xref: /linux/drivers/dma/at_hdmac.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		memset(desc, 0, sizeof(struct at_desc));
117 		INIT_LIST_HEAD(&desc->tx_list);
118 		dma_async_tx_descriptor_init(&desc->txd, chan);
119 		/* txd.flags will be overwritten in prep functions */
120 		desc->txd.flags = DMA_CTRL_ACK;
121 		desc->txd.tx_submit = atc_tx_submit;
122 		desc->txd.phys = phys;
123 	}
124 
125 	return desc;
126 }
127 
128 /**
129  * atc_desc_get - get an unused descriptor from free_list
130  * @atchan: channel we want a new descriptor for
131  */
132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133 {
134 	struct at_desc *desc, *_desc;
135 	struct at_desc *ret = NULL;
136 	unsigned long flags;
137 	unsigned int i = 0;
138 	LIST_HEAD(tmp_list);
139 
140 	spin_lock_irqsave(&atchan->lock, flags);
141 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 		i++;
143 		if (async_tx_test_ack(&desc->txd)) {
144 			list_del(&desc->desc_node);
145 			ret = desc;
146 			break;
147 		}
148 		dev_dbg(chan2dev(&atchan->chan_common),
149 				"desc %p not ACKed\n", desc);
150 	}
151 	spin_unlock_irqrestore(&atchan->lock, flags);
152 	dev_vdbg(chan2dev(&atchan->chan_common),
153 		"scanned %u descriptors on freelist\n", i);
154 
155 	/* no more descriptor available in initial pool: create one more */
156 	if (!ret) {
157 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 		if (ret) {
159 			spin_lock_irqsave(&atchan->lock, flags);
160 			atchan->descs_allocated++;
161 			spin_unlock_irqrestore(&atchan->lock, flags);
162 		} else {
163 			dev_err(chan2dev(&atchan->chan_common),
164 					"not enough descriptors available\n");
165 		}
166 	}
167 
168 	return ret;
169 }
170 
171 /**
172  * atc_desc_put - move a descriptor, including any children, to the free list
173  * @atchan: channel we work on
174  * @desc: descriptor, at the head of a chain, to move to free list
175  */
176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177 {
178 	if (desc) {
179 		struct at_desc *child;
180 		unsigned long flags;
181 
182 		spin_lock_irqsave(&atchan->lock, flags);
183 		list_for_each_entry(child, &desc->tx_list, desc_node)
184 			dev_vdbg(chan2dev(&atchan->chan_common),
185 					"moving child desc %p to freelist\n",
186 					child);
187 		list_splice_init(&desc->tx_list, &atchan->free_list);
188 		dev_vdbg(chan2dev(&atchan->chan_common),
189 			 "moving desc %p to freelist\n", desc);
190 		list_add(&desc->desc_node, &atchan->free_list);
191 		spin_unlock_irqrestore(&atchan->lock, flags);
192 	}
193 }
194 
195 /**
196  * atc_desc_chain - build chain adding a descriptor
197  * @first: address of first descriptor of the chain
198  * @prev: address of previous descriptor of the chain
199  * @desc: descriptor to queue
200  *
201  * Called from prep_* functions
202  */
203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 			   struct at_desc *desc)
205 {
206 	if (!(*first)) {
207 		*first = desc;
208 	} else {
209 		/* inform the HW lli about chaining */
210 		(*prev)->lli.dscr = desc->txd.phys;
211 		/* insert the link descriptor to the LD ring */
212 		list_add_tail(&desc->desc_node,
213 				&(*first)->tx_list);
214 	}
215 	*prev = desc;
216 }
217 
218 /**
219  * atc_dostart - starts the DMA engine for real
220  * @atchan: the channel we want to start
221  * @first: first descriptor in the list we want to begin with
222  *
223  * Called with atchan->lock held and bh disabled
224  */
225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226 {
227 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
228 
229 	/* ASSERT:  channel is idle */
230 	if (atc_chan_is_enabled(atchan)) {
231 		dev_err(chan2dev(&atchan->chan_common),
232 			"BUG: Attempted to start non-idle channel\n");
233 		dev_err(chan2dev(&atchan->chan_common),
234 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 			channel_readl(atchan, SADDR),
236 			channel_readl(atchan, DADDR),
237 			channel_readl(atchan, CTRLA),
238 			channel_readl(atchan, CTRLB),
239 			channel_readl(atchan, DSCR));
240 
241 		/* The tasklet will hopefully advance the queue... */
242 		return;
243 	}
244 
245 	vdbg_dump_regs(atchan);
246 
247 	channel_writel(atchan, SADDR, 0);
248 	channel_writel(atchan, DADDR, 0);
249 	channel_writel(atchan, CTRLA, 0);
250 	channel_writel(atchan, CTRLB, 0);
251 	channel_writel(atchan, DSCR, first->txd.phys);
252 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 		       ATC_SPIP_BOUNDARY(first->boundary));
254 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 		       ATC_DPIP_BOUNDARY(first->boundary));
256 	dma_writel(atdma, CHER, atchan->mask);
257 
258 	vdbg_dump_regs(atchan);
259 }
260 
261 /*
262  * atc_get_desc_by_cookie - get the descriptor of a cookie
263  * @atchan: the DMA channel
264  * @cookie: the cookie to get the descriptor for
265  */
266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 						dma_cookie_t cookie)
268 {
269 	struct at_desc *desc, *_desc;
270 
271 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 		if (desc->txd.cookie == cookie)
273 			return desc;
274 	}
275 
276 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 		if (desc->txd.cookie == cookie)
278 			return desc;
279 	}
280 
281 	return NULL;
282 }
283 
284 /**
285  * atc_calc_bytes_left - calculates the number of bytes left according to the
286  * value read from CTRLA.
287  *
288  * @current_len: the number of bytes left before reading CTRLA
289  * @ctrla: the value of CTRLA
290  */
291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292 {
293 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295 
296 	/*
297 	 * According to the datasheet, when reading the Control A Register
298 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 	 * number of transfers completed on the Source Interface.
300 	 * So btsize is always a number of source width transfers.
301 	 */
302 	return current_len - (btsize << src_width);
303 }
304 
305 /**
306  * atc_get_bytes_left - get the number of bytes residue for a cookie
307  * @chan: DMA channel
308  * @cookie: transaction identifier to check status of
309  */
310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311 {
312 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
313 	struct at_desc *desc_first = atc_first_active(atchan);
314 	struct at_desc *desc;
315 	int ret;
316 	u32 ctrla, dscr, trials;
317 
318 	/*
319 	 * If the cookie doesn't match to the currently running transfer then
320 	 * we can return the total length of the associated DMA transfer,
321 	 * because it is still queued.
322 	 */
323 	desc = atc_get_desc_by_cookie(atchan, cookie);
324 	if (desc == NULL)
325 		return -EINVAL;
326 	else if (desc != desc_first)
327 		return desc->total_len;
328 
329 	/* cookie matches to the currently running transfer */
330 	ret = desc_first->total_len;
331 
332 	if (desc_first->lli.dscr) {
333 		/* hardware linked list transfer */
334 
335 		/*
336 		 * Calculate the residue by removing the length of the child
337 		 * descriptors already transferred from the total length.
338 		 * To get the current child descriptor we can use the value of
339 		 * the channel's DSCR register and compare it against the value
340 		 * of the hardware linked list structure of each child
341 		 * descriptor.
342 		 *
343 		 * The CTRLA register provides us with the amount of data
344 		 * already read from the source for the current child
345 		 * descriptor. So we can compute a more accurate residue by also
346 		 * removing the number of bytes corresponding to this amount of
347 		 * data.
348 		 *
349 		 * However, the DSCR and CTRLA registers cannot be read both
350 		 * atomically. Hence a race condition may occur: the first read
351 		 * register may refer to one child descriptor whereas the second
352 		 * read may refer to a later child descriptor in the list
353 		 * because of the DMA transfer progression inbetween the two
354 		 * reads.
355 		 *
356 		 * One solution could have been to pause the DMA transfer, read
357 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 		 * this approach presents some drawbacks:
359 		 * - If the DMA transfer is paused, RX overruns or TX underruns
360 		 *   are more likey to occur depending on the system latency.
361 		 *   Taking the USART driver as an example, it uses a cyclic DMA
362 		 *   transfer to read data from the Receive Holding Register
363 		 *   (RHR) to avoid RX overruns since the RHR is not protected
364 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 		 *   to compute the residue would break the USART driver design.
366 		 * - The atc_pause() function masks interrupts but we'd rather
367 		 *   avoid to do so for system latency purpose.
368 		 *
369 		 * Then we'd rather use another solution: the DSCR is read a
370 		 * first time, the CTRLA is read in turn, next the DSCR is read
371 		 * a second time. If the two consecutive read values of the DSCR
372 		 * are the same then we assume both refers to the very same
373 		 * child descriptor as well as the CTRLA value read inbetween
374 		 * does. For cyclic tranfers, the assumption is that a full loop
375 		 * is "not so fast".
376 		 * If the two DSCR values are different, we read again the CTRLA
377 		 * then the DSCR till two consecutive read values from DSCR are
378 		 * equal or till the maxium trials is reach.
379 		 * This algorithm is very unlikely not to find a stable value for
380 		 * DSCR.
381 		 */
382 
383 		dscr = channel_readl(atchan, DSCR);
384 		rmb(); /* ensure DSCR is read before CTRLA */
385 		ctrla = channel_readl(atchan, CTRLA);
386 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 			u32 new_dscr;
388 
389 			rmb(); /* ensure DSCR is read after CTRLA */
390 			new_dscr = channel_readl(atchan, DSCR);
391 
392 			/*
393 			 * If the DSCR register value has not changed inside the
394 			 * DMA controller since the previous read, we assume
395 			 * that both the dscr and ctrla values refers to the
396 			 * very same descriptor.
397 			 */
398 			if (likely(new_dscr == dscr))
399 				break;
400 
401 			/*
402 			 * DSCR has changed inside the DMA controller, so the
403 			 * previouly read value of CTRLA may refer to an already
404 			 * processed descriptor hence could be outdated.
405 			 * We need to update ctrla to match the current
406 			 * descriptor.
407 			 */
408 			dscr = new_dscr;
409 			rmb(); /* ensure DSCR is read before CTRLA */
410 			ctrla = channel_readl(atchan, CTRLA);
411 		}
412 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 			return -ETIMEDOUT;
414 
415 		/* for the first descriptor we can be more accurate */
416 		if (desc_first->lli.dscr == dscr)
417 			return atc_calc_bytes_left(ret, ctrla);
418 
419 		ret -= desc_first->len;
420 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 			if (desc->lli.dscr == dscr)
422 				break;
423 
424 			ret -= desc->len;
425 		}
426 
427 		/*
428 		 * For the current descriptor in the chain we can calculate
429 		 * the remaining bytes using the channel's register.
430 		 */
431 		ret = atc_calc_bytes_left(ret, ctrla);
432 	} else {
433 		/* single transfer */
434 		ctrla = channel_readl(atchan, CTRLA);
435 		ret = atc_calc_bytes_left(ret, ctrla);
436 	}
437 
438 	return ret;
439 }
440 
441 /**
442  * atc_chain_complete - finish work for one transaction chain
443  * @atchan: channel we work on
444  * @desc: descriptor at the head of the chain we want do complete
445  *
446  * Called with atchan->lock held and bh disabled */
447 static void
448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449 {
450 	struct dma_async_tx_descriptor	*txd = &desc->txd;
451 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
452 
453 	dev_vdbg(chan2dev(&atchan->chan_common),
454 		"descriptor %u complete\n", txd->cookie);
455 
456 	/* mark the descriptor as complete for non cyclic cases only */
457 	if (!atc_chan_is_cyclic(atchan))
458 		dma_cookie_complete(txd);
459 
460 	/* If the transfer was a memset, free our temporary buffer */
461 	if (desc->memset_buffer) {
462 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463 			      desc->memset_paddr);
464 		desc->memset_buffer = false;
465 	}
466 
467 	/* move children to free_list */
468 	list_splice_init(&desc->tx_list, &atchan->free_list);
469 	/* move myself to free_list */
470 	list_move(&desc->desc_node, &atchan->free_list);
471 
472 	dma_descriptor_unmap(txd);
473 	/* for cyclic transfers,
474 	 * no need to replay callback function while stopping */
475 	if (!atc_chan_is_cyclic(atchan)) {
476 		/*
477 		 * The API requires that no submissions are done from a
478 		 * callback, so we don't need to drop the lock here
479 		 */
480 		dmaengine_desc_get_callback_invoke(txd, NULL);
481 	}
482 
483 	dma_run_dependencies(txd);
484 }
485 
486 /**
487  * atc_complete_all - finish work for all transactions
488  * @atchan: channel to complete transactions for
489  *
490  * Eventually submit queued descriptors if any
491  *
492  * Assume channel is idle while calling this function
493  * Called with atchan->lock held and bh disabled
494  */
495 static void atc_complete_all(struct at_dma_chan *atchan)
496 {
497 	struct at_desc *desc, *_desc;
498 	LIST_HEAD(list);
499 
500 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
501 
502 	/*
503 	 * Submit queued descriptors ASAP, i.e. before we go through
504 	 * the completed ones.
505 	 */
506 	if (!list_empty(&atchan->queue))
507 		atc_dostart(atchan, atc_first_queued(atchan));
508 	/* empty active_list now it is completed */
509 	list_splice_init(&atchan->active_list, &list);
510 	/* empty queue list by moving descriptors (if any) to active_list */
511 	list_splice_init(&atchan->queue, &atchan->active_list);
512 
513 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
514 		atc_chain_complete(atchan, desc);
515 }
516 
517 /**
518  * atc_advance_work - at the end of a transaction, move forward
519  * @atchan: channel where the transaction ended
520  *
521  * Called with atchan->lock held and bh disabled
522  */
523 static void atc_advance_work(struct at_dma_chan *atchan)
524 {
525 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
526 
527 	if (atc_chan_is_enabled(atchan))
528 		return;
529 
530 	if (list_empty(&atchan->active_list) ||
531 	    list_is_singular(&atchan->active_list)) {
532 		atc_complete_all(atchan);
533 	} else {
534 		atc_chain_complete(atchan, atc_first_active(atchan));
535 		/* advance work */
536 		atc_dostart(atchan, atc_first_active(atchan));
537 	}
538 }
539 
540 
541 /**
542  * atc_handle_error - handle errors reported by DMA controller
543  * @atchan: channel where error occurs
544  *
545  * Called with atchan->lock held and bh disabled
546  */
547 static void atc_handle_error(struct at_dma_chan *atchan)
548 {
549 	struct at_desc *bad_desc;
550 	struct at_desc *child;
551 
552 	/*
553 	 * The descriptor currently at the head of the active list is
554 	 * broked. Since we don't have any way to report errors, we'll
555 	 * just have to scream loudly and try to carry on.
556 	 */
557 	bad_desc = atc_first_active(atchan);
558 	list_del_init(&bad_desc->desc_node);
559 
560 	/* As we are stopped, take advantage to push queued descriptors
561 	 * in active_list */
562 	list_splice_init(&atchan->queue, atchan->active_list.prev);
563 
564 	/* Try to restart the controller */
565 	if (!list_empty(&atchan->active_list))
566 		atc_dostart(atchan, atc_first_active(atchan));
567 
568 	/*
569 	 * KERN_CRITICAL may seem harsh, but since this only happens
570 	 * when someone submits a bad physical address in a
571 	 * descriptor, we should consider ourselves lucky that the
572 	 * controller flagged an error instead of scribbling over
573 	 * random memory locations.
574 	 */
575 	dev_crit(chan2dev(&atchan->chan_common),
576 			"Bad descriptor submitted for DMA!\n");
577 	dev_crit(chan2dev(&atchan->chan_common),
578 			"  cookie: %d\n", bad_desc->txd.cookie);
579 	atc_dump_lli(atchan, &bad_desc->lli);
580 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
581 		atc_dump_lli(atchan, &child->lli);
582 
583 	/* Pretend the descriptor completed successfully */
584 	atc_chain_complete(atchan, bad_desc);
585 }
586 
587 /**
588  * atc_handle_cyclic - at the end of a period, run callback function
589  * @atchan: channel used for cyclic operations
590  *
591  * Called with atchan->lock held and bh disabled
592  */
593 static void atc_handle_cyclic(struct at_dma_chan *atchan)
594 {
595 	struct at_desc			*first = atc_first_active(atchan);
596 	struct dma_async_tx_descriptor	*txd = &first->txd;
597 
598 	dev_vdbg(chan2dev(&atchan->chan_common),
599 			"new cyclic period llp 0x%08x\n",
600 			channel_readl(atchan, DSCR));
601 
602 	dmaengine_desc_get_callback_invoke(txd, NULL);
603 }
604 
605 /*--  IRQ & Tasklet  ---------------------------------------------------*/
606 
607 static void atc_tasklet(unsigned long data)
608 {
609 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
610 	unsigned long flags;
611 
612 	spin_lock_irqsave(&atchan->lock, flags);
613 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
614 		atc_handle_error(atchan);
615 	else if (atc_chan_is_cyclic(atchan))
616 		atc_handle_cyclic(atchan);
617 	else
618 		atc_advance_work(atchan);
619 
620 	spin_unlock_irqrestore(&atchan->lock, flags);
621 }
622 
623 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
624 {
625 	struct at_dma		*atdma = (struct at_dma *)dev_id;
626 	struct at_dma_chan	*atchan;
627 	int			i;
628 	u32			status, pending, imr;
629 	int			ret = IRQ_NONE;
630 
631 	do {
632 		imr = dma_readl(atdma, EBCIMR);
633 		status = dma_readl(atdma, EBCISR);
634 		pending = status & imr;
635 
636 		if (!pending)
637 			break;
638 
639 		dev_vdbg(atdma->dma_common.dev,
640 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
641 			 status, imr, pending);
642 
643 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
644 			atchan = &atdma->chan[i];
645 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
646 				if (pending & AT_DMA_ERR(i)) {
647 					/* Disable channel on AHB error */
648 					dma_writel(atdma, CHDR,
649 						AT_DMA_RES(i) | atchan->mask);
650 					/* Give information to tasklet */
651 					set_bit(ATC_IS_ERROR, &atchan->status);
652 				}
653 				tasklet_schedule(&atchan->tasklet);
654 				ret = IRQ_HANDLED;
655 			}
656 		}
657 
658 	} while (pending);
659 
660 	return ret;
661 }
662 
663 
664 /*--  DMA Engine API  --------------------------------------------------*/
665 
666 /**
667  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
668  * @desc: descriptor at the head of the transaction chain
669  *
670  * Queue chain if DMA engine is working already
671  *
672  * Cookie increment and adding to active_list or queue must be atomic
673  */
674 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
675 {
676 	struct at_desc		*desc = txd_to_at_desc(tx);
677 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
678 	dma_cookie_t		cookie;
679 	unsigned long		flags;
680 
681 	spin_lock_irqsave(&atchan->lock, flags);
682 	cookie = dma_cookie_assign(tx);
683 
684 	if (list_empty(&atchan->active_list)) {
685 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
686 				desc->txd.cookie);
687 		atc_dostart(atchan, desc);
688 		list_add_tail(&desc->desc_node, &atchan->active_list);
689 	} else {
690 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
691 				desc->txd.cookie);
692 		list_add_tail(&desc->desc_node, &atchan->queue);
693 	}
694 
695 	spin_unlock_irqrestore(&atchan->lock, flags);
696 
697 	return cookie;
698 }
699 
700 /**
701  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
702  * @chan: the channel to prepare operation on
703  * @xt: Interleaved transfer template
704  * @flags: tx descriptor status flags
705  */
706 static struct dma_async_tx_descriptor *
707 atc_prep_dma_interleaved(struct dma_chan *chan,
708 			 struct dma_interleaved_template *xt,
709 			 unsigned long flags)
710 {
711 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
712 	struct data_chunk	*first = xt->sgl;
713 	struct at_desc		*desc = NULL;
714 	size_t			xfer_count;
715 	unsigned int		dwidth;
716 	u32			ctrla;
717 	u32			ctrlb;
718 	size_t			len = 0;
719 	int			i;
720 
721 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
722 		return NULL;
723 
724 	dev_info(chan2dev(chan),
725 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
726 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
727 		xt->frame_size, flags);
728 
729 	/*
730 	 * The controller can only "skip" X bytes every Y bytes, so we
731 	 * need to make sure we are given a template that fit that
732 	 * description, ie a template with chunks that always have the
733 	 * same size, with the same ICGs.
734 	 */
735 	for (i = 0; i < xt->frame_size; i++) {
736 		struct data_chunk *chunk = xt->sgl + i;
737 
738 		if ((chunk->size != xt->sgl->size) ||
739 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
740 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
741 			dev_err(chan2dev(chan),
742 				"%s: the controller can transfer only identical chunks\n",
743 				__func__);
744 			return NULL;
745 		}
746 
747 		len += chunk->size;
748 	}
749 
750 	dwidth = atc_get_xfer_width(xt->src_start,
751 				    xt->dst_start, len);
752 
753 	xfer_count = len >> dwidth;
754 	if (xfer_count > ATC_BTSIZE_MAX) {
755 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
756 		return NULL;
757 	}
758 
759 	ctrla = ATC_SRC_WIDTH(dwidth) |
760 		ATC_DST_WIDTH(dwidth);
761 
762 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
763 		| ATC_SRC_ADDR_MODE_INCR
764 		| ATC_DST_ADDR_MODE_INCR
765 		| ATC_SRC_PIP
766 		| ATC_DST_PIP
767 		| ATC_FC_MEM2MEM;
768 
769 	/* create the transfer */
770 	desc = atc_desc_get(atchan);
771 	if (!desc) {
772 		dev_err(chan2dev(chan),
773 			"%s: couldn't allocate our descriptor\n", __func__);
774 		return NULL;
775 	}
776 
777 	desc->lli.saddr = xt->src_start;
778 	desc->lli.daddr = xt->dst_start;
779 	desc->lli.ctrla = ctrla | xfer_count;
780 	desc->lli.ctrlb = ctrlb;
781 
782 	desc->boundary = first->size >> dwidth;
783 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
784 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
785 
786 	desc->txd.cookie = -EBUSY;
787 	desc->total_len = desc->len = len;
788 
789 	/* set end-of-link to the last link descriptor of list*/
790 	set_desc_eol(desc);
791 
792 	desc->txd.flags = flags; /* client is in control of this ack */
793 
794 	return &desc->txd;
795 }
796 
797 /**
798  * atc_prep_dma_memcpy - prepare a memcpy operation
799  * @chan: the channel to prepare operation on
800  * @dest: operation virtual destination address
801  * @src: operation virtual source address
802  * @len: operation length
803  * @flags: tx descriptor status flags
804  */
805 static struct dma_async_tx_descriptor *
806 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
807 		size_t len, unsigned long flags)
808 {
809 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
810 	struct at_desc		*desc = NULL;
811 	struct at_desc		*first = NULL;
812 	struct at_desc		*prev = NULL;
813 	size_t			xfer_count;
814 	size_t			offset;
815 	unsigned int		src_width;
816 	unsigned int		dst_width;
817 	u32			ctrla;
818 	u32			ctrlb;
819 
820 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
821 			&dest, &src, len, flags);
822 
823 	if (unlikely(!len)) {
824 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
825 		return NULL;
826 	}
827 
828 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
829 		| ATC_SRC_ADDR_MODE_INCR
830 		| ATC_DST_ADDR_MODE_INCR
831 		| ATC_FC_MEM2MEM;
832 
833 	/*
834 	 * We can be a lot more clever here, but this should take care
835 	 * of the most common optimization.
836 	 */
837 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
838 
839 	ctrla = ATC_SRC_WIDTH(src_width) |
840 		ATC_DST_WIDTH(dst_width);
841 
842 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
843 		xfer_count = min_t(size_t, (len - offset) >> src_width,
844 				ATC_BTSIZE_MAX);
845 
846 		desc = atc_desc_get(atchan);
847 		if (!desc)
848 			goto err_desc_get;
849 
850 		desc->lli.saddr = src + offset;
851 		desc->lli.daddr = dest + offset;
852 		desc->lli.ctrla = ctrla | xfer_count;
853 		desc->lli.ctrlb = ctrlb;
854 
855 		desc->txd.cookie = 0;
856 		desc->len = xfer_count << src_width;
857 
858 		atc_desc_chain(&first, &prev, desc);
859 	}
860 
861 	/* First descriptor of the chain embedds additional information */
862 	first->txd.cookie = -EBUSY;
863 	first->total_len = len;
864 
865 	/* set end-of-link to the last link descriptor of list*/
866 	set_desc_eol(desc);
867 
868 	first->txd.flags = flags; /* client is in control of this ack */
869 
870 	return &first->txd;
871 
872 err_desc_get:
873 	atc_desc_put(atchan, first);
874 	return NULL;
875 }
876 
877 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
878 					      dma_addr_t psrc,
879 					      dma_addr_t pdst,
880 					      size_t len)
881 {
882 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
883 	struct at_desc *desc;
884 	size_t xfer_count;
885 
886 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
887 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
888 		ATC_SRC_ADDR_MODE_FIXED |
889 		ATC_DST_ADDR_MODE_INCR |
890 		ATC_FC_MEM2MEM;
891 
892 	xfer_count = len >> 2;
893 	if (xfer_count > ATC_BTSIZE_MAX) {
894 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
895 			__func__);
896 		return NULL;
897 	}
898 
899 	desc = atc_desc_get(atchan);
900 	if (!desc) {
901 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
902 			__func__);
903 		return NULL;
904 	}
905 
906 	desc->lli.saddr = psrc;
907 	desc->lli.daddr = pdst;
908 	desc->lli.ctrla = ctrla | xfer_count;
909 	desc->lli.ctrlb = ctrlb;
910 
911 	desc->txd.cookie = 0;
912 	desc->len = len;
913 
914 	return desc;
915 }
916 
917 /**
918  * atc_prep_dma_memset - prepare a memcpy operation
919  * @chan: the channel to prepare operation on
920  * @dest: operation virtual destination address
921  * @value: value to set memory buffer to
922  * @len: operation length
923  * @flags: tx descriptor status flags
924  */
925 static struct dma_async_tx_descriptor *
926 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
927 		    size_t len, unsigned long flags)
928 {
929 	struct at_dma		*atdma = to_at_dma(chan->device);
930 	struct at_desc		*desc;
931 	void __iomem		*vaddr;
932 	dma_addr_t		paddr;
933 
934 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
935 		&dest, value, len, flags);
936 
937 	if (unlikely(!len)) {
938 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
939 		return NULL;
940 	}
941 
942 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
943 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
944 			__func__);
945 		return NULL;
946 	}
947 
948 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
949 	if (!vaddr) {
950 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
951 			__func__);
952 		return NULL;
953 	}
954 	*(u32*)vaddr = value;
955 
956 	desc = atc_create_memset_desc(chan, paddr, dest, len);
957 	if (!desc) {
958 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
959 			__func__);
960 		goto err_free_buffer;
961 	}
962 
963 	desc->memset_paddr = paddr;
964 	desc->memset_vaddr = vaddr;
965 	desc->memset_buffer = true;
966 
967 	desc->txd.cookie = -EBUSY;
968 	desc->total_len = len;
969 
970 	/* set end-of-link on the descriptor */
971 	set_desc_eol(desc);
972 
973 	desc->txd.flags = flags;
974 
975 	return &desc->txd;
976 
977 err_free_buffer:
978 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
979 	return NULL;
980 }
981 
982 static struct dma_async_tx_descriptor *
983 atc_prep_dma_memset_sg(struct dma_chan *chan,
984 		       struct scatterlist *sgl,
985 		       unsigned int sg_len, int value,
986 		       unsigned long flags)
987 {
988 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
989 	struct at_dma		*atdma = to_at_dma(chan->device);
990 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
991 	struct scatterlist	*sg;
992 	void __iomem		*vaddr;
993 	dma_addr_t		paddr;
994 	size_t			total_len = 0;
995 	int			i;
996 
997 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
998 		 value, sg_len, flags);
999 
1000 	if (unlikely(!sgl || !sg_len)) {
1001 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1002 			__func__);
1003 		return NULL;
1004 	}
1005 
1006 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1007 	if (!vaddr) {
1008 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1009 			__func__);
1010 		return NULL;
1011 	}
1012 	*(u32*)vaddr = value;
1013 
1014 	for_each_sg(sgl, sg, sg_len, i) {
1015 		dma_addr_t dest = sg_dma_address(sg);
1016 		size_t len = sg_dma_len(sg);
1017 
1018 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1019 			 __func__, &dest, len);
1020 
1021 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1022 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1023 				__func__);
1024 			goto err_put_desc;
1025 		}
1026 
1027 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1028 		if (!desc)
1029 			goto err_put_desc;
1030 
1031 		atc_desc_chain(&first, &prev, desc);
1032 
1033 		total_len += len;
1034 	}
1035 
1036 	/*
1037 	 * Only set the buffer pointers on the last descriptor to
1038 	 * avoid free'ing while we have our transfer still going
1039 	 */
1040 	desc->memset_paddr = paddr;
1041 	desc->memset_vaddr = vaddr;
1042 	desc->memset_buffer = true;
1043 
1044 	first->txd.cookie = -EBUSY;
1045 	first->total_len = total_len;
1046 
1047 	/* set end-of-link on the descriptor */
1048 	set_desc_eol(desc);
1049 
1050 	first->txd.flags = flags;
1051 
1052 	return &first->txd;
1053 
1054 err_put_desc:
1055 	atc_desc_put(atchan, first);
1056 	return NULL;
1057 }
1058 
1059 /**
1060  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1061  * @chan: DMA channel
1062  * @sgl: scatterlist to transfer to/from
1063  * @sg_len: number of entries in @scatterlist
1064  * @direction: DMA direction
1065  * @flags: tx descriptor status flags
1066  * @context: transaction context (ignored)
1067  */
1068 static struct dma_async_tx_descriptor *
1069 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1070 		unsigned int sg_len, enum dma_transfer_direction direction,
1071 		unsigned long flags, void *context)
1072 {
1073 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1074 	struct at_dma_slave	*atslave = chan->private;
1075 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1076 	struct at_desc		*first = NULL;
1077 	struct at_desc		*prev = NULL;
1078 	u32			ctrla;
1079 	u32			ctrlb;
1080 	dma_addr_t		reg;
1081 	unsigned int		reg_width;
1082 	unsigned int		mem_width;
1083 	unsigned int		i;
1084 	struct scatterlist	*sg;
1085 	size_t			total_len = 0;
1086 
1087 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1088 			sg_len,
1089 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1090 			flags);
1091 
1092 	if (unlikely(!atslave || !sg_len)) {
1093 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1094 		return NULL;
1095 	}
1096 
1097 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1098 		| ATC_DCSIZE(sconfig->dst_maxburst);
1099 	ctrlb = ATC_IEN;
1100 
1101 	switch (direction) {
1102 	case DMA_MEM_TO_DEV:
1103 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1104 		ctrla |=  ATC_DST_WIDTH(reg_width);
1105 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1106 			| ATC_SRC_ADDR_MODE_INCR
1107 			| ATC_FC_MEM2PER
1108 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1109 		reg = sconfig->dst_addr;
1110 		for_each_sg(sgl, sg, sg_len, i) {
1111 			struct at_desc	*desc;
1112 			u32		len;
1113 			u32		mem;
1114 
1115 			desc = atc_desc_get(atchan);
1116 			if (!desc)
1117 				goto err_desc_get;
1118 
1119 			mem = sg_dma_address(sg);
1120 			len = sg_dma_len(sg);
1121 			if (unlikely(!len)) {
1122 				dev_dbg(chan2dev(chan),
1123 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1124 				goto err;
1125 			}
1126 			mem_width = 2;
1127 			if (unlikely(mem & 3 || len & 3))
1128 				mem_width = 0;
1129 
1130 			desc->lli.saddr = mem;
1131 			desc->lli.daddr = reg;
1132 			desc->lli.ctrla = ctrla
1133 					| ATC_SRC_WIDTH(mem_width)
1134 					| len >> mem_width;
1135 			desc->lli.ctrlb = ctrlb;
1136 			desc->len = len;
1137 
1138 			atc_desc_chain(&first, &prev, desc);
1139 			total_len += len;
1140 		}
1141 		break;
1142 	case DMA_DEV_TO_MEM:
1143 		reg_width = convert_buswidth(sconfig->src_addr_width);
1144 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1145 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1146 			| ATC_SRC_ADDR_MODE_FIXED
1147 			| ATC_FC_PER2MEM
1148 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1149 
1150 		reg = sconfig->src_addr;
1151 		for_each_sg(sgl, sg, sg_len, i) {
1152 			struct at_desc	*desc;
1153 			u32		len;
1154 			u32		mem;
1155 
1156 			desc = atc_desc_get(atchan);
1157 			if (!desc)
1158 				goto err_desc_get;
1159 
1160 			mem = sg_dma_address(sg);
1161 			len = sg_dma_len(sg);
1162 			if (unlikely(!len)) {
1163 				dev_dbg(chan2dev(chan),
1164 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1165 				goto err;
1166 			}
1167 			mem_width = 2;
1168 			if (unlikely(mem & 3 || len & 3))
1169 				mem_width = 0;
1170 
1171 			desc->lli.saddr = reg;
1172 			desc->lli.daddr = mem;
1173 			desc->lli.ctrla = ctrla
1174 					| ATC_DST_WIDTH(mem_width)
1175 					| len >> reg_width;
1176 			desc->lli.ctrlb = ctrlb;
1177 			desc->len = len;
1178 
1179 			atc_desc_chain(&first, &prev, desc);
1180 			total_len += len;
1181 		}
1182 		break;
1183 	default:
1184 		return NULL;
1185 	}
1186 
1187 	/* set end-of-link to the last link descriptor of list*/
1188 	set_desc_eol(prev);
1189 
1190 	/* First descriptor of the chain embedds additional information */
1191 	first->txd.cookie = -EBUSY;
1192 	first->total_len = total_len;
1193 
1194 	/* first link descriptor of list is responsible of flags */
1195 	first->txd.flags = flags; /* client is in control of this ack */
1196 
1197 	return &first->txd;
1198 
1199 err_desc_get:
1200 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1201 err:
1202 	atc_desc_put(atchan, first);
1203 	return NULL;
1204 }
1205 
1206 /**
1207  * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1208  * @chan: the channel to prepare operation on
1209  * @dst_sg: destination scatterlist
1210  * @dst_nents: number of destination scatterlist entries
1211  * @src_sg: source scatterlist
1212  * @src_nents: number of source scatterlist entries
1213  * @flags: tx descriptor status flags
1214  */
1215 static struct dma_async_tx_descriptor *
1216 atc_prep_dma_sg(struct dma_chan *chan,
1217 		struct scatterlist *dst_sg, unsigned int dst_nents,
1218 		struct scatterlist *src_sg, unsigned int src_nents,
1219 		unsigned long flags)
1220 {
1221 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1222 	struct at_desc		*desc = NULL;
1223 	struct at_desc		*first = NULL;
1224 	struct at_desc		*prev = NULL;
1225 	unsigned int		src_width;
1226 	unsigned int		dst_width;
1227 	size_t			xfer_count;
1228 	u32			ctrla;
1229 	u32			ctrlb;
1230 	size_t			dst_len = 0, src_len = 0;
1231 	dma_addr_t		dst = 0, src = 0;
1232 	size_t			len = 0, total_len = 0;
1233 
1234 	if (unlikely(dst_nents == 0 || src_nents == 0))
1235 		return NULL;
1236 
1237 	if (unlikely(dst_sg == NULL || src_sg == NULL))
1238 		return NULL;
1239 
1240 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1241 		| ATC_SRC_ADDR_MODE_INCR
1242 		| ATC_DST_ADDR_MODE_INCR
1243 		| ATC_FC_MEM2MEM;
1244 
1245 	/*
1246 	 * loop until there is either no more source or no more destination
1247 	 * scatterlist entry
1248 	 */
1249 	while (true) {
1250 
1251 		/* prepare the next transfer */
1252 		if (dst_len == 0) {
1253 
1254 			/* no more destination scatterlist entries */
1255 			if (!dst_sg || !dst_nents)
1256 				break;
1257 
1258 			dst = sg_dma_address(dst_sg);
1259 			dst_len = sg_dma_len(dst_sg);
1260 
1261 			dst_sg = sg_next(dst_sg);
1262 			dst_nents--;
1263 		}
1264 
1265 		if (src_len == 0) {
1266 
1267 			/* no more source scatterlist entries */
1268 			if (!src_sg || !src_nents)
1269 				break;
1270 
1271 			src = sg_dma_address(src_sg);
1272 			src_len = sg_dma_len(src_sg);
1273 
1274 			src_sg = sg_next(src_sg);
1275 			src_nents--;
1276 		}
1277 
1278 		len = min_t(size_t, src_len, dst_len);
1279 		if (len == 0)
1280 			continue;
1281 
1282 		/* take care for the alignment */
1283 		src_width = dst_width = atc_get_xfer_width(src, dst, len);
1284 
1285 		ctrla = ATC_SRC_WIDTH(src_width) |
1286 			ATC_DST_WIDTH(dst_width);
1287 
1288 		/*
1289 		 * The number of transfers to set up refer to the source width
1290 		 * that depends on the alignment.
1291 		 */
1292 		xfer_count = len >> src_width;
1293 		if (xfer_count > ATC_BTSIZE_MAX) {
1294 			xfer_count = ATC_BTSIZE_MAX;
1295 			len = ATC_BTSIZE_MAX << src_width;
1296 		}
1297 
1298 		/* create the transfer */
1299 		desc = atc_desc_get(atchan);
1300 		if (!desc)
1301 			goto err_desc_get;
1302 
1303 		desc->lli.saddr = src;
1304 		desc->lli.daddr = dst;
1305 		desc->lli.ctrla = ctrla | xfer_count;
1306 		desc->lli.ctrlb = ctrlb;
1307 
1308 		desc->txd.cookie = 0;
1309 		desc->len = len;
1310 
1311 		atc_desc_chain(&first, &prev, desc);
1312 
1313 		/* update the lengths and addresses for the next loop cycle */
1314 		dst_len -= len;
1315 		src_len -= len;
1316 		dst += len;
1317 		src += len;
1318 
1319 		total_len += len;
1320 	}
1321 
1322 	/* First descriptor of the chain embedds additional information */
1323 	first->txd.cookie = -EBUSY;
1324 	first->total_len = total_len;
1325 
1326 	/* set end-of-link to the last link descriptor of list*/
1327 	set_desc_eol(desc);
1328 
1329 	first->txd.flags = flags; /* client is in control of this ack */
1330 
1331 	return &first->txd;
1332 
1333 err_desc_get:
1334 	atc_desc_put(atchan, first);
1335 	return NULL;
1336 }
1337 
1338 /**
1339  * atc_dma_cyclic_check_values
1340  * Check for too big/unaligned periods and unaligned DMA buffer
1341  */
1342 static int
1343 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1344 		size_t period_len)
1345 {
1346 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1347 		goto err_out;
1348 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1349 		goto err_out;
1350 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1351 		goto err_out;
1352 
1353 	return 0;
1354 
1355 err_out:
1356 	return -EINVAL;
1357 }
1358 
1359 /**
1360  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1361  */
1362 static int
1363 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1364 		unsigned int period_index, dma_addr_t buf_addr,
1365 		unsigned int reg_width, size_t period_len,
1366 		enum dma_transfer_direction direction)
1367 {
1368 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1369 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1370 	u32			ctrla;
1371 
1372 	/* prepare common CRTLA value */
1373 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1374 		| ATC_DCSIZE(sconfig->dst_maxburst)
1375 		| ATC_DST_WIDTH(reg_width)
1376 		| ATC_SRC_WIDTH(reg_width)
1377 		| period_len >> reg_width;
1378 
1379 	switch (direction) {
1380 	case DMA_MEM_TO_DEV:
1381 		desc->lli.saddr = buf_addr + (period_len * period_index);
1382 		desc->lli.daddr = sconfig->dst_addr;
1383 		desc->lli.ctrla = ctrla;
1384 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1385 				| ATC_SRC_ADDR_MODE_INCR
1386 				| ATC_FC_MEM2PER
1387 				| ATC_SIF(atchan->mem_if)
1388 				| ATC_DIF(atchan->per_if);
1389 		desc->len = period_len;
1390 		break;
1391 
1392 	case DMA_DEV_TO_MEM:
1393 		desc->lli.saddr = sconfig->src_addr;
1394 		desc->lli.daddr = buf_addr + (period_len * period_index);
1395 		desc->lli.ctrla = ctrla;
1396 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1397 				| ATC_SRC_ADDR_MODE_FIXED
1398 				| ATC_FC_PER2MEM
1399 				| ATC_SIF(atchan->per_if)
1400 				| ATC_DIF(atchan->mem_if);
1401 		desc->len = period_len;
1402 		break;
1403 
1404 	default:
1405 		return -EINVAL;
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 /**
1412  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1413  * @chan: the DMA channel to prepare
1414  * @buf_addr: physical DMA address where the buffer starts
1415  * @buf_len: total number of bytes for the entire buffer
1416  * @period_len: number of bytes for each period
1417  * @direction: transfer direction, to or from device
1418  * @flags: tx descriptor status flags
1419  */
1420 static struct dma_async_tx_descriptor *
1421 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1422 		size_t period_len, enum dma_transfer_direction direction,
1423 		unsigned long flags)
1424 {
1425 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1426 	struct at_dma_slave	*atslave = chan->private;
1427 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1428 	struct at_desc		*first = NULL;
1429 	struct at_desc		*prev = NULL;
1430 	unsigned long		was_cyclic;
1431 	unsigned int		reg_width;
1432 	unsigned int		periods = buf_len / period_len;
1433 	unsigned int		i;
1434 
1435 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1436 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1437 			&buf_addr,
1438 			periods, buf_len, period_len);
1439 
1440 	if (unlikely(!atslave || !buf_len || !period_len)) {
1441 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1442 		return NULL;
1443 	}
1444 
1445 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1446 	if (was_cyclic) {
1447 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1448 		return NULL;
1449 	}
1450 
1451 	if (unlikely(!is_slave_direction(direction)))
1452 		goto err_out;
1453 
1454 	if (sconfig->direction == DMA_MEM_TO_DEV)
1455 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1456 	else
1457 		reg_width = convert_buswidth(sconfig->src_addr_width);
1458 
1459 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1460 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1461 		goto err_out;
1462 
1463 	/* build cyclic linked list */
1464 	for (i = 0; i < periods; i++) {
1465 		struct at_desc	*desc;
1466 
1467 		desc = atc_desc_get(atchan);
1468 		if (!desc)
1469 			goto err_desc_get;
1470 
1471 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1472 					     reg_width, period_len, direction))
1473 			goto err_desc_get;
1474 
1475 		atc_desc_chain(&first, &prev, desc);
1476 	}
1477 
1478 	/* lets make a cyclic list */
1479 	prev->lli.dscr = first->txd.phys;
1480 
1481 	/* First descriptor of the chain embedds additional information */
1482 	first->txd.cookie = -EBUSY;
1483 	first->total_len = buf_len;
1484 
1485 	return &first->txd;
1486 
1487 err_desc_get:
1488 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1489 	atc_desc_put(atchan, first);
1490 err_out:
1491 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1492 	return NULL;
1493 }
1494 
1495 static int atc_config(struct dma_chan *chan,
1496 		      struct dma_slave_config *sconfig)
1497 {
1498 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1499 
1500 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1501 
1502 	/* Check if it is chan is configured for slave transfers */
1503 	if (!chan->private)
1504 		return -EINVAL;
1505 
1506 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1507 
1508 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1509 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1510 
1511 	return 0;
1512 }
1513 
1514 static int atc_pause(struct dma_chan *chan)
1515 {
1516 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1517 	struct at_dma		*atdma = to_at_dma(chan->device);
1518 	int			chan_id = atchan->chan_common.chan_id;
1519 	unsigned long		flags;
1520 
1521 	LIST_HEAD(list);
1522 
1523 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1524 
1525 	spin_lock_irqsave(&atchan->lock, flags);
1526 
1527 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1528 	set_bit(ATC_IS_PAUSED, &atchan->status);
1529 
1530 	spin_unlock_irqrestore(&atchan->lock, flags);
1531 
1532 	return 0;
1533 }
1534 
1535 static int atc_resume(struct dma_chan *chan)
1536 {
1537 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1538 	struct at_dma		*atdma = to_at_dma(chan->device);
1539 	int			chan_id = atchan->chan_common.chan_id;
1540 	unsigned long		flags;
1541 
1542 	LIST_HEAD(list);
1543 
1544 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1545 
1546 	if (!atc_chan_is_paused(atchan))
1547 		return 0;
1548 
1549 	spin_lock_irqsave(&atchan->lock, flags);
1550 
1551 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1552 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1553 
1554 	spin_unlock_irqrestore(&atchan->lock, flags);
1555 
1556 	return 0;
1557 }
1558 
1559 static int atc_terminate_all(struct dma_chan *chan)
1560 {
1561 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1562 	struct at_dma		*atdma = to_at_dma(chan->device);
1563 	int			chan_id = atchan->chan_common.chan_id;
1564 	struct at_desc		*desc, *_desc;
1565 	unsigned long		flags;
1566 
1567 	LIST_HEAD(list);
1568 
1569 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1570 
1571 	/*
1572 	 * This is only called when something went wrong elsewhere, so
1573 	 * we don't really care about the data. Just disable the
1574 	 * channel. We still have to poll the channel enable bit due
1575 	 * to AHB/HSB limitations.
1576 	 */
1577 	spin_lock_irqsave(&atchan->lock, flags);
1578 
1579 	/* disabling channel: must also remove suspend state */
1580 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1581 
1582 	/* confirm that this channel is disabled */
1583 	while (dma_readl(atdma, CHSR) & atchan->mask)
1584 		cpu_relax();
1585 
1586 	/* active_list entries will end up before queued entries */
1587 	list_splice_init(&atchan->queue, &list);
1588 	list_splice_init(&atchan->active_list, &list);
1589 
1590 	/* Flush all pending and queued descriptors */
1591 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1592 		atc_chain_complete(atchan, desc);
1593 
1594 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1595 	/* if channel dedicated to cyclic operations, free it */
1596 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1597 
1598 	spin_unlock_irqrestore(&atchan->lock, flags);
1599 
1600 	return 0;
1601 }
1602 
1603 /**
1604  * atc_tx_status - poll for transaction completion
1605  * @chan: DMA channel
1606  * @cookie: transaction identifier to check status of
1607  * @txstate: if not %NULL updated with transaction state
1608  *
1609  * If @txstate is passed in, upon return it reflect the driver
1610  * internal state and can be used with dma_async_is_complete() to check
1611  * the status of multiple cookies without re-checking hardware state.
1612  */
1613 static enum dma_status
1614 atc_tx_status(struct dma_chan *chan,
1615 		dma_cookie_t cookie,
1616 		struct dma_tx_state *txstate)
1617 {
1618 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1619 	unsigned long		flags;
1620 	enum dma_status		ret;
1621 	int bytes = 0;
1622 
1623 	ret = dma_cookie_status(chan, cookie, txstate);
1624 	if (ret == DMA_COMPLETE)
1625 		return ret;
1626 	/*
1627 	 * There's no point calculating the residue if there's
1628 	 * no txstate to store the value.
1629 	 */
1630 	if (!txstate)
1631 		return DMA_ERROR;
1632 
1633 	spin_lock_irqsave(&atchan->lock, flags);
1634 
1635 	/*  Get number of bytes left in the active transactions */
1636 	bytes = atc_get_bytes_left(chan, cookie);
1637 
1638 	spin_unlock_irqrestore(&atchan->lock, flags);
1639 
1640 	if (unlikely(bytes < 0)) {
1641 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1642 		return DMA_ERROR;
1643 	} else {
1644 		dma_set_residue(txstate, bytes);
1645 	}
1646 
1647 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1648 		 ret, cookie, bytes);
1649 
1650 	return ret;
1651 }
1652 
1653 /**
1654  * atc_issue_pending - try to finish work
1655  * @chan: target DMA channel
1656  */
1657 static void atc_issue_pending(struct dma_chan *chan)
1658 {
1659 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1660 	unsigned long		flags;
1661 
1662 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1663 
1664 	/* Not needed for cyclic transfers */
1665 	if (atc_chan_is_cyclic(atchan))
1666 		return;
1667 
1668 	spin_lock_irqsave(&atchan->lock, flags);
1669 	atc_advance_work(atchan);
1670 	spin_unlock_irqrestore(&atchan->lock, flags);
1671 }
1672 
1673 /**
1674  * atc_alloc_chan_resources - allocate resources for DMA channel
1675  * @chan: allocate descriptor resources for this channel
1676  * @client: current client requesting the channel be ready for requests
1677  *
1678  * return - the number of allocated descriptors
1679  */
1680 static int atc_alloc_chan_resources(struct dma_chan *chan)
1681 {
1682 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1683 	struct at_dma		*atdma = to_at_dma(chan->device);
1684 	struct at_desc		*desc;
1685 	struct at_dma_slave	*atslave;
1686 	unsigned long		flags;
1687 	int			i;
1688 	u32			cfg;
1689 	LIST_HEAD(tmp_list);
1690 
1691 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1692 
1693 	/* ASSERT:  channel is idle */
1694 	if (atc_chan_is_enabled(atchan)) {
1695 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1696 		return -EIO;
1697 	}
1698 
1699 	cfg = ATC_DEFAULT_CFG;
1700 
1701 	atslave = chan->private;
1702 	if (atslave) {
1703 		/*
1704 		 * We need controller-specific data to set up slave
1705 		 * transfers.
1706 		 */
1707 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1708 
1709 		/* if cfg configuration specified take it instead of default */
1710 		if (atslave->cfg)
1711 			cfg = atslave->cfg;
1712 	}
1713 
1714 	/* have we already been set up?
1715 	 * reconfigure channel but no need to reallocate descriptors */
1716 	if (!list_empty(&atchan->free_list))
1717 		return atchan->descs_allocated;
1718 
1719 	/* Allocate initial pool of descriptors */
1720 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1721 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1722 		if (!desc) {
1723 			dev_err(atdma->dma_common.dev,
1724 				"Only %d initial descriptors\n", i);
1725 			break;
1726 		}
1727 		list_add_tail(&desc->desc_node, &tmp_list);
1728 	}
1729 
1730 	spin_lock_irqsave(&atchan->lock, flags);
1731 	atchan->descs_allocated = i;
1732 	list_splice(&tmp_list, &atchan->free_list);
1733 	dma_cookie_init(chan);
1734 	spin_unlock_irqrestore(&atchan->lock, flags);
1735 
1736 	/* channel parameters */
1737 	channel_writel(atchan, CFG, cfg);
1738 
1739 	dev_dbg(chan2dev(chan),
1740 		"alloc_chan_resources: allocated %d descriptors\n",
1741 		atchan->descs_allocated);
1742 
1743 	return atchan->descs_allocated;
1744 }
1745 
1746 /**
1747  * atc_free_chan_resources - free all channel resources
1748  * @chan: DMA channel
1749  */
1750 static void atc_free_chan_resources(struct dma_chan *chan)
1751 {
1752 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1753 	struct at_dma		*atdma = to_at_dma(chan->device);
1754 	struct at_desc		*desc, *_desc;
1755 	LIST_HEAD(list);
1756 
1757 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1758 		atchan->descs_allocated);
1759 
1760 	/* ASSERT:  channel is idle */
1761 	BUG_ON(!list_empty(&atchan->active_list));
1762 	BUG_ON(!list_empty(&atchan->queue));
1763 	BUG_ON(atc_chan_is_enabled(atchan));
1764 
1765 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1766 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1767 		list_del(&desc->desc_node);
1768 		/* free link descriptor */
1769 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1770 	}
1771 	list_splice_init(&atchan->free_list, &list);
1772 	atchan->descs_allocated = 0;
1773 	atchan->status = 0;
1774 
1775 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1776 }
1777 
1778 #ifdef CONFIG_OF
1779 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1780 {
1781 	struct at_dma_slave *atslave = slave;
1782 
1783 	if (atslave->dma_dev == chan->device->dev) {
1784 		chan->private = atslave;
1785 		return true;
1786 	} else {
1787 		return false;
1788 	}
1789 }
1790 
1791 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1792 				     struct of_dma *of_dma)
1793 {
1794 	struct dma_chan *chan;
1795 	struct at_dma_chan *atchan;
1796 	struct at_dma_slave *atslave;
1797 	dma_cap_mask_t mask;
1798 	unsigned int per_id;
1799 	struct platform_device *dmac_pdev;
1800 
1801 	if (dma_spec->args_count != 2)
1802 		return NULL;
1803 
1804 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1805 
1806 	dma_cap_zero(mask);
1807 	dma_cap_set(DMA_SLAVE, mask);
1808 
1809 	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1810 	if (!atslave)
1811 		return NULL;
1812 
1813 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1814 	/*
1815 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1816 	 * ignored depending on DMA transfer direction.
1817 	 */
1818 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1819 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1820 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1821 	/*
1822 	 * We have to translate the value we get from the device tree since
1823 	 * the half FIFO configuration value had to be 0 to keep backward
1824 	 * compatibility.
1825 	 */
1826 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1827 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1828 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1829 		break;
1830 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1831 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1832 		break;
1833 	case AT91_DMA_CFG_FIFOCFG_HALF:
1834 	default:
1835 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1836 	}
1837 	atslave->dma_dev = &dmac_pdev->dev;
1838 
1839 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1840 	if (!chan)
1841 		return NULL;
1842 
1843 	atchan = to_at_dma_chan(chan);
1844 	atchan->per_if = dma_spec->args[0] & 0xff;
1845 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1846 
1847 	return chan;
1848 }
1849 #else
1850 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1851 				     struct of_dma *of_dma)
1852 {
1853 	return NULL;
1854 }
1855 #endif
1856 
1857 /*--  Module Management  -----------------------------------------------*/
1858 
1859 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1860 static struct at_dma_platform_data at91sam9rl_config = {
1861 	.nr_channels = 2,
1862 };
1863 static struct at_dma_platform_data at91sam9g45_config = {
1864 	.nr_channels = 8,
1865 };
1866 
1867 #if defined(CONFIG_OF)
1868 static const struct of_device_id atmel_dma_dt_ids[] = {
1869 	{
1870 		.compatible = "atmel,at91sam9rl-dma",
1871 		.data = &at91sam9rl_config,
1872 	}, {
1873 		.compatible = "atmel,at91sam9g45-dma",
1874 		.data = &at91sam9g45_config,
1875 	}, {
1876 		/* sentinel */
1877 	}
1878 };
1879 
1880 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1881 #endif
1882 
1883 static const struct platform_device_id atdma_devtypes[] = {
1884 	{
1885 		.name = "at91sam9rl_dma",
1886 		.driver_data = (unsigned long) &at91sam9rl_config,
1887 	}, {
1888 		.name = "at91sam9g45_dma",
1889 		.driver_data = (unsigned long) &at91sam9g45_config,
1890 	}, {
1891 		/* sentinel */
1892 	}
1893 };
1894 
1895 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1896 						struct platform_device *pdev)
1897 {
1898 	if (pdev->dev.of_node) {
1899 		const struct of_device_id *match;
1900 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1901 		if (match == NULL)
1902 			return NULL;
1903 		return match->data;
1904 	}
1905 	return (struct at_dma_platform_data *)
1906 			platform_get_device_id(pdev)->driver_data;
1907 }
1908 
1909 /**
1910  * at_dma_off - disable DMA controller
1911  * @atdma: the Atmel HDAMC device
1912  */
1913 static void at_dma_off(struct at_dma *atdma)
1914 {
1915 	dma_writel(atdma, EN, 0);
1916 
1917 	/* disable all interrupts */
1918 	dma_writel(atdma, EBCIDR, -1L);
1919 
1920 	/* confirm that all channels are disabled */
1921 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1922 		cpu_relax();
1923 }
1924 
1925 static int __init at_dma_probe(struct platform_device *pdev)
1926 {
1927 	struct resource		*io;
1928 	struct at_dma		*atdma;
1929 	size_t			size;
1930 	int			irq;
1931 	int			err;
1932 	int			i;
1933 	const struct at_dma_platform_data *plat_dat;
1934 
1935 	/* setup platform data for each SoC */
1936 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1937 	dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1938 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1939 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1940 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1941 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1942 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1943 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1944 	dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1945 
1946 	/* get DMA parameters from controller type */
1947 	plat_dat = at_dma_get_driver_data(pdev);
1948 	if (!plat_dat)
1949 		return -ENODEV;
1950 
1951 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1952 	if (!io)
1953 		return -EINVAL;
1954 
1955 	irq = platform_get_irq(pdev, 0);
1956 	if (irq < 0)
1957 		return irq;
1958 
1959 	size = sizeof(struct at_dma);
1960 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1961 	atdma = kzalloc(size, GFP_KERNEL);
1962 	if (!atdma)
1963 		return -ENOMEM;
1964 
1965 	/* discover transaction capabilities */
1966 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1967 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1968 
1969 	size = resource_size(io);
1970 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1971 		err = -EBUSY;
1972 		goto err_kfree;
1973 	}
1974 
1975 	atdma->regs = ioremap(io->start, size);
1976 	if (!atdma->regs) {
1977 		err = -ENOMEM;
1978 		goto err_release_r;
1979 	}
1980 
1981 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1982 	if (IS_ERR(atdma->clk)) {
1983 		err = PTR_ERR(atdma->clk);
1984 		goto err_clk;
1985 	}
1986 	err = clk_prepare_enable(atdma->clk);
1987 	if (err)
1988 		goto err_clk_prepare;
1989 
1990 	/* force dma off, just in case */
1991 	at_dma_off(atdma);
1992 
1993 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1994 	if (err)
1995 		goto err_irq;
1996 
1997 	platform_set_drvdata(pdev, atdma);
1998 
1999 	/* create a pool of consistent memory blocks for hardware descriptors */
2000 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2001 			&pdev->dev, sizeof(struct at_desc),
2002 			4 /* word alignment */, 0);
2003 	if (!atdma->dma_desc_pool) {
2004 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2005 		err = -ENOMEM;
2006 		goto err_desc_pool_create;
2007 	}
2008 
2009 	/* create a pool of consistent memory blocks for memset blocks */
2010 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2011 					     &pdev->dev, sizeof(int), 4, 0);
2012 	if (!atdma->memset_pool) {
2013 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2014 		err = -ENOMEM;
2015 		goto err_memset_pool_create;
2016 	}
2017 
2018 	/* clear any pending interrupt */
2019 	while (dma_readl(atdma, EBCISR))
2020 		cpu_relax();
2021 
2022 	/* initialize channels related values */
2023 	INIT_LIST_HEAD(&atdma->dma_common.channels);
2024 	for (i = 0; i < plat_dat->nr_channels; i++) {
2025 		struct at_dma_chan	*atchan = &atdma->chan[i];
2026 
2027 		atchan->mem_if = AT_DMA_MEM_IF;
2028 		atchan->per_if = AT_DMA_PER_IF;
2029 		atchan->chan_common.device = &atdma->dma_common;
2030 		dma_cookie_init(&atchan->chan_common);
2031 		list_add_tail(&atchan->chan_common.device_node,
2032 				&atdma->dma_common.channels);
2033 
2034 		atchan->ch_regs = atdma->regs + ch_regs(i);
2035 		spin_lock_init(&atchan->lock);
2036 		atchan->mask = 1 << i;
2037 
2038 		INIT_LIST_HEAD(&atchan->active_list);
2039 		INIT_LIST_HEAD(&atchan->queue);
2040 		INIT_LIST_HEAD(&atchan->free_list);
2041 
2042 		tasklet_init(&atchan->tasklet, atc_tasklet,
2043 				(unsigned long)atchan);
2044 		atc_enable_chan_irq(atdma, i);
2045 	}
2046 
2047 	/* set base routines */
2048 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2049 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2050 	atdma->dma_common.device_tx_status = atc_tx_status;
2051 	atdma->dma_common.device_issue_pending = atc_issue_pending;
2052 	atdma->dma_common.dev = &pdev->dev;
2053 
2054 	/* set prep routines based on capability */
2055 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2056 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2057 
2058 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2059 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2060 
2061 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2062 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2063 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2064 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2065 	}
2066 
2067 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2068 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2069 		/* controller can do slave DMA: can trigger cyclic transfers */
2070 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2071 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2072 		atdma->dma_common.device_config = atc_config;
2073 		atdma->dma_common.device_pause = atc_pause;
2074 		atdma->dma_common.device_resume = atc_resume;
2075 		atdma->dma_common.device_terminate_all = atc_terminate_all;
2076 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2077 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2078 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2079 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2080 	}
2081 
2082 	if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2083 		atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2084 
2085 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2086 
2087 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2088 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2089 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2090 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
2091 	  dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
2092 	  plat_dat->nr_channels);
2093 
2094 	dma_async_device_register(&atdma->dma_common);
2095 
2096 	/*
2097 	 * Do not return an error if the dmac node is not present in order to
2098 	 * not break the existing way of requesting channel with
2099 	 * dma_request_channel().
2100 	 */
2101 	if (pdev->dev.of_node) {
2102 		err = of_dma_controller_register(pdev->dev.of_node,
2103 						 at_dma_xlate, atdma);
2104 		if (err) {
2105 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2106 			goto err_of_dma_controller_register;
2107 		}
2108 	}
2109 
2110 	return 0;
2111 
2112 err_of_dma_controller_register:
2113 	dma_async_device_unregister(&atdma->dma_common);
2114 	dma_pool_destroy(atdma->memset_pool);
2115 err_memset_pool_create:
2116 	dma_pool_destroy(atdma->dma_desc_pool);
2117 err_desc_pool_create:
2118 	free_irq(platform_get_irq(pdev, 0), atdma);
2119 err_irq:
2120 	clk_disable_unprepare(atdma->clk);
2121 err_clk_prepare:
2122 	clk_put(atdma->clk);
2123 err_clk:
2124 	iounmap(atdma->regs);
2125 	atdma->regs = NULL;
2126 err_release_r:
2127 	release_mem_region(io->start, size);
2128 err_kfree:
2129 	kfree(atdma);
2130 	return err;
2131 }
2132 
2133 static int at_dma_remove(struct platform_device *pdev)
2134 {
2135 	struct at_dma		*atdma = platform_get_drvdata(pdev);
2136 	struct dma_chan		*chan, *_chan;
2137 	struct resource		*io;
2138 
2139 	at_dma_off(atdma);
2140 	dma_async_device_unregister(&atdma->dma_common);
2141 
2142 	dma_pool_destroy(atdma->memset_pool);
2143 	dma_pool_destroy(atdma->dma_desc_pool);
2144 	free_irq(platform_get_irq(pdev, 0), atdma);
2145 
2146 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2147 			device_node) {
2148 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2149 
2150 		/* Disable interrupts */
2151 		atc_disable_chan_irq(atdma, chan->chan_id);
2152 
2153 		tasklet_kill(&atchan->tasklet);
2154 		list_del(&chan->device_node);
2155 	}
2156 
2157 	clk_disable_unprepare(atdma->clk);
2158 	clk_put(atdma->clk);
2159 
2160 	iounmap(atdma->regs);
2161 	atdma->regs = NULL;
2162 
2163 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2164 	release_mem_region(io->start, resource_size(io));
2165 
2166 	kfree(atdma);
2167 
2168 	return 0;
2169 }
2170 
2171 static void at_dma_shutdown(struct platform_device *pdev)
2172 {
2173 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2174 
2175 	at_dma_off(platform_get_drvdata(pdev));
2176 	clk_disable_unprepare(atdma->clk);
2177 }
2178 
2179 static int at_dma_prepare(struct device *dev)
2180 {
2181 	struct platform_device *pdev = to_platform_device(dev);
2182 	struct at_dma *atdma = platform_get_drvdata(pdev);
2183 	struct dma_chan *chan, *_chan;
2184 
2185 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2186 			device_node) {
2187 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2188 		/* wait for transaction completion (except in cyclic case) */
2189 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2190 			return -EAGAIN;
2191 	}
2192 	return 0;
2193 }
2194 
2195 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2196 {
2197 	struct dma_chan	*chan = &atchan->chan_common;
2198 
2199 	/* Channel should be paused by user
2200 	 * do it anyway even if it is not done already */
2201 	if (!atc_chan_is_paused(atchan)) {
2202 		dev_warn(chan2dev(chan),
2203 		"cyclic channel not paused, should be done by channel user\n");
2204 		atc_pause(chan);
2205 	}
2206 
2207 	/* now preserve additional data for cyclic operations */
2208 	/* next descriptor address in the cyclic list */
2209 	atchan->save_dscr = channel_readl(atchan, DSCR);
2210 
2211 	vdbg_dump_regs(atchan);
2212 }
2213 
2214 static int at_dma_suspend_noirq(struct device *dev)
2215 {
2216 	struct platform_device *pdev = to_platform_device(dev);
2217 	struct at_dma *atdma = platform_get_drvdata(pdev);
2218 	struct dma_chan *chan, *_chan;
2219 
2220 	/* preserve data */
2221 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2222 			device_node) {
2223 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2224 
2225 		if (atc_chan_is_cyclic(atchan))
2226 			atc_suspend_cyclic(atchan);
2227 		atchan->save_cfg = channel_readl(atchan, CFG);
2228 	}
2229 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2230 
2231 	/* disable DMA controller */
2232 	at_dma_off(atdma);
2233 	clk_disable_unprepare(atdma->clk);
2234 	return 0;
2235 }
2236 
2237 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2238 {
2239 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2240 
2241 	/* restore channel status for cyclic descriptors list:
2242 	 * next descriptor in the cyclic list at the time of suspend */
2243 	channel_writel(atchan, SADDR, 0);
2244 	channel_writel(atchan, DADDR, 0);
2245 	channel_writel(atchan, CTRLA, 0);
2246 	channel_writel(atchan, CTRLB, 0);
2247 	channel_writel(atchan, DSCR, atchan->save_dscr);
2248 	dma_writel(atdma, CHER, atchan->mask);
2249 
2250 	/* channel pause status should be removed by channel user
2251 	 * We cannot take the initiative to do it here */
2252 
2253 	vdbg_dump_regs(atchan);
2254 }
2255 
2256 static int at_dma_resume_noirq(struct device *dev)
2257 {
2258 	struct platform_device *pdev = to_platform_device(dev);
2259 	struct at_dma *atdma = platform_get_drvdata(pdev);
2260 	struct dma_chan *chan, *_chan;
2261 
2262 	/* bring back DMA controller */
2263 	clk_prepare_enable(atdma->clk);
2264 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2265 
2266 	/* clear any pending interrupt */
2267 	while (dma_readl(atdma, EBCISR))
2268 		cpu_relax();
2269 
2270 	/* restore saved data */
2271 	dma_writel(atdma, EBCIER, atdma->save_imr);
2272 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2273 			device_node) {
2274 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2275 
2276 		channel_writel(atchan, CFG, atchan->save_cfg);
2277 		if (atc_chan_is_cyclic(atchan))
2278 			atc_resume_cyclic(atchan);
2279 	}
2280 	return 0;
2281 }
2282 
2283 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2284 	.prepare = at_dma_prepare,
2285 	.suspend_noirq = at_dma_suspend_noirq,
2286 	.resume_noirq = at_dma_resume_noirq,
2287 };
2288 
2289 static struct platform_driver at_dma_driver = {
2290 	.remove		= at_dma_remove,
2291 	.shutdown	= at_dma_shutdown,
2292 	.id_table	= atdma_devtypes,
2293 	.driver = {
2294 		.name	= "at_hdmac",
2295 		.pm	= &at_dma_dev_pm_ops,
2296 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2297 	},
2298 };
2299 
2300 static int __init at_dma_init(void)
2301 {
2302 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2303 }
2304 subsys_initcall(at_dma_init);
2305 
2306 static void __exit at_dma_exit(void)
2307 {
2308 	platform_driver_unregister(&at_dma_driver);
2309 }
2310 module_exit(at_dma_exit);
2311 
2312 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2313 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2314 MODULE_LICENSE("GPL");
2315 MODULE_ALIAS("platform:at_hdmac");
2316