xref: /linux/drivers/dma/at_hdmac.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4  *
5  * Copyright (C) 2008 Atmel Corporation
6  * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
7  *
8  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
9  * The only Atmel DMA Controller that is not covered by this driver is the one
10  * found on AT91SAM9263.
11  */
12 
13 #include <dt-bindings/dma/at91.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/dmaengine.h>
17 #include <linux/dmapool.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/overflow.h>
23 #include <linux/of_platform.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 
28 #include "dmaengine.h"
29 #include "virt-dma.h"
30 
31 /*
32  * Glossary
33  * --------
34  *
35  * at_hdmac		: Name of the ATmel AHB DMA Controller
36  * at_dma_ / atdma	: ATmel DMA controller entity related
37  * atc_	/ atchan	: ATmel DMA Channel entity related
38  */
39 
40 #define	AT_DMA_MAX_NR_CHANNELS	8
41 
42 /* Global Configuration Register */
43 #define AT_DMA_GCFG		0x00
44 #define AT_DMA_IF_BIGEND(i)	BIT((i))	/* AHB-Lite Interface i in Big-endian mode */
45 #define AT_DMA_ARB_CFG		BIT(4)		/* Arbiter mode. */
46 
47 /* Controller Enable Register */
48 #define AT_DMA_EN		0x04
49 #define AT_DMA_ENABLE		BIT(0)
50 
51 /* Software Single Request Register */
52 #define AT_DMA_SREQ		0x08
53 #define AT_DMA_SSREQ(x)		BIT((x) << 1)		/* Request a source single transfer on channel x */
54 #define AT_DMA_DSREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination single transfer on channel x */
55 
56 /* Software Chunk Transfer Request Register */
57 #define AT_DMA_CREQ		0x0c
58 #define AT_DMA_SCREQ(x)		BIT((x) << 1)		/* Request a source chunk transfer on channel x */
59 #define AT_DMA_DCREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination chunk transfer on channel x */
60 
61 /* Software Last Transfer Flag Register */
62 #define AT_DMA_LAST		0x10
63 #define AT_DMA_SLAST(x)		BIT((x) << 1)		/* This src rq is last tx of buffer on channel x */
64 #define AT_DMA_DLAST(x)		BIT(1 + ((x) << 1))	/* This dst rq is last tx of buffer on channel x */
65 
66 /* Request Synchronization Register */
67 #define AT_DMA_SYNC		0x14
68 #define AT_DMA_SYR(h)		BIT((h))		/* Synchronize handshake line h */
69 
70 /* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
71 #define AT_DMA_EBCIER		0x18			/* Enable register */
72 #define AT_DMA_EBCIDR		0x1c			/* Disable register */
73 #define AT_DMA_EBCIMR		0x20			/* Mask Register */
74 #define AT_DMA_EBCISR		0x24			/* Status Register */
75 #define AT_DMA_CBTC_OFFSET	8
76 #define AT_DMA_ERR_OFFSET	16
77 #define AT_DMA_BTC(x)		BIT((x))
78 #define AT_DMA_CBTC(x)		BIT(AT_DMA_CBTC_OFFSET + (x))
79 #define AT_DMA_ERR(x)		BIT(AT_DMA_ERR_OFFSET + (x))
80 
81 /* Channel Handler Enable Register */
82 #define AT_DMA_CHER		0x28
83 #define AT_DMA_ENA(x)		BIT((x))
84 #define AT_DMA_SUSP(x)		BIT(8 + (x))
85 #define AT_DMA_KEEP(x)		BIT(24 + (x))
86 
87 /* Channel Handler Disable Register */
88 #define AT_DMA_CHDR		0x2c
89 #define AT_DMA_DIS(x)		BIT(x)
90 #define AT_DMA_RES(x)		BIT(8 + (x))
91 
92 /* Channel Handler Status Register */
93 #define AT_DMA_CHSR		0x30
94 #define AT_DMA_EMPT(x)		BIT(16 + (x))
95 #define AT_DMA_STAL(x)		BIT(24 + (x))
96 
97 /* Channel registers base address */
98 #define AT_DMA_CH_REGS_BASE	0x3c
99 #define ch_regs(x)		(AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
100 
101 /* Hardware register offset for each channel */
102 #define ATC_SADDR_OFFSET	0x00	/* Source Address Register */
103 #define ATC_DADDR_OFFSET	0x04	/* Destination Address Register */
104 #define ATC_DSCR_OFFSET		0x08	/* Descriptor Address Register */
105 #define ATC_CTRLA_OFFSET	0x0c	/* Control A Register */
106 #define ATC_CTRLB_OFFSET	0x10	/* Control B Register */
107 #define ATC_CFG_OFFSET		0x14	/* Configuration Register */
108 #define ATC_SPIP_OFFSET		0x18	/* Src PIP Configuration Register */
109 #define ATC_DPIP_OFFSET		0x1c	/* Dst PIP Configuration Register */
110 
111 
112 /* Bitfield definitions */
113 
114 /* Bitfields in DSCR */
115 #define ATC_DSCR_IF		GENMASK(1, 0)	/* Dsc feched via AHB-Lite Interface */
116 
117 /* Bitfields in CTRLA */
118 #define ATC_BTSIZE_MAX		GENMASK(15, 0)	/* Maximum Buffer Transfer Size */
119 #define ATC_BTSIZE		GENMASK(15, 0)	/* Buffer Transfer Size */
120 #define ATC_SCSIZE		GENMASK(18, 16)	/* Source Chunk Transfer Size */
121 #define ATC_DCSIZE		GENMASK(22, 20)	/* Destination Chunk Transfer Size */
122 #define ATC_SRC_WIDTH		GENMASK(25, 24)	/* Source Single Transfer Size */
123 #define ATC_DST_WIDTH		GENMASK(29, 28)	/* Destination Single Transfer Size */
124 #define ATC_DONE		BIT(31)	/* Tx Done (only written back in descriptor) */
125 
126 /* Bitfields in CTRLB */
127 #define ATC_SIF			GENMASK(1, 0)	/* Src tx done via AHB-Lite Interface i */
128 #define ATC_DIF			GENMASK(5, 4)	/* Dst tx done via AHB-Lite Interface i */
129 #define AT_DMA_MEM_IF		0x0		/* interface 0 as memory interface */
130 #define AT_DMA_PER_IF		0x1		/* interface 1 as peripheral interface */
131 #define ATC_SRC_PIP		BIT(8)		/* Source Picture-in-Picture enabled */
132 #define ATC_DST_PIP		BIT(12)		/* Destination Picture-in-Picture enabled */
133 #define ATC_SRC_DSCR_DIS	BIT(16)		/* Src Descriptor fetch disable */
134 #define ATC_DST_DSCR_DIS	BIT(20)		/* Dst Descriptor fetch disable */
135 #define ATC_FC			GENMASK(23, 21)	/* Choose Flow Controller */
136 #define ATC_FC_MEM2MEM		0x0		/* Mem-to-Mem (DMA) */
137 #define ATC_FC_MEM2PER		0x1		/* Mem-to-Periph (DMA) */
138 #define ATC_FC_PER2MEM		0x2		/* Periph-to-Mem (DMA) */
139 #define ATC_FC_PER2PER		0x3		/* Periph-to-Periph (DMA) */
140 #define ATC_FC_PER2MEM_PER	0x4		/* Periph-to-Mem (Peripheral) */
141 #define ATC_FC_MEM2PER_PER	0x5		/* Mem-to-Periph (Peripheral) */
142 #define ATC_FC_PER2PER_SRCPER	0x6		/* Periph-to-Periph (Src Peripheral) */
143 #define ATC_FC_PER2PER_DSTPER	0x7		/* Periph-to-Periph (Dst Peripheral) */
144 #define ATC_SRC_ADDR_MODE	GENMASK(25, 24)
145 #define ATC_SRC_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
146 #define ATC_SRC_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
147 #define ATC_SRC_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
148 #define ATC_DST_ADDR_MODE	GENMASK(29, 28)
149 #define ATC_DST_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
150 #define ATC_DST_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
151 #define ATC_DST_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
152 #define ATC_IEN			BIT(30)		/* BTC interrupt enable (active low) */
153 #define ATC_AUTO		BIT(31)		/* Auto multiple buffer tx enable */
154 
155 /* Bitfields in CFG */
156 #define ATC_SRC_PER		GENMASK(3, 0)	/* Channel src rq associated with periph handshaking ifc h */
157 #define ATC_DST_PER		GENMASK(7, 4)	/* Channel dst rq associated with periph handshaking ifc h */
158 #define ATC_SRC_REP		BIT(8)		/* Source Replay Mod */
159 #define ATC_SRC_H2SEL		BIT(9)		/* Source Handshaking Mod */
160 #define ATC_SRC_PER_MSB		GENMASK(11, 10)	/* Channel src rq (most significant bits) */
161 #define ATC_DST_REP		BIT(12)		/* Destination Replay Mod */
162 #define ATC_DST_H2SEL		BIT(13)		/* Destination Handshaking Mod */
163 #define ATC_DST_PER_MSB		GENMASK(15, 14)	/* Channel dst rq (most significant bits) */
164 #define ATC_SOD			BIT(16)		/* Stop On Done */
165 #define ATC_LOCK_IF		BIT(20)		/* Interface Lock */
166 #define ATC_LOCK_B		BIT(21)		/* AHB Bus Lock */
167 #define ATC_LOCK_IF_L		BIT(22)		/* Master Interface Arbiter Lock */
168 #define ATC_AHB_PROT		GENMASK(26, 24)	/* AHB Protection */
169 #define ATC_FIFOCFG		GENMASK(29, 28)	/* FIFO Request Configuration */
170 #define ATC_FIFOCFG_LARGESTBURST	0x0
171 #define ATC_FIFOCFG_HALFFIFO		0x1
172 #define ATC_FIFOCFG_ENOUGHSPACE		0x2
173 
174 /* Bitfields in SPIP */
175 #define ATC_SPIP_HOLE		GENMASK(15, 0)
176 #define ATC_SPIP_BOUNDARY	GENMASK(25, 16)
177 
178 /* Bitfields in DPIP */
179 #define ATC_DPIP_HOLE		GENMASK(15, 0)
180 #define ATC_DPIP_BOUNDARY	GENMASK(25, 16)
181 
182 #define ATC_PER_MSB		GENMASK(5, 4)	/* Extract MSBs of a handshaking identifier */
183 #define ATC_SRC_PER_ID(id)					       \
184 	({ typeof(id) _id = (id);				       \
185 	   FIELD_PREP(ATC_SRC_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
186 	   FIELD_PREP(ATC_SRC_PER, _id); })
187 #define ATC_DST_PER_ID(id)					       \
188 	({ typeof(id) _id = (id);				       \
189 	   FIELD_PREP(ATC_DST_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
190 	   FIELD_PREP(ATC_DST_PER, _id); })
191 
192 
193 
194 /*--  descriptors  -----------------------------------------------------*/
195 
196 /* LLI == Linked List Item; aka DMA buffer descriptor */
197 struct at_lli {
198 	/* values that are not changed by hardware */
199 	u32 saddr;
200 	u32 daddr;
201 	/* value that may get written back: */
202 	u32 ctrla;
203 	/* more values that are not changed by hardware */
204 	u32 ctrlb;
205 	u32 dscr;	/* chain to next lli */
206 };
207 
208 /**
209  * struct atdma_sg - atdma scatter gather entry
210  * @len: length of the current Linked List Item.
211  * @lli: linked list item that is passed to the DMA controller
212  * @lli_phys: physical address of the LLI.
213  */
214 struct atdma_sg {
215 	unsigned int len;
216 	struct at_lli *lli;
217 	dma_addr_t lli_phys;
218 };
219 
220 /**
221  * struct at_desc - software descriptor
222  * @vd: pointer to the virtual dma descriptor.
223  * @atchan: pointer to the atmel dma channel.
224  * @total_len: total transaction byte count
225  * @sglen: number of sg entries.
226  * @sg: array of sgs.
227  * @boundary: number of transfers to perform before the automatic address increment operation
228  * @dst_hole: value to add to the destination address when the boundary has been reached
229  * @src_hole: value to add to the source address when the boundary has been reached
230  * @memset_buffer: buffer used for the memset operation
231  * @memset_paddr: physical address of the buffer used for the memset operation
232  * @memset_vaddr: virtual address of the buffer used for the memset operation
233  */
234 struct at_desc {
235 	struct				virt_dma_desc vd;
236 	struct				at_dma_chan *atchan;
237 	size_t				total_len;
238 	unsigned int			sglen;
239 	/* Interleaved data */
240 	size_t				boundary;
241 	size_t				dst_hole;
242 	size_t				src_hole;
243 
244 	/* Memset temporary buffer */
245 	bool				memset_buffer;
246 	dma_addr_t			memset_paddr;
247 	int				*memset_vaddr;
248 	struct atdma_sg			sg[] __counted_by(sglen);
249 };
250 
251 /*--  Channels  --------------------------------------------------------*/
252 
253 /**
254  * enum atc_status - information bits stored in channel status flag
255  *
256  * @ATC_IS_PAUSED: If channel is pauses
257  * @ATC_IS_CYCLIC: If channel is cyclic
258  *
259  * Manipulated with atomic operations.
260  */
261 enum atc_status {
262 	ATC_IS_PAUSED = 1,
263 	ATC_IS_CYCLIC = 24,
264 };
265 
266 /**
267  * struct at_dma_chan - internal representation of an Atmel HDMAC channel
268  * @vc: virtual dma channel entry.
269  * @atdma: pointer to the driver data.
270  * @ch_regs: memory mapped register base
271  * @mask: channel index in a mask
272  * @per_if: peripheral interface
273  * @mem_if: memory interface
274  * @status: transmit status information from irq/prep* functions
275  *                to tasklet (use atomic operations)
276  * @save_cfg: configuration register that is saved on suspend/resume cycle
277  * @save_dscr: for cyclic operations, preserve next descriptor address in
278  *             the cyclic list on suspend/resume cycle
279  * @dma_sconfig: configuration for slave transfers, passed via
280  * .device_config
281  * @desc: pointer to the atmel dma descriptor.
282  */
283 struct at_dma_chan {
284 	struct virt_dma_chan	vc;
285 	struct at_dma		*atdma;
286 	void __iomem		*ch_regs;
287 	u8			mask;
288 	u8			per_if;
289 	u8			mem_if;
290 	unsigned long		status;
291 	u32			save_cfg;
292 	u32			save_dscr;
293 	struct dma_slave_config	dma_sconfig;
294 	struct at_desc		*desc;
295 };
296 
297 #define	channel_readl(atchan, name) \
298 	__raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
299 
300 #define	channel_writel(atchan, name, val) \
301 	__raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
302 
303 /*
304  * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
305  * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
306  *
307  * This can be done by finding most significant bit set.
308  */
309 static inline void convert_burst(u32 *maxburst)
310 {
311 	if (*maxburst > 1)
312 		*maxburst = fls(*maxburst) - 2;
313 	else
314 		*maxburst = 0;
315 }
316 
317 /*
318  * Fix sconfig's bus width according to at_hdmac.
319  * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
320  */
321 static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
322 {
323 	switch (addr_width) {
324 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
325 		return 1;
326 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
327 		return 2;
328 	default:
329 		/* For 1 byte width or fallback */
330 		return 0;
331 	}
332 }
333 
334 /*--  Controller  ------------------------------------------------------*/
335 
336 /**
337  * struct at_dma - internal representation of an Atmel HDMA Controller
338  * @dma_device: dmaengine dma_device object members
339  * @regs: memory mapped register base
340  * @clk: dma controller clock
341  * @save_imr: interrupt mask register that is saved on suspend/resume cycle
342  * @all_chan_mask: all channels available in a mask
343  * @lli_pool: hw lli table
344  * @memset_pool: hw memset pool
345  * @chan: channels table to store at_dma_chan structures
346  */
347 struct at_dma {
348 	struct dma_device	dma_device;
349 	void __iomem		*regs;
350 	struct clk		*clk;
351 	u32			save_imr;
352 
353 	u8			all_chan_mask;
354 
355 	struct dma_pool		*lli_pool;
356 	struct dma_pool		*memset_pool;
357 	/* AT THE END channels table */
358 	struct at_dma_chan	chan[];
359 };
360 
361 #define	dma_readl(atdma, name) \
362 	__raw_readl((atdma)->regs + AT_DMA_##name)
363 #define	dma_writel(atdma, name, val) \
364 	__raw_writel((val), (atdma)->regs + AT_DMA_##name)
365 
366 static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
367 {
368 	return container_of(t, struct at_desc, vd.tx);
369 }
370 
371 static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
372 {
373 	return container_of(chan, struct at_dma_chan, vc.chan);
374 }
375 
376 static inline struct at_dma *to_at_dma(struct dma_device *ddev)
377 {
378 	return container_of(ddev, struct at_dma, dma_device);
379 }
380 
381 
382 /*--  Helper functions  ------------------------------------------------*/
383 
384 static struct device *chan2dev(struct dma_chan *chan)
385 {
386 	return &chan->dev->device;
387 }
388 
389 #if defined(VERBOSE_DEBUG)
390 static void vdbg_dump_regs(struct at_dma_chan *atchan)
391 {
392 	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
393 
394 	dev_err(chan2dev(&atchan->vc.chan),
395 		"  channel %d : imr = 0x%x, chsr = 0x%x\n",
396 		atchan->vc.chan.chan_id,
397 		dma_readl(atdma, EBCIMR),
398 		dma_readl(atdma, CHSR));
399 
400 	dev_err(chan2dev(&atchan->vc.chan),
401 		"  channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
402 		channel_readl(atchan, SADDR),
403 		channel_readl(atchan, DADDR),
404 		channel_readl(atchan, CTRLA),
405 		channel_readl(atchan, CTRLB),
406 		channel_readl(atchan, CFG),
407 		channel_readl(atchan, DSCR));
408 }
409 #else
410 static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
411 #endif
412 
413 static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
414 {
415 	dev_crit(chan2dev(&atchan->vc.chan),
416 		 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
417 		 &lli->saddr, &lli->daddr,
418 		 lli->ctrla, lli->ctrlb, &lli->dscr);
419 }
420 
421 
422 static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
423 {
424 	u32 ebci;
425 
426 	/* enable interrupts on buffer transfer completion & error */
427 	ebci =    AT_DMA_BTC(chan_id)
428 		| AT_DMA_ERR(chan_id);
429 	if (on)
430 		dma_writel(atdma, EBCIER, ebci);
431 	else
432 		dma_writel(atdma, EBCIDR, ebci);
433 }
434 
435 static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
436 {
437 	atc_setup_irq(atdma, chan_id, 1);
438 }
439 
440 static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
441 {
442 	atc_setup_irq(atdma, chan_id, 0);
443 }
444 
445 
446 /**
447  * atc_chan_is_enabled - test if given channel is enabled
448  * @atchan: channel we want to test status
449  */
450 static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
451 {
452 	struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
453 
454 	return !!(dma_readl(atdma, CHSR) & atchan->mask);
455 }
456 
457 /**
458  * atc_chan_is_paused - test channel pause/resume status
459  * @atchan: channel we want to test status
460  */
461 static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
462 {
463 	return test_bit(ATC_IS_PAUSED, &atchan->status);
464 }
465 
466 /**
467  * atc_chan_is_cyclic - test if given channel has cyclic property set
468  * @atchan: channel we want to test status
469  */
470 static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
471 {
472 	return test_bit(ATC_IS_CYCLIC, &atchan->status);
473 }
474 
475 /**
476  * set_lli_eol - set end-of-link to descriptor so it will end transfer
477  * @desc: descriptor, signle or at the end of a chain, to end chain on
478  * @i: index of the atmel scatter gather entry that is at the end of the chain.
479  */
480 static void set_lli_eol(struct at_desc *desc, unsigned int i)
481 {
482 	u32 ctrlb = desc->sg[i].lli->ctrlb;
483 
484 	ctrlb &= ~ATC_IEN;
485 	ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
486 
487 	desc->sg[i].lli->ctrlb = ctrlb;
488 	desc->sg[i].lli->dscr = 0;
489 }
490 
491 #define	ATC_DEFAULT_CFG		FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
492 #define	ATC_DEFAULT_CTRLB	(FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
493 				 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
494 #define ATC_DMA_BUSWIDTHS\
495 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
496 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
497 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
498 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
499 
500 #define ATC_MAX_DSCR_TRIALS	10
501 
502 /*
503  * Initial number of descriptors to allocate for each channel. This could
504  * be increased during dma usage.
505  */
506 static unsigned int init_nr_desc_per_channel = 64;
507 module_param(init_nr_desc_per_channel, uint, 0644);
508 MODULE_PARM_DESC(init_nr_desc_per_channel,
509 		 "initial descriptors per channel (default: 64)");
510 
511 /**
512  * struct at_dma_platform_data - Controller configuration parameters
513  * @nr_channels: Number of channels supported by hardware (max 8)
514  * @cap_mask: dma_capability flags supported by the platform
515  */
516 struct at_dma_platform_data {
517 	unsigned int	nr_channels;
518 	dma_cap_mask_t  cap_mask;
519 };
520 
521 /**
522  * struct at_dma_slave - Controller-specific information about a slave
523  * @dma_dev: required DMA master device
524  * @cfg: Platform-specific initializer for the CFG register
525  */
526 struct at_dma_slave {
527 	struct device		*dma_dev;
528 	u32			cfg;
529 };
530 
531 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
532 						size_t len)
533 {
534 	unsigned int width;
535 
536 	if (!((src | dst  | len) & 3))
537 		width = 2;
538 	else if (!((src | dst | len) & 1))
539 		width = 1;
540 	else
541 		width = 0;
542 
543 	return width;
544 }
545 
546 static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
547 {
548 	struct atdma_sg *atdma_sg = &desc->sg[i];
549 
550 	if (i)
551 		desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
552 }
553 
554 /**
555  * atc_dostart - starts the DMA engine for real
556  * @atchan: the channel we want to start
557  */
558 static void atc_dostart(struct at_dma_chan *atchan)
559 {
560 	struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
561 	struct at_desc *desc;
562 
563 	if (!vd) {
564 		atchan->desc = NULL;
565 		return;
566 	}
567 
568 	vdbg_dump_regs(atchan);
569 
570 	list_del(&vd->node);
571 	atchan->desc = desc = to_atdma_desc(&vd->tx);
572 
573 	channel_writel(atchan, SADDR, 0);
574 	channel_writel(atchan, DADDR, 0);
575 	channel_writel(atchan, CTRLA, 0);
576 	channel_writel(atchan, CTRLB, 0);
577 	channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
578 	channel_writel(atchan, SPIP,
579 		       FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
580 		       FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
581 	channel_writel(atchan, DPIP,
582 		       FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
583 		       FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
584 
585 	/* Don't allow CPU to reorder channel enable. */
586 	wmb();
587 	dma_writel(atchan->atdma, CHER, atchan->mask);
588 
589 	vdbg_dump_regs(atchan);
590 }
591 
592 static void atdma_desc_free(struct virt_dma_desc *vd)
593 {
594 	struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
595 	struct at_desc *desc = to_atdma_desc(&vd->tx);
596 	unsigned int i;
597 
598 	for (i = 0; i < desc->sglen; i++) {
599 		if (desc->sg[i].lli)
600 			dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
601 				      desc->sg[i].lli_phys);
602 	}
603 
604 	/* If the transfer was a memset, free our temporary buffer */
605 	if (desc->memset_buffer) {
606 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
607 			      desc->memset_paddr);
608 		desc->memset_buffer = false;
609 	}
610 
611 	kfree(desc);
612 }
613 
614 /**
615  * atc_calc_bytes_left - calculates the number of bytes left according to the
616  * value read from CTRLA.
617  *
618  * @current_len: the number of bytes left before reading CTRLA
619  * @ctrla: the value of CTRLA
620  */
621 static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
622 {
623 	u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
624 	u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
625 
626 	/*
627 	 * According to the datasheet, when reading the Control A Register
628 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
629 	 * number of transfers completed on the Source Interface.
630 	 * So btsize is always a number of source width transfers.
631 	 */
632 	return current_len - (btsize << src_width);
633 }
634 
635 /**
636  * atc_get_llis_residue - Get residue for a hardware linked list transfer
637  * @atchan: pointer to an atmel hdmac channel.
638  * @desc: pointer to the descriptor for which the residue is calculated.
639  * @residue: residue to be set to dma_tx_state.
640  *
641  * Calculate the residue by removing the length of the Linked List Item (LLI)
642  * already transferred from the total length. To get the current LLI we can use
643  * the value of the channel's DSCR register and compare it against the DSCR
644  * value of each LLI.
645  *
646  * The CTRLA register provides us with the amount of data already read from the
647  * source for the LLI. So we can compute a more accurate residue by also
648  * removing the number of bytes corresponding to this amount of data.
649  *
650  * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
651  * race condition may occur: the first read register may refer to one LLI
652  * whereas the second read may refer to a later LLI in the list because of the
653  * DMA transfer progression inbetween the two reads.
654  *
655  * One solution could have been to pause the DMA transfer, read the DSCR and
656  * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
657  * drawbacks:
658  * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
659  *   to occur depending on the system latency. Taking the USART driver as an
660  *   example, it uses a cyclic DMA transfer to read data from the Receive
661  *   Holding Register (RHR) to avoid RX overruns since the RHR is not protected
662  *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
663  *   residue would break the USART driver design.
664  * - The atc_pause() function masks interrupts but we'd rather avoid to do so
665  * for system latency purpose.
666  *
667  * Then we'd rather use another solution: the DSCR is read a first time, the
668  * CTRLA is read in turn, next the DSCR is read a second time. If the two
669  * consecutive read values of the DSCR are the same then we assume both refers
670  * to the very same LLI as well as the CTRLA value read inbetween does. For
671  * cyclic transfers, the assumption is that a full loop is "not so fast". If the
672  * two DSCR values are different, we read again the CTRLA then the DSCR till two
673  * consecutive read values from DSCR are equal or till the maximum trials is
674  * reach. This algorithm is very unlikely not to find a stable value for DSCR.
675  *
676  * Returns: %0 on success, -errno otherwise.
677  */
678 static int atc_get_llis_residue(struct at_dma_chan *atchan,
679 				struct at_desc *desc, u32 *residue)
680 {
681 	u32 len, ctrla, dscr;
682 	unsigned int i;
683 
684 	len = desc->total_len;
685 	dscr = channel_readl(atchan, DSCR);
686 	rmb(); /* ensure DSCR is read before CTRLA */
687 	ctrla = channel_readl(atchan, CTRLA);
688 	for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
689 		u32 new_dscr;
690 
691 		rmb(); /* ensure DSCR is read after CTRLA */
692 		new_dscr = channel_readl(atchan, DSCR);
693 
694 		/*
695 		 * If the DSCR register value has not changed inside the DMA
696 		 * controller since the previous read, we assume that both the
697 		 * dscr and ctrla values refers to the very same descriptor.
698 		 */
699 		if (likely(new_dscr == dscr))
700 			break;
701 
702 		/*
703 		 * DSCR has changed inside the DMA controller, so the previously
704 		 * read value of CTRLA may refer to an already processed
705 		 * descriptor hence could be outdated. We need to update ctrla
706 		 * to match the current descriptor.
707 		 */
708 		dscr = new_dscr;
709 		rmb(); /* ensure DSCR is read before CTRLA */
710 		ctrla = channel_readl(atchan, CTRLA);
711 	}
712 	if (unlikely(i == ATC_MAX_DSCR_TRIALS))
713 		return -ETIMEDOUT;
714 
715 	/* For the first descriptor we can be more accurate. */
716 	if (desc->sg[0].lli->dscr == dscr) {
717 		*residue = atc_calc_bytes_left(len, ctrla);
718 		return 0;
719 	}
720 	len -= desc->sg[0].len;
721 
722 	for (i = 1; i < desc->sglen; i++) {
723 		if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
724 			break;
725 		len -= desc->sg[i].len;
726 	}
727 
728 	/*
729 	 * For the current LLI in the chain we can calculate the remaining bytes
730 	 * using the channel's CTRLA register.
731 	 */
732 	*residue = atc_calc_bytes_left(len, ctrla);
733 	return 0;
734 
735 }
736 
737 /**
738  * atc_get_residue - get the number of bytes residue for a cookie.
739  * The residue is passed by address and updated on success.
740  * @chan: DMA channel
741  * @cookie: transaction identifier to check status of
742  * @residue: residue to be updated.
743  *
744  * Return: %0 on success, -errno otherwise.
745  */
746 static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
747 			   u32 *residue)
748 {
749 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
750 	struct virt_dma_desc *vd;
751 	struct at_desc *desc = NULL;
752 	u32 len, ctrla;
753 
754 	vd = vchan_find_desc(&atchan->vc, cookie);
755 	if (vd)
756 		desc = to_atdma_desc(&vd->tx);
757 	else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
758 		desc = atchan->desc;
759 
760 	if (!desc)
761 		return -EINVAL;
762 
763 	if (desc->sg[0].lli->dscr)
764 		/* hardware linked list transfer */
765 		return atc_get_llis_residue(atchan, desc, residue);
766 
767 	/* single transfer */
768 	len = desc->total_len;
769 	ctrla = channel_readl(atchan, CTRLA);
770 	*residue = atc_calc_bytes_left(len, ctrla);
771 	return 0;
772 }
773 
774 /**
775  * atc_handle_error - handle errors reported by DMA controller
776  * @atchan: channel where error occurs.
777  * @i: channel index
778  */
779 static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
780 {
781 	struct at_desc *desc = atchan->desc;
782 
783 	/* Disable channel on AHB error */
784 	dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
785 
786 	/*
787 	 * KERN_CRITICAL may seem harsh, but since this only happens
788 	 * when someone submits a bad physical address in a
789 	 * descriptor, we should consider ourselves lucky that the
790 	 * controller flagged an error instead of scribbling over
791 	 * random memory locations.
792 	 */
793 	dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
794 	dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
795 		 desc->vd.tx.cookie);
796 	for (i = 0; i < desc->sglen; i++)
797 		atc_dump_lli(atchan, desc->sg[i].lli);
798 }
799 
800 static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
801 				   unsigned int i)
802 {
803 	struct at_desc *desc;
804 
805 	spin_lock(&atchan->vc.lock);
806 	desc = atchan->desc;
807 
808 	if (desc) {
809 		if (pending & AT_DMA_ERR(i)) {
810 			atc_handle_error(atchan, i);
811 			/* Pretend the descriptor completed successfully */
812 		}
813 
814 		if (atc_chan_is_cyclic(atchan)) {
815 			vchan_cyclic_callback(&desc->vd);
816 		} else {
817 			vchan_cookie_complete(&desc->vd);
818 			atchan->desc = NULL;
819 			if (!(atc_chan_is_enabled(atchan)))
820 				atc_dostart(atchan);
821 		}
822 	}
823 	spin_unlock(&atchan->vc.lock);
824 }
825 
826 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
827 {
828 	struct at_dma		*atdma = dev_id;
829 	struct at_dma_chan	*atchan;
830 	int			i;
831 	u32			status, pending, imr;
832 	int			ret = IRQ_NONE;
833 
834 	do {
835 		imr = dma_readl(atdma, EBCIMR);
836 		status = dma_readl(atdma, EBCISR);
837 		pending = status & imr;
838 
839 		if (!pending)
840 			break;
841 
842 		dev_vdbg(atdma->dma_device.dev,
843 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
844 			 status, imr, pending);
845 
846 		for (i = 0; i < atdma->dma_device.chancnt; i++) {
847 			atchan = &atdma->chan[i];
848 			if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
849 				continue;
850 			atdma_handle_chan_done(atchan, pending, i);
851 			ret = IRQ_HANDLED;
852 		}
853 
854 	} while (pending);
855 
856 	return ret;
857 }
858 
859 /*--  DMA Engine API  --------------------------------------------------*/
860 /**
861  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
862  * @chan: the channel to prepare operation on
863  * @xt: Interleaved transfer template
864  * @flags: tx descriptor status flags
865  */
866 static struct dma_async_tx_descriptor *
867 atc_prep_dma_interleaved(struct dma_chan *chan,
868 			 struct dma_interleaved_template *xt,
869 			 unsigned long flags)
870 {
871 	struct at_dma		*atdma = to_at_dma(chan->device);
872 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
873 	struct data_chunk	*first;
874 	struct atdma_sg		*atdma_sg;
875 	struct at_desc		*desc;
876 	struct at_lli		*lli;
877 	size_t			xfer_count;
878 	unsigned int		dwidth;
879 	u32			ctrla;
880 	u32			ctrlb;
881 	size_t			len = 0;
882 	int			i;
883 
884 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
885 		return NULL;
886 
887 	first = xt->sgl;
888 
889 	dev_info(chan2dev(chan),
890 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
891 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
892 		xt->frame_size, flags);
893 
894 	/*
895 	 * The controller can only "skip" X bytes every Y bytes, so we
896 	 * need to make sure we are given a template that fit that
897 	 * description, ie a template with chunks that always have the
898 	 * same size, with the same ICGs.
899 	 */
900 	for (i = 0; i < xt->frame_size; i++) {
901 		struct data_chunk *chunk = xt->sgl + i;
902 
903 		if ((chunk->size != xt->sgl->size) ||
904 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
905 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
906 			dev_err(chan2dev(chan),
907 				"%s: the controller can transfer only identical chunks\n",
908 				__func__);
909 			return NULL;
910 		}
911 
912 		len += chunk->size;
913 	}
914 
915 	dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
916 
917 	xfer_count = len >> dwidth;
918 	if (xfer_count > ATC_BTSIZE_MAX) {
919 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
920 		return NULL;
921 	}
922 
923 	ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
924 		FIELD_PREP(ATC_DST_WIDTH, dwidth);
925 
926 	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
927 		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
928 		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
929 		ATC_SRC_PIP | ATC_DST_PIP |
930 		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
931 
932 	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
933 	if (!desc)
934 		return NULL;
935 	desc->sglen = 1;
936 
937 	atdma_sg = desc->sg;
938 	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
939 				       &atdma_sg->lli_phys);
940 	if (!atdma_sg->lli) {
941 		kfree(desc);
942 		return NULL;
943 	}
944 	lli = atdma_sg->lli;
945 
946 	lli->saddr = xt->src_start;
947 	lli->daddr = xt->dst_start;
948 	lli->ctrla = ctrla | xfer_count;
949 	lli->ctrlb = ctrlb;
950 
951 	desc->boundary = first->size >> dwidth;
952 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
953 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
954 
955 	atdma_sg->len = len;
956 	desc->total_len = len;
957 
958 	set_lli_eol(desc, 0);
959 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
960 }
961 
962 /**
963  * atc_prep_dma_memcpy - prepare a memcpy operation
964  * @chan: the channel to prepare operation on
965  * @dest: operation virtual destination address
966  * @src: operation virtual source address
967  * @len: operation length
968  * @flags: tx descriptor status flags
969  */
970 static struct dma_async_tx_descriptor *
971 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
972 		size_t len, unsigned long flags)
973 {
974 	struct at_dma		*atdma = to_at_dma(chan->device);
975 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
976 	struct at_desc		*desc = NULL;
977 	size_t			xfer_count;
978 	size_t			offset;
979 	size_t			sg_len;
980 	unsigned int		src_width;
981 	unsigned int		dst_width;
982 	unsigned int		i;
983 	u32			ctrla;
984 	u32			ctrlb;
985 
986 	dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
987 		&dest, &src, len, flags);
988 
989 	if (unlikely(!len)) {
990 		dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
991 		return NULL;
992 	}
993 
994 	sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
995 	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
996 	if (!desc)
997 		return NULL;
998 	desc->sglen = sg_len;
999 
1000 	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1001 		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1002 		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1003 		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1004 
1005 	/*
1006 	 * We can be a lot more clever here, but this should take care
1007 	 * of the most common optimization.
1008 	 */
1009 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
1010 
1011 	ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
1012 		FIELD_PREP(ATC_DST_WIDTH, dst_width);
1013 
1014 	for (offset = 0, i = 0; offset < len;
1015 	     offset += xfer_count << src_width, i++) {
1016 		struct atdma_sg *atdma_sg = &desc->sg[i];
1017 		struct at_lli *lli;
1018 
1019 		atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1020 					       &atdma_sg->lli_phys);
1021 		if (!atdma_sg->lli)
1022 			goto err_desc_get;
1023 		lli = atdma_sg->lli;
1024 
1025 		xfer_count = min_t(size_t, (len - offset) >> src_width,
1026 				   ATC_BTSIZE_MAX);
1027 
1028 		lli->saddr = src + offset;
1029 		lli->daddr = dest + offset;
1030 		lli->ctrla = ctrla | xfer_count;
1031 		lli->ctrlb = ctrlb;
1032 
1033 		desc->sg[i].len = xfer_count << src_width;
1034 
1035 		atdma_lli_chain(desc, i);
1036 	}
1037 
1038 	desc->total_len = len;
1039 
1040 	/* set end-of-link to the last link descriptor of list*/
1041 	set_lli_eol(desc, i - 1);
1042 
1043 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1044 
1045 err_desc_get:
1046 	atdma_desc_free(&desc->vd);
1047 	return NULL;
1048 }
1049 
1050 static int atdma_create_memset_lli(struct dma_chan *chan,
1051 				   struct atdma_sg *atdma_sg,
1052 				   dma_addr_t psrc, dma_addr_t pdst, size_t len)
1053 {
1054 	struct at_dma *atdma = to_at_dma(chan->device);
1055 	struct at_lli *lli;
1056 	size_t xfer_count;
1057 	u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
1058 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1059 		    FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
1060 		    FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1061 		    FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1062 
1063 	xfer_count = len >> 2;
1064 	if (xfer_count > ATC_BTSIZE_MAX) {
1065 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
1066 		return -EINVAL;
1067 	}
1068 
1069 	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1070 				       &atdma_sg->lli_phys);
1071 	if (!atdma_sg->lli)
1072 		return -ENOMEM;
1073 	lli = atdma_sg->lli;
1074 
1075 	lli->saddr = psrc;
1076 	lli->daddr = pdst;
1077 	lli->ctrla = ctrla | xfer_count;
1078 	lli->ctrlb = ctrlb;
1079 
1080 	atdma_sg->len = len;
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  * atc_prep_dma_memset - prepare a memcpy operation
1087  * @chan: the channel to prepare operation on
1088  * @dest: operation virtual destination address
1089  * @value: value to set memory buffer to
1090  * @len: operation length
1091  * @flags: tx descriptor status flags
1092  */
1093 static struct dma_async_tx_descriptor *
1094 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1095 		    size_t len, unsigned long flags)
1096 {
1097 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1098 	struct at_dma		*atdma = to_at_dma(chan->device);
1099 	struct at_desc		*desc;
1100 	void __iomem		*vaddr;
1101 	dma_addr_t		paddr;
1102 	char			fill_pattern;
1103 	int			ret;
1104 
1105 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
1106 		&dest, value, len, flags);
1107 
1108 	if (unlikely(!len)) {
1109 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
1110 		return NULL;
1111 	}
1112 
1113 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1114 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
1115 			__func__);
1116 		return NULL;
1117 	}
1118 
1119 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1120 	if (!vaddr) {
1121 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1122 			__func__);
1123 		return NULL;
1124 	}
1125 
1126 	/* Only the first byte of value is to be used according to dmaengine */
1127 	fill_pattern = (char)value;
1128 
1129 	*(u32*)vaddr = (fill_pattern << 24) |
1130 		       (fill_pattern << 16) |
1131 		       (fill_pattern << 8) |
1132 		       fill_pattern;
1133 
1134 	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
1135 	if (!desc)
1136 		goto err_free_buffer;
1137 	desc->sglen = 1;
1138 
1139 	ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
1140 	if (ret)
1141 		goto err_free_desc;
1142 
1143 	desc->memset_paddr = paddr;
1144 	desc->memset_vaddr = vaddr;
1145 	desc->memset_buffer = true;
1146 
1147 	desc->total_len = len;
1148 
1149 	/* set end-of-link on the descriptor */
1150 	set_lli_eol(desc, 0);
1151 
1152 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1153 
1154 err_free_desc:
1155 	kfree(desc);
1156 err_free_buffer:
1157 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1158 	return NULL;
1159 }
1160 
1161 static struct dma_async_tx_descriptor *
1162 atc_prep_dma_memset_sg(struct dma_chan *chan,
1163 		       struct scatterlist *sgl,
1164 		       unsigned int sg_len, int value,
1165 		       unsigned long flags)
1166 {
1167 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1168 	struct at_dma		*atdma = to_at_dma(chan->device);
1169 	struct at_desc		*desc;
1170 	struct scatterlist	*sg;
1171 	void __iomem		*vaddr;
1172 	dma_addr_t		paddr;
1173 	size_t			total_len = 0;
1174 	int			i;
1175 	int			ret;
1176 
1177 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1178 		 value, sg_len, flags);
1179 
1180 	if (unlikely(!sgl || !sg_len)) {
1181 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1182 			__func__);
1183 		return NULL;
1184 	}
1185 
1186 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1187 	if (!vaddr) {
1188 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1189 			__func__);
1190 		return NULL;
1191 	}
1192 	*(u32*)vaddr = value;
1193 
1194 	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1195 	if (!desc)
1196 		goto err_free_dma_buf;
1197 	desc->sglen = sg_len;
1198 
1199 	for_each_sg(sgl, sg, sg_len, i) {
1200 		dma_addr_t dest = sg_dma_address(sg);
1201 		size_t len = sg_dma_len(sg);
1202 
1203 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1204 			 __func__, &dest, len);
1205 
1206 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1207 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1208 				__func__);
1209 			goto err_free_desc;
1210 		}
1211 
1212 		ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
1213 					      len);
1214 		if (ret)
1215 			goto err_free_desc;
1216 
1217 		atdma_lli_chain(desc, i);
1218 		total_len += len;
1219 	}
1220 
1221 	desc->memset_paddr = paddr;
1222 	desc->memset_vaddr = vaddr;
1223 	desc->memset_buffer = true;
1224 
1225 	desc->total_len = total_len;
1226 
1227 	/* set end-of-link on the descriptor */
1228 	set_lli_eol(desc, i - 1);
1229 
1230 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1231 
1232 err_free_desc:
1233 	atdma_desc_free(&desc->vd);
1234 err_free_dma_buf:
1235 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1236 	return NULL;
1237 }
1238 
1239 /**
1240  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1241  * @chan: DMA channel
1242  * @sgl: scatterlist to transfer to/from
1243  * @sg_len: number of entries in @scatterlist
1244  * @direction: DMA direction
1245  * @flags: tx descriptor status flags
1246  * @context: transaction context (ignored)
1247  */
1248 static struct dma_async_tx_descriptor *
1249 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1250 		unsigned int sg_len, enum dma_transfer_direction direction,
1251 		unsigned long flags, void *context)
1252 {
1253 	struct at_dma		*atdma = to_at_dma(chan->device);
1254 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1255 	struct at_dma_slave	*atslave = chan->private;
1256 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1257 	struct at_desc		*desc;
1258 	u32			ctrla;
1259 	u32			ctrlb;
1260 	dma_addr_t		reg;
1261 	unsigned int		reg_width;
1262 	unsigned int		mem_width;
1263 	unsigned int		i;
1264 	struct scatterlist	*sg;
1265 	size_t			total_len = 0;
1266 
1267 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1268 			sg_len,
1269 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1270 			flags);
1271 
1272 	if (unlikely(!atslave || !sg_len)) {
1273 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1274 		return NULL;
1275 	}
1276 
1277 	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1278 	if (!desc)
1279 		return NULL;
1280 	desc->sglen = sg_len;
1281 
1282 	ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1283 		FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
1284 	ctrlb = ATC_IEN;
1285 
1286 	switch (direction) {
1287 	case DMA_MEM_TO_DEV:
1288 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1289 		ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
1290 		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
1291 				    ATC_DST_ADDR_MODE_FIXED) |
1292 			 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1293 			 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1294 			 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1295 			 FIELD_PREP(ATC_DIF, atchan->per_if);
1296 		reg = sconfig->dst_addr;
1297 		for_each_sg(sgl, sg, sg_len, i) {
1298 			struct atdma_sg *atdma_sg = &desc->sg[i];
1299 			struct at_lli *lli;
1300 			u32		len;
1301 			u32		mem;
1302 
1303 			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1304 						       GFP_NOWAIT,
1305 						       &atdma_sg->lli_phys);
1306 			if (!atdma_sg->lli)
1307 				goto err_desc_get;
1308 			lli = atdma_sg->lli;
1309 
1310 			mem = sg_dma_address(sg);
1311 			len = sg_dma_len(sg);
1312 			if (unlikely(!len)) {
1313 				dev_dbg(chan2dev(chan),
1314 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1315 				goto err;
1316 			}
1317 			mem_width = 2;
1318 			if (unlikely(mem & 3 || len & 3))
1319 				mem_width = 0;
1320 
1321 			lli->saddr = mem;
1322 			lli->daddr = reg;
1323 			lli->ctrla = ctrla |
1324 				     FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
1325 				     len >> mem_width;
1326 			lli->ctrlb = ctrlb;
1327 
1328 			atdma_sg->len = len;
1329 			total_len += len;
1330 
1331 			desc->sg[i].len = len;
1332 			atdma_lli_chain(desc, i);
1333 		}
1334 		break;
1335 	case DMA_DEV_TO_MEM:
1336 		reg_width = convert_buswidth(sconfig->src_addr_width);
1337 		ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
1338 		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1339 			 FIELD_PREP(ATC_SRC_ADDR_MODE,
1340 				    ATC_SRC_ADDR_MODE_FIXED) |
1341 			 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1342 			 FIELD_PREP(ATC_SIF, atchan->per_if) |
1343 			 FIELD_PREP(ATC_DIF, atchan->mem_if);
1344 
1345 		reg = sconfig->src_addr;
1346 		for_each_sg(sgl, sg, sg_len, i) {
1347 			struct atdma_sg *atdma_sg = &desc->sg[i];
1348 			struct at_lli *lli;
1349 			u32		len;
1350 			u32		mem;
1351 
1352 			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1353 						       GFP_NOWAIT,
1354 						       &atdma_sg->lli_phys);
1355 			if (!atdma_sg->lli)
1356 				goto err_desc_get;
1357 			lli = atdma_sg->lli;
1358 
1359 			mem = sg_dma_address(sg);
1360 			len = sg_dma_len(sg);
1361 			if (unlikely(!len)) {
1362 				dev_dbg(chan2dev(chan),
1363 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1364 				goto err;
1365 			}
1366 			mem_width = 2;
1367 			if (unlikely(mem & 3 || len & 3))
1368 				mem_width = 0;
1369 
1370 			lli->saddr = reg;
1371 			lli->daddr = mem;
1372 			lli->ctrla = ctrla |
1373 				     FIELD_PREP(ATC_DST_WIDTH, mem_width) |
1374 				     len >> reg_width;
1375 			lli->ctrlb = ctrlb;
1376 
1377 			desc->sg[i].len = len;
1378 			total_len += len;
1379 
1380 			atdma_lli_chain(desc, i);
1381 		}
1382 		break;
1383 	default:
1384 		return NULL;
1385 	}
1386 
1387 	/* set end-of-link to the last link descriptor of list*/
1388 	set_lli_eol(desc, i - 1);
1389 
1390 	desc->total_len = total_len;
1391 
1392 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1393 
1394 err_desc_get:
1395 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1396 err:
1397 	atdma_desc_free(&desc->vd);
1398 	return NULL;
1399 }
1400 
1401 /*
1402  * atc_dma_cyclic_check_values
1403  * Check for too big/unaligned periods and unaligned DMA buffer
1404  */
1405 static int
1406 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1407 		size_t period_len)
1408 {
1409 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1410 		goto err_out;
1411 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1412 		goto err_out;
1413 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1414 		goto err_out;
1415 
1416 	return 0;
1417 
1418 err_out:
1419 	return -EINVAL;
1420 }
1421 
1422 /*
1423  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1424  */
1425 static int
1426 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1427 		unsigned int i, dma_addr_t buf_addr,
1428 		unsigned int reg_width, size_t period_len,
1429 		enum dma_transfer_direction direction)
1430 {
1431 	struct at_dma		*atdma = to_at_dma(chan->device);
1432 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1433 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1434 	struct atdma_sg		*atdma_sg = &desc->sg[i];
1435 	struct at_lli		*lli;
1436 
1437 	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
1438 				       &atdma_sg->lli_phys);
1439 	if (!atdma_sg->lli)
1440 		return -ENOMEM;
1441 	lli = atdma_sg->lli;
1442 
1443 	switch (direction) {
1444 	case DMA_MEM_TO_DEV:
1445 		lli->saddr = buf_addr + (period_len * i);
1446 		lli->daddr = sconfig->dst_addr;
1447 		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1448 					ATC_DST_ADDR_MODE_FIXED) |
1449 			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1450 					ATC_SRC_ADDR_MODE_INCR) |
1451 			     FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1452 			     FIELD_PREP(ATC_SIF, atchan->mem_if) |
1453 			     FIELD_PREP(ATC_DIF, atchan->per_if);
1454 
1455 		break;
1456 
1457 	case DMA_DEV_TO_MEM:
1458 		lli->saddr = sconfig->src_addr;
1459 		lli->daddr = buf_addr + (period_len * i);
1460 		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1461 					ATC_DST_ADDR_MODE_INCR) |
1462 			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1463 					ATC_SRC_ADDR_MODE_FIXED) |
1464 			     FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1465 			     FIELD_PREP(ATC_SIF, atchan->per_if) |
1466 			     FIELD_PREP(ATC_DIF, atchan->mem_if);
1467 		break;
1468 
1469 	default:
1470 		return -EINVAL;
1471 	}
1472 
1473 	lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1474 		     FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
1475 		     FIELD_PREP(ATC_DST_WIDTH, reg_width) |
1476 		     FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
1477 		     period_len >> reg_width;
1478 	desc->sg[i].len = period_len;
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1485  * @chan: the DMA channel to prepare
1486  * @buf_addr: physical DMA address where the buffer starts
1487  * @buf_len: total number of bytes for the entire buffer
1488  * @period_len: number of bytes for each period
1489  * @direction: transfer direction, to or from device
1490  * @flags: tx descriptor status flags
1491  */
1492 static struct dma_async_tx_descriptor *
1493 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1494 		size_t period_len, enum dma_transfer_direction direction,
1495 		unsigned long flags)
1496 {
1497 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1498 	struct at_dma_slave	*atslave = chan->private;
1499 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1500 	struct at_desc		*desc;
1501 	unsigned long		was_cyclic;
1502 	unsigned int		reg_width;
1503 	unsigned int		periods = buf_len / period_len;
1504 	unsigned int		i;
1505 
1506 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1507 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1508 			&buf_addr,
1509 			periods, buf_len, period_len);
1510 
1511 	if (unlikely(!atslave || !buf_len || !period_len)) {
1512 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1513 		return NULL;
1514 	}
1515 
1516 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1517 	if (was_cyclic) {
1518 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1519 		return NULL;
1520 	}
1521 
1522 	if (unlikely(!is_slave_direction(direction)))
1523 		goto err_out;
1524 
1525 	if (direction == DMA_MEM_TO_DEV)
1526 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1527 	else
1528 		reg_width = convert_buswidth(sconfig->src_addr_width);
1529 
1530 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1531 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1532 		goto err_out;
1533 
1534 	desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
1535 	if (!desc)
1536 		goto err_out;
1537 	desc->sglen = periods;
1538 
1539 	/* build cyclic linked list */
1540 	for (i = 0; i < periods; i++) {
1541 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1542 					     reg_width, period_len, direction))
1543 			goto err_fill_desc;
1544 		atdma_lli_chain(desc, i);
1545 	}
1546 	desc->total_len = buf_len;
1547 	/* lets make a cyclic list */
1548 	desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
1549 
1550 	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1551 
1552 err_fill_desc:
1553 	atdma_desc_free(&desc->vd);
1554 err_out:
1555 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1556 	return NULL;
1557 }
1558 
1559 static int atc_config(struct dma_chan *chan,
1560 		      struct dma_slave_config *sconfig)
1561 {
1562 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1563 
1564 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1565 
1566 	/* Check if it is chan is configured for slave transfers */
1567 	if (!chan->private)
1568 		return -EINVAL;
1569 
1570 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1571 
1572 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1573 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1574 
1575 	return 0;
1576 }
1577 
1578 static int atc_pause(struct dma_chan *chan)
1579 {
1580 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1581 	struct at_dma		*atdma = to_at_dma(chan->device);
1582 	int			chan_id = atchan->vc.chan.chan_id;
1583 	unsigned long		flags;
1584 
1585 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1586 
1587 	spin_lock_irqsave(&atchan->vc.lock, flags);
1588 
1589 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1590 	set_bit(ATC_IS_PAUSED, &atchan->status);
1591 
1592 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1593 
1594 	return 0;
1595 }
1596 
1597 static int atc_resume(struct dma_chan *chan)
1598 {
1599 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1600 	struct at_dma		*atdma = to_at_dma(chan->device);
1601 	int			chan_id = atchan->vc.chan.chan_id;
1602 	unsigned long		flags;
1603 
1604 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1605 
1606 	if (!atc_chan_is_paused(atchan))
1607 		return 0;
1608 
1609 	spin_lock_irqsave(&atchan->vc.lock, flags);
1610 
1611 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1612 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1613 
1614 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1615 
1616 	return 0;
1617 }
1618 
1619 static int atc_terminate_all(struct dma_chan *chan)
1620 {
1621 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1622 	struct at_dma		*atdma = to_at_dma(chan->device);
1623 	int			chan_id = atchan->vc.chan.chan_id;
1624 	unsigned long		flags;
1625 
1626 	LIST_HEAD(list);
1627 
1628 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1629 
1630 	/*
1631 	 * This is only called when something went wrong elsewhere, so
1632 	 * we don't really care about the data. Just disable the
1633 	 * channel. We still have to poll the channel enable bit due
1634 	 * to AHB/HSB limitations.
1635 	 */
1636 	spin_lock_irqsave(&atchan->vc.lock, flags);
1637 
1638 	/* disabling channel: must also remove suspend state */
1639 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1640 
1641 	/* confirm that this channel is disabled */
1642 	while (dma_readl(atdma, CHSR) & atchan->mask)
1643 		cpu_relax();
1644 
1645 	if (atchan->desc) {
1646 		vchan_terminate_vdesc(&atchan->desc->vd);
1647 		atchan->desc = NULL;
1648 	}
1649 
1650 	vchan_get_all_descriptors(&atchan->vc, &list);
1651 
1652 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1653 	/* if channel dedicated to cyclic operations, free it */
1654 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1655 
1656 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1657 
1658 	vchan_dma_desc_free_list(&atchan->vc, &list);
1659 
1660 	return 0;
1661 }
1662 
1663 /**
1664  * atc_tx_status - poll for transaction completion
1665  * @chan: DMA channel
1666  * @cookie: transaction identifier to check status of
1667  * @txstate: if not %NULL updated with transaction state
1668  *
1669  * If @txstate is passed in, upon return it reflect the driver
1670  * internal state and can be used with dma_async_is_complete() to check
1671  * the status of multiple cookies without re-checking hardware state.
1672  */
1673 static enum dma_status
1674 atc_tx_status(struct dma_chan *chan,
1675 		dma_cookie_t cookie,
1676 		struct dma_tx_state *txstate)
1677 {
1678 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1679 	unsigned long		flags;
1680 	enum dma_status		dma_status;
1681 	u32 residue;
1682 	int ret;
1683 
1684 	dma_status = dma_cookie_status(chan, cookie, txstate);
1685 	if (dma_status == DMA_COMPLETE || !txstate)
1686 		return dma_status;
1687 
1688 	spin_lock_irqsave(&atchan->vc.lock, flags);
1689 	/*  Get number of bytes left in the active transactions */
1690 	ret = atc_get_residue(chan, cookie, &residue);
1691 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1692 
1693 	if (unlikely(ret < 0)) {
1694 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1695 		return DMA_ERROR;
1696 	} else {
1697 		dma_set_residue(txstate, residue);
1698 	}
1699 
1700 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
1701 		 dma_status, cookie, residue);
1702 
1703 	return dma_status;
1704 }
1705 
1706 static void atc_issue_pending(struct dma_chan *chan)
1707 {
1708 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
1709 	unsigned long flags;
1710 
1711 	spin_lock_irqsave(&atchan->vc.lock, flags);
1712 	if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
1713 		if (!(atc_chan_is_enabled(atchan)))
1714 			atc_dostart(atchan);
1715 	}
1716 	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1717 }
1718 
1719 /**
1720  * atc_alloc_chan_resources - allocate resources for DMA channel
1721  * @chan: allocate descriptor resources for this channel
1722  *
1723  * Return: the number of allocated descriptors
1724  */
1725 static int atc_alloc_chan_resources(struct dma_chan *chan)
1726 {
1727 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1728 	struct at_dma		*atdma = to_at_dma(chan->device);
1729 	struct at_dma_slave	*atslave;
1730 	u32			cfg;
1731 
1732 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1733 
1734 	/* ASSERT:  channel is idle */
1735 	if (atc_chan_is_enabled(atchan)) {
1736 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1737 		return -EIO;
1738 	}
1739 
1740 	cfg = ATC_DEFAULT_CFG;
1741 
1742 	atslave = chan->private;
1743 	if (atslave) {
1744 		/*
1745 		 * We need controller-specific data to set up slave
1746 		 * transfers.
1747 		 */
1748 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
1749 
1750 		/* if cfg configuration specified take it instead of default */
1751 		if (atslave->cfg)
1752 			cfg = atslave->cfg;
1753 	}
1754 
1755 	/* channel parameters */
1756 	channel_writel(atchan, CFG, cfg);
1757 
1758 	return 0;
1759 }
1760 
1761 /**
1762  * atc_free_chan_resources - free all channel resources
1763  * @chan: DMA channel
1764  */
1765 static void atc_free_chan_resources(struct dma_chan *chan)
1766 {
1767 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1768 
1769 	BUG_ON(atc_chan_is_enabled(atchan));
1770 
1771 	vchan_free_chan_resources(to_virt_chan(chan));
1772 	atchan->status = 0;
1773 
1774 	/*
1775 	 * Free atslave allocated in at_dma_xlate()
1776 	 */
1777 	kfree(chan->private);
1778 	chan->private = NULL;
1779 
1780 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1781 }
1782 
1783 #ifdef CONFIG_OF
1784 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1785 {
1786 	struct at_dma_slave *atslave = slave;
1787 
1788 	if (atslave->dma_dev == chan->device->dev) {
1789 		chan->private = atslave;
1790 		return true;
1791 	} else {
1792 		return false;
1793 	}
1794 }
1795 
1796 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1797 				     struct of_dma *of_dma)
1798 {
1799 	struct dma_chan *chan;
1800 	struct at_dma_chan *atchan;
1801 	struct at_dma_slave *atslave;
1802 	dma_cap_mask_t mask;
1803 	unsigned int per_id;
1804 	struct platform_device *dmac_pdev;
1805 
1806 	if (dma_spec->args_count != 2)
1807 		return NULL;
1808 
1809 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1810 	if (!dmac_pdev)
1811 		return NULL;
1812 
1813 	dma_cap_zero(mask);
1814 	dma_cap_set(DMA_SLAVE, mask);
1815 
1816 	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1817 	if (!atslave) {
1818 		put_device(&dmac_pdev->dev);
1819 		return NULL;
1820 	}
1821 
1822 	atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
1823 	/*
1824 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1825 	 * ignored depending on DMA transfer direction.
1826 	 */
1827 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1828 	atslave->cfg |= ATC_DST_PER_ID(per_id) |  ATC_SRC_PER_ID(per_id);
1829 	/*
1830 	 * We have to translate the value we get from the device tree since
1831 	 * the half FIFO configuration value had to be 0 to keep backward
1832 	 * compatibility.
1833 	 */
1834 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1835 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1836 		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1837 					   ATC_FIFOCFG_LARGESTBURST);
1838 		break;
1839 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1840 		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1841 					   ATC_FIFOCFG_ENOUGHSPACE);
1842 		break;
1843 	case AT91_DMA_CFG_FIFOCFG_HALF:
1844 	default:
1845 		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
1846 	}
1847 	atslave->dma_dev = &dmac_pdev->dev;
1848 
1849 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1850 	if (!chan) {
1851 		put_device(&dmac_pdev->dev);
1852 		kfree(atslave);
1853 		return NULL;
1854 	}
1855 
1856 	atchan = to_at_dma_chan(chan);
1857 	atchan->per_if = dma_spec->args[0] & 0xff;
1858 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1859 
1860 	return chan;
1861 }
1862 #else
1863 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1864 				     struct of_dma *of_dma)
1865 {
1866 	return NULL;
1867 }
1868 #endif
1869 
1870 /*--  Module Management  -----------------------------------------------*/
1871 
1872 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1873 static struct at_dma_platform_data at91sam9rl_config = {
1874 	.nr_channels = 2,
1875 };
1876 static struct at_dma_platform_data at91sam9g45_config = {
1877 	.nr_channels = 8,
1878 };
1879 
1880 #if defined(CONFIG_OF)
1881 static const struct of_device_id atmel_dma_dt_ids[] = {
1882 	{
1883 		.compatible = "atmel,at91sam9rl-dma",
1884 		.data = &at91sam9rl_config,
1885 	}, {
1886 		.compatible = "atmel,at91sam9g45-dma",
1887 		.data = &at91sam9g45_config,
1888 	}, {
1889 		/* sentinel */
1890 	}
1891 };
1892 
1893 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1894 #endif
1895 
1896 static const struct platform_device_id atdma_devtypes[] = {
1897 	{
1898 		.name = "at91sam9rl_dma",
1899 		.driver_data = (unsigned long) &at91sam9rl_config,
1900 	}, {
1901 		.name = "at91sam9g45_dma",
1902 		.driver_data = (unsigned long) &at91sam9g45_config,
1903 	}, {
1904 		/* sentinel */
1905 	}
1906 };
1907 
1908 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1909 						struct platform_device *pdev)
1910 {
1911 	if (pdev->dev.of_node) {
1912 		const struct of_device_id *match;
1913 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1914 		if (match == NULL)
1915 			return NULL;
1916 		return match->data;
1917 	}
1918 	return (struct at_dma_platform_data *)
1919 			platform_get_device_id(pdev)->driver_data;
1920 }
1921 
1922 /**
1923  * at_dma_off - disable DMA controller
1924  * @atdma: the Atmel HDAMC device
1925  */
1926 static void at_dma_off(struct at_dma *atdma)
1927 {
1928 	dma_writel(atdma, EN, 0);
1929 
1930 	/* disable all interrupts */
1931 	dma_writel(atdma, EBCIDR, -1L);
1932 
1933 	/* confirm that all channels are disabled */
1934 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1935 		cpu_relax();
1936 }
1937 
1938 static int __init at_dma_probe(struct platform_device *pdev)
1939 {
1940 	struct at_dma		*atdma;
1941 	int			irq;
1942 	int			err;
1943 	int			i;
1944 	const struct at_dma_platform_data *plat_dat;
1945 
1946 	/* setup platform data for each SoC */
1947 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1948 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1949 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1950 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1951 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1952 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1953 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1954 
1955 	/* get DMA parameters from controller type */
1956 	plat_dat = at_dma_get_driver_data(pdev);
1957 	if (!plat_dat)
1958 		return -ENODEV;
1959 
1960 	atdma = devm_kzalloc(&pdev->dev,
1961 			     struct_size(atdma, chan, plat_dat->nr_channels),
1962 			     GFP_KERNEL);
1963 	if (!atdma)
1964 		return -ENOMEM;
1965 
1966 	atdma->regs = devm_platform_ioremap_resource(pdev, 0);
1967 	if (IS_ERR(atdma->regs))
1968 		return PTR_ERR(atdma->regs);
1969 
1970 	irq = platform_get_irq(pdev, 0);
1971 	if (irq < 0)
1972 		return irq;
1973 
1974 	/* discover transaction capabilities */
1975 	atdma->dma_device.cap_mask = plat_dat->cap_mask;
1976 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1977 
1978 	atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
1979 	if (IS_ERR(atdma->clk))
1980 		return PTR_ERR(atdma->clk);
1981 
1982 	err = clk_prepare_enable(atdma->clk);
1983 	if (err)
1984 		return err;
1985 
1986 	/* force dma off, just in case */
1987 	at_dma_off(atdma);
1988 
1989 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1990 	if (err)
1991 		goto err_irq;
1992 
1993 	platform_set_drvdata(pdev, atdma);
1994 
1995 	/* create a pool of consistent memory blocks for hardware descriptors */
1996 	atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
1997 					  &pdev->dev, sizeof(struct at_lli),
1998 					  4 /* word alignment */, 0);
1999 	if (!atdma->lli_pool) {
2000 		dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
2001 		err = -ENOMEM;
2002 		goto err_desc_pool_create;
2003 	}
2004 
2005 	/* create a pool of consistent memory blocks for memset blocks */
2006 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2007 					     &pdev->dev, sizeof(int), 4, 0);
2008 	if (!atdma->memset_pool) {
2009 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2010 		err = -ENOMEM;
2011 		goto err_memset_pool_create;
2012 	}
2013 
2014 	/* clear any pending interrupt */
2015 	while (dma_readl(atdma, EBCISR))
2016 		cpu_relax();
2017 
2018 	/* initialize channels related values */
2019 	INIT_LIST_HEAD(&atdma->dma_device.channels);
2020 	for (i = 0; i < plat_dat->nr_channels; i++) {
2021 		struct at_dma_chan	*atchan = &atdma->chan[i];
2022 
2023 		atchan->mem_if = AT_DMA_MEM_IF;
2024 		atchan->per_if = AT_DMA_PER_IF;
2025 
2026 		atchan->ch_regs = atdma->regs + ch_regs(i);
2027 		atchan->mask = 1 << i;
2028 
2029 		atchan->atdma = atdma;
2030 		atchan->vc.desc_free = atdma_desc_free;
2031 		vchan_init(&atchan->vc, &atdma->dma_device);
2032 		atc_enable_chan_irq(atdma, i);
2033 	}
2034 
2035 	/* set base routines */
2036 	atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
2037 	atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
2038 	atdma->dma_device.device_tx_status = atc_tx_status;
2039 	atdma->dma_device.device_issue_pending = atc_issue_pending;
2040 	atdma->dma_device.dev = &pdev->dev;
2041 
2042 	/* set prep routines based on capability */
2043 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
2044 		atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2045 
2046 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
2047 		atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2048 
2049 	if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
2050 		atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
2051 		atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2052 		atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
2053 	}
2054 
2055 	if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
2056 		atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
2057 		/* controller can do slave DMA: can trigger cyclic transfers */
2058 		dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
2059 		atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2060 		atdma->dma_device.device_config = atc_config;
2061 		atdma->dma_device.device_pause = atc_pause;
2062 		atdma->dma_device.device_resume = atc_resume;
2063 		atdma->dma_device.device_terminate_all = atc_terminate_all;
2064 		atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
2065 		atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2066 		atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2067 		atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2068 	}
2069 
2070 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2071 
2072 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
2073 	  dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
2074 	  dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
2075 	  dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)  ? "slave " : "",
2076 	  plat_dat->nr_channels);
2077 
2078 	err = dma_async_device_register(&atdma->dma_device);
2079 	if (err) {
2080 		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
2081 		goto err_dma_async_device_register;
2082 	}
2083 
2084 	/*
2085 	 * Do not return an error if the dmac node is not present in order to
2086 	 * not break the existing way of requesting channel with
2087 	 * dma_request_channel().
2088 	 */
2089 	if (pdev->dev.of_node) {
2090 		err = of_dma_controller_register(pdev->dev.of_node,
2091 						 at_dma_xlate, atdma);
2092 		if (err) {
2093 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2094 			goto err_of_dma_controller_register;
2095 		}
2096 	}
2097 
2098 	return 0;
2099 
2100 err_of_dma_controller_register:
2101 	dma_async_device_unregister(&atdma->dma_device);
2102 err_dma_async_device_register:
2103 	dma_pool_destroy(atdma->memset_pool);
2104 err_memset_pool_create:
2105 	dma_pool_destroy(atdma->lli_pool);
2106 err_desc_pool_create:
2107 	free_irq(platform_get_irq(pdev, 0), atdma);
2108 err_irq:
2109 	clk_disable_unprepare(atdma->clk);
2110 	return err;
2111 }
2112 
2113 static void at_dma_remove(struct platform_device *pdev)
2114 {
2115 	struct at_dma		*atdma = platform_get_drvdata(pdev);
2116 	struct dma_chan		*chan, *_chan;
2117 
2118 	at_dma_off(atdma);
2119 	if (pdev->dev.of_node)
2120 		of_dma_controller_free(pdev->dev.of_node);
2121 	dma_async_device_unregister(&atdma->dma_device);
2122 
2123 	dma_pool_destroy(atdma->memset_pool);
2124 	dma_pool_destroy(atdma->lli_pool);
2125 	free_irq(platform_get_irq(pdev, 0), atdma);
2126 
2127 	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2128 			device_node) {
2129 		/* Disable interrupts */
2130 		atc_disable_chan_irq(atdma, chan->chan_id);
2131 		list_del(&chan->device_node);
2132 	}
2133 
2134 	clk_disable_unprepare(atdma->clk);
2135 }
2136 
2137 static void at_dma_shutdown(struct platform_device *pdev)
2138 {
2139 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2140 
2141 	at_dma_off(platform_get_drvdata(pdev));
2142 	clk_disable_unprepare(atdma->clk);
2143 }
2144 
2145 static int at_dma_prepare(struct device *dev)
2146 {
2147 	struct at_dma *atdma = dev_get_drvdata(dev);
2148 	struct dma_chan *chan, *_chan;
2149 
2150 	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2151 			device_node) {
2152 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2153 		/* wait for transaction completion (except in cyclic case) */
2154 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2155 			return -EAGAIN;
2156 	}
2157 	return 0;
2158 }
2159 
2160 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2161 {
2162 	struct dma_chan	*chan = &atchan->vc.chan;
2163 
2164 	/* Channel should be paused by user
2165 	 * do it anyway even if it is not done already */
2166 	if (!atc_chan_is_paused(atchan)) {
2167 		dev_warn(chan2dev(chan),
2168 		"cyclic channel not paused, should be done by channel user\n");
2169 		atc_pause(chan);
2170 	}
2171 
2172 	/* now preserve additional data for cyclic operations */
2173 	/* next descriptor address in the cyclic list */
2174 	atchan->save_dscr = channel_readl(atchan, DSCR);
2175 
2176 	vdbg_dump_regs(atchan);
2177 }
2178 
2179 static int at_dma_suspend_noirq(struct device *dev)
2180 {
2181 	struct at_dma *atdma = dev_get_drvdata(dev);
2182 	struct dma_chan *chan, *_chan;
2183 
2184 	/* preserve data */
2185 	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2186 			device_node) {
2187 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2188 
2189 		if (atc_chan_is_cyclic(atchan))
2190 			atc_suspend_cyclic(atchan);
2191 		atchan->save_cfg = channel_readl(atchan, CFG);
2192 	}
2193 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2194 
2195 	/* disable DMA controller */
2196 	at_dma_off(atdma);
2197 	clk_disable_unprepare(atdma->clk);
2198 	return 0;
2199 }
2200 
2201 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2202 {
2203 	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
2204 
2205 	/* restore channel status for cyclic descriptors list:
2206 	 * next descriptor in the cyclic list at the time of suspend */
2207 	channel_writel(atchan, SADDR, 0);
2208 	channel_writel(atchan, DADDR, 0);
2209 	channel_writel(atchan, CTRLA, 0);
2210 	channel_writel(atchan, CTRLB, 0);
2211 	channel_writel(atchan, DSCR, atchan->save_dscr);
2212 	dma_writel(atdma, CHER, atchan->mask);
2213 
2214 	/* channel pause status should be removed by channel user
2215 	 * We cannot take the initiative to do it here */
2216 
2217 	vdbg_dump_regs(atchan);
2218 }
2219 
2220 static int at_dma_resume_noirq(struct device *dev)
2221 {
2222 	struct at_dma *atdma = dev_get_drvdata(dev);
2223 	struct dma_chan *chan, *_chan;
2224 
2225 	/* bring back DMA controller */
2226 	clk_prepare_enable(atdma->clk);
2227 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2228 
2229 	/* clear any pending interrupt */
2230 	while (dma_readl(atdma, EBCISR))
2231 		cpu_relax();
2232 
2233 	/* restore saved data */
2234 	dma_writel(atdma, EBCIER, atdma->save_imr);
2235 	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2236 			device_node) {
2237 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2238 
2239 		channel_writel(atchan, CFG, atchan->save_cfg);
2240 		if (atc_chan_is_cyclic(atchan))
2241 			atc_resume_cyclic(atchan);
2242 	}
2243 	return 0;
2244 }
2245 
2246 static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
2247 	.prepare = at_dma_prepare,
2248 	.suspend_noirq = at_dma_suspend_noirq,
2249 	.resume_noirq = at_dma_resume_noirq,
2250 };
2251 
2252 static struct platform_driver at_dma_driver = {
2253 	.remove		= at_dma_remove,
2254 	.shutdown	= at_dma_shutdown,
2255 	.id_table	= atdma_devtypes,
2256 	.driver = {
2257 		.name	= "at_hdmac",
2258 		.pm	= pm_ptr(&at_dma_dev_pm_ops),
2259 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2260 	},
2261 };
2262 
2263 static int __init at_dma_init(void)
2264 {
2265 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2266 }
2267 subsys_initcall(at_dma_init);
2268 
2269 static void __exit at_dma_exit(void)
2270 {
2271 	platform_driver_unregister(&at_dma_driver);
2272 }
2273 module_exit(at_dma_exit);
2274 
2275 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2276 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2277 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
2278 MODULE_LICENSE("GPL");
2279 MODULE_ALIAS("platform:at_hdmac");
2280