834 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1835 case AT91_DMA_CFG_FIFOCFG_ALAP: 1836 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, 1837 ATC_FIFOCFG_LARGESTBURST); 1838 break; 1839 case AT91_DMA_CFG_FIFOCFG_ASAP: 1840 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, 1841 ATC_FIFOCFG_ENOUGHSPACE); 1842 break; 1843 case AT91_DMA_CFG_FIFOCFG_HALF: 1844 default: 1845 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO); 1846 } 1847 atslave->dma_dev = &dmac_pdev->dev; 1848 1849 chan = dma_request_channel(mask, at_dma_filter, atslave); 1850 if (!chan) { 1851 put_device(&dmac_pdev->dev); 1852 kfree(atslave); 1853 return NULL; 1854 } 1855 1856 atchan = to_at_dma_chan(chan); 1857 atchan->per_if = dma_spec->args[0] & 0xff; 1858 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1859 1860 return chan; 1861 } 1862 #else 1863 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1864 struct of_dma *of_dma) 1865 { 1866 return NULL; 1867 } 1868 #endif 1869 1870 /*-- Module Management -----------------------------------------------*/ 1871 1872 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1873 static struct at_dma_platform_data at91sam9rl_config = { 1874 .nr_channels = 2, 1875 }; 1876 static struct at_dma_platform_data at91sam9g45_config = { 1877 .nr_channels = 8, 1878 }; 1879 1880 #if defined(CONFIG_OF) 1881 static const struct of_device_id atmel_dma_dt_ids[] = { 1882 { 1883 .compatible = "atmel,at91sam9rl-dma", 1884 .data = &at91sam9rl_config, 1885 }, { 1886 .compatible = "atmel,at91sam9g45-dma", 1887 .data = &at91sam9g45_config, 1888 }, { 1889 /* sentinel */ 1890 } 1891 }; 1892 1893 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1894 #endif 1895 1896 static const struct platform_device_id atdma_devtypes[] = { 1897 { 1898 .name = "at91sam9rl_dma", 1899 .driver_data = (unsigned long) &at91sam9rl_config, 1900 }, { 1901 .name = "at91sam9g45_dma", 1902 .driver_data = (unsigned long) &at91sam9g45_config, 1903 }, { 1904 /* sentinel */ 1905 } 1906 }; 1907 1908 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1909 struct platform_device *pdev) 1910 { 1911 if (pdev->dev.of_node) { 1912 const struct of_device_id *match; 1913 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1914 if (match == NULL) 1915 return NULL; 1916 return match->data; 1917 } 1918 return (struct at_dma_platform_data *) 1919 platform_get_device_id(pdev)->driver_data; 1920 } 1921 1922 /** 1923 * at_dma_off - disable DMA controller 1924 * @atdma: the Atmel HDAMC device 1925 */ 1926 static void at_dma_off(struct at_dma *atdma) 1927 { 1928 dma_writel(atdma, EN, 0); 1929 1930 /* disable all interrupts */ 1931 dma_writel(atdma, EBCIDR, -1L); 1932 1933 /* confirm that all channels are disabled */ 1934 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1935 cpu_relax(); 1936 } 1937 1938 static int __init at_dma_probe(struct platform_device *pdev) 1939 { 1940 struct at_dma *atdma; 1941 int irq; 1942 int err; 1943 int i; 1944 const struct at_dma_platform_data *plat_dat; 1945 1946 /* setup platform data for each SoC */ 1947 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1948 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1949 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1950 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1951 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1952 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1953 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1954 1955 /* get DMA parameters from controller type */ 1956 plat_dat = at_dma_get_driver_data(pdev); 1957 if (!plat_dat) 1958 return -ENODEV; 1959 1960 atdma = devm_kzalloc(&pdev->dev, 1961 struct_size(atdma, chan, plat_dat->nr_channels), 1962 GFP_KERNEL); 1963 if (!atdma) 1964 return -ENOMEM; 1965 1966 atdma->regs = devm_platform_ioremap_resource(pdev, 0); 1967 if (IS_ERR(atdma->regs)) 1968 return PTR_ERR(atdma->regs); 1969 1970 irq = platform_get_irq(pdev, 0); 1971 if (irq < 0) 1972 return irq; 1973 1974 /* discover transaction capabilities */ 1975 atdma->dma_device.cap_mask = plat_dat->cap_mask; 1976 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1977 1978 atdma->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1979 if (IS_ERR(atdma->clk)) 1980 return PTR_ERR(atdma->clk); 1981 1982 err = clk_prepare_enable(atdma->clk); 1983 if (err) 1984 return err; 1985 1986 /* force dma off, just in case */ 1987 at_dma_off(atdma); 1988 1989 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1990 if (err) 1991 goto err_irq; 1992 1993 platform_set_drvdata(pdev, atdma); 1994 1995 /* create a pool of consistent memory blocks for hardware descriptors */ 1996 atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool", 1997 &pdev->dev, sizeof(struct at_lli), 1998 4 /* word alignment */, 0); 1999 if (!atdma->lli_pool) { 2000 dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n"); 2001 err = -ENOMEM; 2002 goto err_desc_pool_create; 2003 } 2004 2005 /* create a pool of consistent memory blocks for memset blocks */ 2006 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 2007 &pdev->dev, sizeof(int), 4, 0); 2008 if (!atdma->memset_pool) { 2009 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 2010 err = -ENOMEM; 2011 goto err_memset_pool_create; 2012 } 2013 2014 /* clear any pending interrupt */ 2015 while (dma_readl(atdma, EBCISR)) 2016 cpu_relax(); 2017 2018 /* initialize channels related values */ 2019 INIT_LIST_HEAD(&atdma->dma_device.channels); 2020 for (i = 0; i < plat_dat->nr_channels; i++) { 2021 struct at_dma_chan *atchan = &atdma->chan[i]; 2022 2023 atchan->mem_if = AT_DMA_MEM_IF; 2024 atchan->per_if = AT_DMA_PER_IF; 2025 2026 atchan->ch_regs = atdma->regs + ch_regs(i); 2027 atchan->mask = 1 << i; 2028 2029 atchan->atdma = atdma; 2030 atchan->vc.desc_free = atdma_desc_free; 2031 vchan_init(&atchan->vc, &atdma->dma_device); 2032 atc_enable_chan_irq(atdma, i); 2033 } 2034 2035 /* set base routines */ 2036 atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources; 2037 atdma->dma_device.device_free_chan_resources = atc_free_chan_resources; 2038 atdma->dma_device.device_tx_status = atc_tx_status; 2039 atdma->dma_device.device_issue_pending = atc_issue_pending; 2040 atdma->dma_device.dev = &pdev->dev; 2041 2042 /* set prep routines based on capability */ 2043 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask)) 2044 atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved; 2045 2046 if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask)) 2047 atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy; 2048 2049 if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) { 2050 atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset; 2051 atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 2052 atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES; 2053 } 2054 2055 if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) { 2056 atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg; 2057 /* controller can do slave DMA: can trigger cyclic transfers */ 2058 dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask); 2059 atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic; 2060 atdma->dma_device.device_config = atc_config; 2061 atdma->dma_device.device_pause = atc_pause; 2062 atdma->dma_device.device_resume = atc_resume; 2063 atdma->dma_device.device_terminate_all = atc_terminate_all; 2064 atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS; 2065 atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS; 2066 atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2067 atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2068 } 2069 2070 dma_writel(atdma, EN, AT_DMA_ENABLE); 2071 2072 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 2073 dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "", 2074 dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "", 2075 dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask) ? "slave " : "", 2076 plat_dat->nr_channels); 2077 2078 err = dma_async_device_register(&atdma->dma_device); 2079 if (err) { 2080 dev_err(&pdev->dev, "Unable to register: %d.\n", err); 2081 goto err_dma_async_device_register; 2082 } 2083 2084 /* 2085 * Do not return an error if the dmac node is not present in order to 2086 * not break the existing way of requesting channel with 2087 * dma_request_channel(). 2088 */ 2089 if (pdev->dev.of_node) { 2090 err = of_dma_controller_register(pdev->dev.of_node, 2091 at_dma_xlate, atdma); 2092 if (err) { 2093 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 2094 goto err_of_dma_controller_register; 2095 } 2096 } 2097 2098 return 0; 2099 2100 err_of_dma_controller_register: 2101 dma_async_device_unregister(&atdma->dma_device); 2102 err_dma_async_device_register: 2103 dma_pool_destroy(atdma->memset_pool); 2104 err_memset_pool_create: 2105 dma_pool_destroy(atdma->lli_pool); 2106 err_desc_pool_create: 2107 free_irq(platform_get_irq(pdev, 0), atdma); 2108 err_irq: 2109 clk_disable_unprepare(atdma->clk); 2110 return err; 2111 } 2112 2113 static void at_dma_remove(struct platform_device *pdev) 2114 { 2115 struct at_dma *atdma = platform_get_drvdata(pdev); 2116 struct dma_chan *chan, *_chan; 2117 2118 at_dma_off(atdma); 2119 if (pdev->dev.of_node) 2120 of_dma_controller_free(pdev->dev.of_node); 2121 dma_async_device_unregister(&atdma->dma_device); 2122 2123 dma_pool_destroy(atdma->memset_pool); 2124 dma_pool_destroy(atdma->lli_pool); 2125 free_irq(platform_get_irq(pdev, 0), atdma); 2126 2127 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels, 2128 device_node) { 2129 /* Disable interrupts */ 2130 atc_disable_chan_irq(atdma, chan->chan_id); 2131 list_del(&chan->device_node); 2132 } 2133 2134 clk_disable_unprepare(atdma->clk); 2135 } 2136 2137 static void at_dma_shutdown(struct platform_device *pdev) 2138 { 2139 struct at_dma *atdma = platform_get_drvdata(pdev); 2140 2141 at_dma_off(platform_get_drvdata(pdev)); 2142 clk_disable_unprepare(atdma->clk); 2143 } 2144 2145 static int at_dma_prepare(struct device *dev) 2146 { 2147 struct at_dma *atdma = dev_get_drvdata(dev); 2148 struct dma_chan *chan, *_chan; 2149 2150 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels, 2151 device_node) { 2152 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2153 /* wait for transaction completion (except in cyclic case) */ 2154 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2155 return -EAGAIN; 2156 } 2157 return 0; 2158 } 2159 2160 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2161 { 2162 struct dma_chan *chan = &atchan->vc.chan; 2163 2164 /* Channel should be paused by user 2165 * do it anyway even if it is not done already */ 2166 if (!atc_chan_is_paused(atchan)) { 2167 dev_warn(chan2dev(chan), 2168 "cyclic channel not paused, should be done by channel user\n"); 2169 atc_pause(chan); 2170 } 2171 2172 /* now preserve additional data for cyclic operations */ 2173 /* next descriptor address in the cyclic list */ 2174 atchan->save_dscr = channel_readl(atchan, DSCR); 2175 2176 vdbg_dump_regs(atchan); 2177 } 2178 2179 static int at_dma_suspend_noirq(struct device *dev) 2180 { 2181 struct at_dma *atdma = dev_get_drvdata(dev); 2182 struct dma_chan *chan, *_chan; 2183 2184 /* preserve data */ 2185 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels, 2186 device_node) { 2187 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2188 2189 if (atc_chan_is_cyclic(atchan)) 2190 atc_suspend_cyclic(atchan); 2191 atchan->save_cfg = channel_readl(atchan, CFG); 2192 } 2193 atdma->save_imr = dma_readl(atdma, EBCIMR); 2194 2195 /* disable DMA controller */ 2196 at_dma_off(atdma); 2197 clk_disable_unprepare(atdma->clk); 2198 return 0; 2199 } 2200 2201 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2202 { 2203 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device); 2204 2205 /* restore channel status for cyclic descriptors list: 2206 * next descriptor in the cyclic list at the time of suspend */ 2207 channel_writel(atchan, SADDR, 0); 2208 channel_writel(atchan, DADDR, 0); 2209 channel_writel(atchan, CTRLA, 0); 2210 channel_writel(atchan, CTRLB, 0); 2211 channel_writel(atchan, DSCR, atchan->save_dscr); 2212 dma_writel(atdma, CHER, atchan->mask); 2213 2214 /* channel pause status should be removed by channel user 2215 * We cannot take the initiative to do it here */ 2216 2217 vdbg_dump_regs(atchan); 2218 } 2219 2220 static int at_dma_resume_noirq(struct device *dev) 2221 { 2222 struct at_dma *atdma = dev_get_drvdata(dev); 2223 struct dma_chan *chan, *_chan; 2224 2225 /* bring back DMA controller */ 2226 clk_prepare_enable(atdma->clk); 2227 dma_writel(atdma, EN, AT_DMA_ENABLE); 2228 2229 /* clear any pending interrupt */ 2230 while (dma_readl(atdma, EBCISR)) 2231 cpu_relax(); 2232 2233 /* restore saved data */ 2234 dma_writel(atdma, EBCIER, atdma->save_imr); 2235 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels, 2236 device_node) { 2237 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2238 2239 channel_writel(atchan, CFG, atchan->save_cfg); 2240 if (atc_chan_is_cyclic(atchan)) 2241 atc_resume_cyclic(atchan); 2242 } 2243 return 0; 2244 } 2245 2246 static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = { 2247 .prepare = at_dma_prepare, 2248 .suspend_noirq = at_dma_suspend_noirq, 2249 .resume_noirq = at_dma_resume_noirq, 2250 }; 2251 2252 static struct platform_driver at_dma_driver = { 2253 .remove_new = at_dma_remove, 2254 .shutdown = at_dma_shutdown, 2255 .id_table = atdma_devtypes, 2256 .driver = { 2257 .name = "at_hdmac", 2258 .pm = pm_ptr(&at_dma_dev_pm_ops), 2259 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2260 }, 2261 }; 2262 2263 static int __init at_dma_init(void) 2264 { 2265 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2266 } 2267 subsys_initcall(at_dma_init); 2268 2269 static void __exit at_dma_exit(void) 2270 { 2271 platform_driver_unregister(&at_dma_driver); 2272 } 2273 module_exit(at_dma_exit); 2274 2275 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2276 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2277 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>"); 2278 MODULE_LICENSE("GPL"); 2279 MODULE_ALIAS("platform:at_hdmac"); 2280