1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 4 * 5 * Copyright (C) 2008 Atmel Corporation 6 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries 7 * 8 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 9 * The only Atmel DMA Controller that is not covered by this driver is the one 10 * found on AT91SAM9263. 11 */ 12 13 #include <dt-bindings/dma/at91.h> 14 #include <linux/bitfield.h> 15 #include <linux/clk.h> 16 #include <linux/dmaengine.h> 17 #include <linux/dmapool.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/overflow.h> 23 #include <linux/of_device.h> 24 #include <linux/of_dma.h> 25 #include <linux/platform_device.h> 26 #include <linux/slab.h> 27 28 #include "dmaengine.h" 29 #include "virt-dma.h" 30 31 /* 32 * Glossary 33 * -------- 34 * 35 * at_hdmac : Name of the ATmel AHB DMA Controller 36 * at_dma_ / atdma : ATmel DMA controller entity related 37 * atc_ / atchan : ATmel DMA Channel entity related 38 */ 39 40 #define AT_DMA_MAX_NR_CHANNELS 8 41 42 /* Global Configuration Register */ 43 #define AT_DMA_GCFG 0x00 44 #define AT_DMA_IF_BIGEND(i) BIT((i)) /* AHB-Lite Interface i in Big-endian mode */ 45 #define AT_DMA_ARB_CFG BIT(4) /* Arbiter mode. */ 46 47 /* Controller Enable Register */ 48 #define AT_DMA_EN 0x04 49 #define AT_DMA_ENABLE BIT(0) 50 51 /* Software Single Request Register */ 52 #define AT_DMA_SREQ 0x08 53 #define AT_DMA_SSREQ(x) BIT((x) << 1) /* Request a source single transfer on channel x */ 54 #define AT_DMA_DSREQ(x) BIT(1 + ((x) << 1)) /* Request a destination single transfer on channel x */ 55 56 /* Software Chunk Transfer Request Register */ 57 #define AT_DMA_CREQ 0x0c 58 #define AT_DMA_SCREQ(x) BIT((x) << 1) /* Request a source chunk transfer on channel x */ 59 #define AT_DMA_DCREQ(x) BIT(1 + ((x) << 1)) /* Request a destination chunk transfer on channel x */ 60 61 /* Software Last Transfer Flag Register */ 62 #define AT_DMA_LAST 0x10 63 #define AT_DMA_SLAST(x) BIT((x) << 1) /* This src rq is last tx of buffer on channel x */ 64 #define AT_DMA_DLAST(x) BIT(1 + ((x) << 1)) /* This dst rq is last tx of buffer on channel x */ 65 66 /* Request Synchronization Register */ 67 #define AT_DMA_SYNC 0x14 68 #define AT_DMA_SYR(h) BIT((h)) /* Synchronize handshake line h */ 69 70 /* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */ 71 #define AT_DMA_EBCIER 0x18 /* Enable register */ 72 #define AT_DMA_EBCIDR 0x1c /* Disable register */ 73 #define AT_DMA_EBCIMR 0x20 /* Mask Register */ 74 #define AT_DMA_EBCISR 0x24 /* Status Register */ 75 #define AT_DMA_CBTC_OFFSET 8 76 #define AT_DMA_ERR_OFFSET 16 77 #define AT_DMA_BTC(x) BIT((x)) 78 #define AT_DMA_CBTC(x) BIT(AT_DMA_CBTC_OFFSET + (x)) 79 #define AT_DMA_ERR(x) BIT(AT_DMA_ERR_OFFSET + (x)) 80 81 /* Channel Handler Enable Register */ 82 #define AT_DMA_CHER 0x28 83 #define AT_DMA_ENA(x) BIT((x)) 84 #define AT_DMA_SUSP(x) BIT(8 + (x)) 85 #define AT_DMA_KEEP(x) BIT(24 + (x)) 86 87 /* Channel Handler Disable Register */ 88 #define AT_DMA_CHDR 0x2c 89 #define AT_DMA_DIS(x) BIT(x) 90 #define AT_DMA_RES(x) BIT(8 + (x)) 91 92 /* Channel Handler Status Register */ 93 #define AT_DMA_CHSR 0x30 94 #define AT_DMA_EMPT(x) BIT(16 + (x)) 95 #define AT_DMA_STAL(x) BIT(24 + (x)) 96 97 /* Channel registers base address */ 98 #define AT_DMA_CH_REGS_BASE 0x3c 99 #define ch_regs(x) (AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */ 100 101 /* Hardware register offset for each channel */ 102 #define ATC_SADDR_OFFSET 0x00 /* Source Address Register */ 103 #define ATC_DADDR_OFFSET 0x04 /* Destination Address Register */ 104 #define ATC_DSCR_OFFSET 0x08 /* Descriptor Address Register */ 105 #define ATC_CTRLA_OFFSET 0x0c /* Control A Register */ 106 #define ATC_CTRLB_OFFSET 0x10 /* Control B Register */ 107 #define ATC_CFG_OFFSET 0x14 /* Configuration Register */ 108 #define ATC_SPIP_OFFSET 0x18 /* Src PIP Configuration Register */ 109 #define ATC_DPIP_OFFSET 0x1c /* Dst PIP Configuration Register */ 110 111 112 /* Bitfield definitions */ 113 114 /* Bitfields in DSCR */ 115 #define ATC_DSCR_IF GENMASK(1, 0) /* Dsc feched via AHB-Lite Interface */ 116 117 /* Bitfields in CTRLA */ 118 #define ATC_BTSIZE_MAX GENMASK(15, 0) /* Maximum Buffer Transfer Size */ 119 #define ATC_BTSIZE GENMASK(15, 0) /* Buffer Transfer Size */ 120 #define ATC_SCSIZE GENMASK(18, 16) /* Source Chunk Transfer Size */ 121 #define ATC_DCSIZE GENMASK(22, 20) /* Destination Chunk Transfer Size */ 122 #define ATC_SRC_WIDTH GENMASK(25, 24) /* Source Single Transfer Size */ 123 #define ATC_DST_WIDTH GENMASK(29, 28) /* Destination Single Transfer Size */ 124 #define ATC_DONE BIT(31) /* Tx Done (only written back in descriptor) */ 125 126 /* Bitfields in CTRLB */ 127 #define ATC_SIF GENMASK(1, 0) /* Src tx done via AHB-Lite Interface i */ 128 #define ATC_DIF GENMASK(5, 4) /* Dst tx done via AHB-Lite Interface i */ 129 #define AT_DMA_MEM_IF 0x0 /* interface 0 as memory interface */ 130 #define AT_DMA_PER_IF 0x1 /* interface 1 as peripheral interface */ 131 #define ATC_SRC_PIP BIT(8) /* Source Picture-in-Picture enabled */ 132 #define ATC_DST_PIP BIT(12) /* Destination Picture-in-Picture enabled */ 133 #define ATC_SRC_DSCR_DIS BIT(16) /* Src Descriptor fetch disable */ 134 #define ATC_DST_DSCR_DIS BIT(20) /* Dst Descriptor fetch disable */ 135 #define ATC_FC GENMASK(22, 21) /* Choose Flow Controller */ 136 #define ATC_FC_MEM2MEM 0x0 /* Mem-to-Mem (DMA) */ 137 #define ATC_FC_MEM2PER 0x1 /* Mem-to-Periph (DMA) */ 138 #define ATC_FC_PER2MEM 0x2 /* Periph-to-Mem (DMA) */ 139 #define ATC_FC_PER2PER 0x3 /* Periph-to-Periph (DMA) */ 140 #define ATC_FC_PER2MEM_PER 0x4 /* Periph-to-Mem (Peripheral) */ 141 #define ATC_FC_MEM2PER_PER 0x5 /* Mem-to-Periph (Peripheral) */ 142 #define ATC_FC_PER2PER_SRCPER 0x6 /* Periph-to-Periph (Src Peripheral) */ 143 #define ATC_FC_PER2PER_DSTPER 0x7 /* Periph-to-Periph (Dst Peripheral) */ 144 #define ATC_SRC_ADDR_MODE GENMASK(25, 24) 145 #define ATC_SRC_ADDR_MODE_INCR 0x0 /* Incrementing Mode */ 146 #define ATC_SRC_ADDR_MODE_DECR 0x1 /* Decrementing Mode */ 147 #define ATC_SRC_ADDR_MODE_FIXED 0x2 /* Fixed Mode */ 148 #define ATC_DST_ADDR_MODE GENMASK(29, 28) 149 #define ATC_DST_ADDR_MODE_INCR 0x0 /* Incrementing Mode */ 150 #define ATC_DST_ADDR_MODE_DECR 0x1 /* Decrementing Mode */ 151 #define ATC_DST_ADDR_MODE_FIXED 0x2 /* Fixed Mode */ 152 #define ATC_IEN BIT(30) /* BTC interrupt enable (active low) */ 153 #define ATC_AUTO BIT(31) /* Auto multiple buffer tx enable */ 154 155 /* Bitfields in CFG */ 156 #define ATC_PER_MSB(h) ((0x30U & (h)) >> 4) /* Extract most significant bits of a handshaking identifier */ 157 158 #define ATC_SRC_PER GENMASK(3, 0) /* Channel src rq associated with periph handshaking ifc h */ 159 #define ATC_DST_PER GENMASK(7, 4) /* Channel dst rq associated with periph handshaking ifc h */ 160 #define ATC_SRC_REP BIT(8) /* Source Replay Mod */ 161 #define ATC_SRC_H2SEL BIT(9) /* Source Handshaking Mod */ 162 #define ATC_SRC_PER_MSB GENMASK(11, 10) /* Channel src rq (most significant bits) */ 163 #define ATC_DST_REP BIT(12) /* Destination Replay Mod */ 164 #define ATC_DST_H2SEL BIT(13) /* Destination Handshaking Mod */ 165 #define ATC_DST_PER_MSB GENMASK(15, 14) /* Channel dst rq (most significant bits) */ 166 #define ATC_SOD BIT(16) /* Stop On Done */ 167 #define ATC_LOCK_IF BIT(20) /* Interface Lock */ 168 #define ATC_LOCK_B BIT(21) /* AHB Bus Lock */ 169 #define ATC_LOCK_IF_L BIT(22) /* Master Interface Arbiter Lock */ 170 #define ATC_AHB_PROT GENMASK(26, 24) /* AHB Protection */ 171 #define ATC_FIFOCFG GENMASK(29, 28) /* FIFO Request Configuration */ 172 #define ATC_FIFOCFG_LARGESTBURST 0x0 173 #define ATC_FIFOCFG_HALFFIFO 0x1 174 #define ATC_FIFOCFG_ENOUGHSPACE 0x2 175 176 /* Bitfields in SPIP */ 177 #define ATC_SPIP_HOLE GENMASK(15, 0) 178 #define ATC_SPIP_BOUNDARY GENMASK(25, 16) 179 180 /* Bitfields in DPIP */ 181 #define ATC_DPIP_HOLE GENMASK(15, 0) 182 #define ATC_DPIP_BOUNDARY GENMASK(25, 16) 183 184 #define ATC_SRC_PER_ID(id) (FIELD_PREP(ATC_SRC_PER_MSB, (id)) | \ 185 FIELD_PREP(ATC_SRC_PER, (id))) 186 #define ATC_DST_PER_ID(id) (FIELD_PREP(ATC_DST_PER_MSB, (id)) | \ 187 FIELD_PREP(ATC_DST_PER, (id))) 188 189 190 191 /*-- descriptors -----------------------------------------------------*/ 192 193 /* LLI == Linked List Item; aka DMA buffer descriptor */ 194 struct at_lli { 195 /* values that are not changed by hardware */ 196 u32 saddr; 197 u32 daddr; 198 /* value that may get written back: */ 199 u32 ctrla; 200 /* more values that are not changed by hardware */ 201 u32 ctrlb; 202 u32 dscr; /* chain to next lli */ 203 }; 204 205 /** 206 * struct atdma_sg - atdma scatter gather entry 207 * @len: length of the current Linked List Item. 208 * @lli: linked list item that is passed to the DMA controller 209 * @lli_phys: physical address of the LLI. 210 */ 211 struct atdma_sg { 212 unsigned int len; 213 struct at_lli *lli; 214 dma_addr_t lli_phys; 215 }; 216 217 /** 218 * struct at_desc - software descriptor 219 * @vd: pointer to the virtual dma descriptor. 220 * @atchan: pointer to the atmel dma channel. 221 * @total_len: total transaction byte count 222 * @sg_len: number of sg entries. 223 * @sg: array of sgs. 224 */ 225 struct at_desc { 226 struct virt_dma_desc vd; 227 struct at_dma_chan *atchan; 228 size_t total_len; 229 unsigned int sglen; 230 /* Interleaved data */ 231 size_t boundary; 232 size_t dst_hole; 233 size_t src_hole; 234 235 /* Memset temporary buffer */ 236 bool memset_buffer; 237 dma_addr_t memset_paddr; 238 int *memset_vaddr; 239 struct atdma_sg sg[]; 240 }; 241 242 /*-- Channels --------------------------------------------------------*/ 243 244 /** 245 * atc_status - information bits stored in channel status flag 246 * 247 * Manipulated with atomic operations. 248 */ 249 enum atc_status { 250 ATC_IS_PAUSED = 1, 251 ATC_IS_CYCLIC = 24, 252 }; 253 254 /** 255 * struct at_dma_chan - internal representation of an Atmel HDMAC channel 256 * @vc: virtual dma channel entry. 257 * @atdma: pointer to the driver data. 258 * @ch_regs: memory mapped register base 259 * @mask: channel index in a mask 260 * @per_if: peripheral interface 261 * @mem_if: memory interface 262 * @status: transmit status information from irq/prep* functions 263 * to tasklet (use atomic operations) 264 * @save_cfg: configuration register that is saved on suspend/resume cycle 265 * @save_dscr: for cyclic operations, preserve next descriptor address in 266 * the cyclic list on suspend/resume cycle 267 * @dma_sconfig: configuration for slave transfers, passed via 268 * .device_config 269 * @desc: pointer to the atmel dma descriptor. 270 */ 271 struct at_dma_chan { 272 struct virt_dma_chan vc; 273 struct at_dma *atdma; 274 void __iomem *ch_regs; 275 u8 mask; 276 u8 per_if; 277 u8 mem_if; 278 unsigned long status; 279 u32 save_cfg; 280 u32 save_dscr; 281 struct dma_slave_config dma_sconfig; 282 bool cyclic; 283 struct at_desc *desc; 284 }; 285 286 #define channel_readl(atchan, name) \ 287 __raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET) 288 289 #define channel_writel(atchan, name, val) \ 290 __raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET) 291 292 /* 293 * Fix sconfig's burst size according to at_hdmac. We need to convert them as: 294 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7. 295 * 296 * This can be done by finding most significant bit set. 297 */ 298 static inline void convert_burst(u32 *maxburst) 299 { 300 if (*maxburst > 1) 301 *maxburst = fls(*maxburst) - 2; 302 else 303 *maxburst = 0; 304 } 305 306 /* 307 * Fix sconfig's bus width according to at_hdmac. 308 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2. 309 */ 310 static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width) 311 { 312 switch (addr_width) { 313 case DMA_SLAVE_BUSWIDTH_2_BYTES: 314 return 1; 315 case DMA_SLAVE_BUSWIDTH_4_BYTES: 316 return 2; 317 default: 318 /* For 1 byte width or fallback */ 319 return 0; 320 } 321 } 322 323 /*-- Controller ------------------------------------------------------*/ 324 325 /** 326 * struct at_dma - internal representation of an Atmel HDMA Controller 327 * @dma_device: dmaengine dma_device object members 328 * @atdma_devtype: identifier of DMA controller compatibility 329 * @ch_regs: memory mapped register base 330 * @clk: dma controller clock 331 * @save_imr: interrupt mask register that is saved on suspend/resume cycle 332 * @all_chan_mask: all channels availlable in a mask 333 * @lli_pool: hw lli table 334 * @chan: channels table to store at_dma_chan structures 335 */ 336 struct at_dma { 337 struct dma_device dma_device; 338 void __iomem *regs; 339 struct clk *clk; 340 u32 save_imr; 341 342 u8 all_chan_mask; 343 344 struct dma_pool *lli_pool; 345 struct dma_pool *memset_pool; 346 /* AT THE END channels table */ 347 struct at_dma_chan chan[]; 348 }; 349 350 #define dma_readl(atdma, name) \ 351 __raw_readl((atdma)->regs + AT_DMA_##name) 352 #define dma_writel(atdma, name, val) \ 353 __raw_writel((val), (atdma)->regs + AT_DMA_##name) 354 355 static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t) 356 { 357 return container_of(t, struct at_desc, vd.tx); 358 } 359 360 static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan) 361 { 362 return container_of(chan, struct at_dma_chan, vc.chan); 363 } 364 365 static inline struct at_dma *to_at_dma(struct dma_device *ddev) 366 { 367 return container_of(ddev, struct at_dma, dma_device); 368 } 369 370 371 /*-- Helper functions ------------------------------------------------*/ 372 373 static struct device *chan2dev(struct dma_chan *chan) 374 { 375 return &chan->dev->device; 376 } 377 378 #if defined(VERBOSE_DEBUG) 379 static void vdbg_dump_regs(struct at_dma_chan *atchan) 380 { 381 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device); 382 383 dev_err(chan2dev(&atchan->vc.chan), 384 " channel %d : imr = 0x%x, chsr = 0x%x\n", 385 atchan->vc.chan.chan_id, 386 dma_readl(atdma, EBCIMR), 387 dma_readl(atdma, CHSR)); 388 389 dev_err(chan2dev(&atchan->vc.chan), 390 " channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n", 391 channel_readl(atchan, SADDR), 392 channel_readl(atchan, DADDR), 393 channel_readl(atchan, CTRLA), 394 channel_readl(atchan, CTRLB), 395 channel_readl(atchan, CFG), 396 channel_readl(atchan, DSCR)); 397 } 398 #else 399 static void vdbg_dump_regs(struct at_dma_chan *atchan) {} 400 #endif 401 402 static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli) 403 { 404 dev_crit(chan2dev(&atchan->vc.chan), 405 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n", 406 &lli->saddr, &lli->daddr, 407 lli->ctrla, lli->ctrlb, &lli->dscr); 408 } 409 410 411 static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on) 412 { 413 u32 ebci; 414 415 /* enable interrupts on buffer transfer completion & error */ 416 ebci = AT_DMA_BTC(chan_id) 417 | AT_DMA_ERR(chan_id); 418 if (on) 419 dma_writel(atdma, EBCIER, ebci); 420 else 421 dma_writel(atdma, EBCIDR, ebci); 422 } 423 424 static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id) 425 { 426 atc_setup_irq(atdma, chan_id, 1); 427 } 428 429 static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id) 430 { 431 atc_setup_irq(atdma, chan_id, 0); 432 } 433 434 435 /** 436 * atc_chan_is_enabled - test if given channel is enabled 437 * @atchan: channel we want to test status 438 */ 439 static inline int atc_chan_is_enabled(struct at_dma_chan *atchan) 440 { 441 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device); 442 443 return !!(dma_readl(atdma, CHSR) & atchan->mask); 444 } 445 446 /** 447 * atc_chan_is_paused - test channel pause/resume status 448 * @atchan: channel we want to test status 449 */ 450 static inline int atc_chan_is_paused(struct at_dma_chan *atchan) 451 { 452 return test_bit(ATC_IS_PAUSED, &atchan->status); 453 } 454 455 /** 456 * atc_chan_is_cyclic - test if given channel has cyclic property set 457 * @atchan: channel we want to test status 458 */ 459 static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan) 460 { 461 return test_bit(ATC_IS_CYCLIC, &atchan->status); 462 } 463 464 /** 465 * set_lli_eol - set end-of-link to descriptor so it will end transfer 466 * @desc: descriptor, signle or at the end of a chain, to end chain on 467 * @i: index of the atmel scatter gather entry that is at the end of the chain. 468 */ 469 static void set_lli_eol(struct at_desc *desc, unsigned int i) 470 { 471 u32 ctrlb = desc->sg[i].lli->ctrlb; 472 473 ctrlb &= ~ATC_IEN; 474 ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS; 475 476 desc->sg[i].lli->ctrlb = ctrlb; 477 desc->sg[i].lli->dscr = 0; 478 } 479 480 #define ATC_DEFAULT_CFG FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO) 481 #define ATC_DEFAULT_CTRLB (FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \ 482 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF)) 483 #define ATC_DMA_BUSWIDTHS\ 484 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 485 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 486 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 487 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 488 489 #define ATC_MAX_DSCR_TRIALS 10 490 491 /* 492 * Initial number of descriptors to allocate for each channel. This could 493 * be increased during dma usage. 494 */ 495 static unsigned int init_nr_desc_per_channel = 64; 496 module_param(init_nr_desc_per_channel, uint, 0644); 497 MODULE_PARM_DESC(init_nr_desc_per_channel, 498 "initial descriptors per channel (default: 64)"); 499 500 /** 501 * struct at_dma_platform_data - Controller configuration parameters 502 * @nr_channels: Number of channels supported by hardware (max 8) 503 * @cap_mask: dma_capability flags supported by the platform 504 */ 505 struct at_dma_platform_data { 506 unsigned int nr_channels; 507 dma_cap_mask_t cap_mask; 508 }; 509 510 /** 511 * struct at_dma_slave - Controller-specific information about a slave 512 * @dma_dev: required DMA master device 513 * @cfg: Platform-specific initializer for the CFG register 514 */ 515 struct at_dma_slave { 516 struct device *dma_dev; 517 u32 cfg; 518 }; 519 520 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 521 size_t len) 522 { 523 unsigned int width; 524 525 if (!((src | dst | len) & 3)) 526 width = 2; 527 else if (!((src | dst | len) & 1)) 528 width = 1; 529 else 530 width = 0; 531 532 return width; 533 } 534 535 static void atdma_lli_chain(struct at_desc *desc, unsigned int i) 536 { 537 struct atdma_sg *atdma_sg = &desc->sg[i]; 538 539 if (i) 540 desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys; 541 } 542 543 /** 544 * atc_dostart - starts the DMA engine for real 545 * @atchan: the channel we want to start 546 */ 547 static void atc_dostart(struct at_dma_chan *atchan) 548 { 549 struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc); 550 struct at_desc *desc; 551 552 if (!vd) { 553 atchan->desc = NULL; 554 return; 555 } 556 557 vdbg_dump_regs(atchan); 558 559 list_del(&vd->node); 560 atchan->desc = desc = to_atdma_desc(&vd->tx); 561 562 channel_writel(atchan, SADDR, 0); 563 channel_writel(atchan, DADDR, 0); 564 channel_writel(atchan, CTRLA, 0); 565 channel_writel(atchan, CTRLB, 0); 566 channel_writel(atchan, DSCR, desc->sg[0].lli_phys); 567 channel_writel(atchan, SPIP, 568 FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) | 569 FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary)); 570 channel_writel(atchan, DPIP, 571 FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) | 572 FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary)); 573 574 /* Don't allow CPU to reorder channel enable. */ 575 wmb(); 576 dma_writel(atchan->atdma, CHER, atchan->mask); 577 578 vdbg_dump_regs(atchan); 579 } 580 581 static void atdma_desc_free(struct virt_dma_desc *vd) 582 { 583 struct at_dma *atdma = to_at_dma(vd->tx.chan->device); 584 struct at_desc *desc = to_atdma_desc(&vd->tx); 585 unsigned int i; 586 587 for (i = 0; i < desc->sglen; i++) { 588 if (desc->sg[i].lli) 589 dma_pool_free(atdma->lli_pool, desc->sg[i].lli, 590 desc->sg[i].lli_phys); 591 } 592 593 /* If the transfer was a memset, free our temporary buffer */ 594 if (desc->memset_buffer) { 595 dma_pool_free(atdma->memset_pool, desc->memset_vaddr, 596 desc->memset_paddr); 597 desc->memset_buffer = false; 598 } 599 600 kfree(desc); 601 } 602 603 /** 604 * atc_calc_bytes_left - calculates the number of bytes left according to the 605 * value read from CTRLA. 606 * 607 * @current_len: the number of bytes left before reading CTRLA 608 * @ctrla: the value of CTRLA 609 */ 610 static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla) 611 { 612 u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla); 613 u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla); 614 615 /* 616 * According to the datasheet, when reading the Control A Register 617 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the 618 * number of transfers completed on the Source Interface. 619 * So btsize is always a number of source width transfers. 620 */ 621 return current_len - (btsize << src_width); 622 } 623 624 /** 625 * atc_get_llis_residue - Get residue for a hardware linked list transfer 626 * 627 * Calculate the residue by removing the length of the Linked List Item (LLI) 628 * already transferred from the total length. To get the current LLI we can use 629 * the value of the channel's DSCR register and compare it against the DSCR 630 * value of each LLI. 631 * 632 * The CTRLA register provides us with the amount of data already read from the 633 * source for the LLI. So we can compute a more accurate residue by also 634 * removing the number of bytes corresponding to this amount of data. 635 * 636 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a 637 * race condition may occur: the first read register may refer to one LLI 638 * whereas the second read may refer to a later LLI in the list because of the 639 * DMA transfer progression inbetween the two reads. 640 * 641 * One solution could have been to pause the DMA transfer, read the DSCR and 642 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some 643 * drawbacks: 644 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey 645 * to occur depending on the system latency. Taking the USART driver as an 646 * example, it uses a cyclic DMA transfer to read data from the Receive 647 * Holding Register (RHR) to avoid RX overruns since the RHR is not protected 648 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the 649 * residue would break the USART driver design. 650 * - The atc_pause() function masks interrupts but we'd rather avoid to do so 651 * for system latency purpose. 652 * 653 * Then we'd rather use another solution: the DSCR is read a first time, the 654 * CTRLA is read in turn, next the DSCR is read a second time. If the two 655 * consecutive read values of the DSCR are the same then we assume both refers 656 * to the very same LLI as well as the CTRLA value read inbetween does. For 657 * cyclic tranfers, the assumption is that a full loop is "not so fast". If the 658 * two DSCR values are different, we read again the CTRLA then the DSCR till two 659 * consecutive read values from DSCR are equal or till the maximum trials is 660 * reach. This algorithm is very unlikely not to find a stable value for DSCR. 661 * @atchan: pointer to an atmel hdmac channel. 662 * @desc: pointer to the descriptor for which the residue is calculated. 663 * @residue: residue to be set to dma_tx_state. 664 * Returns 0 on success, -errno otherwise. 665 */ 666 static int atc_get_llis_residue(struct at_dma_chan *atchan, 667 struct at_desc *desc, u32 *residue) 668 { 669 u32 len, ctrla, dscr; 670 unsigned int i; 671 672 len = desc->total_len; 673 dscr = channel_readl(atchan, DSCR); 674 rmb(); /* ensure DSCR is read before CTRLA */ 675 ctrla = channel_readl(atchan, CTRLA); 676 for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) { 677 u32 new_dscr; 678 679 rmb(); /* ensure DSCR is read after CTRLA */ 680 new_dscr = channel_readl(atchan, DSCR); 681 682 /* 683 * If the DSCR register value has not changed inside the DMA 684 * controller since the previous read, we assume that both the 685 * dscr and ctrla values refers to the very same descriptor. 686 */ 687 if (likely(new_dscr == dscr)) 688 break; 689 690 /* 691 * DSCR has changed inside the DMA controller, so the previouly 692 * read value of CTRLA may refer to an already processed 693 * descriptor hence could be outdated. We need to update ctrla 694 * to match the current descriptor. 695 */ 696 dscr = new_dscr; 697 rmb(); /* ensure DSCR is read before CTRLA */ 698 ctrla = channel_readl(atchan, CTRLA); 699 } 700 if (unlikely(i == ATC_MAX_DSCR_TRIALS)) 701 return -ETIMEDOUT; 702 703 /* For the first descriptor we can be more accurate. */ 704 if (desc->sg[0].lli->dscr == dscr) { 705 *residue = atc_calc_bytes_left(len, ctrla); 706 return 0; 707 } 708 len -= desc->sg[0].len; 709 710 for (i = 1; i < desc->sglen; i++) { 711 if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr) 712 break; 713 len -= desc->sg[i].len; 714 } 715 716 /* 717 * For the current LLI in the chain we can calculate the remaining bytes 718 * using the channel's CTRLA register. 719 */ 720 *residue = atc_calc_bytes_left(len, ctrla); 721 return 0; 722 723 } 724 725 /** 726 * atc_get_residue - get the number of bytes residue for a cookie. 727 * The residue is passed by address and updated on success. 728 * @chan: DMA channel 729 * @cookie: transaction identifier to check status of 730 * @residue: residue to be updated. 731 * Return 0 on success, -errono otherwise. 732 */ 733 static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie, 734 u32 *residue) 735 { 736 struct at_dma_chan *atchan = to_at_dma_chan(chan); 737 struct virt_dma_desc *vd; 738 struct at_desc *desc = NULL; 739 u32 len, ctrla; 740 741 vd = vchan_find_desc(&atchan->vc, cookie); 742 if (vd) 743 desc = to_atdma_desc(&vd->tx); 744 else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie) 745 desc = atchan->desc; 746 747 if (!desc) 748 return -EINVAL; 749 750 if (desc->sg[0].lli->dscr) 751 /* hardware linked list transfer */ 752 return atc_get_llis_residue(atchan, desc, residue); 753 754 /* single transfer */ 755 len = desc->total_len; 756 ctrla = channel_readl(atchan, CTRLA); 757 *residue = atc_calc_bytes_left(len, ctrla); 758 return 0; 759 } 760 761 /** 762 * atc_handle_error - handle errors reported by DMA controller 763 * @atchan: channel where error occurs. 764 * @i: channel index 765 */ 766 static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i) 767 { 768 struct at_desc *desc = atchan->desc; 769 770 /* Disable channel on AHB error */ 771 dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask); 772 773 /* 774 * KERN_CRITICAL may seem harsh, but since this only happens 775 * when someone submits a bad physical address in a 776 * descriptor, we should consider ourselves lucky that the 777 * controller flagged an error instead of scribbling over 778 * random memory locations. 779 */ 780 dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n"); 781 dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n", 782 desc->vd.tx.cookie); 783 for (i = 0; i < desc->sglen; i++) 784 atc_dump_lli(atchan, desc->sg[i].lli); 785 } 786 787 static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending, 788 unsigned int i) 789 { 790 struct at_desc *desc; 791 792 spin_lock(&atchan->vc.lock); 793 desc = atchan->desc; 794 795 if (desc) { 796 if (pending & AT_DMA_ERR(i)) { 797 atc_handle_error(atchan, i); 798 /* Pretend the descriptor completed successfully */ 799 } 800 801 if (atc_chan_is_cyclic(atchan)) { 802 vchan_cyclic_callback(&desc->vd); 803 } else { 804 vchan_cookie_complete(&desc->vd); 805 atchan->desc = NULL; 806 if (!(atc_chan_is_enabled(atchan))) 807 atc_dostart(atchan); 808 } 809 } 810 spin_unlock(&atchan->vc.lock); 811 } 812 813 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 814 { 815 struct at_dma *atdma = dev_id; 816 struct at_dma_chan *atchan; 817 int i; 818 u32 status, pending, imr; 819 int ret = IRQ_NONE; 820 821 do { 822 imr = dma_readl(atdma, EBCIMR); 823 status = dma_readl(atdma, EBCISR); 824 pending = status & imr; 825 826 if (!pending) 827 break; 828 829 dev_vdbg(atdma->dma_device.dev, 830 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 831 status, imr, pending); 832 833 for (i = 0; i < atdma->dma_device.chancnt; i++) { 834 atchan = &atdma->chan[i]; 835 if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i)))) 836 continue; 837 atdma_handle_chan_done(atchan, pending, i); 838 ret = IRQ_HANDLED; 839 } 840 841 } while (pending); 842 843 return ret; 844 } 845 846 /*-- DMA Engine API --------------------------------------------------*/ 847 /** 848 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 849 * @chan: the channel to prepare operation on 850 * @xt: Interleaved transfer template 851 * @flags: tx descriptor status flags 852 */ 853 static struct dma_async_tx_descriptor * 854 atc_prep_dma_interleaved(struct dma_chan *chan, 855 struct dma_interleaved_template *xt, 856 unsigned long flags) 857 { 858 struct at_dma *atdma = to_at_dma(chan->device); 859 struct at_dma_chan *atchan = to_at_dma_chan(chan); 860 struct data_chunk *first; 861 struct atdma_sg *atdma_sg; 862 struct at_desc *desc; 863 struct at_lli *lli; 864 size_t xfer_count; 865 unsigned int dwidth; 866 u32 ctrla; 867 u32 ctrlb; 868 size_t len = 0; 869 int i; 870 871 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 872 return NULL; 873 874 first = xt->sgl; 875 876 dev_info(chan2dev(chan), 877 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", 878 __func__, &xt->src_start, &xt->dst_start, xt->numf, 879 xt->frame_size, flags); 880 881 /* 882 * The controller can only "skip" X bytes every Y bytes, so we 883 * need to make sure we are given a template that fit that 884 * description, ie a template with chunks that always have the 885 * same size, with the same ICGs. 886 */ 887 for (i = 0; i < xt->frame_size; i++) { 888 struct data_chunk *chunk = xt->sgl + i; 889 890 if ((chunk->size != xt->sgl->size) || 891 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 892 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 893 dev_err(chan2dev(chan), 894 "%s: the controller can transfer only identical chunks\n", 895 __func__); 896 return NULL; 897 } 898 899 len += chunk->size; 900 } 901 902 dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len); 903 904 xfer_count = len >> dwidth; 905 if (xfer_count > ATC_BTSIZE_MAX) { 906 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 907 return NULL; 908 } 909 910 ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) | 911 FIELD_PREP(ATC_DST_WIDTH, dwidth); 912 913 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 914 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) | 915 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) | 916 ATC_SRC_PIP | ATC_DST_PIP | 917 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM); 918 919 desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC); 920 if (!desc) 921 return NULL; 922 desc->sglen = 1; 923 924 atdma_sg = desc->sg; 925 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT, 926 &atdma_sg->lli_phys); 927 if (!atdma_sg->lli) { 928 kfree(desc); 929 return NULL; 930 } 931 lli = atdma_sg->lli; 932 933 lli->saddr = xt->src_start; 934 lli->daddr = xt->dst_start; 935 lli->ctrla = ctrla | xfer_count; 936 lli->ctrlb = ctrlb; 937 938 desc->boundary = first->size >> dwidth; 939 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 940 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 941 942 atdma_sg->len = len; 943 desc->total_len = len; 944 945 set_lli_eol(desc, 0); 946 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 947 } 948 949 /** 950 * atc_prep_dma_memcpy - prepare a memcpy operation 951 * @chan: the channel to prepare operation on 952 * @dest: operation virtual destination address 953 * @src: operation virtual source address 954 * @len: operation length 955 * @flags: tx descriptor status flags 956 */ 957 static struct dma_async_tx_descriptor * 958 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 959 size_t len, unsigned long flags) 960 { 961 struct at_dma *atdma = to_at_dma(chan->device); 962 struct at_dma_chan *atchan = to_at_dma_chan(chan); 963 struct at_desc *desc = NULL; 964 size_t xfer_count; 965 size_t offset; 966 size_t sg_len; 967 unsigned int src_width; 968 unsigned int dst_width; 969 unsigned int i; 970 u32 ctrla; 971 u32 ctrlb; 972 973 dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", 974 &dest, &src, len, flags); 975 976 if (unlikely(!len)) { 977 dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 978 return NULL; 979 } 980 981 sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX); 982 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC); 983 if (!desc) 984 return NULL; 985 desc->sglen = sg_len; 986 987 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 988 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) | 989 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) | 990 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM); 991 992 /* 993 * We can be a lot more clever here, but this should take care 994 * of the most common optimization. 995 */ 996 src_width = dst_width = atc_get_xfer_width(src, dest, len); 997 998 ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) | 999 FIELD_PREP(ATC_DST_WIDTH, dst_width); 1000 1001 for (offset = 0, i = 0; offset < len; 1002 offset += xfer_count << src_width, i++) { 1003 struct atdma_sg *atdma_sg = &desc->sg[i]; 1004 struct at_lli *lli; 1005 1006 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT, 1007 &atdma_sg->lli_phys); 1008 if (!atdma_sg->lli) 1009 goto err_desc_get; 1010 lli = atdma_sg->lli; 1011 1012 xfer_count = min_t(size_t, (len - offset) >> src_width, 1013 ATC_BTSIZE_MAX); 1014 1015 lli->saddr = src + offset; 1016 lli->daddr = dest + offset; 1017 lli->ctrla = ctrla | xfer_count; 1018 lli->ctrlb = ctrlb; 1019 1020 desc->sg[i].len = xfer_count << src_width; 1021 1022 atdma_lli_chain(desc, i); 1023 } 1024 1025 desc->total_len = len; 1026 1027 /* set end-of-link to the last link descriptor of list*/ 1028 set_lli_eol(desc, i - 1); 1029 1030 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1031 1032 err_desc_get: 1033 atdma_desc_free(&desc->vd); 1034 return NULL; 1035 } 1036 1037 static int atdma_create_memset_lli(struct dma_chan *chan, 1038 struct atdma_sg *atdma_sg, 1039 dma_addr_t psrc, dma_addr_t pdst, size_t len) 1040 { 1041 struct at_dma *atdma = to_at_dma(chan->device); 1042 struct at_lli *lli; 1043 size_t xfer_count; 1044 u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2); 1045 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | 1046 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) | 1047 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) | 1048 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM); 1049 1050 xfer_count = len >> 2; 1051 if (xfer_count > ATC_BTSIZE_MAX) { 1052 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 1053 return -EINVAL; 1054 } 1055 1056 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT, 1057 &atdma_sg->lli_phys); 1058 if (!atdma_sg->lli) 1059 return -ENOMEM; 1060 lli = atdma_sg->lli; 1061 1062 lli->saddr = psrc; 1063 lli->daddr = pdst; 1064 lli->ctrla = ctrla | xfer_count; 1065 lli->ctrlb = ctrlb; 1066 1067 atdma_sg->len = len; 1068 1069 return 0; 1070 } 1071 1072 /** 1073 * atc_prep_dma_memset - prepare a memcpy operation 1074 * @chan: the channel to prepare operation on 1075 * @dest: operation virtual destination address 1076 * @value: value to set memory buffer to 1077 * @len: operation length 1078 * @flags: tx descriptor status flags 1079 */ 1080 static struct dma_async_tx_descriptor * 1081 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 1082 size_t len, unsigned long flags) 1083 { 1084 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1085 struct at_dma *atdma = to_at_dma(chan->device); 1086 struct at_desc *desc; 1087 void __iomem *vaddr; 1088 dma_addr_t paddr; 1089 char fill_pattern; 1090 int ret; 1091 1092 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, 1093 &dest, value, len, flags); 1094 1095 if (unlikely(!len)) { 1096 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); 1097 return NULL; 1098 } 1099 1100 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1101 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", 1102 __func__); 1103 return NULL; 1104 } 1105 1106 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 1107 if (!vaddr) { 1108 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1109 __func__); 1110 return NULL; 1111 } 1112 1113 /* Only the first byte of value is to be used according to dmaengine */ 1114 fill_pattern = (char)value; 1115 1116 *(u32*)vaddr = (fill_pattern << 24) | 1117 (fill_pattern << 16) | 1118 (fill_pattern << 8) | 1119 fill_pattern; 1120 1121 desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC); 1122 if (!desc) 1123 goto err_free_buffer; 1124 desc->sglen = 1; 1125 1126 ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len); 1127 if (ret) 1128 goto err_free_desc; 1129 1130 desc->memset_paddr = paddr; 1131 desc->memset_vaddr = vaddr; 1132 desc->memset_buffer = true; 1133 1134 desc->total_len = len; 1135 1136 /* set end-of-link on the descriptor */ 1137 set_lli_eol(desc, 0); 1138 1139 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1140 1141 err_free_desc: 1142 kfree(desc); 1143 err_free_buffer: 1144 dma_pool_free(atdma->memset_pool, vaddr, paddr); 1145 return NULL; 1146 } 1147 1148 static struct dma_async_tx_descriptor * 1149 atc_prep_dma_memset_sg(struct dma_chan *chan, 1150 struct scatterlist *sgl, 1151 unsigned int sg_len, int value, 1152 unsigned long flags) 1153 { 1154 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1155 struct at_dma *atdma = to_at_dma(chan->device); 1156 struct at_desc *desc; 1157 struct scatterlist *sg; 1158 void __iomem *vaddr; 1159 dma_addr_t paddr; 1160 size_t total_len = 0; 1161 int i; 1162 int ret; 1163 1164 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, 1165 value, sg_len, flags); 1166 1167 if (unlikely(!sgl || !sg_len)) { 1168 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", 1169 __func__); 1170 return NULL; 1171 } 1172 1173 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); 1174 if (!vaddr) { 1175 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", 1176 __func__); 1177 return NULL; 1178 } 1179 *(u32*)vaddr = value; 1180 1181 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC); 1182 if (!desc) 1183 goto err_free_dma_buf; 1184 desc->sglen = sg_len; 1185 1186 for_each_sg(sgl, sg, sg_len, i) { 1187 dma_addr_t dest = sg_dma_address(sg); 1188 size_t len = sg_dma_len(sg); 1189 1190 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", 1191 __func__, &dest, len); 1192 1193 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { 1194 dev_err(chan2dev(chan), "%s: buffer is not aligned\n", 1195 __func__); 1196 goto err_free_desc; 1197 } 1198 1199 ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest, 1200 len); 1201 if (ret) 1202 goto err_free_desc; 1203 1204 atdma_lli_chain(desc, i); 1205 total_len += len; 1206 } 1207 1208 desc->memset_paddr = paddr; 1209 desc->memset_vaddr = vaddr; 1210 desc->memset_buffer = true; 1211 1212 desc->total_len = total_len; 1213 1214 /* set end-of-link on the descriptor */ 1215 set_lli_eol(desc, i - 1); 1216 1217 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1218 1219 err_free_desc: 1220 atdma_desc_free(&desc->vd); 1221 err_free_dma_buf: 1222 dma_pool_free(atdma->memset_pool, vaddr, paddr); 1223 return NULL; 1224 } 1225 1226 /** 1227 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 1228 * @chan: DMA channel 1229 * @sgl: scatterlist to transfer to/from 1230 * @sg_len: number of entries in @scatterlist 1231 * @direction: DMA direction 1232 * @flags: tx descriptor status flags 1233 * @context: transaction context (ignored) 1234 */ 1235 static struct dma_async_tx_descriptor * 1236 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1237 unsigned int sg_len, enum dma_transfer_direction direction, 1238 unsigned long flags, void *context) 1239 { 1240 struct at_dma *atdma = to_at_dma(chan->device); 1241 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1242 struct at_dma_slave *atslave = chan->private; 1243 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1244 struct at_desc *desc; 1245 u32 ctrla; 1246 u32 ctrlb; 1247 dma_addr_t reg; 1248 unsigned int reg_width; 1249 unsigned int mem_width; 1250 unsigned int i; 1251 struct scatterlist *sg; 1252 size_t total_len = 0; 1253 1254 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 1255 sg_len, 1256 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1257 flags); 1258 1259 if (unlikely(!atslave || !sg_len)) { 1260 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 1261 return NULL; 1262 } 1263 1264 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC); 1265 if (!desc) 1266 return NULL; 1267 desc->sglen = sg_len; 1268 1269 ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) | 1270 FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst); 1271 ctrlb = ATC_IEN; 1272 1273 switch (direction) { 1274 case DMA_MEM_TO_DEV: 1275 reg_width = convert_buswidth(sconfig->dst_addr_width); 1276 ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width); 1277 ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, 1278 ATC_DST_ADDR_MODE_FIXED) | 1279 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) | 1280 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) | 1281 FIELD_PREP(ATC_SIF, atchan->mem_if) | 1282 FIELD_PREP(ATC_DIF, atchan->per_if); 1283 reg = sconfig->dst_addr; 1284 for_each_sg(sgl, sg, sg_len, i) { 1285 struct atdma_sg *atdma_sg = &desc->sg[i]; 1286 struct at_lli *lli; 1287 u32 len; 1288 u32 mem; 1289 1290 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, 1291 GFP_NOWAIT, 1292 &atdma_sg->lli_phys); 1293 if (!atdma_sg->lli) 1294 goto err_desc_get; 1295 lli = atdma_sg->lli; 1296 1297 mem = sg_dma_address(sg); 1298 len = sg_dma_len(sg); 1299 if (unlikely(!len)) { 1300 dev_dbg(chan2dev(chan), 1301 "prep_slave_sg: sg(%d) data length is zero\n", i); 1302 goto err; 1303 } 1304 mem_width = 2; 1305 if (unlikely(mem & 3 || len & 3)) 1306 mem_width = 0; 1307 1308 lli->saddr = mem; 1309 lli->daddr = reg; 1310 lli->ctrla = ctrla | 1311 FIELD_PREP(ATC_SRC_WIDTH, mem_width) | 1312 len >> mem_width; 1313 lli->ctrlb = ctrlb; 1314 1315 atdma_sg->len = len; 1316 total_len += len; 1317 1318 desc->sg[i].len = len; 1319 atdma_lli_chain(desc, i); 1320 } 1321 break; 1322 case DMA_DEV_TO_MEM: 1323 reg_width = convert_buswidth(sconfig->src_addr_width); 1324 ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width); 1325 ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) | 1326 FIELD_PREP(ATC_SRC_ADDR_MODE, 1327 ATC_SRC_ADDR_MODE_FIXED) | 1328 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) | 1329 FIELD_PREP(ATC_SIF, atchan->per_if) | 1330 FIELD_PREP(ATC_DIF, atchan->mem_if); 1331 1332 reg = sconfig->src_addr; 1333 for_each_sg(sgl, sg, sg_len, i) { 1334 struct atdma_sg *atdma_sg = &desc->sg[i]; 1335 struct at_lli *lli; 1336 u32 len; 1337 u32 mem; 1338 1339 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, 1340 GFP_NOWAIT, 1341 &atdma_sg->lli_phys); 1342 if (!atdma_sg->lli) 1343 goto err_desc_get; 1344 lli = atdma_sg->lli; 1345 1346 mem = sg_dma_address(sg); 1347 len = sg_dma_len(sg); 1348 if (unlikely(!len)) { 1349 dev_dbg(chan2dev(chan), 1350 "prep_slave_sg: sg(%d) data length is zero\n", i); 1351 goto err; 1352 } 1353 mem_width = 2; 1354 if (unlikely(mem & 3 || len & 3)) 1355 mem_width = 0; 1356 1357 lli->saddr = reg; 1358 lli->daddr = mem; 1359 lli->ctrla = ctrla | 1360 FIELD_PREP(ATC_DST_WIDTH, mem_width) | 1361 len >> reg_width; 1362 lli->ctrlb = ctrlb; 1363 1364 desc->sg[i].len = len; 1365 total_len += len; 1366 1367 atdma_lli_chain(desc, i); 1368 } 1369 break; 1370 default: 1371 return NULL; 1372 } 1373 1374 /* set end-of-link to the last link descriptor of list*/ 1375 set_lli_eol(desc, i - 1); 1376 1377 desc->total_len = total_len; 1378 1379 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1380 1381 err_desc_get: 1382 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1383 err: 1384 atdma_desc_free(&desc->vd); 1385 return NULL; 1386 } 1387 1388 /* 1389 * atc_dma_cyclic_check_values 1390 * Check for too big/unaligned periods and unaligned DMA buffer 1391 */ 1392 static int 1393 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1394 size_t period_len) 1395 { 1396 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1397 goto err_out; 1398 if (unlikely(period_len & ((1 << reg_width) - 1))) 1399 goto err_out; 1400 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1401 goto err_out; 1402 1403 return 0; 1404 1405 err_out: 1406 return -EINVAL; 1407 } 1408 1409 /* 1410 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1411 */ 1412 static int 1413 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1414 unsigned int i, dma_addr_t buf_addr, 1415 unsigned int reg_width, size_t period_len, 1416 enum dma_transfer_direction direction) 1417 { 1418 struct at_dma *atdma = to_at_dma(chan->device); 1419 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1420 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1421 struct atdma_sg *atdma_sg = &desc->sg[i]; 1422 struct at_lli *lli; 1423 1424 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC, 1425 &atdma_sg->lli_phys); 1426 if (!atdma_sg->lli) 1427 return -ENOMEM; 1428 lli = atdma_sg->lli; 1429 1430 switch (direction) { 1431 case DMA_MEM_TO_DEV: 1432 lli->saddr = buf_addr + (period_len * i); 1433 lli->daddr = sconfig->dst_addr; 1434 lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE, 1435 ATC_DST_ADDR_MODE_FIXED) | 1436 FIELD_PREP(ATC_SRC_ADDR_MODE, 1437 ATC_SRC_ADDR_MODE_INCR) | 1438 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) | 1439 FIELD_PREP(ATC_SIF, atchan->mem_if) | 1440 FIELD_PREP(ATC_DIF, atchan->per_if); 1441 1442 break; 1443 1444 case DMA_DEV_TO_MEM: 1445 lli->saddr = sconfig->src_addr; 1446 lli->daddr = buf_addr + (period_len * i); 1447 lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE, 1448 ATC_DST_ADDR_MODE_INCR) | 1449 FIELD_PREP(ATC_SRC_ADDR_MODE, 1450 ATC_SRC_ADDR_MODE_FIXED) | 1451 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) | 1452 FIELD_PREP(ATC_SIF, atchan->per_if) | 1453 FIELD_PREP(ATC_DIF, atchan->mem_if); 1454 break; 1455 1456 default: 1457 return -EINVAL; 1458 } 1459 1460 lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) | 1461 FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) | 1462 FIELD_PREP(ATC_DST_WIDTH, reg_width) | 1463 FIELD_PREP(ATC_SRC_WIDTH, reg_width) | 1464 period_len >> reg_width; 1465 desc->sg[i].len = period_len; 1466 1467 return 0; 1468 } 1469 1470 /** 1471 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1472 * @chan: the DMA channel to prepare 1473 * @buf_addr: physical DMA address where the buffer starts 1474 * @buf_len: total number of bytes for the entire buffer 1475 * @period_len: number of bytes for each period 1476 * @direction: transfer direction, to or from device 1477 * @flags: tx descriptor status flags 1478 */ 1479 static struct dma_async_tx_descriptor * 1480 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1481 size_t period_len, enum dma_transfer_direction direction, 1482 unsigned long flags) 1483 { 1484 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1485 struct at_dma_slave *atslave = chan->private; 1486 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1487 struct at_desc *desc; 1488 unsigned long was_cyclic; 1489 unsigned int reg_width; 1490 unsigned int periods = buf_len / period_len; 1491 unsigned int i; 1492 1493 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", 1494 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1495 &buf_addr, 1496 periods, buf_len, period_len); 1497 1498 if (unlikely(!atslave || !buf_len || !period_len)) { 1499 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1500 return NULL; 1501 } 1502 1503 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1504 if (was_cyclic) { 1505 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1506 return NULL; 1507 } 1508 1509 if (unlikely(!is_slave_direction(direction))) 1510 goto err_out; 1511 1512 if (direction == DMA_MEM_TO_DEV) 1513 reg_width = convert_buswidth(sconfig->dst_addr_width); 1514 else 1515 reg_width = convert_buswidth(sconfig->src_addr_width); 1516 1517 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1518 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1519 goto err_out; 1520 1521 desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC); 1522 if (!desc) 1523 goto err_out; 1524 desc->sglen = periods; 1525 1526 /* build cyclic linked list */ 1527 for (i = 0; i < periods; i++) { 1528 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1529 reg_width, period_len, direction)) 1530 goto err_fill_desc; 1531 atdma_lli_chain(desc, i); 1532 } 1533 desc->total_len = buf_len; 1534 /* lets make a cyclic list */ 1535 desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys; 1536 1537 return vchan_tx_prep(&atchan->vc, &desc->vd, flags); 1538 1539 err_fill_desc: 1540 atdma_desc_free(&desc->vd); 1541 err_out: 1542 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1543 return NULL; 1544 } 1545 1546 static int atc_config(struct dma_chan *chan, 1547 struct dma_slave_config *sconfig) 1548 { 1549 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1550 1551 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1552 1553 /* Check if it is chan is configured for slave transfers */ 1554 if (!chan->private) 1555 return -EINVAL; 1556 1557 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1558 1559 convert_burst(&atchan->dma_sconfig.src_maxburst); 1560 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1561 1562 return 0; 1563 } 1564 1565 static int atc_pause(struct dma_chan *chan) 1566 { 1567 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1568 struct at_dma *atdma = to_at_dma(chan->device); 1569 int chan_id = atchan->vc.chan.chan_id; 1570 unsigned long flags; 1571 1572 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1573 1574 spin_lock_irqsave(&atchan->vc.lock, flags); 1575 1576 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1577 set_bit(ATC_IS_PAUSED, &atchan->status); 1578 1579 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1580 1581 return 0; 1582 } 1583 1584 static int atc_resume(struct dma_chan *chan) 1585 { 1586 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1587 struct at_dma *atdma = to_at_dma(chan->device); 1588 int chan_id = atchan->vc.chan.chan_id; 1589 unsigned long flags; 1590 1591 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1592 1593 if (!atc_chan_is_paused(atchan)) 1594 return 0; 1595 1596 spin_lock_irqsave(&atchan->vc.lock, flags); 1597 1598 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1599 clear_bit(ATC_IS_PAUSED, &atchan->status); 1600 1601 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1602 1603 return 0; 1604 } 1605 1606 static int atc_terminate_all(struct dma_chan *chan) 1607 { 1608 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1609 struct at_dma *atdma = to_at_dma(chan->device); 1610 int chan_id = atchan->vc.chan.chan_id; 1611 unsigned long flags; 1612 1613 LIST_HEAD(list); 1614 1615 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1616 1617 /* 1618 * This is only called when something went wrong elsewhere, so 1619 * we don't really care about the data. Just disable the 1620 * channel. We still have to poll the channel enable bit due 1621 * to AHB/HSB limitations. 1622 */ 1623 spin_lock_irqsave(&atchan->vc.lock, flags); 1624 1625 /* disabling channel: must also remove suspend state */ 1626 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1627 1628 /* confirm that this channel is disabled */ 1629 while (dma_readl(atdma, CHSR) & atchan->mask) 1630 cpu_relax(); 1631 1632 if (atchan->desc) { 1633 vchan_terminate_vdesc(&atchan->desc->vd); 1634 atchan->desc = NULL; 1635 } 1636 1637 vchan_get_all_descriptors(&atchan->vc, &list); 1638 1639 clear_bit(ATC_IS_PAUSED, &atchan->status); 1640 /* if channel dedicated to cyclic operations, free it */ 1641 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1642 1643 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1644 1645 vchan_dma_desc_free_list(&atchan->vc, &list); 1646 1647 return 0; 1648 } 1649 1650 /** 1651 * atc_tx_status - poll for transaction completion 1652 * @chan: DMA channel 1653 * @cookie: transaction identifier to check status of 1654 * @txstate: if not %NULL updated with transaction state 1655 * 1656 * If @txstate is passed in, upon return it reflect the driver 1657 * internal state and can be used with dma_async_is_complete() to check 1658 * the status of multiple cookies without re-checking hardware state. 1659 */ 1660 static enum dma_status 1661 atc_tx_status(struct dma_chan *chan, 1662 dma_cookie_t cookie, 1663 struct dma_tx_state *txstate) 1664 { 1665 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1666 unsigned long flags; 1667 enum dma_status dma_status; 1668 u32 residue; 1669 int ret; 1670 1671 dma_status = dma_cookie_status(chan, cookie, txstate); 1672 if (dma_status == DMA_COMPLETE || !txstate) 1673 return dma_status; 1674 1675 spin_lock_irqsave(&atchan->vc.lock, flags); 1676 /* Get number of bytes left in the active transactions */ 1677 ret = atc_get_residue(chan, cookie, &residue); 1678 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1679 1680 if (unlikely(ret < 0)) { 1681 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1682 return DMA_ERROR; 1683 } else { 1684 dma_set_residue(txstate, residue); 1685 } 1686 1687 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n", 1688 dma_status, cookie, residue); 1689 1690 return dma_status; 1691 } 1692 1693 static void atc_issue_pending(struct dma_chan *chan) 1694 { 1695 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1696 unsigned long flags; 1697 1698 spin_lock_irqsave(&atchan->vc.lock, flags); 1699 if (vchan_issue_pending(&atchan->vc) && !atchan->desc) { 1700 if (!(atc_chan_is_enabled(atchan))) 1701 atc_dostart(atchan); 1702 } 1703 spin_unlock_irqrestore(&atchan->vc.lock, flags); 1704 } 1705 1706 /** 1707 * atc_alloc_chan_resources - allocate resources for DMA channel 1708 * @chan: allocate descriptor resources for this channel 1709 * 1710 * return - the number of allocated descriptors 1711 */ 1712 static int atc_alloc_chan_resources(struct dma_chan *chan) 1713 { 1714 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1715 struct at_dma *atdma = to_at_dma(chan->device); 1716 struct at_dma_slave *atslave; 1717 u32 cfg; 1718 1719 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1720 1721 /* ASSERT: channel is idle */ 1722 if (atc_chan_is_enabled(atchan)) { 1723 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1724 return -EIO; 1725 } 1726 1727 cfg = ATC_DEFAULT_CFG; 1728 1729 atslave = chan->private; 1730 if (atslave) { 1731 /* 1732 * We need controller-specific data to set up slave 1733 * transfers. 1734 */ 1735 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev); 1736 1737 /* if cfg configuration specified take it instead of default */ 1738 if (atslave->cfg) 1739 cfg = atslave->cfg; 1740 } 1741 1742 /* channel parameters */ 1743 channel_writel(atchan, CFG, cfg); 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * atc_free_chan_resources - free all channel resources 1750 * @chan: DMA channel 1751 */ 1752 static void atc_free_chan_resources(struct dma_chan *chan) 1753 { 1754 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1755 1756 BUG_ON(atc_chan_is_enabled(atchan)); 1757 1758 vchan_free_chan_resources(to_virt_chan(chan)); 1759 atchan->status = 0; 1760 1761 /* 1762 * Free atslave allocated in at_dma_xlate() 1763 */ 1764 kfree(chan->private); 1765 chan->private = NULL; 1766 1767 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1768 } 1769 1770 #ifdef CONFIG_OF 1771 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1772 { 1773 struct at_dma_slave *atslave = slave; 1774 1775 if (atslave->dma_dev == chan->device->dev) { 1776 chan->private = atslave; 1777 return true; 1778 } else { 1779 return false; 1780 } 1781 } 1782 1783 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1784 struct of_dma *of_dma) 1785 { 1786 struct dma_chan *chan; 1787 struct at_dma_chan *atchan; 1788 struct at_dma_slave *atslave; 1789 dma_cap_mask_t mask; 1790 unsigned int per_id; 1791 struct platform_device *dmac_pdev; 1792 1793 if (dma_spec->args_count != 2) 1794 return NULL; 1795 1796 dmac_pdev = of_find_device_by_node(dma_spec->np); 1797 if (!dmac_pdev) 1798 return NULL; 1799 1800 dma_cap_zero(mask); 1801 dma_cap_set(DMA_SLAVE, mask); 1802 1803 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL); 1804 if (!atslave) { 1805 put_device(&dmac_pdev->dev); 1806 return NULL; 1807 } 1808 1809 atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL; 1810 /* 1811 * We can fill both SRC_PER and DST_PER, one of these fields will be 1812 * ignored depending on DMA transfer direction. 1813 */ 1814 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1815 atslave->cfg |= ATC_DST_PER_ID(per_id) | ATC_SRC_PER_ID(per_id); 1816 /* 1817 * We have to translate the value we get from the device tree since 1818 * the half FIFO configuration value had to be 0 to keep backward 1819 * compatibility. 1820 */ 1821 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1822 case AT91_DMA_CFG_FIFOCFG_ALAP: 1823 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, 1824 ATC_FIFOCFG_LARGESTBURST); 1825 break; 1826 case AT91_DMA_CFG_FIFOCFG_ASAP: 1827 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, 1828 ATC_FIFOCFG_ENOUGHSPACE); 1829 break; 1830 case AT91_DMA_CFG_FIFOCFG_HALF: 1831 default: 1832 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO); 1833 } 1834 atslave->dma_dev = &dmac_pdev->dev; 1835 1836 chan = dma_request_channel(mask, at_dma_filter, atslave); 1837 if (!chan) { 1838 put_device(&dmac_pdev->dev); 1839 kfree(atslave); 1840 return NULL; 1841 } 1842 1843 atchan = to_at_dma_chan(chan); 1844 atchan->per_if = dma_spec->args[0] & 0xff; 1845 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1846 1847 return chan; 1848 } 1849 #else 1850 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1851 struct of_dma *of_dma) 1852 { 1853 return NULL; 1854 } 1855 #endif 1856 1857 /*-- Module Management -----------------------------------------------*/ 1858 1859 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1860 static struct at_dma_platform_data at91sam9rl_config = { 1861 .nr_channels = 2, 1862 }; 1863 static struct at_dma_platform_data at91sam9g45_config = { 1864 .nr_channels = 8, 1865 }; 1866 1867 #if defined(CONFIG_OF) 1868 static const struct of_device_id atmel_dma_dt_ids[] = { 1869 { 1870 .compatible = "atmel,at91sam9rl-dma", 1871 .data = &at91sam9rl_config, 1872 }, { 1873 .compatible = "atmel,at91sam9g45-dma", 1874 .data = &at91sam9g45_config, 1875 }, { 1876 /* sentinel */ 1877 } 1878 }; 1879 1880 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1881 #endif 1882 1883 static const struct platform_device_id atdma_devtypes[] = { 1884 { 1885 .name = "at91sam9rl_dma", 1886 .driver_data = (unsigned long) &at91sam9rl_config, 1887 }, { 1888 .name = "at91sam9g45_dma", 1889 .driver_data = (unsigned long) &at91sam9g45_config, 1890 }, { 1891 /* sentinel */ 1892 } 1893 }; 1894 1895 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1896 struct platform_device *pdev) 1897 { 1898 if (pdev->dev.of_node) { 1899 const struct of_device_id *match; 1900 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1901 if (match == NULL) 1902 return NULL; 1903 return match->data; 1904 } 1905 return (struct at_dma_platform_data *) 1906 platform_get_device_id(pdev)->driver_data; 1907 } 1908 1909 /** 1910 * at_dma_off - disable DMA controller 1911 * @atdma: the Atmel HDAMC device 1912 */ 1913 static void at_dma_off(struct at_dma *atdma) 1914 { 1915 dma_writel(atdma, EN, 0); 1916 1917 /* disable all interrupts */ 1918 dma_writel(atdma, EBCIDR, -1L); 1919 1920 /* confirm that all channels are disabled */ 1921 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1922 cpu_relax(); 1923 } 1924 1925 static int __init at_dma_probe(struct platform_device *pdev) 1926 { 1927 struct at_dma *atdma; 1928 int irq; 1929 int err; 1930 int i; 1931 const struct at_dma_platform_data *plat_dat; 1932 1933 /* setup platform data for each SoC */ 1934 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1935 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1936 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1937 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); 1938 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); 1939 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); 1940 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1941 1942 /* get DMA parameters from controller type */ 1943 plat_dat = at_dma_get_driver_data(pdev); 1944 if (!plat_dat) 1945 return -ENODEV; 1946 1947 atdma = devm_kzalloc(&pdev->dev, 1948 struct_size(atdma, chan, plat_dat->nr_channels), 1949 GFP_KERNEL); 1950 if (!atdma) 1951 return -ENOMEM; 1952 1953 atdma->regs = devm_platform_ioremap_resource(pdev, 0); 1954 if (IS_ERR(atdma->regs)) 1955 return PTR_ERR(atdma->regs); 1956 1957 irq = platform_get_irq(pdev, 0); 1958 if (irq < 0) 1959 return irq; 1960 1961 /* discover transaction capabilities */ 1962 atdma->dma_device.cap_mask = plat_dat->cap_mask; 1963 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1964 1965 atdma->clk = devm_clk_get(&pdev->dev, "dma_clk"); 1966 if (IS_ERR(atdma->clk)) 1967 return PTR_ERR(atdma->clk); 1968 1969 err = clk_prepare_enable(atdma->clk); 1970 if (err) 1971 return err; 1972 1973 /* force dma off, just in case */ 1974 at_dma_off(atdma); 1975 1976 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1977 if (err) 1978 goto err_irq; 1979 1980 platform_set_drvdata(pdev, atdma); 1981 1982 /* create a pool of consistent memory blocks for hardware descriptors */ 1983 atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool", 1984 &pdev->dev, sizeof(struct at_lli), 1985 4 /* word alignment */, 0); 1986 if (!atdma->lli_pool) { 1987 dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n"); 1988 err = -ENOMEM; 1989 goto err_desc_pool_create; 1990 } 1991 1992 /* create a pool of consistent memory blocks for memset blocks */ 1993 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", 1994 &pdev->dev, sizeof(int), 4, 0); 1995 if (!atdma->memset_pool) { 1996 dev_err(&pdev->dev, "No memory for memset dma pool\n"); 1997 err = -ENOMEM; 1998 goto err_memset_pool_create; 1999 } 2000 2001 /* clear any pending interrupt */ 2002 while (dma_readl(atdma, EBCISR)) 2003 cpu_relax(); 2004 2005 /* initialize channels related values */ 2006 INIT_LIST_HEAD(&atdma->dma_device.channels); 2007 for (i = 0; i < plat_dat->nr_channels; i++) { 2008 struct at_dma_chan *atchan = &atdma->chan[i]; 2009 2010 atchan->mem_if = AT_DMA_MEM_IF; 2011 atchan->per_if = AT_DMA_PER_IF; 2012 2013 atchan->ch_regs = atdma->regs + ch_regs(i); 2014 atchan->mask = 1 << i; 2015 2016 atchan->atdma = atdma; 2017 atchan->vc.desc_free = atdma_desc_free; 2018 vchan_init(&atchan->vc, &atdma->dma_device); 2019 atc_enable_chan_irq(atdma, i); 2020 } 2021 2022 /* set base routines */ 2023 atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources; 2024 atdma->dma_device.device_free_chan_resources = atc_free_chan_resources; 2025 atdma->dma_device.device_tx_status = atc_tx_status; 2026 atdma->dma_device.device_issue_pending = atc_issue_pending; 2027 atdma->dma_device.dev = &pdev->dev; 2028 2029 /* set prep routines based on capability */ 2030 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask)) 2031 atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved; 2032 2033 if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask)) 2034 atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy; 2035 2036 if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) { 2037 atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset; 2038 atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; 2039 atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES; 2040 } 2041 2042 if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) { 2043 atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg; 2044 /* controller can do slave DMA: can trigger cyclic transfers */ 2045 dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask); 2046 atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic; 2047 atdma->dma_device.device_config = atc_config; 2048 atdma->dma_device.device_pause = atc_pause; 2049 atdma->dma_device.device_resume = atc_resume; 2050 atdma->dma_device.device_terminate_all = atc_terminate_all; 2051 atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS; 2052 atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS; 2053 atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2054 atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 2055 } 2056 2057 dma_writel(atdma, EN, AT_DMA_ENABLE); 2058 2059 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 2060 dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "", 2061 dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "", 2062 dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask) ? "slave " : "", 2063 plat_dat->nr_channels); 2064 2065 err = dma_async_device_register(&atdma->dma_device); 2066 if (err) { 2067 dev_err(&pdev->dev, "Unable to register: %d.\n", err); 2068 goto err_dma_async_device_register; 2069 } 2070 2071 /* 2072 * Do not return an error if the dmac node is not present in order to 2073 * not break the existing way of requesting channel with 2074 * dma_request_channel(). 2075 */ 2076 if (pdev->dev.of_node) { 2077 err = of_dma_controller_register(pdev->dev.of_node, 2078 at_dma_xlate, atdma); 2079 if (err) { 2080 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 2081 goto err_of_dma_controller_register; 2082 } 2083 } 2084 2085 return 0; 2086 2087 err_of_dma_controller_register: 2088 dma_async_device_unregister(&atdma->dma_device); 2089 err_dma_async_device_register: 2090 dma_pool_destroy(atdma->memset_pool); 2091 err_memset_pool_create: 2092 dma_pool_destroy(atdma->lli_pool); 2093 err_desc_pool_create: 2094 free_irq(platform_get_irq(pdev, 0), atdma); 2095 err_irq: 2096 clk_disable_unprepare(atdma->clk); 2097 return err; 2098 } 2099 2100 static int at_dma_remove(struct platform_device *pdev) 2101 { 2102 struct at_dma *atdma = platform_get_drvdata(pdev); 2103 struct dma_chan *chan, *_chan; 2104 2105 at_dma_off(atdma); 2106 if (pdev->dev.of_node) 2107 of_dma_controller_free(pdev->dev.of_node); 2108 dma_async_device_unregister(&atdma->dma_device); 2109 2110 dma_pool_destroy(atdma->memset_pool); 2111 dma_pool_destroy(atdma->lli_pool); 2112 free_irq(platform_get_irq(pdev, 0), atdma); 2113 2114 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels, 2115 device_node) { 2116 /* Disable interrupts */ 2117 atc_disable_chan_irq(atdma, chan->chan_id); 2118 list_del(&chan->device_node); 2119 } 2120 2121 clk_disable_unprepare(atdma->clk); 2122 2123 return 0; 2124 } 2125 2126 static void at_dma_shutdown(struct platform_device *pdev) 2127 { 2128 struct at_dma *atdma = platform_get_drvdata(pdev); 2129 2130 at_dma_off(platform_get_drvdata(pdev)); 2131 clk_disable_unprepare(atdma->clk); 2132 } 2133 2134 static int at_dma_prepare(struct device *dev) 2135 { 2136 struct at_dma *atdma = dev_get_drvdata(dev); 2137 struct dma_chan *chan, *_chan; 2138 2139 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels, 2140 device_node) { 2141 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2142 /* wait for transaction completion (except in cyclic case) */ 2143 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 2144 return -EAGAIN; 2145 } 2146 return 0; 2147 } 2148 2149 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 2150 { 2151 struct dma_chan *chan = &atchan->vc.chan; 2152 2153 /* Channel should be paused by user 2154 * do it anyway even if it is not done already */ 2155 if (!atc_chan_is_paused(atchan)) { 2156 dev_warn(chan2dev(chan), 2157 "cyclic channel not paused, should be done by channel user\n"); 2158 atc_pause(chan); 2159 } 2160 2161 /* now preserve additional data for cyclic operations */ 2162 /* next descriptor address in the cyclic list */ 2163 atchan->save_dscr = channel_readl(atchan, DSCR); 2164 2165 vdbg_dump_regs(atchan); 2166 } 2167 2168 static int at_dma_suspend_noirq(struct device *dev) 2169 { 2170 struct at_dma *atdma = dev_get_drvdata(dev); 2171 struct dma_chan *chan, *_chan; 2172 2173 /* preserve data */ 2174 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels, 2175 device_node) { 2176 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2177 2178 if (atc_chan_is_cyclic(atchan)) 2179 atc_suspend_cyclic(atchan); 2180 atchan->save_cfg = channel_readl(atchan, CFG); 2181 } 2182 atdma->save_imr = dma_readl(atdma, EBCIMR); 2183 2184 /* disable DMA controller */ 2185 at_dma_off(atdma); 2186 clk_disable_unprepare(atdma->clk); 2187 return 0; 2188 } 2189 2190 static void atc_resume_cyclic(struct at_dma_chan *atchan) 2191 { 2192 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device); 2193 2194 /* restore channel status for cyclic descriptors list: 2195 * next descriptor in the cyclic list at the time of suspend */ 2196 channel_writel(atchan, SADDR, 0); 2197 channel_writel(atchan, DADDR, 0); 2198 channel_writel(atchan, CTRLA, 0); 2199 channel_writel(atchan, CTRLB, 0); 2200 channel_writel(atchan, DSCR, atchan->save_dscr); 2201 dma_writel(atdma, CHER, atchan->mask); 2202 2203 /* channel pause status should be removed by channel user 2204 * We cannot take the initiative to do it here */ 2205 2206 vdbg_dump_regs(atchan); 2207 } 2208 2209 static int at_dma_resume_noirq(struct device *dev) 2210 { 2211 struct at_dma *atdma = dev_get_drvdata(dev); 2212 struct dma_chan *chan, *_chan; 2213 2214 /* bring back DMA controller */ 2215 clk_prepare_enable(atdma->clk); 2216 dma_writel(atdma, EN, AT_DMA_ENABLE); 2217 2218 /* clear any pending interrupt */ 2219 while (dma_readl(atdma, EBCISR)) 2220 cpu_relax(); 2221 2222 /* restore saved data */ 2223 dma_writel(atdma, EBCIER, atdma->save_imr); 2224 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels, 2225 device_node) { 2226 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2227 2228 channel_writel(atchan, CFG, atchan->save_cfg); 2229 if (atc_chan_is_cyclic(atchan)) 2230 atc_resume_cyclic(atchan); 2231 } 2232 return 0; 2233 } 2234 2235 static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = { 2236 .prepare = at_dma_prepare, 2237 .suspend_noirq = at_dma_suspend_noirq, 2238 .resume_noirq = at_dma_resume_noirq, 2239 }; 2240 2241 static struct platform_driver at_dma_driver = { 2242 .remove = at_dma_remove, 2243 .shutdown = at_dma_shutdown, 2244 .id_table = atdma_devtypes, 2245 .driver = { 2246 .name = "at_hdmac", 2247 .pm = pm_ptr(&at_dma_dev_pm_ops), 2248 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2249 }, 2250 }; 2251 2252 static int __init at_dma_init(void) 2253 { 2254 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2255 } 2256 subsys_initcall(at_dma_init); 2257 2258 static void __exit at_dma_exit(void) 2259 { 2260 platform_driver_unregister(&at_dma_driver); 2261 } 2262 module_exit(at_dma_exit); 2263 2264 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2265 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2266 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>"); 2267 MODULE_LICENSE("GPL"); 2268 MODULE_ALIAS("platform:at_hdmac"); 2269