1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 #define ATC_MAX_DSCR_TRIALS 10 52 53 /* 54 * Initial number of descriptors to allocate for each channel. This could 55 * be increased during dma usage. 56 */ 57 static unsigned int init_nr_desc_per_channel = 64; 58 module_param(init_nr_desc_per_channel, uint, 0644); 59 MODULE_PARM_DESC(init_nr_desc_per_channel, 60 "initial descriptors per channel (default: 64)"); 61 62 63 /* prototypes */ 64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 65 static void atc_issue_pending(struct dma_chan *chan); 66 67 68 /*----------------------------------------------------------------------*/ 69 70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 71 size_t len) 72 { 73 unsigned int width; 74 75 if (!((src | dst | len) & 3)) 76 width = 2; 77 else if (!((src | dst | len) & 1)) 78 width = 1; 79 else 80 width = 0; 81 82 return width; 83 } 84 85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 86 { 87 return list_first_entry(&atchan->active_list, 88 struct at_desc, desc_node); 89 } 90 91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 92 { 93 return list_first_entry(&atchan->queue, 94 struct at_desc, desc_node); 95 } 96 97 /** 98 * atc_alloc_descriptor - allocate and return an initialized descriptor 99 * @chan: the channel to allocate descriptors for 100 * @gfp_flags: GFP allocation flags 101 * 102 * Note: The ack-bit is positioned in the descriptor flag at creation time 103 * to make initial allocation more convenient. This bit will be cleared 104 * and control will be given to client at usage time (during 105 * preparation functions). 106 */ 107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 108 gfp_t gfp_flags) 109 { 110 struct at_desc *desc = NULL; 111 struct at_dma *atdma = to_at_dma(chan->device); 112 dma_addr_t phys; 113 114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys); 115 if (desc) { 116 memset(desc, 0, sizeof(struct at_desc)); 117 INIT_LIST_HEAD(&desc->tx_list); 118 dma_async_tx_descriptor_init(&desc->txd, chan); 119 /* txd.flags will be overwritten in prep functions */ 120 desc->txd.flags = DMA_CTRL_ACK; 121 desc->txd.tx_submit = atc_tx_submit; 122 desc->txd.phys = phys; 123 } 124 125 return desc; 126 } 127 128 /** 129 * atc_desc_get - get an unused descriptor from free_list 130 * @atchan: channel we want a new descriptor for 131 */ 132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 133 { 134 struct at_desc *desc, *_desc; 135 struct at_desc *ret = NULL; 136 unsigned long flags; 137 unsigned int i = 0; 138 LIST_HEAD(tmp_list); 139 140 spin_lock_irqsave(&atchan->lock, flags); 141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 142 i++; 143 if (async_tx_test_ack(&desc->txd)) { 144 list_del(&desc->desc_node); 145 ret = desc; 146 break; 147 } 148 dev_dbg(chan2dev(&atchan->chan_common), 149 "desc %p not ACKed\n", desc); 150 } 151 spin_unlock_irqrestore(&atchan->lock, flags); 152 dev_vdbg(chan2dev(&atchan->chan_common), 153 "scanned %u descriptors on freelist\n", i); 154 155 /* no more descriptor available in initial pool: create one more */ 156 if (!ret) { 157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 158 if (ret) { 159 spin_lock_irqsave(&atchan->lock, flags); 160 atchan->descs_allocated++; 161 spin_unlock_irqrestore(&atchan->lock, flags); 162 } else { 163 dev_err(chan2dev(&atchan->chan_common), 164 "not enough descriptors available\n"); 165 } 166 } 167 168 return ret; 169 } 170 171 /** 172 * atc_desc_put - move a descriptor, including any children, to the free list 173 * @atchan: channel we work on 174 * @desc: descriptor, at the head of a chain, to move to free list 175 */ 176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 177 { 178 if (desc) { 179 struct at_desc *child; 180 unsigned long flags; 181 182 spin_lock_irqsave(&atchan->lock, flags); 183 list_for_each_entry(child, &desc->tx_list, desc_node) 184 dev_vdbg(chan2dev(&atchan->chan_common), 185 "moving child desc %p to freelist\n", 186 child); 187 list_splice_init(&desc->tx_list, &atchan->free_list); 188 dev_vdbg(chan2dev(&atchan->chan_common), 189 "moving desc %p to freelist\n", desc); 190 list_add(&desc->desc_node, &atchan->free_list); 191 spin_unlock_irqrestore(&atchan->lock, flags); 192 } 193 } 194 195 /** 196 * atc_desc_chain - build chain adding a descriptor 197 * @first: address of first descriptor of the chain 198 * @prev: address of previous descriptor of the chain 199 * @desc: descriptor to queue 200 * 201 * Called from prep_* functions 202 */ 203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 204 struct at_desc *desc) 205 { 206 if (!(*first)) { 207 *first = desc; 208 } else { 209 /* inform the HW lli about chaining */ 210 (*prev)->lli.dscr = desc->txd.phys; 211 /* insert the link descriptor to the LD ring */ 212 list_add_tail(&desc->desc_node, 213 &(*first)->tx_list); 214 } 215 *prev = desc; 216 } 217 218 /** 219 * atc_dostart - starts the DMA engine for real 220 * @atchan: the channel we want to start 221 * @first: first descriptor in the list we want to begin with 222 * 223 * Called with atchan->lock held and bh disabled 224 */ 225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 226 { 227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 228 229 /* ASSERT: channel is idle */ 230 if (atc_chan_is_enabled(atchan)) { 231 dev_err(chan2dev(&atchan->chan_common), 232 "BUG: Attempted to start non-idle channel\n"); 233 dev_err(chan2dev(&atchan->chan_common), 234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 235 channel_readl(atchan, SADDR), 236 channel_readl(atchan, DADDR), 237 channel_readl(atchan, CTRLA), 238 channel_readl(atchan, CTRLB), 239 channel_readl(atchan, DSCR)); 240 241 /* The tasklet will hopefully advance the queue... */ 242 return; 243 } 244 245 vdbg_dump_regs(atchan); 246 247 channel_writel(atchan, SADDR, 0); 248 channel_writel(atchan, DADDR, 0); 249 channel_writel(atchan, CTRLA, 0); 250 channel_writel(atchan, CTRLB, 0); 251 channel_writel(atchan, DSCR, first->txd.phys); 252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 253 ATC_SPIP_BOUNDARY(first->boundary)); 254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 255 ATC_DPIP_BOUNDARY(first->boundary)); 256 dma_writel(atdma, CHER, atchan->mask); 257 258 vdbg_dump_regs(atchan); 259 } 260 261 /* 262 * atc_get_desc_by_cookie - get the descriptor of a cookie 263 * @atchan: the DMA channel 264 * @cookie: the cookie to get the descriptor for 265 */ 266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 267 dma_cookie_t cookie) 268 { 269 struct at_desc *desc, *_desc; 270 271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 272 if (desc->txd.cookie == cookie) 273 return desc; 274 } 275 276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 277 if (desc->txd.cookie == cookie) 278 return desc; 279 } 280 281 return NULL; 282 } 283 284 /** 285 * atc_calc_bytes_left - calculates the number of bytes left according to the 286 * value read from CTRLA. 287 * 288 * @current_len: the number of bytes left before reading CTRLA 289 * @ctrla: the value of CTRLA 290 */ 291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla) 292 { 293 u32 btsize = (ctrla & ATC_BTSIZE_MAX); 294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); 295 296 /* 297 * According to the datasheet, when reading the Control A Register 298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 299 * number of transfers completed on the Source Interface. 300 * So btsize is always a number of source width transfers. 301 */ 302 return current_len - (btsize << src_width); 303 } 304 305 /** 306 * atc_get_bytes_left - get the number of bytes residue for a cookie 307 * @chan: DMA channel 308 * @cookie: transaction identifier to check status of 309 */ 310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 311 { 312 struct at_dma_chan *atchan = to_at_dma_chan(chan); 313 struct at_desc *desc_first = atc_first_active(atchan); 314 struct at_desc *desc; 315 int ret; 316 u32 ctrla, dscr, trials; 317 318 /* 319 * If the cookie doesn't match to the currently running transfer then 320 * we can return the total length of the associated DMA transfer, 321 * because it is still queued. 322 */ 323 desc = atc_get_desc_by_cookie(atchan, cookie); 324 if (desc == NULL) 325 return -EINVAL; 326 else if (desc != desc_first) 327 return desc->total_len; 328 329 /* cookie matches to the currently running transfer */ 330 ret = desc_first->total_len; 331 332 if (desc_first->lli.dscr) { 333 /* hardware linked list transfer */ 334 335 /* 336 * Calculate the residue by removing the length of the child 337 * descriptors already transferred from the total length. 338 * To get the current child descriptor we can use the value of 339 * the channel's DSCR register and compare it against the value 340 * of the hardware linked list structure of each child 341 * descriptor. 342 * 343 * The CTRLA register provides us with the amount of data 344 * already read from the source for the current child 345 * descriptor. So we can compute a more accurate residue by also 346 * removing the number of bytes corresponding to this amount of 347 * data. 348 * 349 * However, the DSCR and CTRLA registers cannot be read both 350 * atomically. Hence a race condition may occur: the first read 351 * register may refer to one child descriptor whereas the second 352 * read may refer to a later child descriptor in the list 353 * because of the DMA transfer progression inbetween the two 354 * reads. 355 * 356 * One solution could have been to pause the DMA transfer, read 357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, 358 * this approach presents some drawbacks: 359 * - If the DMA transfer is paused, RX overruns or TX underruns 360 * are more likey to occur depending on the system latency. 361 * Taking the USART driver as an example, it uses a cyclic DMA 362 * transfer to read data from the Receive Holding Register 363 * (RHR) to avoid RX overruns since the RHR is not protected 364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer 365 * to compute the residue would break the USART driver design. 366 * - The atc_pause() function masks interrupts but we'd rather 367 * avoid to do so for system latency purpose. 368 * 369 * Then we'd rather use another solution: the DSCR is read a 370 * first time, the CTRLA is read in turn, next the DSCR is read 371 * a second time. If the two consecutive read values of the DSCR 372 * are the same then we assume both refers to the very same 373 * child descriptor as well as the CTRLA value read inbetween 374 * does. For cyclic tranfers, the assumption is that a full loop 375 * is "not so fast". 376 * If the two DSCR values are different, we read again the CTRLA 377 * then the DSCR till two consecutive read values from DSCR are 378 * equal or till the maxium trials is reach. 379 * This algorithm is very unlikely not to find a stable value for 380 * DSCR. 381 */ 382 383 dscr = channel_readl(atchan, DSCR); 384 rmb(); /* ensure DSCR is read before CTRLA */ 385 ctrla = channel_readl(atchan, CTRLA); 386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { 387 u32 new_dscr; 388 389 rmb(); /* ensure DSCR is read after CTRLA */ 390 new_dscr = channel_readl(atchan, DSCR); 391 392 /* 393 * If the DSCR register value has not changed inside the 394 * DMA controller since the previous read, we assume 395 * that both the dscr and ctrla values refers to the 396 * very same descriptor. 397 */ 398 if (likely(new_dscr == dscr)) 399 break; 400 401 /* 402 * DSCR has changed inside the DMA controller, so the 403 * previouly read value of CTRLA may refer to an already 404 * processed descriptor hence could be outdated. 405 * We need to update ctrla to match the current 406 * descriptor. 407 */ 408 dscr = new_dscr; 409 rmb(); /* ensure DSCR is read before CTRLA */ 410 ctrla = channel_readl(atchan, CTRLA); 411 } 412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) 413 return -ETIMEDOUT; 414 415 /* for the first descriptor we can be more accurate */ 416 if (desc_first->lli.dscr == dscr) 417 return atc_calc_bytes_left(ret, ctrla); 418 419 ret -= desc_first->len; 420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 421 if (desc->lli.dscr == dscr) 422 break; 423 424 ret -= desc->len; 425 } 426 427 /* 428 * For the current descriptor in the chain we can calculate 429 * the remaining bytes using the channel's register. 430 */ 431 ret = atc_calc_bytes_left(ret, ctrla); 432 } else { 433 /* single transfer */ 434 ctrla = channel_readl(atchan, CTRLA); 435 ret = atc_calc_bytes_left(ret, ctrla); 436 } 437 438 return ret; 439 } 440 441 /** 442 * atc_chain_complete - finish work for one transaction chain 443 * @atchan: channel we work on 444 * @desc: descriptor at the head of the chain we want do complete 445 * 446 * Called with atchan->lock held and bh disabled */ 447 static void 448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 449 { 450 struct dma_async_tx_descriptor *txd = &desc->txd; 451 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 452 453 dev_vdbg(chan2dev(&atchan->chan_common), 454 "descriptor %u complete\n", txd->cookie); 455 456 /* mark the descriptor as complete for non cyclic cases only */ 457 if (!atc_chan_is_cyclic(atchan)) 458 dma_cookie_complete(txd); 459 460 /* If the transfer was a memset, free our temporary buffer */ 461 if (desc->memset_buffer) { 462 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 463 desc->memset_paddr); 464 desc->memset_buffer = false; 465 } 466 467 /* move children to free_list */ 468 list_splice_init(&desc->tx_list, &atchan->free_list); 469 /* move myself to free_list */ 470 list_move(&desc->desc_node, &atchan->free_list); 471 472 dma_descriptor_unmap(txd); 473 /* for cyclic transfers, 474 * no need to replay callback function while stopping */ 475 if (!atc_chan_is_cyclic(atchan)) { 476 /* 477 * The API requires that no submissions are done from a 478 * callback, so we don't need to drop the lock here 479 */ 480 dmaengine_desc_get_callback_invoke(txd, NULL); 481 } 482 483 dma_run_dependencies(txd); 484 } 485 486 /** 487 * atc_complete_all - finish work for all transactions 488 * @atchan: channel to complete transactions for 489 * 490 * Eventually submit queued descriptors if any 491 * 492 * Assume channel is idle while calling this function 493 * Called with atchan->lock held and bh disabled 494 */ 495 static void atc_complete_all(struct at_dma_chan *atchan) 496 { 497 struct at_desc *desc, *_desc; 498 LIST_HEAD(list); 499 500 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 501 502 /* 503 * Submit queued descriptors ASAP, i.e. before we go through 504 * the completed ones. 505 */ 506 if (!list_empty(&atchan->queue)) 507 atc_dostart(atchan, atc_first_queued(atchan)); 508 /* empty active_list now it is completed */ 509 list_splice_init(&atchan->active_list, &list); 510 /* empty queue list by moving descriptors (if any) to active_list */ 511 list_splice_init(&atchan->queue, &atchan->active_list); 512 513 list_for_each_entry_safe(desc, _desc, &list, desc_node) 514 atc_chain_complete(atchan, desc); 515 } 516 517 /** 518 * atc_advance_work - at the end of a transaction, move forward 519 * @atchan: channel where the transaction ended 520 * 521 * Called with atchan->lock held and bh disabled 522 */ 523 static void atc_advance_work(struct at_dma_chan *atchan) 524 { 525 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 526 527 if (atc_chan_is_enabled(atchan)) 528 return; 529 530 if (list_empty(&atchan->active_list) || 531 list_is_singular(&atchan->active_list)) { 532 atc_complete_all(atchan); 533 } else { 534 atc_chain_complete(atchan, atc_first_active(atchan)); 535 /* advance work */ 536 atc_dostart(atchan, atc_first_active(atchan)); 537 } 538 } 539 540 541 /** 542 * atc_handle_error - handle errors reported by DMA controller 543 * @atchan: channel where error occurs 544 * 545 * Called with atchan->lock held and bh disabled 546 */ 547 static void atc_handle_error(struct at_dma_chan *atchan) 548 { 549 struct at_desc *bad_desc; 550 struct at_desc *child; 551 552 /* 553 * The descriptor currently at the head of the active list is 554 * broked. Since we don't have any way to report errors, we'll 555 * just have to scream loudly and try to carry on. 556 */ 557 bad_desc = atc_first_active(atchan); 558 list_del_init(&bad_desc->desc_node); 559 560 /* As we are stopped, take advantage to push queued descriptors 561 * in active_list */ 562 list_splice_init(&atchan->queue, atchan->active_list.prev); 563 564 /* Try to restart the controller */ 565 if (!list_empty(&atchan->active_list)) 566 atc_dostart(atchan, atc_first_active(atchan)); 567 568 /* 569 * KERN_CRITICAL may seem harsh, but since this only happens 570 * when someone submits a bad physical address in a 571 * descriptor, we should consider ourselves lucky that the 572 * controller flagged an error instead of scribbling over 573 * random memory locations. 574 */ 575 dev_crit(chan2dev(&atchan->chan_common), 576 "Bad descriptor submitted for DMA!\n"); 577 dev_crit(chan2dev(&atchan->chan_common), 578 " cookie: %d\n", bad_desc->txd.cookie); 579 atc_dump_lli(atchan, &bad_desc->lli); 580 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 581 atc_dump_lli(atchan, &child->lli); 582 583 /* Pretend the descriptor completed successfully */ 584 atc_chain_complete(atchan, bad_desc); 585 } 586 587 /** 588 * atc_handle_cyclic - at the end of a period, run callback function 589 * @atchan: channel used for cyclic operations 590 * 591 * Called with atchan->lock held and bh disabled 592 */ 593 static void atc_handle_cyclic(struct at_dma_chan *atchan) 594 { 595 struct at_desc *first = atc_first_active(atchan); 596 struct dma_async_tx_descriptor *txd = &first->txd; 597 598 dev_vdbg(chan2dev(&atchan->chan_common), 599 "new cyclic period llp 0x%08x\n", 600 channel_readl(atchan, DSCR)); 601 602 dmaengine_desc_get_callback_invoke(txd, NULL); 603 } 604 605 /*-- IRQ & Tasklet ---------------------------------------------------*/ 606 607 static void atc_tasklet(unsigned long data) 608 { 609 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 610 unsigned long flags; 611 612 spin_lock_irqsave(&atchan->lock, flags); 613 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 614 atc_handle_error(atchan); 615 else if (atc_chan_is_cyclic(atchan)) 616 atc_handle_cyclic(atchan); 617 else 618 atc_advance_work(atchan); 619 620 spin_unlock_irqrestore(&atchan->lock, flags); 621 } 622 623 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 624 { 625 struct at_dma *atdma = (struct at_dma *)dev_id; 626 struct at_dma_chan *atchan; 627 int i; 628 u32 status, pending, imr; 629 int ret = IRQ_NONE; 630 631 do { 632 imr = dma_readl(atdma, EBCIMR); 633 status = dma_readl(atdma, EBCISR); 634 pending = status & imr; 635 636 if (!pending) 637 break; 638 639 dev_vdbg(atdma->dma_common.dev, 640 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 641 status, imr, pending); 642 643 for (i = 0; i < atdma->dma_common.chancnt; i++) { 644 atchan = &atdma->chan[i]; 645 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 646 if (pending & AT_DMA_ERR(i)) { 647 /* Disable channel on AHB error */ 648 dma_writel(atdma, CHDR, 649 AT_DMA_RES(i) | atchan->mask); 650 /* Give information to tasklet */ 651 set_bit(ATC_IS_ERROR, &atchan->status); 652 } 653 tasklet_schedule(&atchan->tasklet); 654 ret = IRQ_HANDLED; 655 } 656 } 657 658 } while (pending); 659 660 return ret; 661 } 662 663 664 /*-- DMA Engine API --------------------------------------------------*/ 665 666 /** 667 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 668 * @desc: descriptor at the head of the transaction chain 669 * 670 * Queue chain if DMA engine is working already 671 * 672 * Cookie increment and adding to active_list or queue must be atomic 673 */ 674 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 675 { 676 struct at_desc *desc = txd_to_at_desc(tx); 677 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 678 dma_cookie_t cookie; 679 unsigned long flags; 680 681 spin_lock_irqsave(&atchan->lock, flags); 682 cookie = dma_cookie_assign(tx); 683 684 if (list_empty(&atchan->active_list)) { 685 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 686 desc->txd.cookie); 687 atc_dostart(atchan, desc); 688 list_add_tail(&desc->desc_node, &atchan->active_list); 689 } else { 690 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 691 desc->txd.cookie); 692 list_add_tail(&desc->desc_node, &atchan->queue); 693 } 694 695 spin_unlock_irqrestore(&atchan->lock, flags); 696 697 return cookie; 698 } 699 700 /** 701 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 702 * @chan: the channel to prepare operation on 703 * @xt: Interleaved transfer template 704 * @flags: tx descriptor status flags 705 */ 706 static struct dma_async_tx_descriptor * 707 atc_prep_dma_interleaved(struct dma_chan *chan, 708 struct dma_interleaved_template *xt, 709 unsigned long flags) 710 { 711 struct at_dma_chan *atchan = to_at_dma_chan(chan); 712 struct data_chunk *first = xt->sgl; 713 struct at_desc *desc = NULL; 714 size_t xfer_count; 715 unsigned int dwidth; 716 u32 ctrla; 717 u32 ctrlb; 718 size_t len = 0; 719 int i; 720 721 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 722 return NULL; 723 724 dev_info(chan2dev(chan), 725 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 726 __func__, &xt->src_start, &xt->dst_start, xt->numf, 727 xt->frame_size, flags); 728 729 /* 730 * The controller can only "skip" X bytes every Y bytes, so we 731 * need to make sure we are given a template that fit that 732 * description, ie a template with chunks that always have the 733 * same size, with the same ICGs. 734 */ 735 for (i = 0; i < xt->frame_size; i++) { 736 struct data_chunk *chunk = xt->sgl + i; 737 738 if ((chunk->size != xt->sgl->size) || 739 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 740 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 741 dev_err(chan2dev(chan), 742 "%s: the controller can transfer only identical chunks\n", 743 __func__); 744 return NULL; 745 } 746 747 len += chunk->size; 748 } 749 750 dwidth = atc_get_xfer_width(xt->src_start, 751 xt->dst_start, len); 752 753 xfer_count = len >> dwidth; 754 if (xfer_count > ATC_BTSIZE_MAX) { 755 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 756 return NULL; 757 } 758 759 ctrla = ATC_SRC_WIDTH(dwidth) | 760 ATC_DST_WIDTH(dwidth); 761 762 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 763 | ATC_SRC_ADDR_MODE_INCR 764 | ATC_DST_ADDR_MODE_INCR 765 | ATC_SRC_PIP 766 | ATC_DST_PIP 767 | ATC_FC_MEM2MEM; 768 769 /* create the transfer */ 770 desc = atc_desc_get(atchan); 771 if (!desc) { 772 dev_err(chan2dev(chan), 773 "%s: couldn't allocate our descriptor\n", __func__); 774 return NULL; 775 } 776 777 desc->lli.saddr = xt->src_start; 778 desc->lli.daddr = xt->dst_start; 779 desc->lli.ctrla = ctrla | xfer_count; 780 desc->lli.ctrlb = ctrlb; 781 782 desc->boundary = first->size >> dwidth; 783 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 784 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 785 786 desc->txd.cookie = -EBUSY; 787 desc->total_len = desc->len = len; 788 789 /* set end-of-link to the last link descriptor of list*/ 790 set_desc_eol(desc); 791 792 desc->txd.flags = flags; /* client is in control of this ack */ 793 794 return &desc->txd; 795 } 796 797 /** 798 * atc_prep_dma_memcpy - prepare a memcpy operation 799 * @chan: the channel to prepare operation on 800 * @dest: operation virtual destination address 801 * @src: operation virtual source address 802 * @len: operation length 803 * @flags: tx descriptor status flags 804 */ 805 static struct dma_async_tx_descriptor * 806 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 807 size_t len, unsigned long flags) 808 { 809 struct at_dma_chan *atchan = to_at_dma_chan(chan); 810 struct at_desc *desc = NULL; 811 struct at_desc *first = NULL; 812 struct at_desc *prev = NULL; 813 size_t xfer_count; 814 size_t offset; 815 unsigned int src_width; 816 unsigned int dst_width; 817 u32 ctrla; 818 u32 ctrlb; 819 820 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 821 &dest, &src, len, flags); 822 823 if (unlikely(!len)) { 824 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 825 return NULL; 826 } 827 828 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 829 | ATC_SRC_ADDR_MODE_INCR 830 | ATC_DST_ADDR_MODE_INCR 831 | ATC_FC_MEM2MEM; 832 833 /* 834 * We can be a lot more clever here, but this should take care 835 * of the most common optimization. 836 */ 837 src_width = dst_width = atc_get_xfer_width(src, dest, len); 838 839 ctrla = ATC_SRC_WIDTH(src_width) | 840 ATC_DST_WIDTH(dst_width); 841 842 for (offset = 0; offset < len; offset += xfer_count << src_width) { 843 xfer_count = min_t(size_t, (len - offset) >> src_width, 844 ATC_BTSIZE_MAX); 845 846 desc = atc_desc_get(atchan); 847 if (!desc) 848 goto err_desc_get; 849 850 desc->lli.saddr = src + offset; 851 desc->lli.daddr = dest + offset; 852 desc->lli.ctrla = ctrla | xfer_count; 853 desc->lli.ctrlb = ctrlb; 854 855 desc->txd.cookie = 0; 856 desc->len = xfer_count << src_width; 857 858 atc_desc_chain(&first, &prev, desc); 859 } 860 861 /* First descriptor of the chain embedds additional information */ 862 first->txd.cookie = -EBUSY; 863 first->total_len = len; 864 865 /* set end-of-link to the last link descriptor of list*/ 866 set_desc_eol(desc); 867 868 first->txd.flags = flags; /* client is in control of this ack */ 869 870 return &first->txd; 871 872 err_desc_get: 873 atc_desc_put(atchan, first); 874 return NULL; 875 } 876 877 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, 878 dma_addr_t psrc, 879 dma_addr_t pdst, 880 size_t len) 881 { 882 struct at_dma_chan *atchan = to_at_dma_chan(chan); 883 struct at_desc *desc; 884 size_t xfer_count; 885 886 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); 887 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 888 ATC_SRC_ADDR_MODE_FIXED | 889 ATC_DST_ADDR_MODE_INCR | 890 ATC_FC_MEM2MEM; 891 892 xfer_count = len >> 2; 893 if (xfer_count > ATC_BTSIZE_MAX) { 894 dev_err(chan2dev(chan), "%s: buffer is too big\n", 895 __func__); 896 return NULL; 897 } 898 899 desc = atc_desc_get(atchan); 900 if (!desc) { 901 dev_err(chan2dev(chan), "%s: can't get a descriptor\n", 902 __func__); 903 return NULL; 904 } 905 906 desc->lli.saddr = psrc; 907 desc->lli.daddr = pdst; 908 desc->lli.ctrla = ctrla | xfer_count; 909 desc->lli.ctrlb = ctrlb; 910 911 desc->txd.cookie = 0; 912 desc->len = len; 913 914 return desc; 915 } 916 917 /** 918 * atc_prep_dma_memset - prepare a memcpy operation 919 * @chan: the channel to prepare operation on 920 * @dest: operation virtual destination address 921 * @value: value to set memory buffer to 922 * @len: operation length 923 * @flags: tx descriptor status flags 924 */ 925 static struct dma_async_tx_descriptor * 926 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 927 size_t len, unsigned long flags) 928 { 929 struct at_dma *atdma = to_at_dma(chan->device); 930 struct at_desc *desc; 931 void __iomem *vaddr; 932 dma_addr_t paddr; 933 934 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 935 &dest, value, len, flags); 936 937 if (unlikely(!len)) { 938 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 939 return NULL; 940 } 941 942 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 943 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 944 __func__); 945 return NULL; 946 } 947 948 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 949 if (!vaddr) { 950 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 951 __func__); 952 return NULL; 953 } 954 *(u32*)vaddr = value; 955 956 desc = atc_create_memset_desc(chan, paddr, dest, len); 957 if (!desc) { 958 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", 959 __func__); 960 goto err_free_buffer; 961 } 962 963 desc->memset_paddr = paddr; 964 desc->memset_vaddr = vaddr; 965 desc->memset_buffer = true; 966 967 desc->txd.cookie = -EBUSY; 968 desc->total_len = len; 969 970 /* set end-of-link on the descriptor */ 971 set_desc_eol(desc); 972 973 desc->txd.flags = flags; 974 975 return &desc->txd; 976 977 err_free_buffer: 978 dma_pool_free(atdma->memset_pool, vaddr, paddr); 979 return NULL; 980 } 981 982 static struct dma_async_tx_descriptor * 983 atc_prep_dma_memset_sg(struct dma_chan *chan, 984 struct scatterlist *sgl, 985 unsigned int sg_len, int value, 986 unsigned long flags) 987 { 988 struct at_dma_chan *atchan = to_at_dma_chan(chan); 989 struct at_dma *atdma = to_at_dma(chan->device); 990 struct at_desc *desc = NULL, *first = NULL, *prev = NULL; 991 struct scatterlist *sg; 992 void __iomem *vaddr; 993 dma_addr_t paddr; 994 size_t total_len = 0; 995 int i; 996 997 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 998 value, sg_len, flags); 999 1000 if (unlikely(!sgl || !sg_len)) { 1001 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1002 __func__); 1003 return NULL; 1004 } 1005 1006 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr); 1007 if (!vaddr) { 1008 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1009 __func__); 1010 return NULL; 1011 } 1012 *(u32*)vaddr = value; 1013 1014 for_each_sg(sgl, sg, sg_len, i) { 1015 dma_addr_t dest = sg_dma_address(sg); 1016 size_t len = sg_dma_len(sg); 1017 1018 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1019 __func__, &dest, len); 1020 1021 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1022 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1023 __func__); 1024 goto err_put_desc; 1025 } 1026 1027 desc = atc_create_memset_desc(chan, paddr, dest, len); 1028 if (!desc) 1029 goto err_put_desc; 1030 1031 atc_desc_chain(&first, &prev, desc); 1032 1033 total_len += len; 1034 } 1035 1036 /* 1037 * Only set the buffer pointers on the last descriptor to 1038 * avoid free'ing while we have our transfer still going 1039 */ 1040 desc->memset_paddr = paddr; 1041 desc->memset_vaddr = vaddr; 1042 desc->memset_buffer = true; 1043 1044 first->txd.cookie = -EBUSY; 1045 first->total_len = total_len; 1046 1047 /* set end-of-link on the descriptor */ 1048 set_desc_eol(desc); 1049 1050 first->txd.flags = flags; 1051 1052 return &first->txd; 1053 1054 err_put_desc: 1055 atc_desc_put(atchan, first); 1056 return NULL; 1057 } 1058 1059 /** 1060 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1061 * @chan: DMA channel 1062 * @sgl: scatterlist to transfer to/from 1063 * @sg_len: number of entries in @scatterlist 1064 * @direction: DMA direction 1065 * @flags: tx descriptor status flags 1066 * @context: transaction context (ignored) 1067 */ 1068 static struct dma_async_tx_descriptor * 1069 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1070 unsigned int sg_len, enum dma_transfer_direction direction, 1071 unsigned long flags, void *context) 1072 { 1073 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1074 struct at_dma_slave *atslave = chan->private; 1075 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1076 struct at_desc *first = NULL; 1077 struct at_desc *prev = NULL; 1078 u32 ctrla; 1079 u32 ctrlb; 1080 dma_addr_t reg; 1081 unsigned int reg_width; 1082 unsigned int mem_width; 1083 unsigned int i; 1084 struct scatterlist *sg; 1085 size_t total_len = 0; 1086 1087 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1088 sg_len, 1089 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1090 flags); 1091 1092 if (unlikely(!atslave || !sg_len)) { 1093 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1094 return NULL; 1095 } 1096 1097 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1098 | ATC_DCSIZE(sconfig->dst_maxburst); 1099 ctrlb = ATC_IEN; 1100 1101 switch (direction) { 1102 case DMA_MEM_TO_DEV: 1103 reg_width = convert_buswidth(sconfig->dst_addr_width); 1104 ctrla |= ATC_DST_WIDTH(reg_width); 1105 ctrlb |= ATC_DST_ADDR_MODE_FIXED 1106 | ATC_SRC_ADDR_MODE_INCR 1107 | ATC_FC_MEM2PER 1108 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 1109 reg = sconfig->dst_addr; 1110 for_each_sg(sgl, sg, sg_len, i) { 1111 struct at_desc *desc; 1112 u32 len; 1113 u32 mem; 1114 1115 desc = atc_desc_get(atchan); 1116 if (!desc) 1117 goto err_desc_get; 1118 1119 mem = sg_dma_address(sg); 1120 len = sg_dma_len(sg); 1121 if (unlikely(!len)) { 1122 dev_dbg(chan2dev(chan), 1123 "prep_slave_sg: sg(%d) data length is zero\n", i); 1124 goto err; 1125 } 1126 mem_width = 2; 1127 if (unlikely(mem & 3 || len & 3)) 1128 mem_width = 0; 1129 1130 desc->lli.saddr = mem; 1131 desc->lli.daddr = reg; 1132 desc->lli.ctrla = ctrla 1133 | ATC_SRC_WIDTH(mem_width) 1134 | len >> mem_width; 1135 desc->lli.ctrlb = ctrlb; 1136 desc->len = len; 1137 1138 atc_desc_chain(&first, &prev, desc); 1139 total_len += len; 1140 } 1141 break; 1142 case DMA_DEV_TO_MEM: 1143 reg_width = convert_buswidth(sconfig->src_addr_width); 1144 ctrla |= ATC_SRC_WIDTH(reg_width); 1145 ctrlb |= ATC_DST_ADDR_MODE_INCR 1146 | ATC_SRC_ADDR_MODE_FIXED 1147 | ATC_FC_PER2MEM 1148 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 1149 1150 reg = sconfig->src_addr; 1151 for_each_sg(sgl, sg, sg_len, i) { 1152 struct at_desc *desc; 1153 u32 len; 1154 u32 mem; 1155 1156 desc = atc_desc_get(atchan); 1157 if (!desc) 1158 goto err_desc_get; 1159 1160 mem = sg_dma_address(sg); 1161 len = sg_dma_len(sg); 1162 if (unlikely(!len)) { 1163 dev_dbg(chan2dev(chan), 1164 "prep_slave_sg: sg(%d) data length is zero\n", i); 1165 goto err; 1166 } 1167 mem_width = 2; 1168 if (unlikely(mem & 3 || len & 3)) 1169 mem_width = 0; 1170 1171 desc->lli.saddr = reg; 1172 desc->lli.daddr = mem; 1173 desc->lli.ctrla = ctrla 1174 | ATC_DST_WIDTH(mem_width) 1175 | len >> reg_width; 1176 desc->lli.ctrlb = ctrlb; 1177 desc->len = len; 1178 1179 atc_desc_chain(&first, &prev, desc); 1180 total_len += len; 1181 } 1182 break; 1183 default: 1184 return NULL; 1185 } 1186 1187 /* set end-of-link to the last link descriptor of list*/ 1188 set_desc_eol(prev); 1189 1190 /* First descriptor of the chain embedds additional information */ 1191 first->txd.cookie = -EBUSY; 1192 first->total_len = total_len; 1193 1194 /* first link descriptor of list is responsible of flags */ 1195 first->txd.flags = flags; /* client is in control of this ack */ 1196 1197 return &first->txd; 1198 1199 err_desc_get: 1200 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1201 err: 1202 atc_desc_put(atchan, first); 1203 return NULL; 1204 } 1205 1206 /** 1207 * atc_prep_dma_sg - prepare memory to memory scather-gather operation 1208 * @chan: the channel to prepare operation on 1209 * @dst_sg: destination scatterlist 1210 * @dst_nents: number of destination scatterlist entries 1211 * @src_sg: source scatterlist 1212 * @src_nents: number of source scatterlist entries 1213 * @flags: tx descriptor status flags 1214 */ 1215 static struct dma_async_tx_descriptor * 1216 atc_prep_dma_sg(struct dma_chan *chan, 1217 struct scatterlist *dst_sg, unsigned int dst_nents, 1218 struct scatterlist *src_sg, unsigned int src_nents, 1219 unsigned long flags) 1220 { 1221 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1222 struct at_desc *desc = NULL; 1223 struct at_desc *first = NULL; 1224 struct at_desc *prev = NULL; 1225 unsigned int src_width; 1226 unsigned int dst_width; 1227 size_t xfer_count; 1228 u32 ctrla; 1229 u32 ctrlb; 1230 size_t dst_len = 0, src_len = 0; 1231 dma_addr_t dst = 0, src = 0; 1232 size_t len = 0, total_len = 0; 1233 1234 if (unlikely(dst_nents == 0 || src_nents == 0)) 1235 return NULL; 1236 1237 if (unlikely(dst_sg == NULL || src_sg == NULL)) 1238 return NULL; 1239 1240 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 1241 | ATC_SRC_ADDR_MODE_INCR 1242 | ATC_DST_ADDR_MODE_INCR 1243 | ATC_FC_MEM2MEM; 1244 1245 /* 1246 * loop until there is either no more source or no more destination 1247 * scatterlist entry 1248 */ 1249 while (true) { 1250 1251 /* prepare the next transfer */ 1252 if (dst_len == 0) { 1253 1254 /* no more destination scatterlist entries */ 1255 if (!dst_sg || !dst_nents) 1256 break; 1257 1258 dst = sg_dma_address(dst_sg); 1259 dst_len = sg_dma_len(dst_sg); 1260 1261 dst_sg = sg_next(dst_sg); 1262 dst_nents--; 1263 } 1264 1265 if (src_len == 0) { 1266 1267 /* no more source scatterlist entries */ 1268 if (!src_sg || !src_nents) 1269 break; 1270 1271 src = sg_dma_address(src_sg); 1272 src_len = sg_dma_len(src_sg); 1273 1274 src_sg = sg_next(src_sg); 1275 src_nents--; 1276 } 1277 1278 len = min_t(size_t, src_len, dst_len); 1279 if (len == 0) 1280 continue; 1281 1282 /* take care for the alignment */ 1283 src_width = dst_width = atc_get_xfer_width(src, dst, len); 1284 1285 ctrla = ATC_SRC_WIDTH(src_width) | 1286 ATC_DST_WIDTH(dst_width); 1287 1288 /* 1289 * The number of transfers to set up refer to the source width 1290 * that depends on the alignment. 1291 */ 1292 xfer_count = len >> src_width; 1293 if (xfer_count > ATC_BTSIZE_MAX) { 1294 xfer_count = ATC_BTSIZE_MAX; 1295 len = ATC_BTSIZE_MAX << src_width; 1296 } 1297 1298 /* create the transfer */ 1299 desc = atc_desc_get(atchan); 1300 if (!desc) 1301 goto err_desc_get; 1302 1303 desc->lli.saddr = src; 1304 desc->lli.daddr = dst; 1305 desc->lli.ctrla = ctrla | xfer_count; 1306 desc->lli.ctrlb = ctrlb; 1307 1308 desc->txd.cookie = 0; 1309 desc->len = len; 1310 1311 atc_desc_chain(&first, &prev, desc); 1312 1313 /* update the lengths and addresses for the next loop cycle */ 1314 dst_len -= len; 1315 src_len -= len; 1316 dst += len; 1317 src += len; 1318 1319 total_len += len; 1320 } 1321 1322 /* First descriptor of the chain embedds additional information */ 1323 first->txd.cookie = -EBUSY; 1324 first->total_len = total_len; 1325 1326 /* set end-of-link to the last link descriptor of list*/ 1327 set_desc_eol(desc); 1328 1329 first->txd.flags = flags; /* client is in control of this ack */ 1330 1331 return &first->txd; 1332 1333 err_desc_get: 1334 atc_desc_put(atchan, first); 1335 return NULL; 1336 } 1337 1338 /** 1339 * atc_dma_cyclic_check_values 1340 * Check for too big/unaligned periods and unaligned DMA buffer 1341 */ 1342 static int 1343 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1344 size_t period_len) 1345 { 1346 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1347 goto err_out; 1348 if (unlikely(period_len & ((1 << reg_width) - 1))) 1349 goto err_out; 1350 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1351 goto err_out; 1352 1353 return 0; 1354 1355 err_out: 1356 return -EINVAL; 1357 } 1358 1359 /** 1360 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1361 */ 1362 static int 1363 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1364 unsigned int period_index, dma_addr_t buf_addr, 1365 unsigned int reg_width, size_t period_len, 1366 enum dma_transfer_direction direction) 1367 { 1368 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1369 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1370 u32 ctrla; 1371 1372 /* prepare common CRTLA value */ 1373 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1374 | ATC_DCSIZE(sconfig->dst_maxburst) 1375 | ATC_DST_WIDTH(reg_width) 1376 | ATC_SRC_WIDTH(reg_width) 1377 | period_len >> reg_width; 1378 1379 switch (direction) { 1380 case DMA_MEM_TO_DEV: 1381 desc->lli.saddr = buf_addr + (period_len * period_index); 1382 desc->lli.daddr = sconfig->dst_addr; 1383 desc->lli.ctrla = ctrla; 1384 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1385 | ATC_SRC_ADDR_MODE_INCR 1386 | ATC_FC_MEM2PER 1387 | ATC_SIF(atchan->mem_if) 1388 | ATC_DIF(atchan->per_if); 1389 desc->len = period_len; 1390 break; 1391 1392 case DMA_DEV_TO_MEM: 1393 desc->lli.saddr = sconfig->src_addr; 1394 desc->lli.daddr = buf_addr + (period_len * period_index); 1395 desc->lli.ctrla = ctrla; 1396 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1397 | ATC_SRC_ADDR_MODE_FIXED 1398 | ATC_FC_PER2MEM 1399 | ATC_SIF(atchan->per_if) 1400 | ATC_DIF(atchan->mem_if); 1401 desc->len = period_len; 1402 break; 1403 1404 default: 1405 return -EINVAL; 1406 } 1407 1408 return 0; 1409 } 1410 1411 /** 1412 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1413 * @chan: the DMA channel to prepare 1414 * @buf_addr: physical DMA address where the buffer starts 1415 * @buf_len: total number of bytes for the entire buffer 1416 * @period_len: number of bytes for each period 1417 * @direction: transfer direction, to or from device 1418 * @flags: tx descriptor status flags 1419 */ 1420 static struct dma_async_tx_descriptor * 1421 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1422 size_t period_len, enum dma_transfer_direction direction, 1423 unsigned long flags) 1424 { 1425 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1426 struct at_dma_slave *atslave = chan->private; 1427 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1428 struct at_desc *first = NULL; 1429 struct at_desc *prev = NULL; 1430 unsigned long was_cyclic; 1431 unsigned int reg_width; 1432 unsigned int periods = buf_len / period_len; 1433 unsigned int i; 1434 1435 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1436 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1437 &buf_addr, 1438 periods, buf_len, period_len); 1439 1440 if (unlikely(!atslave || !buf_len || !period_len)) { 1441 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1442 return NULL; 1443 } 1444 1445 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1446 if (was_cyclic) { 1447 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1448 return NULL; 1449 } 1450 1451 if (unlikely(!is_slave_direction(direction))) 1452 goto err_out; 1453 1454 if (sconfig->direction == DMA_MEM_TO_DEV) 1455 reg_width = convert_buswidth(sconfig->dst_addr_width); 1456 else 1457 reg_width = convert_buswidth(sconfig->src_addr_width); 1458 1459 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1460 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1461 goto err_out; 1462 1463 /* build cyclic linked list */ 1464 for (i = 0; i < periods; i++) { 1465 struct at_desc *desc; 1466 1467 desc = atc_desc_get(atchan); 1468 if (!desc) 1469 goto err_desc_get; 1470 1471 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1472 reg_width, period_len, direction)) 1473 goto err_desc_get; 1474 1475 atc_desc_chain(&first, &prev, desc); 1476 } 1477 1478 /* lets make a cyclic list */ 1479 prev->lli.dscr = first->txd.phys; 1480 1481 /* First descriptor of the chain embedds additional information */ 1482 first->txd.cookie = -EBUSY; 1483 first->total_len = buf_len; 1484 1485 return &first->txd; 1486 1487 err_desc_get: 1488 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1489 atc_desc_put(atchan, first); 1490 err_out: 1491 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1492 return NULL; 1493 } 1494 1495 static int atc_config(struct dma_chan *chan, 1496 struct dma_slave_config *sconfig) 1497 { 1498 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1499 1500 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1501 1502 /* Check if it is chan is configured for slave transfers */ 1503 if (!chan->private) 1504 return -EINVAL; 1505 1506 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1507 1508 convert_burst(&atchan->dma_sconfig.src_maxburst); 1509 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1510 1511 return 0; 1512 } 1513 1514 static int atc_pause(struct dma_chan *chan) 1515 { 1516 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1517 struct at_dma *atdma = to_at_dma(chan->device); 1518 int chan_id = atchan->chan_common.chan_id; 1519 unsigned long flags; 1520 1521 LIST_HEAD(list); 1522 1523 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1524 1525 spin_lock_irqsave(&atchan->lock, flags); 1526 1527 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1528 set_bit(ATC_IS_PAUSED, &atchan->status); 1529 1530 spin_unlock_irqrestore(&atchan->lock, flags); 1531 1532 return 0; 1533 } 1534 1535 static int atc_resume(struct dma_chan *chan) 1536 { 1537 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1538 struct at_dma *atdma = to_at_dma(chan->device); 1539 int chan_id = atchan->chan_common.chan_id; 1540 unsigned long flags; 1541 1542 LIST_HEAD(list); 1543 1544 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1545 1546 if (!atc_chan_is_paused(atchan)) 1547 return 0; 1548 1549 spin_lock_irqsave(&atchan->lock, flags); 1550 1551 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1552 clear_bit(ATC_IS_PAUSED, &atchan->status); 1553 1554 spin_unlock_irqrestore(&atchan->lock, flags); 1555 1556 return 0; 1557 } 1558 1559 static int atc_terminate_all(struct dma_chan *chan) 1560 { 1561 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1562 struct at_dma *atdma = to_at_dma(chan->device); 1563 int chan_id = atchan->chan_common.chan_id; 1564 struct at_desc *desc, *_desc; 1565 unsigned long flags; 1566 1567 LIST_HEAD(list); 1568 1569 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1570 1571 /* 1572 * This is only called when something went wrong elsewhere, so 1573 * we don't really care about the data. Just disable the 1574 * channel. We still have to poll the channel enable bit due 1575 * to AHB/HSB limitations. 1576 */ 1577 spin_lock_irqsave(&atchan->lock, flags); 1578 1579 /* disabling channel: must also remove suspend state */ 1580 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1581 1582 /* confirm that this channel is disabled */ 1583 while (dma_readl(atdma, CHSR) & atchan->mask) 1584 cpu_relax(); 1585 1586 /* active_list entries will end up before queued entries */ 1587 list_splice_init(&atchan->queue, &list); 1588 list_splice_init(&atchan->active_list, &list); 1589 1590 /* Flush all pending and queued descriptors */ 1591 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1592 atc_chain_complete(atchan, desc); 1593 1594 clear_bit(ATC_IS_PAUSED, &atchan->status); 1595 /* if channel dedicated to cyclic operations, free it */ 1596 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1597 1598 spin_unlock_irqrestore(&atchan->lock, flags); 1599 1600 return 0; 1601 } 1602 1603 /** 1604 * atc_tx_status - poll for transaction completion 1605 * @chan: DMA channel 1606 * @cookie: transaction identifier to check status of 1607 * @txstate: if not %NULL updated with transaction state 1608 * 1609 * If @txstate is passed in, upon return it reflect the driver 1610 * internal state and can be used with dma_async_is_complete() to check 1611 * the status of multiple cookies without re-checking hardware state. 1612 */ 1613 static enum dma_status 1614 atc_tx_status(struct dma_chan *chan, 1615 dma_cookie_t cookie, 1616 struct dma_tx_state *txstate) 1617 { 1618 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1619 unsigned long flags; 1620 enum dma_status ret; 1621 int bytes = 0; 1622 1623 ret = dma_cookie_status(chan, cookie, txstate); 1624 if (ret == DMA_COMPLETE) 1625 return ret; 1626 /* 1627 * There's no point calculating the residue if there's 1628 * no txstate to store the value. 1629 */ 1630 if (!txstate) 1631 return DMA_ERROR; 1632 1633 spin_lock_irqsave(&atchan->lock, flags); 1634 1635 /* Get number of bytes left in the active transactions */ 1636 bytes = atc_get_bytes_left(chan, cookie); 1637 1638 spin_unlock_irqrestore(&atchan->lock, flags); 1639 1640 if (unlikely(bytes < 0)) { 1641 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1642 return DMA_ERROR; 1643 } else { 1644 dma_set_residue(txstate, bytes); 1645 } 1646 1647 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1648 ret, cookie, bytes); 1649 1650 return ret; 1651 } 1652 1653 /** 1654 * atc_issue_pending - try to finish work 1655 * @chan: target DMA channel 1656 */ 1657 static void atc_issue_pending(struct dma_chan *chan) 1658 { 1659 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1660 unsigned long flags; 1661 1662 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1663 1664 /* Not needed for cyclic transfers */ 1665 if (atc_chan_is_cyclic(atchan)) 1666 return; 1667 1668 spin_lock_irqsave(&atchan->lock, flags); 1669 atc_advance_work(atchan); 1670 spin_unlock_irqrestore(&atchan->lock, flags); 1671 } 1672 1673 /** 1674 * atc_alloc_chan_resources - allocate resources for DMA channel 1675 * @chan: allocate descriptor resources for this channel 1676 * @client: current client requesting the channel be ready for requests 1677 * 1678 * return - the number of allocated descriptors 1679 */ 1680 static int atc_alloc_chan_resources(struct dma_chan *chan) 1681 { 1682 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1683 struct at_dma *atdma = to_at_dma(chan->device); 1684 struct at_desc *desc; 1685 struct at_dma_slave *atslave; 1686 unsigned long flags; 1687 int i; 1688 u32 cfg; 1689 LIST_HEAD(tmp_list); 1690 1691 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1692 1693 /* ASSERT: channel is idle */ 1694 if (atc_chan_is_enabled(atchan)) { 1695 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1696 return -EIO; 1697 } 1698 1699 cfg = ATC_DEFAULT_CFG; 1700 1701 atslave = chan->private; 1702 if (atslave) { 1703 /* 1704 * We need controller-specific data to set up slave 1705 * transfers. 1706 */ 1707 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1708 1709 /* if cfg configuration specified take it instead of default */ 1710 if (atslave->cfg) 1711 cfg = atslave->cfg; 1712 } 1713 1714 /* have we already been set up? 1715 * reconfigure channel but no need to reallocate descriptors */ 1716 if (!list_empty(&atchan->free_list)) 1717 return atchan->descs_allocated; 1718 1719 /* Allocate initial pool of descriptors */ 1720 for (i = 0; i < init_nr_desc_per_channel; i++) { 1721 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1722 if (!desc) { 1723 dev_err(atdma->dma_common.dev, 1724 "Only %d initial descriptors\n", i); 1725 break; 1726 } 1727 list_add_tail(&desc->desc_node, &tmp_list); 1728 } 1729 1730 spin_lock_irqsave(&atchan->lock, flags); 1731 atchan->descs_allocated = i; 1732 list_splice(&tmp_list, &atchan->free_list); 1733 dma_cookie_init(chan); 1734 spin_unlock_irqrestore(&atchan->lock, flags); 1735 1736 /* channel parameters */ 1737 channel_writel(atchan, CFG, cfg); 1738 1739 dev_dbg(chan2dev(chan), 1740 "alloc_chan_resources: allocated %d descriptors\n", 1741 atchan->descs_allocated); 1742 1743 return atchan->descs_allocated; 1744 } 1745 1746 /** 1747 * atc_free_chan_resources - free all channel resources 1748 * @chan: DMA channel 1749 */ 1750 static void atc_free_chan_resources(struct dma_chan *chan) 1751 { 1752 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1753 struct at_dma *atdma = to_at_dma(chan->device); 1754 struct at_desc *desc, *_desc; 1755 LIST_HEAD(list); 1756 1757 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1758 atchan->descs_allocated); 1759 1760 /* ASSERT: channel is idle */ 1761 BUG_ON(!list_empty(&atchan->active_list)); 1762 BUG_ON(!list_empty(&atchan->queue)); 1763 BUG_ON(atc_chan_is_enabled(atchan)); 1764 1765 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1766 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1767 list_del(&desc->desc_node); 1768 /* free link descriptor */ 1769 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1770 } 1771 list_splice_init(&atchan->free_list, &list); 1772 atchan->descs_allocated = 0; 1773 atchan->status = 0; 1774 1775 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1776 } 1777 1778 #ifdef CONFIG_OF 1779 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1780 { 1781 struct at_dma_slave *atslave = slave; 1782 1783 if (atslave->dma_dev == chan->device->dev) { 1784 chan->private = atslave; 1785 return true; 1786 } else { 1787 return false; 1788 } 1789 } 1790 1791 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1792 struct of_dma *of_dma) 1793 { 1794 struct dma_chan *chan; 1795 struct at_dma_chan *atchan; 1796 struct at_dma_slave *atslave; 1797 dma_cap_mask_t mask; 1798 unsigned int per_id; 1799 struct platform_device *dmac_pdev; 1800 1801 if (dma_spec->args_count != 2) 1802 return NULL; 1803 1804 dmac_pdev = of_find_device_by_node(dma_spec->np); 1805 1806 dma_cap_zero(mask); 1807 dma_cap_set(DMA_SLAVE, mask); 1808 1809 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL); 1810 if (!atslave) 1811 return NULL; 1812 1813 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1814 /* 1815 * We can fill both SRC_PER and DST_PER, one of these fields will be 1816 * ignored depending on DMA transfer direction. 1817 */ 1818 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1819 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1820 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1821 /* 1822 * We have to translate the value we get from the device tree since 1823 * the half FIFO configuration value had to be 0 to keep backward 1824 * compatibility. 1825 */ 1826 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1827 case AT91_DMA_CFG_FIFOCFG_ALAP: 1828 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1829 break; 1830 case AT91_DMA_CFG_FIFOCFG_ASAP: 1831 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1832 break; 1833 case AT91_DMA_CFG_FIFOCFG_HALF: 1834 default: 1835 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1836 } 1837 atslave->dma_dev = &dmac_pdev->dev; 1838 1839 chan = dma_request_channel(mask, at_dma_filter, atslave); 1840 if (!chan) 1841 return NULL; 1842 1843 atchan = to_at_dma_chan(chan); 1844 atchan->per_if = dma_spec->args[0] & 0xff; 1845 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1846 1847 return chan; 1848 } 1849 #else 1850 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1851 struct of_dma *of_dma) 1852 { 1853 return NULL; 1854 } 1855 #endif 1856 1857 /*-- Module Management -----------------------------------------------*/ 1858 1859 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1860 static struct at_dma_platform_data at91sam9rl_config = { 1861 .nr_channels = 2, 1862 }; 1863 static struct at_dma_platform_data at91sam9g45_config = { 1864 .nr_channels = 8, 1865 }; 1866 1867 #if defined(CONFIG_OF) 1868 static const struct of_device_id atmel_dma_dt_ids[] = { 1869 { 1870 .compatible = "atmel,at91sam9rl-dma", 1871 .data = &at91sam9rl_config, 1872 }, { 1873 .compatible = "atmel,at91sam9g45-dma", 1874 .data = &at91sam9g45_config, 1875 }, { 1876 /* sentinel */ 1877 } 1878 }; 1879 1880 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1881 #endif 1882 1883 static const struct platform_device_id atdma_devtypes[] = { 1884 { 1885 .name = "at91sam9rl_dma", 1886 .driver_data = (unsigned long) &at91sam9rl_config, 1887 }, { 1888 .name = "at91sam9g45_dma", 1889 .driver_data = (unsigned long) &at91sam9g45_config, 1890 }, { 1891 /* sentinel */ 1892 } 1893 }; 1894 1895 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1896 struct platform_device *pdev) 1897 { 1898 if (pdev->dev.of_node) { 1899 const struct of_device_id *match; 1900 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1901 if (match == NULL) 1902 return NULL; 1903 return match->data; 1904 } 1905 return (struct at_dma_platform_data *) 1906 platform_get_device_id(pdev)->driver_data; 1907 } 1908 1909 /** 1910 * at_dma_off - disable DMA controller 1911 * @atdma: the Atmel HDAMC device 1912 */ 1913 static void at_dma_off(struct at_dma *atdma) 1914 { 1915 dma_writel(atdma, EN, 0); 1916 1917 /* disable all interrupts */ 1918 dma_writel(atdma, EBCIDR, -1L); 1919 1920 /* confirm that all channels are disabled */ 1921 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1922 cpu_relax(); 1923 } 1924 1925 static int __init at_dma_probe(struct platform_device *pdev) 1926 { 1927 struct resource *io; 1928 struct at_dma *atdma; 1929 size_t size; 1930 int irq; 1931 int err; 1932 int i; 1933 const struct at_dma_platform_data *plat_dat; 1934 1935 /* setup platform data for each SoC */ 1936 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1937 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask); 1938 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1939 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1940 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1941 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1942 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1943 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1944 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask); 1945 1946 /* get DMA parameters from controller type */ 1947 plat_dat = at_dma_get_driver_data(pdev); 1948 if (!plat_dat) 1949 return -ENODEV; 1950 1951 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1952 if (!io) 1953 return -EINVAL; 1954 1955 irq = platform_get_irq(pdev, 0); 1956 if (irq < 0) 1957 return irq; 1958 1959 size = sizeof(struct at_dma); 1960 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1961 atdma = kzalloc(size, GFP_KERNEL); 1962 if (!atdma) 1963 return -ENOMEM; 1964 1965 /* discover transaction capabilities */ 1966 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1967 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1968 1969 size = resource_size(io); 1970 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1971 err = -EBUSY; 1972 goto err_kfree; 1973 } 1974 1975 atdma->regs = ioremap(io->start, size); 1976 if (!atdma->regs) { 1977 err = -ENOMEM; 1978 goto err_release_r; 1979 } 1980 1981 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1982 if (IS_ERR(atdma->clk)) { 1983 err = PTR_ERR(atdma->clk); 1984 goto err_clk; 1985 } 1986 err = clk_prepare_enable(atdma->clk); 1987 if (err) 1988 goto err_clk_prepare; 1989 1990 /* force dma off, just in case */ 1991 at_dma_off(atdma); 1992 1993 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1994 if (err) 1995 goto err_irq; 1996 1997 platform_set_drvdata(pdev, atdma); 1998 1999 /* create a pool of consistent memory blocks for hardware descriptors */ 2000 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 2001 &pdev->dev, sizeof(struct at_desc), 2002 4 /* word alignment */, 0); 2003 if (!atdma->dma_desc_pool) { 2004 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 2005 err = -ENOMEM; 2006 goto err_desc_pool_create; 2007 } 2008 2009 /* create a pool of consistent memory blocks for memset blocks */ 2010 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 2011 &pdev->dev, sizeof(int), 4, 0); 2012 if (!atdma->memset_pool) { 2013 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 2014 err = -ENOMEM; 2015 goto err_memset_pool_create; 2016 } 2017 2018 /* clear any pending interrupt */ 2019 while (dma_readl(atdma, EBCISR)) 2020 cpu_relax(); 2021 2022 /* initialize channels related values */ 2023 INIT_LIST_HEAD(&atdma->dma_common.channels); 2024 for (i = 0; i < plat_dat->nr_channels; i++) { 2025 struct at_dma_chan *atchan = &atdma->chan[i]; 2026 2027 atchan->mem_if = AT_DMA_MEM_IF; 2028 atchan->per_if = AT_DMA_PER_IF; 2029 atchan->chan_common.device = &atdma->dma_common; 2030 dma_cookie_init(&atchan->chan_common); 2031 list_add_tail(&atchan->chan_common.device_node, 2032 &atdma->dma_common.channels); 2033 2034 atchan->ch_regs = atdma->regs + ch_regs(i); 2035 spin_lock_init(&atchan->lock); 2036 atchan->mask = 1 << i; 2037 2038 INIT_LIST_HEAD(&atchan->active_list); 2039 INIT_LIST_HEAD(&atchan->queue); 2040 INIT_LIST_HEAD(&atchan->free_list); 2041 2042 tasklet_init(&atchan->tasklet, atc_tasklet, 2043 (unsigned long)atchan); 2044 atc_enable_chan_irq(atdma, i); 2045 } 2046 2047 /* set base routines */ 2048 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 2049 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 2050 atdma->dma_common.device_tx_status = atc_tx_status; 2051 atdma->dma_common.device_issue_pending = atc_issue_pending; 2052 atdma->dma_common.dev = &pdev->dev; 2053 2054 /* set prep routines based on capability */ 2055 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 2056 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 2057 2058 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 2059 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 2060 2061 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { 2062 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; 2063 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 2064 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; 2065 } 2066 2067 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 2068 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 2069 /* controller can do slave DMA: can trigger cyclic transfers */ 2070 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 2071 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 2072 atdma->dma_common.device_config = atc_config; 2073 atdma->dma_common.device_pause = atc_pause; 2074 atdma->dma_common.device_resume = atc_resume; 2075 atdma->dma_common.device_terminate_all = atc_terminate_all; 2076 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 2077 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 2078 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2079 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2080 } 2081 2082 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)) 2083 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg; 2084 2085 dma_writel(atdma, EN, AT_DMA_ENABLE); 2086 2087 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n", 2088 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 2089 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", 2090 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 2091 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "", 2092 plat_dat->nr_channels); 2093 2094 dma_async_device_register(&atdma->dma_common); 2095 2096 /* 2097 * Do not return an error if the dmac node is not present in order to 2098 * not break the existing way of requesting channel with 2099 * dma_request_channel(). 2100 */ 2101 if (pdev->dev.of_node) { 2102 err = of_dma_controller_register(pdev->dev.of_node, 2103 at_dma_xlate, atdma); 2104 if (err) { 2105 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 2106 goto err_of_dma_controller_register; 2107 } 2108 } 2109 2110 return 0; 2111 2112 err_of_dma_controller_register: 2113 dma_async_device_unregister(&atdma->dma_common); 2114 dma_pool_destroy(atdma->memset_pool); 2115 err_memset_pool_create: 2116 dma_pool_destroy(atdma->dma_desc_pool); 2117 err_desc_pool_create: 2118 free_irq(platform_get_irq(pdev, 0), atdma); 2119 err_irq: 2120 clk_disable_unprepare(atdma->clk); 2121 err_clk_prepare: 2122 clk_put(atdma->clk); 2123 err_clk: 2124 iounmap(atdma->regs); 2125 atdma->regs = NULL; 2126 err_release_r: 2127 release_mem_region(io->start, size); 2128 err_kfree: 2129 kfree(atdma); 2130 return err; 2131 } 2132 2133 static int at_dma_remove(struct platform_device *pdev) 2134 { 2135 struct at_dma *atdma = platform_get_drvdata(pdev); 2136 struct dma_chan *chan, *_chan; 2137 struct resource *io; 2138 2139 at_dma_off(atdma); 2140 dma_async_device_unregister(&atdma->dma_common); 2141 2142 dma_pool_destroy(atdma->memset_pool); 2143 dma_pool_destroy(atdma->dma_desc_pool); 2144 free_irq(platform_get_irq(pdev, 0), atdma); 2145 2146 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2147 device_node) { 2148 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2149 2150 /* Disable interrupts */ 2151 atc_disable_chan_irq(atdma, chan->chan_id); 2152 2153 tasklet_kill(&atchan->tasklet); 2154 list_del(&chan->device_node); 2155 } 2156 2157 clk_disable_unprepare(atdma->clk); 2158 clk_put(atdma->clk); 2159 2160 iounmap(atdma->regs); 2161 atdma->regs = NULL; 2162 2163 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2164 release_mem_region(io->start, resource_size(io)); 2165 2166 kfree(atdma); 2167 2168 return 0; 2169 } 2170 2171 static void at_dma_shutdown(struct platform_device *pdev) 2172 { 2173 struct at_dma *atdma = platform_get_drvdata(pdev); 2174 2175 at_dma_off(platform_get_drvdata(pdev)); 2176 clk_disable_unprepare(atdma->clk); 2177 } 2178 2179 static int at_dma_prepare(struct device *dev) 2180 { 2181 struct platform_device *pdev = to_platform_device(dev); 2182 struct at_dma *atdma = platform_get_drvdata(pdev); 2183 struct dma_chan *chan, *_chan; 2184 2185 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2186 device_node) { 2187 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2188 /* wait for transaction completion (except in cyclic case) */ 2189 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2190 return -EAGAIN; 2191 } 2192 return 0; 2193 } 2194 2195 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2196 { 2197 struct dma_chan *chan = &atchan->chan_common; 2198 2199 /* Channel should be paused by user 2200 * do it anyway even if it is not done already */ 2201 if (!atc_chan_is_paused(atchan)) { 2202 dev_warn(chan2dev(chan), 2203 "cyclic channel not paused, should be done by channel user\n"); 2204 atc_pause(chan); 2205 } 2206 2207 /* now preserve additional data for cyclic operations */ 2208 /* next descriptor address in the cyclic list */ 2209 atchan->save_dscr = channel_readl(atchan, DSCR); 2210 2211 vdbg_dump_regs(atchan); 2212 } 2213 2214 static int at_dma_suspend_noirq(struct device *dev) 2215 { 2216 struct platform_device *pdev = to_platform_device(dev); 2217 struct at_dma *atdma = platform_get_drvdata(pdev); 2218 struct dma_chan *chan, *_chan; 2219 2220 /* preserve data */ 2221 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2222 device_node) { 2223 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2224 2225 if (atc_chan_is_cyclic(atchan)) 2226 atc_suspend_cyclic(atchan); 2227 atchan->save_cfg = channel_readl(atchan, CFG); 2228 } 2229 atdma->save_imr = dma_readl(atdma, EBCIMR); 2230 2231 /* disable DMA controller */ 2232 at_dma_off(atdma); 2233 clk_disable_unprepare(atdma->clk); 2234 return 0; 2235 } 2236 2237 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2238 { 2239 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 2240 2241 /* restore channel status for cyclic descriptors list: 2242 * next descriptor in the cyclic list at the time of suspend */ 2243 channel_writel(atchan, SADDR, 0); 2244 channel_writel(atchan, DADDR, 0); 2245 channel_writel(atchan, CTRLA, 0); 2246 channel_writel(atchan, CTRLB, 0); 2247 channel_writel(atchan, DSCR, atchan->save_dscr); 2248 dma_writel(atdma, CHER, atchan->mask); 2249 2250 /* channel pause status should be removed by channel user 2251 * We cannot take the initiative to do it here */ 2252 2253 vdbg_dump_regs(atchan); 2254 } 2255 2256 static int at_dma_resume_noirq(struct device *dev) 2257 { 2258 struct platform_device *pdev = to_platform_device(dev); 2259 struct at_dma *atdma = platform_get_drvdata(pdev); 2260 struct dma_chan *chan, *_chan; 2261 2262 /* bring back DMA controller */ 2263 clk_prepare_enable(atdma->clk); 2264 dma_writel(atdma, EN, AT_DMA_ENABLE); 2265 2266 /* clear any pending interrupt */ 2267 while (dma_readl(atdma, EBCISR)) 2268 cpu_relax(); 2269 2270 /* restore saved data */ 2271 dma_writel(atdma, EBCIER, atdma->save_imr); 2272 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2273 device_node) { 2274 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2275 2276 channel_writel(atchan, CFG, atchan->save_cfg); 2277 if (atc_chan_is_cyclic(atchan)) 2278 atc_resume_cyclic(atchan); 2279 } 2280 return 0; 2281 } 2282 2283 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2284 .prepare = at_dma_prepare, 2285 .suspend_noirq = at_dma_suspend_noirq, 2286 .resume_noirq = at_dma_resume_noirq, 2287 }; 2288 2289 static struct platform_driver at_dma_driver = { 2290 .remove = at_dma_remove, 2291 .shutdown = at_dma_shutdown, 2292 .id_table = atdma_devtypes, 2293 .driver = { 2294 .name = "at_hdmac", 2295 .pm = &at_dma_dev_pm_ops, 2296 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2297 }, 2298 }; 2299 2300 static int __init at_dma_init(void) 2301 { 2302 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2303 } 2304 subsys_initcall(at_dma_init); 2305 2306 static void __exit at_dma_exit(void) 2307 { 2308 platform_driver_unregister(&at_dma_driver); 2309 } 2310 module_exit(at_dma_exit); 2311 2312 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2313 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2314 MODULE_LICENSE("GPL"); 2315 MODULE_ALIAS("platform:at_hdmac"); 2316